blob: b1a1eadbc446fe457cbb89d97db3fd270c9dc4b9 [file] [log] [blame]
//===- Core/SymbolTable.cpp - Main Symbol Table ---------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lld/Core/SymbolTable.h"
#include "lld/Core/AbsoluteAtom.h"
#include "lld/Core/Atom.h"
#include "lld/Core/DefinedAtom.h"
#include "lld/Core/File.h"
#include "lld/Core/LLVM.h"
#include "lld/Core/Resolver.h"
#include "lld/Core/SharedLibraryAtom.h"
#include "lld/Core/LinkingContext.h"
#include "lld/Core/UndefinedAtom.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <vector>
namespace lld {
SymbolTable::SymbolTable(const LinkingContext &context) : _context(context) {}
bool SymbolTable::add(const UndefinedAtom &atom) { return addByName(atom); }
bool SymbolTable::add(const SharedLibraryAtom &atom) { return addByName(atom); }
bool SymbolTable::add(const AbsoluteAtom &atom) { return addByName(atom); }
bool SymbolTable::add(const DefinedAtom &atom) {
if (!atom.name().empty() &&
atom.scope() != DefinedAtom::scopeTranslationUnit) {
// Named atoms cannot be merged by content.
assert(atom.merge() != DefinedAtom::mergeByContent);
// Track named atoms that are not scoped to file (static).
return addByName(atom);
}
if (atom.merge() == DefinedAtom::mergeByContent) {
// Named atoms cannot be merged by content.
assert(atom.name().empty());
// Currently only read-only constants can be merged.
if (atom.permissions() == DefinedAtom::permR__)
return addByContent(atom);
// TODO: support mergeByContent of data atoms by comparing content & fixups.
}
return false;
}
const Atom *SymbolTable::findGroup(StringRef sym) {
NameToAtom::iterator pos = _groupTable.find(sym);
if (pos == _groupTable.end())
return nullptr;
return pos->second;
}
bool SymbolTable::addGroup(const DefinedAtom &da) {
StringRef name = da.name();
assert(!name.empty());
const Atom *existing = findGroup(name);
if (existing == nullptr) {
_groupTable[name] = &da;
return true;
}
_replacedAtoms[&da] = existing;
return false;
}
enum NameCollisionResolution {
NCR_First,
NCR_Second,
NCR_DupDef,
NCR_DupUndef,
NCR_DupShLib,
NCR_Error
};
static NameCollisionResolution cases[4][4] = {
//regular absolute undef sharedLib
{
// first is regular
NCR_DupDef, NCR_Error, NCR_First, NCR_First
},
{
// first is absolute
NCR_Error, NCR_Error, NCR_First, NCR_First
},
{
// first is undef
NCR_Second, NCR_Second, NCR_DupUndef, NCR_Second
},
{
// first is sharedLib
NCR_Second, NCR_Second, NCR_First, NCR_DupShLib
}
};
static NameCollisionResolution collide(Atom::Definition first,
Atom::Definition second) {
return cases[first][second];
}
enum MergeResolution {
MCR_First,
MCR_Second,
MCR_Largest,
MCR_SameSize,
MCR_Error
};
static MergeResolution mergeCases[][6] = {
// no tentative weak weakAddress sameNameAndSize largest
{MCR_Error, MCR_First, MCR_First, MCR_First, MCR_SameSize, MCR_Largest}, // no
{MCR_Second, MCR_Largest, MCR_Second, MCR_Second, MCR_SameSize, MCR_Largest}, // tentative
{MCR_Second, MCR_First, MCR_First, MCR_Second, MCR_SameSize, MCR_Largest}, // weak
{MCR_Second, MCR_First, MCR_First, MCR_First, MCR_SameSize, MCR_Largest}, // weakAddress
{MCR_SameSize, MCR_SameSize, MCR_SameSize, MCR_SameSize, MCR_SameSize, MCR_SameSize}, // sameSize
{MCR_Largest, MCR_Largest, MCR_Largest, MCR_Largest, MCR_SameSize, MCR_Largest}, // largest
};
static MergeResolution mergeSelect(DefinedAtom::Merge first,
DefinedAtom::Merge second) {
assert(first != DefinedAtom::mergeByContent);
assert(second != DefinedAtom::mergeByContent);
return mergeCases[first][second];
}
static const DefinedAtom *followReference(const DefinedAtom *atom,
uint32_t kind) {
for (const Reference *r : *atom)
if (r->kindNamespace() == Reference::KindNamespace::all &&
r->kindArch() == Reference::KindArch::all &&
r->kindValue() == kind)
return cast<const DefinedAtom>(r->target());
return nullptr;
}
static uint64_t getSizeFollowReferences(const DefinedAtom *atom,
uint32_t kind) {
uint64_t size = 0;
for (;;) {
atom = followReference(atom, kind);
if (!atom)
return size;
size += atom->size();
}
}
// Returns the size of the section containing the given atom. Atoms in the same
// section are connected by layout-before and layout-after edges, so this
// function traverses them to get the total size of atoms in the same section.
static uint64_t sectionSize(const DefinedAtom *atom) {
return atom->size()
+ getSizeFollowReferences(atom, lld::Reference::kindLayoutBefore)
+ getSizeFollowReferences(atom, lld::Reference::kindLayoutAfter);
}
bool SymbolTable::addByName(const Atom &newAtom) {
StringRef name = newAtom.name();
assert(!name.empty());
const Atom *existing = findByName(name);
if (existing == nullptr) {
// Name is not in symbol table yet, add it associate with this atom.
_nameTable[name] = &newAtom;
return true;
}
// Do nothing if the same object is added more than once.
if (existing == &newAtom)
return false;
// Name is already in symbol table and associated with another atom.
bool useNew = true;
switch (collide(existing->definition(), newAtom.definition())) {
case NCR_First:
useNew = false;
break;
case NCR_Second:
useNew = true;
break;
case NCR_DupDef:
assert(existing->definition() == Atom::definitionRegular);
assert(newAtom.definition() == Atom::definitionRegular);
switch (mergeSelect(((DefinedAtom*)existing)->merge(),
((DefinedAtom*)&newAtom)->merge())) {
case MCR_First:
useNew = false;
break;
case MCR_Second:
useNew = true;
break;
case MCR_Largest: {
uint64_t existingSize = sectionSize((DefinedAtom*)existing);
uint64_t newSize = sectionSize((DefinedAtom*)&newAtom);
useNew = (newSize >= existingSize);
break;
}
case MCR_SameSize: {
uint64_t existingSize = sectionSize((DefinedAtom*)existing);
uint64_t newSize = sectionSize((DefinedAtom*)&newAtom);
if (existingSize == newSize) {
useNew = true;
break;
}
llvm::errs() << "Size mismatch: "
<< existing->name() << " (" << existingSize << ") "
<< newAtom.name() << " (" << newSize << ")\n";
// fallthrough
}
case MCR_Error:
if (!_context.getAllowDuplicates()) {
llvm::errs() << "Duplicate symbols: "
<< existing->name()
<< ":"
<< existing->file().path()
<< " and "
<< newAtom.name()
<< ":"
<< newAtom.file().path()
<< "\n";
llvm::report_fatal_error("duplicate symbol error");
}
useNew = false;
break;
}
break;
case NCR_DupUndef: {
const UndefinedAtom* existingUndef = cast<UndefinedAtom>(existing);
const UndefinedAtom* newUndef = cast<UndefinedAtom>(&newAtom);
bool sameCanBeNull = (existingUndef->canBeNull() == newUndef->canBeNull());
if (!sameCanBeNull &&
_context.warnIfCoalesableAtomsHaveDifferentCanBeNull()) {
llvm::errs() << "lld warning: undefined symbol "
<< existingUndef->name()
<< " has different weakness in "
<< existingUndef->file().path()
<< " and in " << newUndef->file().path() << "\n";
}
const UndefinedAtom *existingFallback = existingUndef->fallback();
const UndefinedAtom *newFallback = newUndef->fallback();
bool hasDifferentFallback =
(existingFallback && newFallback &&
existingFallback->name() != newFallback->name());
if (hasDifferentFallback) {
llvm::errs() << "lld warning: undefined symbol "
<< existingUndef->name() << " has different fallback: "
<< existingFallback->name() << " in "
<< existingUndef->file().path() << " and "
<< newFallback->name() << " in "
<< newUndef->file().path() << "\n";
}
bool hasNewFallback = newUndef->fallback();
if (sameCanBeNull)
useNew = hasNewFallback;
else
useNew = (newUndef->canBeNull() < existingUndef->canBeNull());
break;
}
case NCR_DupShLib: {
const SharedLibraryAtom *curShLib = cast<SharedLibraryAtom>(existing);
const SharedLibraryAtom *newShLib = cast<SharedLibraryAtom>(&newAtom);
bool sameNullness =
(curShLib->canBeNullAtRuntime() == newShLib->canBeNullAtRuntime());
bool sameName = curShLib->loadName().equals(newShLib->loadName());
if (sameName && !sameNullness &&
_context.warnIfCoalesableAtomsHaveDifferentCanBeNull()) {
// FIXME: need diagonstics interface for writing warning messages
llvm::errs() << "lld warning: shared library symbol "
<< curShLib->name() << " has different weakness in "
<< curShLib->file().path() << " and in "
<< newShLib->file().path();
}
if (!sameName && _context.warnIfCoalesableAtomsHaveDifferentLoadName()) {
// FIXME: need diagonstics interface for writing warning messages
llvm::errs() << "lld warning: shared library symbol "
<< curShLib->name() << " has different load path in "
<< curShLib->file().path() << " and in "
<< newShLib->file().path();
}
useNew = false;
break;
}
case NCR_Error:
llvm::errs() << "SymbolTable: error while merging " << name << "\n";
llvm::report_fatal_error("duplicate symbol error");
break;
}
if (useNew) {
// Update name table to use new atom.
_nameTable[name] = &newAtom;
// Add existing atom to replacement table.
_replacedAtoms[existing] = &newAtom;
} else {
// New atom is not being used. Add it to replacement table.
_replacedAtoms[&newAtom] = existing;
}
return false;
}
unsigned SymbolTable::AtomMappingInfo::getHashValue(const DefinedAtom *atom) {
auto content = atom->rawContent();
return llvm::hash_combine(atom->size(),
atom->contentType(),
llvm::hash_combine_range(content.begin(),
content.end()));
}
bool SymbolTable::AtomMappingInfo::isEqual(const DefinedAtom * const l,
const DefinedAtom * const r) {
if (l == r)
return true;
if (l == getEmptyKey())
return false;
if (r == getEmptyKey())
return false;
if (l == getTombstoneKey())
return false;
if (r == getTombstoneKey())
return false;
if (l->contentType() != r->contentType())
return false;
if (l->size() != r->size())
return false;
ArrayRef<uint8_t> lc = l->rawContent();
ArrayRef<uint8_t> rc = r->rawContent();
return memcmp(lc.data(), rc.data(), lc.size()) == 0;
}
bool SymbolTable::addByContent(const DefinedAtom &newAtom) {
AtomContentSet::iterator pos = _contentTable.find(&newAtom);
if (pos == _contentTable.end()) {
_contentTable.insert(&newAtom);
return true;
}
const Atom* existing = *pos;
// New atom is not being used. Add it to replacement table.
_replacedAtoms[&newAtom] = existing;
return false;
}
const Atom *SymbolTable::findByName(StringRef sym) {
NameToAtom::iterator pos = _nameTable.find(sym);
if (pos == _nameTable.end())
return nullptr;
return pos->second;
}
bool SymbolTable::isDefined(StringRef sym) {
if (const Atom *atom = findByName(sym))
return atom->definition() != Atom::definitionUndefined;
return false;
}
void SymbolTable::addReplacement(const Atom *replaced,
const Atom *replacement) {
_replacedAtoms[replaced] = replacement;
}
const Atom *SymbolTable::replacement(const Atom *atom) {
// Find the replacement for a given atom. Atoms in _replacedAtoms
// may be chained, so find the last one.
for (;;) {
AtomToAtom::iterator pos = _replacedAtoms.find(atom);
if (pos == _replacedAtoms.end())
return atom;
atom = pos->second;
}
}
bool SymbolTable::isCoalescedAway(const Atom *atom) {
return _replacedAtoms.count(atom) > 0;
}
unsigned int SymbolTable::size() {
return _nameTable.size();
}
std::vector<const UndefinedAtom *> SymbolTable::undefines() {
std::vector<const UndefinedAtom *> ret;
for (auto it : _nameTable) {
const Atom *atom = it.second;
assert(atom != nullptr);
if (const auto undef = dyn_cast<const UndefinedAtom>(atom)) {
AtomToAtom::iterator pos = _replacedAtoms.find(undef);
if (pos != _replacedAtoms.end())
continue;
ret.push_back(undef);
}
}
return ret;
}
std::vector<StringRef> SymbolTable::tentativeDefinitions() {
std::vector<StringRef> ret;
for (auto entry : _nameTable) {
const Atom *atom = entry.second;
StringRef name = entry.first;
assert(atom != nullptr);
if (const DefinedAtom *defAtom = dyn_cast<DefinedAtom>(atom))
if (defAtom->merge() == DefinedAtom::mergeAsTentative)
ret.push_back(name);
}
return ret;
}
} // namespace lld