|  | //===- SyntheticSections.cpp ----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains linker-synthesized sections. Currently, | 
|  | // synthetic sections are created either output sections or input sections, | 
|  | // but we are rewriting code so that all synthetic sections are created as | 
|  | // input sections. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SyntheticSections.h" | 
|  | #include "Config.h" | 
|  | #include "DWARF.h" | 
|  | #include "EhFrame.h" | 
|  | #include "InputFiles.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "OutputSections.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Symbols.h" | 
|  | #include "Target.h" | 
|  | #include "Thunks.h" | 
|  | #include "Writer.h" | 
|  | #include "lld/Common/CommonLinkerContext.h" | 
|  | #include "lld/Common/DWARF.h" | 
|  | #include "lld/Common/Strings.h" | 
|  | #include "lld/Common/Version.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Sequence.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/BinaryFormat/Dwarf.h" | 
|  | #include "llvm/BinaryFormat/ELF.h" | 
|  | #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" | 
|  | #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" | 
|  | #include "llvm/Support/DJB.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/Parallel.h" | 
|  | #include "llvm/Support/TimeProfiler.h" | 
|  | #include <cinttypes> | 
|  | #include <cstdlib> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::dwarf; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | using llvm::support::endian::read32le; | 
|  | using llvm::support::endian::write32le; | 
|  | using llvm::support::endian::write64le; | 
|  |  | 
|  | constexpr size_t MergeNoTailSection::numShards; | 
|  |  | 
|  | static uint64_t readUint(Ctx &ctx, uint8_t *buf) { | 
|  | return ctx.arg.is64 ? read64(ctx, buf) : read32(ctx, buf); | 
|  | } | 
|  |  | 
|  | static void writeUint(Ctx &ctx, uint8_t *buf, uint64_t val) { | 
|  | if (ctx.arg.is64) | 
|  | write64(ctx, buf, val); | 
|  | else | 
|  | write32(ctx, buf, val); | 
|  | } | 
|  |  | 
|  | // Returns an LLD version string. | 
|  | static ArrayRef<uint8_t> getVersion(Ctx &ctx) { | 
|  | // Check LLD_VERSION first for ease of testing. | 
|  | // You can get consistent output by using the environment variable. | 
|  | // This is only for testing. | 
|  | StringRef s = getenv("LLD_VERSION"); | 
|  | if (s.empty()) | 
|  | s = ctx.saver.save(Twine("Linker: ") + getLLDVersion()); | 
|  |  | 
|  | // +1 to include the terminating '\0'. | 
|  | return {(const uint8_t *)s.data(), s.size() + 1}; | 
|  | } | 
|  |  | 
|  | // Creates a .comment section containing LLD version info. | 
|  | // With this feature, you can identify LLD-generated binaries easily | 
|  | // by "readelf --string-dump .comment <file>". | 
|  | // The returned object is a mergeable string section. | 
|  | MergeInputSection *elf::createCommentSection(Ctx &ctx) { | 
|  | auto *sec = | 
|  | make<MergeInputSection>(ctx, ".comment", SHT_PROGBITS, | 
|  | SHF_MERGE | SHF_STRINGS, 1, getVersion(ctx)); | 
|  | sec->splitIntoPieces(); | 
|  | return sec; | 
|  | } | 
|  |  | 
|  | // .MIPS.abiflags section. | 
|  | template <class ELFT> | 
|  | MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Ctx &ctx, | 
|  | Elf_Mips_ABIFlags flags) | 
|  | : SyntheticSection(ctx, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, 8), | 
|  | flags(flags) { | 
|  | this->entsize = sizeof(Elf_Mips_ABIFlags); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | memcpy(buf, &flags, sizeof(flags)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | std::unique_ptr<MipsAbiFlagsSection<ELFT>> | 
|  | MipsAbiFlagsSection<ELFT>::create(Ctx &ctx) { | 
|  | Elf_Mips_ABIFlags flags = {}; | 
|  | bool create = false; | 
|  |  | 
|  | for (InputSectionBase *sec : ctx.inputSections) { | 
|  | if (sec->type != SHT_MIPS_ABIFLAGS) | 
|  | continue; | 
|  | sec->markDead(); | 
|  | create = true; | 
|  |  | 
|  | const size_t size = sec->content().size(); | 
|  | // Older version of BFD (such as the default FreeBSD linker) concatenate | 
|  | // .MIPS.abiflags instead of merging. To allow for this case (or potential | 
|  | // zero padding) we ignore everything after the first Elf_Mips_ABIFlags | 
|  | if (size < sizeof(Elf_Mips_ABIFlags)) { | 
|  | Err(ctx) << sec->file << ": invalid size of .MIPS.abiflags section: got " | 
|  | << size << " instead of " << sizeof(Elf_Mips_ABIFlags); | 
|  | return nullptr; | 
|  | } | 
|  | auto *s = | 
|  | reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data()); | 
|  | if (s->version != 0) { | 
|  | Err(ctx) << sec->file << ": unexpected .MIPS.abiflags version " | 
|  | << s->version; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // LLD checks ISA compatibility in calcMipsEFlags(). Here we just | 
|  | // select the highest number of ISA/Rev/Ext. | 
|  | flags.isa_level = std::max(flags.isa_level, s->isa_level); | 
|  | flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); | 
|  | flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); | 
|  | flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); | 
|  | flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); | 
|  | flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); | 
|  | flags.ases |= s->ases; | 
|  | flags.flags1 |= s->flags1; | 
|  | flags.flags2 |= s->flags2; | 
|  | flags.fp_abi = | 
|  | elf::getMipsFpAbiFlag(ctx, sec->file, flags.fp_abi, s->fp_abi); | 
|  | }; | 
|  |  | 
|  | if (create) | 
|  | return std::make_unique<MipsAbiFlagsSection<ELFT>>(ctx, flags); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // .MIPS.options section. | 
|  | template <class ELFT> | 
|  | MipsOptionsSection<ELFT>::MipsOptionsSection(Ctx &ctx, Elf_Mips_RegInfo reginfo) | 
|  | : SyntheticSection(ctx, ".MIPS.options", SHT_MIPS_OPTIONS, SHF_ALLOC, 8), | 
|  | reginfo(reginfo) { | 
|  | this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); | 
|  | options->kind = ODK_REGINFO; | 
|  | options->size = getSize(); | 
|  |  | 
|  | if (!ctx.arg.relocatable) | 
|  | reginfo.ri_gp_value = ctx.in.mipsGot->getGp(); | 
|  | memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | std::unique_ptr<MipsOptionsSection<ELFT>> | 
|  | MipsOptionsSection<ELFT>::create(Ctx &ctx) { | 
|  | // N64 ABI only. | 
|  | if (!ELFT::Is64Bits) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<InputSectionBase *, 0> sections; | 
|  | for (InputSectionBase *sec : ctx.inputSections) | 
|  | if (sec->type == SHT_MIPS_OPTIONS) | 
|  | sections.push_back(sec); | 
|  |  | 
|  | if (sections.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | Elf_Mips_RegInfo reginfo = {}; | 
|  | for (InputSectionBase *sec : sections) { | 
|  | sec->markDead(); | 
|  |  | 
|  | ArrayRef<uint8_t> d = sec->content(); | 
|  | while (!d.empty()) { | 
|  | if (d.size() < sizeof(Elf_Mips_Options)) { | 
|  | Err(ctx) << sec->file << ": invalid size of .MIPS.options section"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); | 
|  | if (opt->kind == ODK_REGINFO) { | 
|  | reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; | 
|  | sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!opt->size) { | 
|  | Err(ctx) << sec->file << ": zero option descriptor size"; | 
|  | break; | 
|  | } | 
|  | d = d.slice(opt->size); | 
|  | } | 
|  | }; | 
|  |  | 
|  | return std::make_unique<MipsOptionsSection<ELFT>>(ctx, reginfo); | 
|  | } | 
|  |  | 
|  | // MIPS .reginfo section. | 
|  | template <class ELFT> | 
|  | MipsReginfoSection<ELFT>::MipsReginfoSection(Ctx &ctx, Elf_Mips_RegInfo reginfo) | 
|  | : SyntheticSection(ctx, ".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC, 4), | 
|  | reginfo(reginfo) { | 
|  | this->entsize = sizeof(Elf_Mips_RegInfo); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | if (!ctx.arg.relocatable) | 
|  | reginfo.ri_gp_value = ctx.in.mipsGot->getGp(); | 
|  | memcpy(buf, ®info, sizeof(reginfo)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | std::unique_ptr<MipsReginfoSection<ELFT>> | 
|  | MipsReginfoSection<ELFT>::create(Ctx &ctx) { | 
|  | // Section should be alive for O32 and N32 ABIs only. | 
|  | if (ELFT::Is64Bits) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<InputSectionBase *, 0> sections; | 
|  | for (InputSectionBase *sec : ctx.inputSections) | 
|  | if (sec->type == SHT_MIPS_REGINFO) | 
|  | sections.push_back(sec); | 
|  |  | 
|  | if (sections.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | Elf_Mips_RegInfo reginfo = {}; | 
|  | for (InputSectionBase *sec : sections) { | 
|  | sec->markDead(); | 
|  |  | 
|  | if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) { | 
|  | Err(ctx) << sec->file << ": invalid size of .reginfo section"; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data()); | 
|  | reginfo.ri_gprmask |= r->ri_gprmask; | 
|  | sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; | 
|  | }; | 
|  |  | 
|  | return std::make_unique<MipsReginfoSection<ELFT>>(ctx, reginfo); | 
|  | } | 
|  |  | 
|  | InputSection *elf::createInterpSection(Ctx &ctx) { | 
|  | // StringSaver guarantees that the returned string ends with '\0'. | 
|  | StringRef s = ctx.saver.save(ctx.arg.dynamicLinker); | 
|  | ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; | 
|  |  | 
|  | return make<InputSection>(ctx.internalFile, ".interp", SHT_PROGBITS, | 
|  | SHF_ALLOC, | 
|  | /*addralign=*/1, /*entsize=*/0, contents); | 
|  | } | 
|  |  | 
|  | Defined *elf::addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type, | 
|  | uint64_t value, uint64_t size, | 
|  | InputSectionBase §ion) { | 
|  | Defined *s = makeDefined(ctx, section.file, name, STB_LOCAL, STV_DEFAULT, | 
|  | type, value, size, §ion); | 
|  | if (ctx.in.symTab) | 
|  | ctx.in.symTab->addSymbol(s); | 
|  |  | 
|  | if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 && | 
|  | (section.flags & SHF_EXECINSTR)) | 
|  | // Adding Linker generated mapping symbols to the arm specific mapping | 
|  | // symbols list. | 
|  | addArmSyntheticSectionMappingSymbol(s); | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static size_t getHashSize(Ctx &ctx) { | 
|  | switch (ctx.arg.buildId) { | 
|  | case BuildIdKind::Fast: | 
|  | return 8; | 
|  | case BuildIdKind::Md5: | 
|  | case BuildIdKind::Uuid: | 
|  | return 16; | 
|  | case BuildIdKind::Sha1: | 
|  | return 20; | 
|  | case BuildIdKind::Hexstring: | 
|  | return ctx.arg.buildIdVector.size(); | 
|  | default: | 
|  | llvm_unreachable("unknown BuildIdKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This class represents a linker-synthesized .note.gnu.property section. | 
|  | // | 
|  | // In x86 and AArch64, object files may contain feature flags indicating the | 
|  | // features that they have used. The flags are stored in a .note.gnu.property | 
|  | // section. | 
|  | // | 
|  | // lld reads the sections from input files and merges them by computing AND of | 
|  | // the flags. The result is written as a new .note.gnu.property section. | 
|  | // | 
|  | // If the flag is zero (which indicates that the intersection of the feature | 
|  | // sets is empty, or some input files didn't have .note.gnu.property sections), | 
|  | // we don't create this section. | 
|  | GnuPropertySection::GnuPropertySection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".note.gnu.property", SHT_NOTE, SHF_ALLOC, | 
|  | ctx.arg.wordsize) {} | 
|  |  | 
|  | void GnuPropertySection::writeTo(uint8_t *buf) { | 
|  | write32(ctx, buf, 4);                          // Name size | 
|  | write32(ctx, buf + 4, getSize() - 16);         // Content size | 
|  | write32(ctx, buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type | 
|  | memcpy(buf + 12, "GNU", 4);               // Name string | 
|  |  | 
|  | uint32_t featureAndType = ctx.arg.emachine == EM_AARCH64 | 
|  | ? GNU_PROPERTY_AARCH64_FEATURE_1_AND | 
|  | : GNU_PROPERTY_X86_FEATURE_1_AND; | 
|  |  | 
|  | unsigned offset = 16; | 
|  | if (ctx.arg.andFeatures != 0) { | 
|  | write32(ctx, buf + offset + 0, featureAndType);      // Feature type | 
|  | write32(ctx, buf + offset + 4, 4);                   // Feature size | 
|  | write32(ctx, buf + offset + 8, ctx.arg.andFeatures); // Feature flags | 
|  | if (ctx.arg.is64) | 
|  | write32(ctx, buf + offset + 12, 0); // Padding | 
|  | offset += 16; | 
|  | } | 
|  |  | 
|  | if (!ctx.aarch64PauthAbiCoreInfo.empty()) { | 
|  | write32(ctx, buf + offset + 0, GNU_PROPERTY_AARCH64_FEATURE_PAUTH); | 
|  | write32(ctx, buf + offset + 4, ctx.aarch64PauthAbiCoreInfo.size()); | 
|  | memcpy(buf + offset + 8, ctx.aarch64PauthAbiCoreInfo.data(), | 
|  | ctx.aarch64PauthAbiCoreInfo.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t GnuPropertySection::getSize() const { | 
|  | uint32_t contentSize = 0; | 
|  | if (ctx.arg.andFeatures != 0) | 
|  | contentSize += ctx.arg.is64 ? 16 : 12; | 
|  | if (!ctx.aarch64PauthAbiCoreInfo.empty()) | 
|  | contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size(); | 
|  | assert(contentSize != 0); | 
|  | return contentSize + 16; | 
|  | } | 
|  |  | 
|  | BuildIdSection::BuildIdSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".note.gnu.build-id", SHT_NOTE, SHF_ALLOC, 4), | 
|  | hashSize(getHashSize(ctx)) {} | 
|  |  | 
|  | void BuildIdSection::writeTo(uint8_t *buf) { | 
|  | write32(ctx, buf, 4);                   // Name size | 
|  | write32(ctx, buf + 4, hashSize);        // Content size | 
|  | write32(ctx, buf + 8, NT_GNU_BUILD_ID); // Type | 
|  | memcpy(buf + 12, "GNU", 4);           // Name string | 
|  | hashBuf = buf + 16; | 
|  | } | 
|  |  | 
|  | void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { | 
|  | assert(buf.size() == hashSize); | 
|  | memcpy(hashBuf, buf.data(), hashSize); | 
|  | } | 
|  |  | 
|  | BssSection::BssSection(Ctx &ctx, StringRef name, uint64_t size, | 
|  | uint32_t alignment) | 
|  | : SyntheticSection(ctx, name, SHT_NOBITS, SHF_ALLOC | SHF_WRITE, | 
|  | alignment) { | 
|  | this->bss = true; | 
|  | this->size = size; | 
|  | } | 
|  |  | 
|  | EhFrameSection::EhFrameSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, 1) {} | 
|  |  | 
|  | // Search for an existing CIE record or create a new one. | 
|  | // CIE records from input object files are uniquified by their contents | 
|  | // and where their relocations point to. | 
|  | template <class ELFT, class RelTy> | 
|  | CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { | 
|  | Symbol *personality = nullptr; | 
|  | unsigned firstRelI = cie.firstRelocation; | 
|  | if (firstRelI != (unsigned)-1) | 
|  | personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]); | 
|  |  | 
|  | // Search for an existing CIE by CIE contents/relocation target pair. | 
|  | CieRecord *&rec = cieMap[{cie.data(), personality}]; | 
|  |  | 
|  | // If not found, create a new one. | 
|  | if (!rec) { | 
|  | rec = make<CieRecord>(); | 
|  | rec->cie = &cie; | 
|  | cieRecords.push_back(rec); | 
|  | } | 
|  | return rec; | 
|  | } | 
|  |  | 
|  | // There is one FDE per function. Returns a non-null pointer to the function | 
|  | // symbol if the given FDE points to a live function. | 
|  | template <class ELFT, class RelTy> | 
|  | Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { | 
|  | auto *sec = cast<EhInputSection>(fde.sec); | 
|  | unsigned firstRelI = fde.firstRelocation; | 
|  |  | 
|  | // An FDE should point to some function because FDEs are to describe | 
|  | // functions. That's however not always the case due to an issue of | 
|  | // ld.gold with -r. ld.gold may discard only functions and leave their | 
|  | // corresponding FDEs, which results in creating bad .eh_frame sections. | 
|  | // To deal with that, we ignore such FDEs. | 
|  | if (firstRelI == (unsigned)-1) | 
|  | return nullptr; | 
|  |  | 
|  | const RelTy &rel = rels[firstRelI]; | 
|  | Symbol &b = sec->file->getRelocTargetSym(rel); | 
|  |  | 
|  | // FDEs for garbage-collected or merged-by-ICF sections, or sections in | 
|  | // another partition, are dead. | 
|  | if (auto *d = dyn_cast<Defined>(&b)) | 
|  | if (!d->folded && d->section && d->section->partition == partition) | 
|  | return d; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. In general, there | 
|  | // is one CIE record per input object file which is followed by | 
|  | // a list of FDEs. This function searches an existing CIE or create a new | 
|  | // one and associates FDEs to the CIE. | 
|  | template <class ELFT, class RelTy> | 
|  | void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { | 
|  | offsetToCie.clear(); | 
|  | for (EhSectionPiece &cie : sec->cies) | 
|  | offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels); | 
|  | for (EhSectionPiece &fde : sec->fdes) { | 
|  | uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); | 
|  | CieRecord *rec = offsetToCie[fde.inputOff + 4 - id]; | 
|  | if (!rec) | 
|  | Fatal(ctx) << sec << ": invalid CIE reference"; | 
|  |  | 
|  | if (!isFdeLive<ELFT>(fde, rels)) | 
|  | continue; | 
|  | rec->fdes.push_back(&fde); | 
|  | numFdes++; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhFrameSection::addSectionAux(EhInputSection *sec) { | 
|  | if (!sec->isLive()) | 
|  | return; | 
|  | const RelsOrRelas<ELFT> rels = | 
|  | sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); | 
|  | if (rels.areRelocsRel()) | 
|  | addRecords<ELFT>(sec, rels.rels); | 
|  | else | 
|  | addRecords<ELFT>(sec, rels.relas); | 
|  | } | 
|  |  | 
|  | // Used by ICF<ELFT>::handleLSDA(). This function is very similar to | 
|  | // EhFrameSection::addRecords(). | 
|  | template <class ELFT, class RelTy> | 
|  | void EhFrameSection::iterateFDEWithLSDAAux( | 
|  | EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, | 
|  | llvm::function_ref<void(InputSection &)> fn) { | 
|  | for (EhSectionPiece &cie : sec.cies) | 
|  | if (hasLSDA(cie)) | 
|  | ciesWithLSDA.insert(cie.inputOff); | 
|  | for (EhSectionPiece &fde : sec.fdes) { | 
|  | uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); | 
|  | if (!ciesWithLSDA.contains(fde.inputOff + 4 - id)) | 
|  | continue; | 
|  |  | 
|  | // The CIE has a LSDA argument. Call fn with d's section. | 
|  | if (Defined *d = isFdeLive<ELFT>(fde, rels)) | 
|  | if (auto *s = dyn_cast_or_null<InputSection>(d->section)) | 
|  | fn(*s); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void EhFrameSection::iterateFDEWithLSDA( | 
|  | llvm::function_ref<void(InputSection &)> fn) { | 
|  | DenseSet<size_t> ciesWithLSDA; | 
|  | for (EhInputSection *sec : sections) { | 
|  | ciesWithLSDA.clear(); | 
|  | const RelsOrRelas<ELFT> rels = | 
|  | sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); | 
|  | if (rels.areRelocsRel()) | 
|  | iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); | 
|  | else | 
|  | iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void writeCieFde(Ctx &ctx, uint8_t *buf, ArrayRef<uint8_t> d) { | 
|  | memcpy(buf, d.data(), d.size()); | 
|  | // Fix the size field. -4 since size does not include the size field itself. | 
|  | write32(ctx, buf, d.size() - 4); | 
|  | } | 
|  |  | 
|  | void EhFrameSection::finalizeContents() { | 
|  | assert(!this->size); // Not finalized. | 
|  |  | 
|  | switch (ctx.arg.ekind) { | 
|  | case ELFNoneKind: | 
|  | llvm_unreachable("invalid ekind"); | 
|  | case ELF32LEKind: | 
|  | for (EhInputSection *sec : sections) | 
|  | addSectionAux<ELF32LE>(sec); | 
|  | break; | 
|  | case ELF32BEKind: | 
|  | for (EhInputSection *sec : sections) | 
|  | addSectionAux<ELF32BE>(sec); | 
|  | break; | 
|  | case ELF64LEKind: | 
|  | for (EhInputSection *sec : sections) | 
|  | addSectionAux<ELF64LE>(sec); | 
|  | break; | 
|  | case ELF64BEKind: | 
|  | for (EhInputSection *sec : sections) | 
|  | addSectionAux<ELF64BE>(sec); | 
|  | break; | 
|  | } | 
|  |  | 
|  | size_t off = 0; | 
|  | for (CieRecord *rec : cieRecords) { | 
|  | rec->cie->outputOff = off; | 
|  | off += rec->cie->size; | 
|  |  | 
|  | for (EhSectionPiece *fde : rec->fdes) { | 
|  | fde->outputOff = off; | 
|  | off += fde->size; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The LSB standard does not allow a .eh_frame section with zero | 
|  | // Call Frame Information records. glibc unwind-dw2-fde.c | 
|  | // classify_object_over_fdes expects there is a CIE record length 0 as a | 
|  | // terminator. Thus we add one unconditionally. | 
|  | off += 4; | 
|  |  | 
|  | this->size = off; | 
|  | } | 
|  |  | 
|  | // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table | 
|  | // to get an FDE from an address to which FDE is applied. This function | 
|  | // returns a list of such pairs. | 
|  | SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { | 
|  | uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; | 
|  | SmallVector<FdeData, 0> ret; | 
|  |  | 
|  | uint64_t va = getPartition(ctx).ehFrameHdr->getVA(); | 
|  | for (CieRecord *rec : cieRecords) { | 
|  | uint8_t enc = getFdeEncoding(rec->cie); | 
|  | for (EhSectionPiece *fde : rec->fdes) { | 
|  | uint64_t pc = getFdePc(buf, fde->outputOff, enc); | 
|  | uint64_t fdeVA = getParent()->addr + fde->outputOff; | 
|  | if (!isInt<32>(pc - va)) { | 
|  | Err(ctx) << fde->sec << ": PC offset is too large: 0x" | 
|  | << Twine::utohexstr(pc - va); | 
|  | continue; | 
|  | } | 
|  | ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort the FDE list by their PC and uniqueify. Usually there is only | 
|  | // one FDE for a PC (i.e. function), but if ICF merges two functions | 
|  | // into one, there can be more than one FDEs pointing to the address. | 
|  | auto less = [](const FdeData &a, const FdeData &b) { | 
|  | return a.pcRel < b.pcRel; | 
|  | }; | 
|  | llvm::stable_sort(ret, less); | 
|  | auto eq = [](const FdeData &a, const FdeData &b) { | 
|  | return a.pcRel == b.pcRel; | 
|  | }; | 
|  | ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint64_t readFdeAddr(Ctx &ctx, uint8_t *buf, int size) { | 
|  | switch (size) { | 
|  | case DW_EH_PE_udata2: | 
|  | return read16(ctx, buf); | 
|  | case DW_EH_PE_sdata2: | 
|  | return (int16_t)read16(ctx, buf); | 
|  | case DW_EH_PE_udata4: | 
|  | return read32(ctx, buf); | 
|  | case DW_EH_PE_sdata4: | 
|  | return (int32_t)read32(ctx, buf); | 
|  | case DW_EH_PE_udata8: | 
|  | case DW_EH_PE_sdata8: | 
|  | return read64(ctx, buf); | 
|  | case DW_EH_PE_absptr: | 
|  | return readUint(ctx, buf); | 
|  | } | 
|  | Err(ctx) << "unknown FDE size encoding"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. | 
|  | // We need it to create .eh_frame_hdr section. | 
|  | uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, | 
|  | uint8_t enc) const { | 
|  | // The starting address to which this FDE applies is | 
|  | // stored at FDE + 8 byte. And this offset is within | 
|  | // the .eh_frame section. | 
|  | size_t off = fdeOff + 8; | 
|  | uint64_t addr = readFdeAddr(ctx, buf + off, enc & 0xf); | 
|  | if ((enc & 0x70) == DW_EH_PE_absptr) | 
|  | return ctx.arg.is64 ? addr : uint32_t(addr); | 
|  | if ((enc & 0x70) == DW_EH_PE_pcrel) | 
|  | return addr + getParent()->addr + off + outSecOff; | 
|  | Err(ctx) << "unknown FDE size relative encoding"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void EhFrameSection::writeTo(uint8_t *buf) { | 
|  | // Write CIE and FDE records. | 
|  | for (CieRecord *rec : cieRecords) { | 
|  | size_t cieOffset = rec->cie->outputOff; | 
|  | writeCieFde(ctx, buf + cieOffset, rec->cie->data()); | 
|  |  | 
|  | for (EhSectionPiece *fde : rec->fdes) { | 
|  | size_t off = fde->outputOff; | 
|  | writeCieFde(ctx, buf + off, fde->data()); | 
|  |  | 
|  | // FDE's second word should have the offset to an associated CIE. | 
|  | // Write it. | 
|  | write32(ctx, buf + off + 4, off + 4 - cieOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply relocations. .eh_frame section contents are not contiguous | 
|  | // in the output buffer, but relocateAlloc() still works because | 
|  | // getOffset() takes care of discontiguous section pieces. | 
|  | for (EhInputSection *s : sections) | 
|  | ctx.target->relocateAlloc(*s, buf); | 
|  |  | 
|  | if (getPartition(ctx).ehFrameHdr && getPartition(ctx).ehFrameHdr->getParent()) | 
|  | getPartition(ctx).ehFrameHdr->write(); | 
|  | } | 
|  |  | 
|  | GotSection::GotSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, | 
|  | ctx.target->gotEntrySize) { | 
|  | numEntries = ctx.target->gotHeaderEntriesNum; | 
|  | } | 
|  |  | 
|  | void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); } | 
|  | void GotSection::addEntry(const Symbol &sym) { | 
|  | assert(sym.auxIdx == ctx.symAux.size() - 1); | 
|  | ctx.symAux.back().gotIdx = numEntries++; | 
|  | } | 
|  |  | 
|  | void GotSection::addAuthEntry(const Symbol &sym) { | 
|  | authEntries.push_back({(numEntries - 1) * ctx.arg.wordsize, sym.isFunc()}); | 
|  | } | 
|  |  | 
|  | bool GotSection::addTlsDescEntry(const Symbol &sym) { | 
|  | assert(sym.auxIdx == ctx.symAux.size() - 1); | 
|  | ctx.symAux.back().tlsDescIdx = numEntries; | 
|  | numEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GotSection::addDynTlsEntry(const Symbol &sym) { | 
|  | assert(sym.auxIdx == ctx.symAux.size() - 1); | 
|  | ctx.symAux.back().tlsGdIdx = numEntries; | 
|  | // Global Dynamic TLS entries take two GOT slots. | 
|  | numEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Reserves TLS entries for a TLS module ID and a TLS block offset. | 
|  | // In total it takes two GOT slots. | 
|  | bool GotSection::addTlsIndex() { | 
|  | if (tlsIndexOff != uint32_t(-1)) | 
|  | return false; | 
|  | tlsIndexOff = numEntries * ctx.arg.wordsize; | 
|  | numEntries += 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { | 
|  | return sym.getTlsDescIdx(ctx) * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { | 
|  | return getVA() + getTlsDescOffset(sym); | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { | 
|  | return this->getVA() + b.getTlsGdIdx(ctx) * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { | 
|  | return b.getTlsGdIdx(ctx) * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | void GotSection::finalizeContents() { | 
|  | if (ctx.arg.emachine == EM_PPC64 && | 
|  | numEntries <= ctx.target->gotHeaderEntriesNum && | 
|  | !ctx.sym.globalOffsetTable) | 
|  | size = 0; | 
|  | else | 
|  | size = numEntries * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | bool GotSection::isNeeded() const { | 
|  | // Needed if the GOT symbol is used or the number of entries is more than just | 
|  | // the header. A GOT with just the header may not be needed. | 
|  | return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum; | 
|  | } | 
|  |  | 
|  | void GotSection::writeTo(uint8_t *buf) { | 
|  | // On PPC64 .got may be needed but empty. Skip the write. | 
|  | if (size == 0) | 
|  | return; | 
|  | ctx.target->writeGotHeader(buf); | 
|  | ctx.target->relocateAlloc(*this, buf); | 
|  | for (const AuthEntryInfo &authEntry : authEntries) { | 
|  | // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#default-signing-schema | 
|  | //   Signed GOT entries use the IA key for symbols of type STT_FUNC and the | 
|  | //   DA key for all other symbol types, with the address of the GOT entry as | 
|  | //   the modifier. The static linker must encode the signing schema into the | 
|  | //   GOT slot. | 
|  | // | 
|  | // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#encoding-the-signing-schema | 
|  | //   If address diversity is set and the discriminator | 
|  | //   is 0 then modifier = Place | 
|  | uint8_t *dest = buf + authEntry.offset; | 
|  | uint64_t key = authEntry.isSymbolFunc ? /*IA=*/0b00 : /*DA=*/0b10; | 
|  | uint64_t addrDiversity = 1; | 
|  | write64(ctx, dest, (addrDiversity << 63) | (key << 60)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t getMipsPageAddr(uint64_t addr) { | 
|  | return (addr + 0x8000) & ~0xffff; | 
|  | } | 
|  |  | 
|  | static uint64_t getMipsPageCount(uint64_t size) { | 
|  | return (size + 0xfffe) / 0xffff + 1; | 
|  | } | 
|  |  | 
|  | MipsGotSection::MipsGotSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".got", SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, 16) {} | 
|  |  | 
|  | void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, | 
|  | RelExpr expr) { | 
|  | FileGot &g = getGot(file); | 
|  | if (expr == RE_MIPS_GOT_LOCAL_PAGE) { | 
|  | if (const OutputSection *os = sym.getOutputSection()) | 
|  | g.pagesMap.insert({os, {}}); | 
|  | else | 
|  | g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(ctx, addend))}, 0}); | 
|  | } else if (sym.isTls()) | 
|  | g.tls.insert({&sym, 0}); | 
|  | else if (sym.isPreemptible && expr == R_ABS) | 
|  | g.relocs.insert({&sym, 0}); | 
|  | else if (sym.isPreemptible) | 
|  | g.global.insert({&sym, 0}); | 
|  | else if (expr == RE_MIPS_GOT_OFF32) | 
|  | g.local32.insert({{&sym, addend}, 0}); | 
|  | else | 
|  | g.local16.insert({{&sym, addend}, 0}); | 
|  | } | 
|  |  | 
|  | void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { | 
|  | getGot(file).dynTlsSymbols.insert({&sym, 0}); | 
|  | } | 
|  |  | 
|  | void MipsGotSection::addTlsIndex(InputFile &file) { | 
|  | getGot(file).dynTlsSymbols.insert({nullptr, 0}); | 
|  | } | 
|  |  | 
|  | size_t MipsGotSection::FileGot::getEntriesNum() const { | 
|  | return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + | 
|  | tls.size() + dynTlsSymbols.size() * 2; | 
|  | } | 
|  |  | 
|  | size_t MipsGotSection::FileGot::getPageEntriesNum() const { | 
|  | size_t num = 0; | 
|  | for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) | 
|  | num += p.second.count; | 
|  | return num; | 
|  | } | 
|  |  | 
|  | size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { | 
|  | size_t count = getPageEntriesNum() + local16.size() + global.size(); | 
|  | // If there are relocation-only entries in the GOT, TLS entries | 
|  | // are allocated after them. TLS entries should be addressable | 
|  | // by 16-bit index so count both reloc-only and TLS entries. | 
|  | if (!tls.empty() || !dynTlsSymbols.empty()) | 
|  | count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { | 
|  | if (f.mipsGotIndex == uint32_t(-1)) { | 
|  | gots.emplace_back(); | 
|  | gots.back().file = &f; | 
|  | f.mipsGotIndex = gots.size() - 1; | 
|  | } | 
|  | return gots[f.mipsGotIndex]; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, | 
|  | const Symbol &sym, | 
|  | int64_t addend) const { | 
|  | const FileGot &g = gots[f->mipsGotIndex]; | 
|  | uint64_t index = 0; | 
|  | if (const OutputSection *outSec = sym.getOutputSection()) { | 
|  | uint64_t secAddr = getMipsPageAddr(outSec->addr); | 
|  | uint64_t symAddr = getMipsPageAddr(sym.getVA(ctx, addend)); | 
|  | index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; | 
|  | } else { | 
|  | index = | 
|  | g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(ctx, addend))}); | 
|  | } | 
|  | return index * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, | 
|  | int64_t addend) const { | 
|  | const FileGot &g = gots[f->mipsGotIndex]; | 
|  | Symbol *sym = const_cast<Symbol *>(&s); | 
|  | if (sym->isTls()) | 
|  | return g.tls.lookup(sym) * ctx.arg.wordsize; | 
|  | if (sym->isPreemptible) | 
|  | return g.global.lookup(sym) * ctx.arg.wordsize; | 
|  | return g.local16.lookup({sym, addend}) * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { | 
|  | const FileGot &g = gots[f->mipsGotIndex]; | 
|  | return g.dynTlsSymbols.lookup(nullptr) * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, | 
|  | const Symbol &s) const { | 
|  | const FileGot &g = gots[f->mipsGotIndex]; | 
|  | Symbol *sym = const_cast<Symbol *>(&s); | 
|  | return g.dynTlsSymbols.lookup(sym) * ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | const Symbol *MipsGotSection::getFirstGlobalEntry() const { | 
|  | if (gots.empty()) | 
|  | return nullptr; | 
|  | const FileGot &primGot = gots.front(); | 
|  | if (!primGot.global.empty()) | 
|  | return primGot.global.front().first; | 
|  | if (!primGot.relocs.empty()) | 
|  | return primGot.relocs.front().first; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned MipsGotSection::getLocalEntriesNum() const { | 
|  | if (gots.empty()) | 
|  | return headerEntriesNum; | 
|  | return headerEntriesNum + gots.front().getPageEntriesNum() + | 
|  | gots.front().local16.size(); | 
|  | } | 
|  |  | 
|  | bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { | 
|  | FileGot tmp = dst; | 
|  | set_union(tmp.pagesMap, src.pagesMap); | 
|  | set_union(tmp.local16, src.local16); | 
|  | set_union(tmp.global, src.global); | 
|  | set_union(tmp.relocs, src.relocs); | 
|  | set_union(tmp.tls, src.tls); | 
|  | set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); | 
|  |  | 
|  | size_t count = isPrimary ? headerEntriesNum : 0; | 
|  | count += tmp.getIndexedEntriesNum(); | 
|  |  | 
|  | if (count * ctx.arg.wordsize > ctx.arg.mipsGotSize) | 
|  | return false; | 
|  |  | 
|  | std::swap(tmp, dst); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MipsGotSection::finalizeContents() { updateAllocSize(ctx); } | 
|  |  | 
|  | bool MipsGotSection::updateAllocSize(Ctx &ctx) { | 
|  | size = headerEntriesNum * ctx.arg.wordsize; | 
|  | for (const FileGot &g : gots) | 
|  | size += g.getEntriesNum() * ctx.arg.wordsize; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MipsGotSection::build() { | 
|  | if (gots.empty()) | 
|  | return; | 
|  |  | 
|  | std::vector<FileGot> mergedGots(1); | 
|  |  | 
|  | // For each GOT move non-preemptible symbols from the `Global` | 
|  | // to `Local16` list. Preemptible symbol might become non-preemptible | 
|  | // one if, for example, it gets a related copy relocation. | 
|  | for (FileGot &got : gots) { | 
|  | for (auto &p: got.global) | 
|  | if (!p.first->isPreemptible) | 
|  | got.local16.insert({{p.first, 0}, 0}); | 
|  | got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { | 
|  | return !p.first->isPreemptible; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // For each GOT remove "reloc-only" entry if there is "global" | 
|  | // entry for the same symbol. And add local entries which indexed | 
|  | // using 32-bit value at the end of 16-bit entries. | 
|  | for (FileGot &got : gots) { | 
|  | got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { | 
|  | return got.global.count(p.first); | 
|  | }); | 
|  | set_union(got.local16, got.local32); | 
|  | got.local32.clear(); | 
|  | } | 
|  |  | 
|  | // Evaluate number of "reloc-only" entries in the resulting GOT. | 
|  | // To do that put all unique "reloc-only" and "global" entries | 
|  | // from all GOTs to the future primary GOT. | 
|  | FileGot *primGot = &mergedGots.front(); | 
|  | for (FileGot &got : gots) { | 
|  | set_union(primGot->relocs, got.global); | 
|  | set_union(primGot->relocs, got.relocs); | 
|  | got.relocs.clear(); | 
|  | } | 
|  |  | 
|  | // Evaluate number of "page" entries in each GOT. | 
|  | for (FileGot &got : gots) { | 
|  | for (std::pair<const OutputSection *, FileGot::PageBlock> &p : | 
|  | got.pagesMap) { | 
|  | const OutputSection *os = p.first; | 
|  | uint64_t secSize = 0; | 
|  | for (SectionCommand *cmd : os->commands) { | 
|  | if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) | 
|  | for (InputSection *isec : isd->sections) { | 
|  | uint64_t off = alignToPowerOf2(secSize, isec->addralign); | 
|  | secSize = off + isec->getSize(); | 
|  | } | 
|  | } | 
|  | p.second.count = getMipsPageCount(secSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge GOTs. Try to join as much as possible GOTs but do not exceed | 
|  | // maximum GOT size. At first, try to fill the primary GOT because | 
|  | // the primary GOT can be accessed in the most effective way. If it | 
|  | // is not possible, try to fill the last GOT in the list, and finally | 
|  | // create a new GOT if both attempts failed. | 
|  | for (FileGot &srcGot : gots) { | 
|  | InputFile *file = srcGot.file; | 
|  | if (tryMergeGots(mergedGots.front(), srcGot, true)) { | 
|  | file->mipsGotIndex = 0; | 
|  | } else { | 
|  | // If this is the first time we failed to merge with the primary GOT, | 
|  | // MergedGots.back() will also be the primary GOT. We must make sure not | 
|  | // to try to merge again with isPrimary=false, as otherwise, if the | 
|  | // inputs are just right, we could allow the primary GOT to become 1 or 2 | 
|  | // words bigger due to ignoring the header size. | 
|  | if (mergedGots.size() == 1 || | 
|  | !tryMergeGots(mergedGots.back(), srcGot, false)) { | 
|  | mergedGots.emplace_back(); | 
|  | std::swap(mergedGots.back(), srcGot); | 
|  | } | 
|  | file->mipsGotIndex = mergedGots.size() - 1; | 
|  | } | 
|  | } | 
|  | std::swap(gots, mergedGots); | 
|  |  | 
|  | // Reduce number of "reloc-only" entries in the primary GOT | 
|  | // by subtracting "global" entries in the primary GOT. | 
|  | primGot = &gots.front(); | 
|  | primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { | 
|  | return primGot->global.count(p.first); | 
|  | }); | 
|  |  | 
|  | // Calculate indexes for each GOT entry. | 
|  | size_t index = headerEntriesNum; | 
|  | for (FileGot &got : gots) { | 
|  | got.startIndex = &got == primGot ? 0 : index; | 
|  | for (std::pair<const OutputSection *, FileGot::PageBlock> &p : | 
|  | got.pagesMap) { | 
|  | // For each output section referenced by GOT page relocations calculate | 
|  | // and save into pagesMap an upper bound of MIPS GOT entries required | 
|  | // to store page addresses of local symbols. We assume the worst case - | 
|  | // each 64kb page of the output section has at least one GOT relocation | 
|  | // against it. And take in account the case when the section intersects | 
|  | // page boundaries. | 
|  | p.second.firstIndex = index; | 
|  | index += p.second.count; | 
|  | } | 
|  | for (auto &p: got.local16) | 
|  | p.second = index++; | 
|  | for (auto &p: got.global) | 
|  | p.second = index++; | 
|  | for (auto &p: got.relocs) | 
|  | p.second = index++; | 
|  | for (auto &p: got.tls) | 
|  | p.second = index++; | 
|  | for (auto &p: got.dynTlsSymbols) { | 
|  | p.second = index; | 
|  | index += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update SymbolAux::gotIdx field to use this | 
|  | // value later in the `sortMipsSymbols` function. | 
|  | for (auto &p : primGot->global) { | 
|  | if (p.first->auxIdx == 0) | 
|  | p.first->allocateAux(ctx); | 
|  | ctx.symAux.back().gotIdx = p.second; | 
|  | } | 
|  | for (auto &p : primGot->relocs) { | 
|  | if (p.first->auxIdx == 0) | 
|  | p.first->allocateAux(ctx); | 
|  | ctx.symAux.back().gotIdx = p.second; | 
|  | } | 
|  |  | 
|  | // Create dynamic relocations. | 
|  | for (FileGot &got : gots) { | 
|  | // Create dynamic relocations for TLS entries. | 
|  | for (std::pair<Symbol *, size_t> &p : got.tls) { | 
|  | Symbol *s = p.first; | 
|  | uint64_t offset = p.second * ctx.arg.wordsize; | 
|  | // When building a shared library we still need a dynamic relocation | 
|  | // for the TP-relative offset as we don't know how much other data will | 
|  | // be allocated before us in the static TLS block. | 
|  | if (s->isPreemptible || ctx.arg.shared) | 
|  | ctx.mainPart->relaDyn->addReloc( | 
|  | {ctx.target->tlsGotRel, this, offset, | 
|  | DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS}); | 
|  | } | 
|  | for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { | 
|  | Symbol *s = p.first; | 
|  | uint64_t offset = p.second * ctx.arg.wordsize; | 
|  | if (s == nullptr) { | 
|  | if (!ctx.arg.shared) | 
|  | continue; | 
|  | ctx.mainPart->relaDyn->addReloc( | 
|  | {ctx.target->tlsModuleIndexRel, this, offset}); | 
|  | } else { | 
|  | // When building a shared library we still need a dynamic relocation | 
|  | // for the module index. Therefore only checking for | 
|  | // S->isPreemptible is not sufficient (this happens e.g. for | 
|  | // thread-locals that have been marked as local through a linker script) | 
|  | if (!s->isPreemptible && !ctx.arg.shared) | 
|  | continue; | 
|  | ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsModuleIndexRel, | 
|  | *this, offset, *s); | 
|  | // However, we can skip writing the TLS offset reloc for non-preemptible | 
|  | // symbols since it is known even in shared libraries | 
|  | if (!s->isPreemptible) | 
|  | continue; | 
|  | offset += ctx.arg.wordsize; | 
|  | ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsOffsetRel, *this, | 
|  | offset, *s); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not create dynamic relocations for non-TLS | 
|  | // entries in the primary GOT. | 
|  | if (&got == primGot) | 
|  | continue; | 
|  |  | 
|  | // Dynamic relocations for "global" entries. | 
|  | for (const std::pair<Symbol *, size_t> &p : got.global) { | 
|  | uint64_t offset = p.second * ctx.arg.wordsize; | 
|  | ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->relativeRel, *this, | 
|  | offset, *p.first); | 
|  | } | 
|  | if (!ctx.arg.isPic) | 
|  | continue; | 
|  | // Dynamic relocations for "local" entries in case of PIC. | 
|  | for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : | 
|  | got.pagesMap) { | 
|  | size_t pageCount = l.second.count; | 
|  | for (size_t pi = 0; pi < pageCount; ++pi) { | 
|  | uint64_t offset = (l.second.firstIndex + pi) * ctx.arg.wordsize; | 
|  | ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset, | 
|  | l.first, int64_t(pi * 0x10000)}); | 
|  | } | 
|  | } | 
|  | for (const std::pair<GotEntry, size_t> &p : got.local16) { | 
|  | uint64_t offset = p.second * ctx.arg.wordsize; | 
|  | ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset, | 
|  | DynamicReloc::AddendOnlyWithTargetVA, | 
|  | *p.first.first, p.first.second, R_ABS}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MipsGotSection::isNeeded() const { | 
|  | // We add the .got section to the result for dynamic MIPS target because | 
|  | // its address and properties are mentioned in the .dynamic section. | 
|  | return !ctx.arg.relocatable; | 
|  | } | 
|  |  | 
|  | uint64_t MipsGotSection::getGp(const InputFile *f) const { | 
|  | // For files without related GOT or files refer a primary GOT | 
|  | // returns "common" _gp value. For secondary GOTs calculate | 
|  | // individual _gp values. | 
|  | if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) | 
|  | return ctx.sym.mipsGp->getVA(ctx, 0); | 
|  | return getVA() + gots[f->mipsGotIndex].startIndex * ctx.arg.wordsize + 0x7ff0; | 
|  | } | 
|  |  | 
|  | void MipsGotSection::writeTo(uint8_t *buf) { | 
|  | // Set the MSB of the second GOT slot. This is not required by any | 
|  | // MIPS ABI documentation, though. | 
|  | // | 
|  | // There is a comment in glibc saying that "The MSB of got[1] of a | 
|  | // gnu object is set to identify gnu objects," and in GNU gold it | 
|  | // says "the second entry will be used by some runtime loaders". | 
|  | // But how this field is being used is unclear. | 
|  | // | 
|  | // We are not really willing to mimic other linkers behaviors | 
|  | // without understanding why they do that, but because all files | 
|  | // generated by GNU tools have this special GOT value, and because | 
|  | // we've been doing this for years, it is probably a safe bet to | 
|  | // keep doing this for now. We really need to revisit this to see | 
|  | // if we had to do this. | 
|  | writeUint(ctx, buf + ctx.arg.wordsize, | 
|  | (uint64_t)1 << (ctx.arg.wordsize * 8 - 1)); | 
|  | for (const FileGot &g : gots) { | 
|  | auto write = [&](size_t i, const Symbol *s, int64_t a) { | 
|  | uint64_t va = a; | 
|  | if (s) | 
|  | va = s->getVA(ctx, a); | 
|  | writeUint(ctx, buf + i * ctx.arg.wordsize, va); | 
|  | }; | 
|  | // Write 'page address' entries to the local part of the GOT. | 
|  | for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : | 
|  | g.pagesMap) { | 
|  | size_t pageCount = l.second.count; | 
|  | uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); | 
|  | for (size_t pi = 0; pi < pageCount; ++pi) | 
|  | write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); | 
|  | } | 
|  | // Local, global, TLS, reloc-only  entries. | 
|  | // If TLS entry has a corresponding dynamic relocations, leave it | 
|  | // initialized by zero. Write down adjusted TLS symbol's values otherwise. | 
|  | // To calculate the adjustments use offsets for thread-local storage. | 
|  | // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL | 
|  | for (const std::pair<GotEntry, size_t> &p : g.local16) | 
|  | write(p.second, p.first.first, p.first.second); | 
|  | // Write VA to the primary GOT only. For secondary GOTs that | 
|  | // will be done by REL32 dynamic relocations. | 
|  | if (&g == &gots.front()) | 
|  | for (const std::pair<Symbol *, size_t> &p : g.global) | 
|  | write(p.second, p.first, 0); | 
|  | for (const std::pair<Symbol *, size_t> &p : g.relocs) | 
|  | write(p.second, p.first, 0); | 
|  | for (const std::pair<Symbol *, size_t> &p : g.tls) | 
|  | write(p.second, p.first, | 
|  | p.first->isPreemptible || ctx.arg.shared ? 0 : -0x7000); | 
|  | for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { | 
|  | if (p.first == nullptr && !ctx.arg.shared) | 
|  | write(p.second, nullptr, 1); | 
|  | else if (p.first && !p.first->isPreemptible) { | 
|  | // If we are emitting a shared library with relocations we mustn't write | 
|  | // anything to the GOT here. When using Elf_Rel relocations the value | 
|  | // one will be treated as an addend and will cause crashes at runtime | 
|  | if (!ctx.arg.shared) | 
|  | write(p.second, nullptr, 1); | 
|  | write(p.second + 1, p.first, -0x8000); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // On PowerPC the .plt section is used to hold the table of function addresses | 
|  | // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss | 
|  | // section. I don't know why we have a BSS style type for the section but it is | 
|  | // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. | 
|  | GotPltSection::GotPltSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, | 
|  | ctx.arg.wordsize) { | 
|  | if (ctx.arg.emachine == EM_PPC) { | 
|  | name = ".plt"; | 
|  | } else if (ctx.arg.emachine == EM_PPC64) { | 
|  | type = SHT_NOBITS; | 
|  | name = ".plt"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void GotPltSection::addEntry(Symbol &sym) { | 
|  | assert(sym.auxIdx == ctx.symAux.size() - 1 && | 
|  | ctx.symAux.back().pltIdx == entries.size()); | 
|  | entries.push_back(&sym); | 
|  | } | 
|  |  | 
|  | size_t GotPltSection::getSize() const { | 
|  | return (ctx.target->gotPltHeaderEntriesNum + entries.size()) * | 
|  | ctx.target->gotEntrySize; | 
|  | } | 
|  |  | 
|  | void GotPltSection::writeTo(uint8_t *buf) { | 
|  | ctx.target->writeGotPltHeader(buf); | 
|  | buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize; | 
|  | for (const Symbol *b : entries) { | 
|  | ctx.target->writeGotPlt(buf, *b); | 
|  | buf += ctx.target->gotEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GotPltSection::isNeeded() const { | 
|  | // We need to emit GOTPLT even if it's empty if there's a relocation relative | 
|  | // to it. | 
|  | return !entries.empty() || hasGotPltOffRel; | 
|  | } | 
|  |  | 
|  | static StringRef getIgotPltName(Ctx &ctx) { | 
|  | // On ARM the IgotPltSection is part of the GotSection. | 
|  | if (ctx.arg.emachine == EM_ARM) | 
|  | return ".got"; | 
|  |  | 
|  | // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection | 
|  | // needs to be named the same. | 
|  | if (ctx.arg.emachine == EM_PPC64) | 
|  | return ".plt"; | 
|  |  | 
|  | return ".got.plt"; | 
|  | } | 
|  |  | 
|  | // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit | 
|  | // with the IgotPltSection. | 
|  | IgotPltSection::IgotPltSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, getIgotPltName(ctx), | 
|  | ctx.arg.emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_WRITE, ctx.target->gotEntrySize) {} | 
|  |  | 
|  | void IgotPltSection::addEntry(Symbol &sym) { | 
|  | assert(ctx.symAux.back().pltIdx == entries.size()); | 
|  | entries.push_back(&sym); | 
|  | } | 
|  |  | 
|  | size_t IgotPltSection::getSize() const { | 
|  | return entries.size() * ctx.target->gotEntrySize; | 
|  | } | 
|  |  | 
|  | void IgotPltSection::writeTo(uint8_t *buf) { | 
|  | for (const Symbol *b : entries) { | 
|  | ctx.target->writeIgotPlt(buf, *b); | 
|  | buf += ctx.target->gotEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | StringTableSection::StringTableSection(Ctx &ctx, StringRef name, bool dynamic) | 
|  | : SyntheticSection(ctx, name, SHT_STRTAB, dynamic ? (uint64_t)SHF_ALLOC : 0, | 
|  | 1), | 
|  | dynamic(dynamic) { | 
|  | // ELF string tables start with a NUL byte. | 
|  | strings.push_back(""); | 
|  | stringMap.try_emplace(CachedHashStringRef(""), 0); | 
|  | size = 1; | 
|  | } | 
|  |  | 
|  | // Adds a string to the string table. If `hashIt` is true we hash and check for | 
|  | // duplicates. It is optional because the name of global symbols are already | 
|  | // uniqued and hashing them again has a big cost for a small value: uniquing | 
|  | // them with some other string that happens to be the same. | 
|  | unsigned StringTableSection::addString(StringRef s, bool hashIt) { | 
|  | if (hashIt) { | 
|  | auto r = stringMap.try_emplace(CachedHashStringRef(s), size); | 
|  | if (!r.second) | 
|  | return r.first->second; | 
|  | } | 
|  | if (s.empty()) | 
|  | return 0; | 
|  | unsigned ret = this->size; | 
|  | this->size = this->size + s.size() + 1; | 
|  | strings.push_back(s); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void StringTableSection::writeTo(uint8_t *buf) { | 
|  | for (StringRef s : strings) { | 
|  | memcpy(buf, s.data(), s.size()); | 
|  | buf[s.size()] = '\0'; | 
|  | buf += s.size() + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the number of entries in .gnu.version_d: the number of | 
|  | // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. | 
|  | // Note that we don't support vd_cnt > 1 yet. | 
|  | static unsigned getVerDefNum(Ctx &ctx) { | 
|  | return namedVersionDefs(ctx).size() + 1; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | DynamicSection<ELFT>::DynamicSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE, | 
|  | ctx.arg.wordsize) { | 
|  | this->entsize = ELFT::Is64Bits ? 16 : 8; | 
|  |  | 
|  | // .dynamic section is not writable on MIPS and on Fuchsia OS | 
|  | // which passes -z rodynamic. | 
|  | // See "Special Section" in Chapter 4 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (ctx.arg.emachine == EM_MIPS || ctx.arg.zRodynamic) | 
|  | this->flags = SHF_ALLOC; | 
|  | } | 
|  |  | 
|  | // The output section .rela.dyn may include these synthetic sections: | 
|  | // | 
|  | // - part.relaDyn | 
|  | // - ctx.in.relaPlt: this is included if a linker script places .rela.plt inside | 
|  | //   .rela.dyn | 
|  | // | 
|  | // DT_RELASZ is the total size of the included sections. | 
|  | static uint64_t addRelaSz(Ctx &ctx, const RelocationBaseSection &relaDyn) { | 
|  | size_t size = relaDyn.getSize(); | 
|  | if (ctx.in.relaPlt->getParent() == relaDyn.getParent()) | 
|  | size += ctx.in.relaPlt->getSize(); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | // A Linker script may assign the RELA relocation sections to the same | 
|  | // output section. When this occurs we cannot just use the OutputSection | 
|  | // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to | 
|  | // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). | 
|  | static uint64_t addPltRelSz(Ctx &ctx) { return ctx.in.relaPlt->getSize(); } | 
|  |  | 
|  | // Add remaining entries to complete .dynamic contents. | 
|  | template <class ELFT> | 
|  | std::vector<std::pair<int32_t, uint64_t>> | 
|  | DynamicSection<ELFT>::computeContents() { | 
|  | elf::Partition &part = getPartition(ctx); | 
|  | bool isMain = part.name.empty(); | 
|  | std::vector<std::pair<int32_t, uint64_t>> entries; | 
|  |  | 
|  | auto addInt = [&](int32_t tag, uint64_t val) { | 
|  | entries.emplace_back(tag, val); | 
|  | }; | 
|  | auto addInSec = [&](int32_t tag, const InputSection &sec) { | 
|  | entries.emplace_back(tag, sec.getVA()); | 
|  | }; | 
|  |  | 
|  | for (StringRef s : ctx.arg.filterList) | 
|  | addInt(DT_FILTER, part.dynStrTab->addString(s)); | 
|  | for (StringRef s : ctx.arg.auxiliaryList) | 
|  | addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); | 
|  |  | 
|  | if (!ctx.arg.rpath.empty()) | 
|  | addInt(ctx.arg.enableNewDtags ? DT_RUNPATH : DT_RPATH, | 
|  | part.dynStrTab->addString(ctx.arg.rpath)); | 
|  |  | 
|  | for (SharedFile *file : ctx.sharedFiles) | 
|  | if (file->isNeeded) | 
|  | addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); | 
|  |  | 
|  | if (isMain) { | 
|  | if (!ctx.arg.soName.empty()) | 
|  | addInt(DT_SONAME, part.dynStrTab->addString(ctx.arg.soName)); | 
|  | } else { | 
|  | if (!ctx.arg.soName.empty()) | 
|  | addInt(DT_NEEDED, part.dynStrTab->addString(ctx.arg.soName)); | 
|  | addInt(DT_SONAME, part.dynStrTab->addString(part.name)); | 
|  | } | 
|  |  | 
|  | // Set DT_FLAGS and DT_FLAGS_1. | 
|  | uint32_t dtFlags = 0; | 
|  | uint32_t dtFlags1 = 0; | 
|  | if (ctx.arg.bsymbolic == BsymbolicKind::All) | 
|  | dtFlags |= DF_SYMBOLIC; | 
|  | if (ctx.arg.zGlobal) | 
|  | dtFlags1 |= DF_1_GLOBAL; | 
|  | if (ctx.arg.zInitfirst) | 
|  | dtFlags1 |= DF_1_INITFIRST; | 
|  | if (ctx.arg.zInterpose) | 
|  | dtFlags1 |= DF_1_INTERPOSE; | 
|  | if (ctx.arg.zNodefaultlib) | 
|  | dtFlags1 |= DF_1_NODEFLIB; | 
|  | if (ctx.arg.zNodelete) | 
|  | dtFlags1 |= DF_1_NODELETE; | 
|  | if (ctx.arg.zNodlopen) | 
|  | dtFlags1 |= DF_1_NOOPEN; | 
|  | if (ctx.arg.pie) | 
|  | dtFlags1 |= DF_1_PIE; | 
|  | if (ctx.arg.zNow) { | 
|  | dtFlags |= DF_BIND_NOW; | 
|  | dtFlags1 |= DF_1_NOW; | 
|  | } | 
|  | if (ctx.arg.zOrigin) { | 
|  | dtFlags |= DF_ORIGIN; | 
|  | dtFlags1 |= DF_1_ORIGIN; | 
|  | } | 
|  | if (!ctx.arg.zText) | 
|  | dtFlags |= DF_TEXTREL; | 
|  | if (ctx.hasTlsIe && ctx.arg.shared) | 
|  | dtFlags |= DF_STATIC_TLS; | 
|  |  | 
|  | if (dtFlags) | 
|  | addInt(DT_FLAGS, dtFlags); | 
|  | if (dtFlags1) | 
|  | addInt(DT_FLAGS_1, dtFlags1); | 
|  |  | 
|  | // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We | 
|  | // need it for each process, so we don't write it for DSOs. The loader writes | 
|  | // the pointer into this entry. | 
|  | // | 
|  | // DT_DEBUG is the only .dynamic entry that needs to be written to. Some | 
|  | // systems (currently only Fuchsia OS) provide other means to give the | 
|  | // debugger this information. Such systems may choose make .dynamic read-only. | 
|  | // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. | 
|  | if (!ctx.arg.shared && !ctx.arg.relocatable && !ctx.arg.zRodynamic) | 
|  | addInt(DT_DEBUG, 0); | 
|  |  | 
|  | if (part.relaDyn->isNeeded()) { | 
|  | addInSec(part.relaDyn->dynamicTag, *part.relaDyn); | 
|  | entries.emplace_back(part.relaDyn->sizeDynamicTag, | 
|  | addRelaSz(ctx, *part.relaDyn)); | 
|  |  | 
|  | bool isRela = ctx.arg.isRela; | 
|  | addInt(isRela ? DT_RELAENT : DT_RELENT, | 
|  | isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); | 
|  |  | 
|  | // MIPS dynamic loader does not support RELCOUNT tag. | 
|  | // The problem is in the tight relation between dynamic | 
|  | // relocations and GOT. So do not emit this tag on MIPS. | 
|  | if (ctx.arg.emachine != EM_MIPS) { | 
|  | size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); | 
|  | if (ctx.arg.zCombreloc && numRelativeRels) | 
|  | addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); | 
|  | } | 
|  | } | 
|  | if (part.relrDyn && part.relrDyn->getParent() && | 
|  | !part.relrDyn->relocs.empty()) { | 
|  | addInSec(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, | 
|  | *part.relrDyn); | 
|  | addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, | 
|  | part.relrDyn->getParent()->size); | 
|  | addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, | 
|  | sizeof(Elf_Relr)); | 
|  | } | 
|  | if (part.relrAuthDyn && part.relrAuthDyn->getParent() && | 
|  | !part.relrAuthDyn->relocs.empty()) { | 
|  | addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn); | 
|  | addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size); | 
|  | addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr)); | 
|  | } | 
|  | if (isMain && ctx.in.relaPlt->isNeeded()) { | 
|  | addInSec(DT_JMPREL, *ctx.in.relaPlt); | 
|  | entries.emplace_back(DT_PLTRELSZ, addPltRelSz(ctx)); | 
|  | switch (ctx.arg.emachine) { | 
|  | case EM_MIPS: | 
|  | addInSec(DT_MIPS_PLTGOT, *ctx.in.gotPlt); | 
|  | break; | 
|  | case EM_S390: | 
|  | addInSec(DT_PLTGOT, *ctx.in.got); | 
|  | break; | 
|  | case EM_SPARCV9: | 
|  | addInSec(DT_PLTGOT, *ctx.in.plt); | 
|  | break; | 
|  | case EM_AARCH64: | 
|  | if (llvm::find_if(ctx.in.relaPlt->relocs, [&ctx = ctx]( | 
|  | const DynamicReloc &r) { | 
|  | return r.type == ctx.target->pltRel && | 
|  | r.sym->stOther & STO_AARCH64_VARIANT_PCS; | 
|  | }) != ctx.in.relaPlt->relocs.end()) | 
|  | addInt(DT_AARCH64_VARIANT_PCS, 0); | 
|  | addInSec(DT_PLTGOT, *ctx.in.gotPlt); | 
|  | break; | 
|  | case EM_RISCV: | 
|  | if (llvm::any_of(ctx.in.relaPlt->relocs, [&ctx = ctx]( | 
|  | const DynamicReloc &r) { | 
|  | return r.type == ctx.target->pltRel && | 
|  | (r.sym->stOther & STO_RISCV_VARIANT_CC); | 
|  | })) | 
|  | addInt(DT_RISCV_VARIANT_CC, 0); | 
|  | [[fallthrough]]; | 
|  | default: | 
|  | addInSec(DT_PLTGOT, *ctx.in.gotPlt); | 
|  | break; | 
|  | } | 
|  | addInt(DT_PLTREL, ctx.arg.isRela ? DT_RELA : DT_REL); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_AARCH64) { | 
|  | if (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) | 
|  | addInt(DT_AARCH64_BTI_PLT, 0); | 
|  | if (ctx.arg.zPacPlt) | 
|  | addInt(DT_AARCH64_PAC_PLT, 0); | 
|  |  | 
|  | if (hasMemtag(ctx)) { | 
|  | addInt(DT_AARCH64_MEMTAG_MODE, ctx.arg.androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC); | 
|  | addInt(DT_AARCH64_MEMTAG_HEAP, ctx.arg.androidMemtagHeap); | 
|  | addInt(DT_AARCH64_MEMTAG_STACK, ctx.arg.androidMemtagStack); | 
|  | if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) { | 
|  | addInSec(DT_AARCH64_MEMTAG_GLOBALS, | 
|  | *ctx.mainPart->memtagGlobalDescriptors); | 
|  | addInt(DT_AARCH64_MEMTAG_GLOBALSSZ, | 
|  | ctx.mainPart->memtagGlobalDescriptors->getSize()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | addInSec(DT_SYMTAB, *part.dynSymTab); | 
|  | addInt(DT_SYMENT, sizeof(Elf_Sym)); | 
|  | addInSec(DT_STRTAB, *part.dynStrTab); | 
|  | addInt(DT_STRSZ, part.dynStrTab->getSize()); | 
|  | if (!ctx.arg.zText) | 
|  | addInt(DT_TEXTREL, 0); | 
|  | if (part.gnuHashTab && part.gnuHashTab->getParent()) | 
|  | addInSec(DT_GNU_HASH, *part.gnuHashTab); | 
|  | if (part.hashTab && part.hashTab->getParent()) | 
|  | addInSec(DT_HASH, *part.hashTab); | 
|  |  | 
|  | if (isMain) { | 
|  | if (ctx.out.preinitArray) { | 
|  | addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr); | 
|  | addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size); | 
|  | } | 
|  | if (ctx.out.initArray) { | 
|  | addInt(DT_INIT_ARRAY, ctx.out.initArray->addr); | 
|  | addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size); | 
|  | } | 
|  | if (ctx.out.finiArray) { | 
|  | addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr); | 
|  | addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size); | 
|  | } | 
|  |  | 
|  | if (Symbol *b = ctx.symtab->find(ctx.arg.init)) | 
|  | if (b->isDefined()) | 
|  | addInt(DT_INIT, b->getVA(ctx)); | 
|  | if (Symbol *b = ctx.symtab->find(ctx.arg.fini)) | 
|  | if (b->isDefined()) | 
|  | addInt(DT_FINI, b->getVA(ctx)); | 
|  | } | 
|  |  | 
|  | if (part.verSym && part.verSym->isNeeded()) | 
|  | addInSec(DT_VERSYM, *part.verSym); | 
|  | if (part.verDef && part.verDef->isLive()) { | 
|  | addInSec(DT_VERDEF, *part.verDef); | 
|  | addInt(DT_VERDEFNUM, getVerDefNum(ctx)); | 
|  | } | 
|  | if (part.verNeed && part.verNeed->isNeeded()) { | 
|  | addInSec(DT_VERNEED, *part.verNeed); | 
|  | unsigned needNum = 0; | 
|  | for (SharedFile *f : ctx.sharedFiles) | 
|  | if (!f->vernauxs.empty()) | 
|  | ++needNum; | 
|  | addInt(DT_VERNEEDNUM, needNum); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_MIPS) { | 
|  | addInt(DT_MIPS_RLD_VERSION, 1); | 
|  | addInt(DT_MIPS_FLAGS, RHF_NOTPOT); | 
|  | addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase()); | 
|  | addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); | 
|  | addInt(DT_MIPS_LOCAL_GOTNO, ctx.in.mipsGot->getLocalEntriesNum()); | 
|  |  | 
|  | if (const Symbol *b = ctx.in.mipsGot->getFirstGlobalEntry()) | 
|  | addInt(DT_MIPS_GOTSYM, b->dynsymIndex); | 
|  | else | 
|  | addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); | 
|  | addInSec(DT_PLTGOT, *ctx.in.mipsGot); | 
|  | if (ctx.in.mipsRldMap) { | 
|  | if (!ctx.arg.pie) | 
|  | addInSec(DT_MIPS_RLD_MAP, *ctx.in.mipsRldMap); | 
|  | // Store the offset to the .rld_map section | 
|  | // relative to the address of the tag. | 
|  | addInt(DT_MIPS_RLD_MAP_REL, | 
|  | ctx.in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, | 
|  | // glibc assumes the old-style BSS PLT layout which we don't support. | 
|  | if (ctx.arg.emachine == EM_PPC) | 
|  | addInSec(DT_PPC_GOT, *ctx.in.got); | 
|  |  | 
|  | // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. | 
|  | if (ctx.arg.emachine == EM_PPC64 && ctx.in.plt->isNeeded()) { | 
|  | // The Glink tag points to 32 bytes before the first lazy symbol resolution | 
|  | // stub, which starts directly after the header. | 
|  | addInt(DT_PPC64_GLINK, | 
|  | ctx.in.plt->getVA() + ctx.target->pltHeaderSize - 32); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_PPC64) | 
|  | addInt(DT_PPC64_OPT, ctx.target->ppc64DynamicSectionOpt); | 
|  |  | 
|  | addInt(DT_NULL, 0); | 
|  | return entries; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { | 
|  | if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) | 
|  | getParent()->link = sec->sectionIndex; | 
|  | this->size = computeContents().size() * this->entsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | auto *p = reinterpret_cast<Elf_Dyn *>(buf); | 
|  |  | 
|  | for (std::pair<int32_t, uint64_t> kv : computeContents()) { | 
|  | p->d_tag = kv.first; | 
|  | p->d_un.d_val = kv.second; | 
|  | ++p; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t DynamicReloc::getOffset() const { | 
|  | return inputSec->getVA(offsetInSec); | 
|  | } | 
|  |  | 
|  | int64_t DynamicReloc::computeAddend(Ctx &ctx) const { | 
|  | switch (kind) { | 
|  | case AddendOnly: | 
|  | assert(sym == nullptr); | 
|  | return addend; | 
|  | case AgainstSymbol: | 
|  | assert(sym != nullptr); | 
|  | return addend; | 
|  | case AddendOnlyWithTargetVA: | 
|  | case AgainstSymbolWithTargetVA: { | 
|  | uint64_t ca = inputSec->getRelocTargetVA( | 
|  | ctx, Relocation{expr, type, 0, addend, sym}, getOffset()); | 
|  | return ctx.arg.is64 ? ca : SignExtend64<32>(ca); | 
|  | } | 
|  | case MipsMultiGotPage: | 
|  | assert(sym == nullptr); | 
|  | return getMipsPageAddr(outputSec->addr) + addend; | 
|  | } | 
|  | llvm_unreachable("Unknown DynamicReloc::Kind enum"); | 
|  | } | 
|  |  | 
|  | uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { | 
|  | if (!needsDynSymIndex()) | 
|  | return 0; | 
|  |  | 
|  | size_t index = symTab->getSymbolIndex(*sym); | 
|  | assert((index != 0 || | 
|  | (type != symTab->ctx.target->gotRel && | 
|  | type != symTab->ctx.target->pltRel) || | 
|  | !symTab->ctx.mainPart->dynSymTab->getParent()) && | 
|  | "GOT or PLT relocation must refer to symbol in dynamic symbol table"); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | RelocationBaseSection::RelocationBaseSection(Ctx &ctx, StringRef name, | 
|  | uint32_t type, int32_t dynamicTag, | 
|  | int32_t sizeDynamicTag, | 
|  | bool combreloc, | 
|  | unsigned concurrency) | 
|  | : SyntheticSection(ctx, name, type, SHF_ALLOC, ctx.arg.wordsize), | 
|  | dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), | 
|  | relocsVec(concurrency), combreloc(combreloc) {} | 
|  |  | 
|  | void RelocationBaseSection::addSymbolReloc( | 
|  | RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, | 
|  | int64_t addend, std::optional<RelType> addendRelType) { | 
|  | addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend, | 
|  | R_ADDEND, addendRelType ? *addendRelType : ctx.target->noneRel); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( | 
|  | RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, | 
|  | RelType addendRelType) { | 
|  | // No need to write an addend to the section for preemptible symbols. | 
|  | if (sym.isPreemptible) | 
|  | addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, | 
|  | R_ABS}); | 
|  | else | 
|  | addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec, | 
|  | sym, 0, R_ABS, addendRelType); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::mergeRels() { | 
|  | size_t newSize = relocs.size(); | 
|  | for (const auto &v : relocsVec) | 
|  | newSize += v.size(); | 
|  | relocs.reserve(newSize); | 
|  | for (const auto &v : relocsVec) | 
|  | llvm::append_range(relocs, v); | 
|  | relocsVec.clear(); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::partitionRels() { | 
|  | if (!combreloc) | 
|  | return; | 
|  | const RelType relativeRel = ctx.target->relativeRel; | 
|  | numRelativeRelocs = | 
|  | std::stable_partition(relocs.begin(), relocs.end(), | 
|  | [=](auto &r) { return r.type == relativeRel; }) - | 
|  | relocs.begin(); | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::finalizeContents() { | 
|  | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); | 
|  |  | 
|  | // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE | 
|  | // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that | 
|  | // case. | 
|  | if (symTab && symTab->getParent()) | 
|  | getParent()->link = symTab->getParent()->sectionIndex; | 
|  | else | 
|  | getParent()->link = 0; | 
|  |  | 
|  | if (ctx.in.relaPlt.get() == this && ctx.in.gotPlt->getParent()) { | 
|  | getParent()->flags |= ELF::SHF_INFO_LINK; | 
|  | getParent()->info = ctx.in.gotPlt->getParent()->sectionIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DynamicReloc::computeRaw(Ctx &ctx, SymbolTableBaseSection *symt) { | 
|  | r_offset = getOffset(); | 
|  | r_sym = getSymIndex(symt); | 
|  | addend = computeAddend(ctx); | 
|  | kind = AddendOnly; // Catch errors | 
|  | } | 
|  |  | 
|  | void RelocationBaseSection::computeRels() { | 
|  | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); | 
|  | parallelForEach(relocs, [&ctx = ctx, symTab](DynamicReloc &rel) { | 
|  | rel.computeRaw(ctx, symTab); | 
|  | }); | 
|  |  | 
|  | auto irelative = std::stable_partition( | 
|  | relocs.begin() + numRelativeRelocs, relocs.end(), | 
|  | [t = ctx.target->iRelativeRel](auto &r) { return r.type != t; }); | 
|  |  | 
|  | // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to | 
|  | // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset | 
|  | // is to make results easier to read. | 
|  | if (combreloc) { | 
|  | auto nonRelative = relocs.begin() + numRelativeRelocs; | 
|  | parallelSort(relocs.begin(), nonRelative, | 
|  | [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); | 
|  | // Non-relative relocations are few, so don't bother with parallelSort. | 
|  | llvm::sort(nonRelative, irelative, [&](auto &a, auto &b) { | 
|  | return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelocationSection<ELFT>::RelocationSection(Ctx &ctx, StringRef name, | 
|  | bool combreloc, unsigned concurrency) | 
|  | : RelocationBaseSection(ctx, name, ctx.arg.isRela ? SHT_RELA : SHT_REL, | 
|  | ctx.arg.isRela ? DT_RELA : DT_REL, | 
|  | ctx.arg.isRela ? DT_RELASZ : DT_RELSZ, combreloc, | 
|  | concurrency) { | 
|  | this->entsize = ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | computeRels(); | 
|  | for (const DynamicReloc &rel : relocs) { | 
|  | auto *p = reinterpret_cast<Elf_Rela *>(buf); | 
|  | p->r_offset = rel.r_offset; | 
|  | p->setSymbolAndType(rel.r_sym, rel.type, ctx.arg.isMips64EL); | 
|  | if (ctx.arg.isRela) | 
|  | p->r_addend = rel.addend; | 
|  | buf += ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); | 
|  | } | 
|  | } | 
|  |  | 
|  | RelrBaseSection::RelrBaseSection(Ctx &ctx, unsigned concurrency, | 
|  | bool isAArch64Auth) | 
|  | : SyntheticSection( | 
|  | ctx, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn", | 
|  | isAArch64Auth | 
|  | ? SHT_AARCH64_AUTH_RELR | 
|  | : (ctx.arg.useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR), | 
|  | SHF_ALLOC, ctx.arg.wordsize), | 
|  | relocsVec(concurrency) {} | 
|  |  | 
|  | void RelrBaseSection::mergeRels() { | 
|  | size_t newSize = relocs.size(); | 
|  | for (const auto &v : relocsVec) | 
|  | newSize += v.size(); | 
|  | relocs.reserve(newSize); | 
|  | for (const auto &v : relocsVec) | 
|  | llvm::append_range(relocs, v); | 
|  | relocsVec.clear(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( | 
|  | Ctx &ctx, StringRef name, unsigned concurrency) | 
|  | : RelocationBaseSection( | 
|  | ctx, name, ctx.arg.isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, | 
|  | ctx.arg.isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, | 
|  | ctx.arg.isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, | 
|  | /*combreloc=*/false, concurrency) { | 
|  | this->entsize = 1; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool AndroidPackedRelocationSection<ELFT>::updateAllocSize(Ctx &ctx) { | 
|  | // This function computes the contents of an Android-format packed relocation | 
|  | // section. | 
|  | // | 
|  | // This format compresses relocations by using relocation groups to factor out | 
|  | // fields that are common between relocations and storing deltas from previous | 
|  | // relocations in SLEB128 format (which has a short representation for small | 
|  | // numbers). A good example of a relocation type with common fields is | 
|  | // R_*_RELATIVE, which is normally used to represent function pointers in | 
|  | // vtables. In the REL format, each relative relocation has the same r_info | 
|  | // field, and is only different from other relative relocations in terms of | 
|  | // the r_offset field. By sorting relocations by offset, grouping them by | 
|  | // r_info and representing each relocation with only the delta from the | 
|  | // previous offset, each 8-byte relocation can be compressed to as little as 1 | 
|  | // byte (or less with run-length encoding). This relocation packer was able to | 
|  | // reduce the size of the relocation section in an Android Chromium DSO from | 
|  | // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. | 
|  | // | 
|  | // A relocation section consists of a header containing the literal bytes | 
|  | // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two | 
|  | // elements are the total number of relocations in the section and an initial | 
|  | // r_offset value. The remaining elements define a sequence of relocation | 
|  | // groups. Each relocation group starts with a header consisting of the | 
|  | // following elements: | 
|  | // | 
|  | // - the number of relocations in the relocation group | 
|  | // - flags for the relocation group | 
|  | // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta | 
|  | //   for each relocation in the group. | 
|  | // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info | 
|  | //   field for each relocation in the group. | 
|  | // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and | 
|  | //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for | 
|  | //   each relocation in the group. | 
|  | // | 
|  | // Following the relocation group header are descriptions of each of the | 
|  | // relocations in the group. They consist of the following elements: | 
|  | // | 
|  | // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset | 
|  | //   delta for this relocation. | 
|  | // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info | 
|  | //   field for this relocation. | 
|  | // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and | 
|  | //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for | 
|  | //   this relocation. | 
|  |  | 
|  | size_t oldSize = relocData.size(); | 
|  |  | 
|  | relocData = {'A', 'P', 'S', '2'}; | 
|  | raw_svector_ostream os(relocData); | 
|  | auto add = [&](int64_t v) { encodeSLEB128(v, os); }; | 
|  |  | 
|  | // The format header includes the number of relocations and the initial | 
|  | // offset (we set this to zero because the first relocation group will | 
|  | // perform the initial adjustment). | 
|  | add(relocs.size()); | 
|  | add(0); | 
|  |  | 
|  | std::vector<Elf_Rela> relatives, nonRelatives; | 
|  |  | 
|  | for (const DynamicReloc &rel : relocs) { | 
|  | Elf_Rela r; | 
|  | r.r_offset = rel.getOffset(); | 
|  | r.setSymbolAndType(rel.getSymIndex(getPartition(ctx).dynSymTab.get()), | 
|  | rel.type, false); | 
|  | r.r_addend = ctx.arg.isRela ? rel.computeAddend(ctx) : 0; | 
|  |  | 
|  | if (r.getType(ctx.arg.isMips64EL) == ctx.target->relativeRel) | 
|  | relatives.push_back(r); | 
|  | else | 
|  | nonRelatives.push_back(r); | 
|  | } | 
|  |  | 
|  | llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { | 
|  | return a.r_offset < b.r_offset; | 
|  | }); | 
|  |  | 
|  | // Try to find groups of relative relocations which are spaced one word | 
|  | // apart from one another. These generally correspond to vtable entries. The | 
|  | // format allows these groups to be encoded using a sort of run-length | 
|  | // encoding, but each group will cost 7 bytes in addition to the offset from | 
|  | // the previous group, so it is only profitable to do this for groups of | 
|  | // size 8 or larger. | 
|  | std::vector<Elf_Rela> ungroupedRelatives; | 
|  | std::vector<std::vector<Elf_Rela>> relativeGroups; | 
|  | for (auto i = relatives.begin(), e = relatives.end(); i != e;) { | 
|  | std::vector<Elf_Rela> group; | 
|  | do { | 
|  | group.push_back(*i++); | 
|  | } while (i != e && (i - 1)->r_offset + ctx.arg.wordsize == i->r_offset); | 
|  |  | 
|  | if (group.size() < 8) | 
|  | ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), | 
|  | group.end()); | 
|  | else | 
|  | relativeGroups.emplace_back(std::move(group)); | 
|  | } | 
|  |  | 
|  | // For non-relative relocations, we would like to: | 
|  | //   1. Have relocations with the same symbol offset to be consecutive, so | 
|  | //      that the runtime linker can speed-up symbol lookup by implementing an | 
|  | //      1-entry cache. | 
|  | //   2. Group relocations by r_info to reduce the size of the relocation | 
|  | //      section. | 
|  | // Since the symbol offset is the high bits in r_info, sorting by r_info | 
|  | // allows us to do both. | 
|  | // | 
|  | // For Rela, we also want to sort by r_addend when r_info is the same. This | 
|  | // enables us to group by r_addend as well. | 
|  | llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { | 
|  | if (a.r_info != b.r_info) | 
|  | return a.r_info < b.r_info; | 
|  | if (a.r_addend != b.r_addend) | 
|  | return a.r_addend < b.r_addend; | 
|  | return a.r_offset < b.r_offset; | 
|  | }); | 
|  |  | 
|  | // Group relocations with the same r_info. Note that each group emits a group | 
|  | // header and that may make the relocation section larger. It is hard to | 
|  | // estimate the size of a group header as the encoded size of that varies | 
|  | // based on r_info. However, we can approximate this trade-off by the number | 
|  | // of values encoded. Each group header contains 3 values, and each relocation | 
|  | // in a group encodes one less value, as compared to when it is not grouped. | 
|  | // Therefore, we only group relocations if there are 3 or more of them with | 
|  | // the same r_info. | 
|  | // | 
|  | // For Rela, the addend for most non-relative relocations is zero, and thus we | 
|  | // can usually get a smaller relocation section if we group relocations with 0 | 
|  | // addend as well. | 
|  | std::vector<Elf_Rela> ungroupedNonRelatives; | 
|  | std::vector<std::vector<Elf_Rela>> nonRelativeGroups; | 
|  | for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { | 
|  | auto j = i + 1; | 
|  | while (j != e && i->r_info == j->r_info && | 
|  | (!ctx.arg.isRela || i->r_addend == j->r_addend)) | 
|  | ++j; | 
|  | if (j - i < 3 || (ctx.arg.isRela && i->r_addend != 0)) | 
|  | ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); | 
|  | else | 
|  | nonRelativeGroups.emplace_back(i, j); | 
|  | i = j; | 
|  | } | 
|  |  | 
|  | // Sort ungrouped relocations by offset to minimize the encoded length. | 
|  | llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { | 
|  | return a.r_offset < b.r_offset; | 
|  | }); | 
|  |  | 
|  | unsigned hasAddendIfRela = | 
|  | ctx.arg.isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; | 
|  |  | 
|  | uint64_t offset = 0; | 
|  | uint64_t addend = 0; | 
|  |  | 
|  | // Emit the run-length encoding for the groups of adjacent relative | 
|  | // relocations. Each group is represented using two groups in the packed | 
|  | // format. The first is used to set the current offset to the start of the | 
|  | // group (and also encodes the first relocation), and the second encodes the | 
|  | // remaining relocations. | 
|  | for (std::vector<Elf_Rela> &g : relativeGroups) { | 
|  | // The first relocation in the group. | 
|  | add(1); | 
|  | add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | | 
|  | RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); | 
|  | add(g[0].r_offset - offset); | 
|  | add(ctx.target->relativeRel); | 
|  | if (ctx.arg.isRela) { | 
|  | add(g[0].r_addend - addend); | 
|  | addend = g[0].r_addend; | 
|  | } | 
|  |  | 
|  | // The remaining relocations. | 
|  | add(g.size() - 1); | 
|  | add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | | 
|  | RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); | 
|  | add(ctx.arg.wordsize); | 
|  | add(ctx.target->relativeRel); | 
|  | if (ctx.arg.isRela) { | 
|  | for (const auto &i : llvm::drop_begin(g)) { | 
|  | add(i.r_addend - addend); | 
|  | addend = i.r_addend; | 
|  | } | 
|  | } | 
|  |  | 
|  | offset = g.back().r_offset; | 
|  | } | 
|  |  | 
|  | // Now the ungrouped relatives. | 
|  | if (!ungroupedRelatives.empty()) { | 
|  | add(ungroupedRelatives.size()); | 
|  | add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); | 
|  | add(ctx.target->relativeRel); | 
|  | for (Elf_Rela &r : ungroupedRelatives) { | 
|  | add(r.r_offset - offset); | 
|  | offset = r.r_offset; | 
|  | if (ctx.arg.isRela) { | 
|  | add(r.r_addend - addend); | 
|  | addend = r.r_addend; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Grouped non-relatives. | 
|  | for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { | 
|  | add(g.size()); | 
|  | add(RELOCATION_GROUPED_BY_INFO_FLAG); | 
|  | add(g[0].r_info); | 
|  | for (const Elf_Rela &r : g) { | 
|  | add(r.r_offset - offset); | 
|  | offset = r.r_offset; | 
|  | } | 
|  | addend = 0; | 
|  | } | 
|  |  | 
|  | // Finally the ungrouped non-relative relocations. | 
|  | if (!ungroupedNonRelatives.empty()) { | 
|  | add(ungroupedNonRelatives.size()); | 
|  | add(hasAddendIfRela); | 
|  | for (Elf_Rela &r : ungroupedNonRelatives) { | 
|  | add(r.r_offset - offset); | 
|  | offset = r.r_offset; | 
|  | add(r.r_info); | 
|  | if (ctx.arg.isRela) { | 
|  | add(r.r_addend - addend); | 
|  | addend = r.r_addend; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't allow the section to shrink; otherwise the size of the section can | 
|  | // oscillate infinitely. | 
|  | if (relocData.size() < oldSize) | 
|  | relocData.append(oldSize - relocData.size(), 0); | 
|  |  | 
|  | // Returns whether the section size changed. We need to keep recomputing both | 
|  | // section layout and the contents of this section until the size converges | 
|  | // because changing this section's size can affect section layout, which in | 
|  | // turn can affect the sizes of the LEB-encoded integers stored in this | 
|  | // section. | 
|  | return relocData.size() != oldSize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelrSection<ELFT>::RelrSection(Ctx &ctx, unsigned concurrency, | 
|  | bool isAArch64Auth) | 
|  | : RelrBaseSection(ctx, concurrency, isAArch64Auth) { | 
|  | this->entsize = ctx.arg.wordsize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool RelrSection<ELFT>::updateAllocSize(Ctx &ctx) { | 
|  | // This function computes the contents of an SHT_RELR packed relocation | 
|  | // section. | 
|  | // | 
|  | // Proposal for adding SHT_RELR sections to generic-abi is here: | 
|  | //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg | 
|  | // | 
|  | // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks | 
|  | // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] | 
|  | // | 
|  | // i.e. start with an address, followed by any number of bitmaps. The address | 
|  | // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 | 
|  | // relocations each, at subsequent offsets following the last address entry. | 
|  | // | 
|  | // The bitmap entries must have 1 in the least significant bit. The assumption | 
|  | // here is that an address cannot have 1 in lsb. Odd addresses are not | 
|  | // supported. | 
|  | // | 
|  | // Excluding the least significant bit in the bitmap, each non-zero bit in | 
|  | // the bitmap represents a relocation to be applied to a corresponding machine | 
|  | // word that follows the base address word. The second least significant bit | 
|  | // represents the machine word immediately following the initial address, and | 
|  | // each bit that follows represents the next word, in linear order. As such, | 
|  | // a single bitmap can encode up to 31 relocations in a 32-bit object, and | 
|  | // 63 relocations in a 64-bit object. | 
|  | // | 
|  | // This encoding has a couple of interesting properties: | 
|  | // 1. Looking at any entry, it is clear whether it's an address or a bitmap: | 
|  | //    even means address, odd means bitmap. | 
|  | // 2. Just a simple list of addresses is a valid encoding. | 
|  |  | 
|  | size_t oldSize = relrRelocs.size(); | 
|  | relrRelocs.clear(); | 
|  |  | 
|  | const size_t wordsize = sizeof(typename ELFT::uint); | 
|  |  | 
|  | // Number of bits to use for the relocation offsets bitmap. | 
|  | // Must be either 63 or 31. | 
|  | const size_t nBits = wordsize * 8 - 1; | 
|  |  | 
|  | // Get offsets for all relative relocations and sort them. | 
|  | std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); | 
|  | for (auto [i, r] : llvm::enumerate(relocs)) | 
|  | offsets[i] = r.getOffset(); | 
|  | llvm::sort(offsets.get(), offsets.get() + relocs.size()); | 
|  |  | 
|  | // For each leading relocation, find following ones that can be folded | 
|  | // as a bitmap and fold them. | 
|  | for (size_t i = 0, e = relocs.size(); i != e;) { | 
|  | // Add a leading relocation. | 
|  | relrRelocs.push_back(Elf_Relr(offsets[i])); | 
|  | uint64_t base = offsets[i] + wordsize; | 
|  | ++i; | 
|  |  | 
|  | // Find foldable relocations to construct bitmaps. | 
|  | for (;;) { | 
|  | uint64_t bitmap = 0; | 
|  | for (; i != e; ++i) { | 
|  | uint64_t d = offsets[i] - base; | 
|  | if (d >= nBits * wordsize || d % wordsize) | 
|  | break; | 
|  | bitmap |= uint64_t(1) << (d / wordsize); | 
|  | } | 
|  | if (!bitmap) | 
|  | break; | 
|  | relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); | 
|  | base += nBits * wordsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't allow the section to shrink; otherwise the size of the section can | 
|  | // oscillate infinitely. Trailing 1s do not decode to more relocations. | 
|  | if (relrRelocs.size() < oldSize) { | 
|  | Log(ctx) << ".relr.dyn needs " << (oldSize - relrRelocs.size()) | 
|  | << " padding word(s)"; | 
|  | relrRelocs.resize(oldSize, Elf_Relr(1)); | 
|  | } | 
|  |  | 
|  | return relrRelocs.size() != oldSize; | 
|  | } | 
|  |  | 
|  | SymbolTableBaseSection::SymbolTableBaseSection(Ctx &ctx, | 
|  | StringTableSection &strTabSec) | 
|  | : SyntheticSection(ctx, strTabSec.isDynamic() ? ".dynsym" : ".symtab", | 
|  | strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, | 
|  | strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, | 
|  | ctx.arg.wordsize), | 
|  | strTabSec(strTabSec) {} | 
|  |  | 
|  | // Orders symbols according to their positions in the GOT, | 
|  | // in compliance with MIPS ABI rules. | 
|  | // See "Global Offset Table" in Chapter 5 in the following document | 
|  | // for detailed description: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | static void sortMipsSymbols(Ctx &ctx, SmallVector<SymbolTableEntry, 0> &syms) { | 
|  | llvm::stable_sort(syms, | 
|  | [&](const SymbolTableEntry &l, const SymbolTableEntry &r) { | 
|  | // Sort entries related to non-local preemptible symbols | 
|  | // by GOT indexes. All other entries go to the beginning | 
|  | // of a dynsym in arbitrary order. | 
|  | if (l.sym->isInGot(ctx) && r.sym->isInGot(ctx)) | 
|  | return l.sym->getGotIdx(ctx) < r.sym->getGotIdx(ctx); | 
|  | if (!l.sym->isInGot(ctx) && !r.sym->isInGot(ctx)) | 
|  | return false; | 
|  | return !l.sym->isInGot(ctx); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void SymbolTableBaseSection::finalizeContents() { | 
|  | if (OutputSection *sec = strTabSec.getParent()) | 
|  | getParent()->link = sec->sectionIndex; | 
|  |  | 
|  | if (this->type != SHT_DYNSYM) { | 
|  | sortSymTabSymbols(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If it is a .dynsym, there should be no local symbols, but we need | 
|  | // to do a few things for the dynamic linker. | 
|  |  | 
|  | // Section's Info field has the index of the first non-local symbol. | 
|  | // Because the first symbol entry is a null entry, 1 is the first. | 
|  | getParent()->info = 1; | 
|  |  | 
|  | if (getPartition(ctx).gnuHashTab) { | 
|  | // NB: It also sorts Symbols to meet the GNU hash table requirements. | 
|  | getPartition(ctx).gnuHashTab->addSymbols(symbols); | 
|  | } else if (ctx.arg.emachine == EM_MIPS) { | 
|  | sortMipsSymbols(ctx, symbols); | 
|  | } | 
|  |  | 
|  | // Only the main partition's dynsym indexes are stored in the symbols | 
|  | // themselves. All other partitions use a lookup table. | 
|  | if (this == ctx.mainPart->dynSymTab.get()) { | 
|  | size_t i = 0; | 
|  | for (const SymbolTableEntry &s : symbols) | 
|  | s.sym->dynsymIndex = ++i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The ELF spec requires that all local symbols precede global symbols, so we | 
|  | // sort symbol entries in this function. (For .dynsym, we don't do that because | 
|  | // symbols for dynamic linking are inherently all globals.) | 
|  | // | 
|  | // Aside from above, we put local symbols in groups starting with the STT_FILE | 
|  | // symbol. That is convenient for purpose of identifying where are local symbols | 
|  | // coming from. | 
|  | void SymbolTableBaseSection::sortSymTabSymbols() { | 
|  | // Move all local symbols before global symbols. | 
|  | auto e = std::stable_partition( | 
|  | symbols.begin(), symbols.end(), | 
|  | [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); | 
|  | size_t numLocals = e - symbols.begin(); | 
|  | getParent()->info = numLocals + 1; | 
|  |  | 
|  | // We want to group the local symbols by file. For that we rebuild the local | 
|  | // part of the symbols vector. We do not need to care about the STT_FILE | 
|  | // symbols, they are already naturally placed first in each group. That | 
|  | // happens because STT_FILE is always the first symbol in the object and hence | 
|  | // precede all other local symbols we add for a file. | 
|  | MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; | 
|  | for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) | 
|  | arr[s.sym->file].push_back(s); | 
|  |  | 
|  | auto i = symbols.begin(); | 
|  | for (auto &p : arr) | 
|  | for (SymbolTableEntry &entry : p.second) | 
|  | *i++ = entry; | 
|  | } | 
|  |  | 
|  | void SymbolTableBaseSection::addSymbol(Symbol *b) { | 
|  | // Adding a local symbol to a .dynsym is a bug. | 
|  | assert(this->type != SHT_DYNSYM || !b->isLocal()); | 
|  | symbols.push_back({b, strTabSec.addString(b->getName(), false)}); | 
|  | } | 
|  |  | 
|  | size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) { | 
|  | if (this == ctx.mainPart->dynSymTab.get()) | 
|  | return sym.dynsymIndex; | 
|  |  | 
|  | // Initializes symbol lookup tables lazily. This is used only for -r, | 
|  | // --emit-relocs and dynsyms in partitions other than the main one. | 
|  | llvm::call_once(onceFlag, [&] { | 
|  | symbolIndexMap.reserve(symbols.size()); | 
|  | size_t i = 0; | 
|  | for (const SymbolTableEntry &e : symbols) { | 
|  | if (e.sym->type == STT_SECTION) | 
|  | sectionIndexMap[e.sym->getOutputSection()] = ++i; | 
|  | else | 
|  | symbolIndexMap[e.sym] = ++i; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Section symbols are mapped based on their output sections | 
|  | // to maintain their semantics. | 
|  | if (sym.type == STT_SECTION) | 
|  | return sectionIndexMap.lookup(sym.getOutputSection()); | 
|  | return symbolIndexMap.lookup(&sym); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SymbolTableSection<ELFT>::SymbolTableSection(Ctx &ctx, | 
|  | StringTableSection &strTabSec) | 
|  | : SymbolTableBaseSection(ctx, strTabSec) { | 
|  | this->entsize = sizeof(Elf_Sym); | 
|  | } | 
|  |  | 
|  | static BssSection *getCommonSec(bool relocatable, Symbol *sym) { | 
|  | if (relocatable) | 
|  | if (auto *d = dyn_cast<Defined>(sym)) | 
|  | return dyn_cast_or_null<BssSection>(d->section); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static uint32_t getSymSectionIndex(Symbol *sym) { | 
|  | assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject())); | 
|  | if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY)) | 
|  | return SHN_UNDEF; | 
|  | if (const OutputSection *os = sym->getOutputSection()) | 
|  | return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX | 
|  | : os->sectionIndex; | 
|  | return SHN_ABS; | 
|  | } | 
|  |  | 
|  | // Write the internal symbol table contents to the output symbol table. | 
|  | template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | // The first entry is a null entry as per the ELF spec. | 
|  | buf += sizeof(Elf_Sym); | 
|  |  | 
|  | auto *eSym = reinterpret_cast<Elf_Sym *>(buf); | 
|  | bool relocatable = ctx.arg.relocatable; | 
|  | for (SymbolTableEntry &ent : symbols) { | 
|  | Symbol *sym = ent.sym; | 
|  | bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; | 
|  |  | 
|  | // Set st_name, st_info and st_other. | 
|  | eSym->st_name = ent.strTabOffset; | 
|  | eSym->setBindingAndType(sym->binding, sym->type); | 
|  | eSym->st_other = sym->stOther; | 
|  |  | 
|  | if (BssSection *commonSec = getCommonSec(relocatable, sym)) { | 
|  | // When -r is specified, a COMMON symbol is not allocated. Its st_shndx | 
|  | // holds SHN_COMMON and st_value holds the alignment. | 
|  | eSym->st_shndx = SHN_COMMON; | 
|  | eSym->st_value = commonSec->addralign; | 
|  | eSym->st_size = cast<Defined>(sym)->size; | 
|  | } else { | 
|  | const uint32_t shndx = getSymSectionIndex(sym); | 
|  | if (isDefinedHere) { | 
|  | eSym->st_shndx = shndx; | 
|  | eSym->st_value = sym->getVA(ctx); | 
|  | // Copy symbol size if it is a defined symbol. st_size is not | 
|  | // significant for undefined symbols, so whether copying it or not is up | 
|  | // to us if that's the case. We'll leave it as zero because by not | 
|  | // setting a value, we can get the exact same outputs for two sets of | 
|  | // input files that differ only in undefined symbol size in DSOs. | 
|  | eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0; | 
|  | } else { | 
|  | eSym->st_shndx = 0; | 
|  | eSym->st_value = 0; | 
|  | eSym->st_size = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++eSym; | 
|  | } | 
|  |  | 
|  | // On MIPS we need to mark symbol which has a PLT entry and requires | 
|  | // pointer equality by STO_MIPS_PLT flag. That is necessary to help | 
|  | // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. | 
|  | // https://sourceware.org/ml/binutils/2008-07/txt00000.txt | 
|  | if (ctx.arg.emachine == EM_MIPS) { | 
|  | auto *eSym = reinterpret_cast<Elf_Sym *>(buf); | 
|  |  | 
|  | for (SymbolTableEntry &ent : symbols) { | 
|  | Symbol *sym = ent.sym; | 
|  | if (sym->isInPlt(ctx) && sym->hasFlag(NEEDS_COPY)) | 
|  | eSym->st_other |= STO_MIPS_PLT; | 
|  | if (isMicroMips(ctx)) { | 
|  | // We already set the less-significant bit for symbols | 
|  | // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT | 
|  | // records. That allows us to distinguish such symbols in | 
|  | // the `MIPS<ELFT>::relocate()` routine. Now we should | 
|  | // clear that bit for non-dynamic symbol table, so tools | 
|  | // like `objdump` will be able to deal with a correct | 
|  | // symbol position. | 
|  | if (sym->isDefined() && | 
|  | ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) { | 
|  | if (!strTabSec.isDynamic()) | 
|  | eSym->st_value &= ~1; | 
|  | eSym->st_other |= STO_MIPS_MICROMIPS; | 
|  | } | 
|  | } | 
|  | if (ctx.arg.relocatable) | 
|  | if (auto *d = dyn_cast<Defined>(sym)) | 
|  | if (isMipsPIC<ELFT>(d)) | 
|  | eSym->st_other |= STO_MIPS_PIC; | 
|  | ++eSym; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SymtabShndxSection::SymtabShndxSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".symtab_shndx", SHT_SYMTAB_SHNDX, 0, 4) { | 
|  | this->entsize = 4; | 
|  | } | 
|  |  | 
|  | void SymtabShndxSection::writeTo(uint8_t *buf) { | 
|  | // We write an array of 32 bit values, where each value has 1:1 association | 
|  | // with an entry in ctx.in.symTab if the corresponding entry contains | 
|  | // SHN_XINDEX, we need to write actual index, otherwise, we must write | 
|  | // SHN_UNDEF(0). | 
|  | buf += 4; // Ignore .symtab[0] entry. | 
|  | bool relocatable = ctx.arg.relocatable; | 
|  | for (const SymbolTableEntry &entry : ctx.in.symTab->getSymbols()) { | 
|  | if (!getCommonSec(relocatable, entry.sym) && | 
|  | getSymSectionIndex(entry.sym) == SHN_XINDEX) | 
|  | write32(ctx, buf, entry.sym->getOutputSection()->sectionIndex); | 
|  | buf += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SymtabShndxSection::isNeeded() const { | 
|  | // SHT_SYMTAB can hold symbols with section indices values up to | 
|  | // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX | 
|  | // section. Problem is that we reveal the final section indices a bit too | 
|  | // late, and we do not know them here. For simplicity, we just always create | 
|  | // a .symtab_shndx section when the amount of output sections is huge. | 
|  | size_t size = 0; | 
|  | for (SectionCommand *cmd : ctx.script->sectionCommands) | 
|  | if (isa<OutputDesc>(cmd)) | 
|  | ++size; | 
|  | return size >= SHN_LORESERVE; | 
|  | } | 
|  |  | 
|  | void SymtabShndxSection::finalizeContents() { | 
|  | getParent()->link = ctx.in.symTab->getParent()->sectionIndex; | 
|  | } | 
|  |  | 
|  | size_t SymtabShndxSection::getSize() const { | 
|  | return ctx.in.symTab->getNumSymbols() * 4; | 
|  | } | 
|  |  | 
|  | // .hash and .gnu.hash sections contain on-disk hash tables that map | 
|  | // symbol names to their dynamic symbol table indices. Their purpose | 
|  | // is to help the dynamic linker resolve symbols quickly. If ELF files | 
|  | // don't have them, the dynamic linker has to do linear search on all | 
|  | // dynamic symbols, which makes programs slower. Therefore, a .hash | 
|  | // section is added to a DSO by default. | 
|  | // | 
|  | // The Unix semantics of resolving dynamic symbols is somewhat expensive. | 
|  | // Each ELF file has a list of DSOs that the ELF file depends on and a | 
|  | // list of dynamic symbols that need to be resolved from any of the | 
|  | // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) | 
|  | // where m is the number of DSOs and n is the number of dynamic | 
|  | // symbols. For modern large programs, both m and n are large.  So | 
|  | // making each step faster by using hash tables substantially | 
|  | // improves time to load programs. | 
|  | // | 
|  | // (Note that this is not the only way to design the shared library. | 
|  | // For instance, the Windows DLL takes a different approach. On | 
|  | // Windows, each dynamic symbol has a name of DLL from which the symbol | 
|  | // has to be resolved. That makes the cost of symbol resolution O(n). | 
|  | // This disables some hacky techniques you can use on Unix such as | 
|  | // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) | 
|  | // | 
|  | // Due to historical reasons, we have two different hash tables, .hash | 
|  | // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new | 
|  | // and better version of .hash. .hash is just an on-disk hash table, but | 
|  | // .gnu.hash has a bloom filter in addition to a hash table to skip | 
|  | // DSOs very quickly. If you are sure that your dynamic linker knows | 
|  | // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a | 
|  | // safe bet is to specify --hash-style=both for backward compatibility. | 
|  | GnuHashTableSection::GnuHashTableSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".gnu.hash", SHT_GNU_HASH, SHF_ALLOC, | 
|  | ctx.arg.wordsize) {} | 
|  |  | 
|  | void GnuHashTableSection::finalizeContents() { | 
|  | if (OutputSection *sec = getPartition(ctx).dynSymTab->getParent()) | 
|  | getParent()->link = sec->sectionIndex; | 
|  |  | 
|  | // Computes bloom filter size in word size. We want to allocate 12 | 
|  | // bits for each symbol. It must be a power of two. | 
|  | if (symbols.empty()) { | 
|  | maskWords = 1; | 
|  | } else { | 
|  | uint64_t numBits = symbols.size() * 12; | 
|  | maskWords = NextPowerOf2(numBits / (ctx.arg.wordsize * 8)); | 
|  | } | 
|  |  | 
|  | size = 16;                            // Header | 
|  | size += ctx.arg.wordsize * maskWords; // Bloom filter | 
|  | size += nBuckets * 4;                 // Hash buckets | 
|  | size += symbols.size() * 4;           // Hash values | 
|  | } | 
|  |  | 
|  | void GnuHashTableSection::writeTo(uint8_t *buf) { | 
|  | // Write a header. | 
|  | write32(ctx, buf, nBuckets); | 
|  | write32(ctx, buf + 4, | 
|  | getPartition(ctx).dynSymTab->getNumSymbols() - symbols.size()); | 
|  | write32(ctx, buf + 8, maskWords); | 
|  | write32(ctx, buf + 12, Shift2); | 
|  | buf += 16; | 
|  |  | 
|  | // Write the 2-bit bloom filter. | 
|  | const unsigned c = ctx.arg.is64 ? 64 : 32; | 
|  | for (const Entry &sym : symbols) { | 
|  | // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in | 
|  | // the word using bits [0:5] and [26:31]. | 
|  | size_t i = (sym.hash / c) & (maskWords - 1); | 
|  | uint64_t val = readUint(ctx, buf + i * ctx.arg.wordsize); | 
|  | val |= uint64_t(1) << (sym.hash % c); | 
|  | val |= uint64_t(1) << ((sym.hash >> Shift2) % c); | 
|  | writeUint(ctx, buf + i * ctx.arg.wordsize, val); | 
|  | } | 
|  | buf += ctx.arg.wordsize * maskWords; | 
|  |  | 
|  | // Write the hash table. | 
|  | uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); | 
|  | uint32_t oldBucket = -1; | 
|  | uint32_t *values = buckets + nBuckets; | 
|  | for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { | 
|  | // Write a hash value. It represents a sequence of chains that share the | 
|  | // same hash modulo value. The last element of each chain is terminated by | 
|  | // LSB 1. | 
|  | uint32_t hash = i->hash; | 
|  | bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; | 
|  | hash = isLastInChain ? hash | 1 : hash & ~1; | 
|  | write32(ctx, values++, hash); | 
|  |  | 
|  | if (i->bucketIdx == oldBucket) | 
|  | continue; | 
|  | // Write a hash bucket. Hash buckets contain indices in the following hash | 
|  | // value table. | 
|  | write32(ctx, buckets + i->bucketIdx, | 
|  | getPartition(ctx).dynSymTab->getSymbolIndex(*i->sym)); | 
|  | oldBucket = i->bucketIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add symbols to this symbol hash table. Note that this function | 
|  | // destructively sort a given vector -- which is needed because | 
|  | // GNU-style hash table places some sorting requirements. | 
|  | void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { | 
|  | // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce | 
|  | // its type correctly. | 
|  | auto mid = | 
|  | std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { | 
|  | return !s.sym->isDefined() || s.sym->partition != partition; | 
|  | }); | 
|  |  | 
|  | // We chose load factor 4 for the on-disk hash table. For each hash | 
|  | // collision, the dynamic linker will compare a uint32_t hash value. | 
|  | // Since the integer comparison is quite fast, we believe we can | 
|  | // make the load factor even larger. 4 is just a conservative choice. | 
|  | // | 
|  | // Note that we don't want to create a zero-sized hash table because | 
|  | // Android loader as of 2018 doesn't like a .gnu.hash containing such | 
|  | // table. If that's the case, we create a hash table with one unused | 
|  | // dummy slot. | 
|  | nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); | 
|  |  | 
|  | if (mid == v.end()) | 
|  | return; | 
|  |  | 
|  | for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { | 
|  | Symbol *b = ent.sym; | 
|  | uint32_t hash = hashGnu(b->getName()); | 
|  | uint32_t bucketIdx = hash % nBuckets; | 
|  | symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); | 
|  | } | 
|  |  | 
|  | llvm::sort(symbols, [](const Entry &l, const Entry &r) { | 
|  | return std::tie(l.bucketIdx, l.strTabOffset) < | 
|  | std::tie(r.bucketIdx, r.strTabOffset); | 
|  | }); | 
|  |  | 
|  | v.erase(mid, v.end()); | 
|  | for (const Entry &ent : symbols) | 
|  | v.push_back({ent.sym, ent.strTabOffset}); | 
|  | } | 
|  |  | 
|  | HashTableSection::HashTableSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".hash", SHT_HASH, SHF_ALLOC, 4) { | 
|  | this->entsize = 4; | 
|  | } | 
|  |  | 
|  | void HashTableSection::finalizeContents() { | 
|  | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); | 
|  |  | 
|  | if (OutputSection *sec = symTab->getParent()) | 
|  | getParent()->link = sec->sectionIndex; | 
|  |  | 
|  | unsigned numEntries = 2;               // nbucket and nchain. | 
|  | numEntries += symTab->getNumSymbols(); // The chain entries. | 
|  |  | 
|  | // Create as many buckets as there are symbols. | 
|  | numEntries += symTab->getNumSymbols(); | 
|  | this->size = numEntries * 4; | 
|  | } | 
|  |  | 
|  | void HashTableSection::writeTo(uint8_t *buf) { | 
|  | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); | 
|  | unsigned numSymbols = symTab->getNumSymbols(); | 
|  |  | 
|  | uint32_t *p = reinterpret_cast<uint32_t *>(buf); | 
|  | write32(ctx, p++, numSymbols); // nbucket | 
|  | write32(ctx, p++, numSymbols); // nchain | 
|  |  | 
|  | uint32_t *buckets = p; | 
|  | uint32_t *chains = p + numSymbols; | 
|  |  | 
|  | for (const SymbolTableEntry &s : symTab->getSymbols()) { | 
|  | Symbol *sym = s.sym; | 
|  | StringRef name = sym->getName(); | 
|  | unsigned i = sym->dynsymIndex; | 
|  | uint32_t hash = hashSysV(name) % numSymbols; | 
|  | chains[i] = buckets[hash]; | 
|  | write32(ctx, buckets + hash, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | PltSection::PltSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, | 
|  | 16), | 
|  | headerSize(ctx.target->pltHeaderSize) { | 
|  | // On PowerPC, this section contains lazy symbol resolvers. | 
|  | if (ctx.arg.emachine == EM_PPC64) { | 
|  | name = ".glink"; | 
|  | addralign = 4; | 
|  | } | 
|  |  | 
|  | // On x86 when IBT is enabled, this section contains the second PLT (lazy | 
|  | // symbol resolvers). | 
|  | if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) && | 
|  | (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) | 
|  | name = ".plt.sec"; | 
|  |  | 
|  | // The PLT needs to be writable on SPARC as the dynamic linker will | 
|  | // modify the instructions in the PLT entries. | 
|  | if (ctx.arg.emachine == EM_SPARCV9) | 
|  | this->flags |= SHF_WRITE; | 
|  | } | 
|  |  | 
|  | void PltSection::writeTo(uint8_t *buf) { | 
|  | // At beginning of PLT, we have code to call the dynamic | 
|  | // linker to resolve dynsyms at runtime. Write such code. | 
|  | ctx.target->writePltHeader(buf); | 
|  | size_t off = headerSize; | 
|  |  | 
|  | for (const Symbol *sym : entries) { | 
|  | ctx.target->writePlt(buf + off, *sym, getVA() + off); | 
|  | off += ctx.target->pltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PltSection::addEntry(Symbol &sym) { | 
|  | assert(sym.auxIdx == ctx.symAux.size() - 1); | 
|  | ctx.symAux.back().pltIdx = entries.size(); | 
|  | entries.push_back(&sym); | 
|  | } | 
|  |  | 
|  | size_t PltSection::getSize() const { | 
|  | return headerSize + entries.size() * ctx.target->pltEntrySize; | 
|  | } | 
|  |  | 
|  | bool PltSection::isNeeded() const { | 
|  | // For -z retpolineplt, .iplt needs the .plt header. | 
|  | return !entries.empty() || (ctx.arg.zRetpolineplt && ctx.in.iplt->isNeeded()); | 
|  | } | 
|  |  | 
|  | // Used by ARM to add mapping symbols in the PLT section, which aid | 
|  | // disassembly. | 
|  | void PltSection::addSymbols() { | 
|  | ctx.target->addPltHeaderSymbols(*this); | 
|  |  | 
|  | size_t off = headerSize; | 
|  | for (size_t i = 0; i < entries.size(); ++i) { | 
|  | ctx.target->addPltSymbols(*this, off); | 
|  | off += ctx.target->pltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | IpltSection::IpltSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".iplt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, | 
|  | 16) { | 
|  | if (ctx.arg.emachine == EM_PPC || ctx.arg.emachine == EM_PPC64) { | 
|  | name = ".glink"; | 
|  | addralign = 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void IpltSection::writeTo(uint8_t *buf) { | 
|  | uint32_t off = 0; | 
|  | for (const Symbol *sym : entries) { | 
|  | ctx.target->writeIplt(buf + off, *sym, getVA() + off); | 
|  | off += ctx.target->ipltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t IpltSection::getSize() const { | 
|  | return entries.size() * ctx.target->ipltEntrySize; | 
|  | } | 
|  |  | 
|  | void IpltSection::addEntry(Symbol &sym) { | 
|  | assert(sym.auxIdx == ctx.symAux.size() - 1); | 
|  | ctx.symAux.back().pltIdx = entries.size(); | 
|  | entries.push_back(&sym); | 
|  | } | 
|  |  | 
|  | // ARM uses mapping symbols to aid disassembly. | 
|  | void IpltSection::addSymbols() { | 
|  | size_t off = 0; | 
|  | for (size_t i = 0, e = entries.size(); i != e; ++i) { | 
|  | ctx.target->addPltSymbols(*this, off); | 
|  | off += ctx.target->pltEntrySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | PPC32GlinkSection::PPC32GlinkSection(Ctx &ctx) : PltSection(ctx) { | 
|  | name = ".glink"; | 
|  | addralign = 4; | 
|  | } | 
|  |  | 
|  | void PPC32GlinkSection::writeTo(uint8_t *buf) { | 
|  | writePPC32GlinkSection(ctx, buf, entries.size()); | 
|  | } | 
|  |  | 
|  | size_t PPC32GlinkSection::getSize() const { | 
|  | return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize; | 
|  | } | 
|  |  | 
|  | // This is an x86-only extra PLT section and used only when a security | 
|  | // enhancement feature called CET is enabled. In this comment, I'll explain what | 
|  | // the feature is and why we have two PLT sections if CET is enabled. | 
|  | // | 
|  | // So, what does CET do? CET introduces a new restriction to indirect jump | 
|  | // instructions. CET works this way. Assume that CET is enabled. Then, if you | 
|  | // execute an indirect jump instruction, the processor verifies that a special | 
|  | // "landing pad" instruction (which is actually a repurposed NOP instruction and | 
|  | // now called "endbr32" or "endbr64") is at the jump target. If the jump target | 
|  | // does not start with that instruction, the processor raises an exception | 
|  | // instead of continuing executing code. | 
|  | // | 
|  | // If CET is enabled, the compiler emits endbr to all locations where indirect | 
|  | // jumps may jump to. | 
|  | // | 
|  | // This mechanism makes it extremely hard to transfer the control to a middle of | 
|  | // a function that is not supporsed to be a indirect jump target, preventing | 
|  | // certain types of attacks such as ROP or JOP. | 
|  | // | 
|  | // Note that the processors in the market as of 2019 don't actually support the | 
|  | // feature. Only the spec is available at the moment. | 
|  | // | 
|  | // Now, I'll explain why we have this extra PLT section for CET. | 
|  | // | 
|  | // Since you can indirectly jump to a PLT entry, we have to make PLT entries | 
|  | // start with endbr. The problem is there's no extra space for endbr (which is 4 | 
|  | // bytes long), as the PLT entry is only 16 bytes long and all bytes are already | 
|  | // used. | 
|  | // | 
|  | // In order to deal with the issue, we split a PLT entry into two PLT entries. | 
|  | // Remember that each PLT entry contains code to jump to an address read from | 
|  | // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, | 
|  | // the former code is written to .plt.sec, and the latter code is written to | 
|  | // .plt. | 
|  | // | 
|  | // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except | 
|  | // that the regular .plt is now called .plt.sec and .plt is repurposed to | 
|  | // contain only code for lazy symbol resolution. | 
|  | // | 
|  | // In other words, this is how the 2-PLT scheme works. Application code is | 
|  | // supposed to jump to .plt.sec to call an external function. Each .plt.sec | 
|  | // entry contains code to read an address from a corresponding .got.plt entry | 
|  | // and jump to that address. Addresses in .got.plt initially point to .plt, so | 
|  | // when an application calls an external function for the first time, the | 
|  | // control is transferred to a function that resolves a symbol name from | 
|  | // external shared object files. That function then rewrites a .got.plt entry | 
|  | // with a resolved address, so that the subsequent function calls directly jump | 
|  | // to a desired location from .plt.sec. | 
|  | // | 
|  | // There is an open question as to whether the 2-PLT scheme was desirable or | 
|  | // not. We could have simply extended the PLT entry size to 32-bytes to | 
|  | // accommodate endbr, and that scheme would have been much simpler than the | 
|  | // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot | 
|  | // code (.plt.sec) from cold code (.plt). But as far as I know no one proved | 
|  | // that the optimization actually makes a difference. | 
|  | // | 
|  | // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools | 
|  | // depend on it, so we implement the ABI. | 
|  | IBTPltSection::IBTPltSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, | 
|  | 16) {} | 
|  |  | 
|  | void IBTPltSection::writeTo(uint8_t *buf) { | 
|  | ctx.target->writeIBTPlt(buf, ctx.in.plt->getNumEntries()); | 
|  | } | 
|  |  | 
|  | size_t IBTPltSection::getSize() const { | 
|  | // 16 is the header size of .plt. | 
|  | return 16 + ctx.in.plt->getNumEntries() * ctx.target->pltEntrySize; | 
|  | } | 
|  |  | 
|  | bool IBTPltSection::isNeeded() const { return ctx.in.plt->getNumEntries() > 0; } | 
|  |  | 
|  | RelroPaddingSection::RelroPaddingSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".relro_padding", SHT_NOBITS, SHF_ALLOC | SHF_WRITE, | 
|  | 1) {} | 
|  |  | 
|  | RandomizePaddingSection::RandomizePaddingSection(Ctx &ctx, uint64_t size, | 
|  | OutputSection *parent) | 
|  | : SyntheticSection(ctx, ".randomize_padding", SHT_PROGBITS, SHF_ALLOC, 1), | 
|  | size(size) { | 
|  | this->parent = parent; | 
|  | } | 
|  |  | 
|  | void RandomizePaddingSection::writeTo(uint8_t *buf) { | 
|  | std::array<uint8_t, 4> filler = getParent()->getFiller(ctx); | 
|  | uint8_t *end = buf + size; | 
|  | for (; buf + 4 <= end; buf += 4) | 
|  | memcpy(buf, &filler[0], 4); | 
|  | memcpy(buf, &filler[0], end - buf); | 
|  | } | 
|  |  | 
|  | // The string hash function for .gdb_index. | 
|  | static uint32_t computeGdbHash(StringRef s) { | 
|  | uint32_t h = 0; | 
|  | for (uint8_t c : s) | 
|  | h = h * 67 + toLower(c) - 113; | 
|  | return h; | 
|  | } | 
|  |  | 
|  | // 4-byte alignment ensures that values in the hash lookup table and the name | 
|  | // table are aligned. | 
|  | DebugNamesBaseSection::DebugNamesBaseSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".debug_names", SHT_PROGBITS, 0, 4) {} | 
|  |  | 
|  | // Get the size of the .debug_names section header in bytes for DWARF32: | 
|  | static uint32_t getDebugNamesHeaderSize(uint32_t augmentationStringSize) { | 
|  | return /* unit length */ 4 + | 
|  | /* version */ 2 + | 
|  | /* padding */ 2 + | 
|  | /* CU count */ 4 + | 
|  | /* TU count */ 4 + | 
|  | /* Foreign TU count */ 4 + | 
|  | /* Bucket Count */ 4 + | 
|  | /* Name Count */ 4 + | 
|  | /* Abbrev table size */ 4 + | 
|  | /* Augmentation string size */ 4 + | 
|  | /* Augmentation string */ augmentationStringSize; | 
|  | } | 
|  |  | 
|  | static Expected<DebugNamesBaseSection::IndexEntry *> | 
|  | readEntry(uint64_t &offset, const DWARFDebugNames::NameIndex &ni, | 
|  | uint64_t entriesBase, DWARFDataExtractor &namesExtractor, | 
|  | const LLDDWARFSection &namesSec) { | 
|  | auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>(); | 
|  | ie->poolOffset = offset; | 
|  | Error err = Error::success(); | 
|  | uint64_t ulebVal = namesExtractor.getULEB128(&offset, &err); | 
|  | if (err) | 
|  | return createStringError(inconvertibleErrorCode(), | 
|  | "invalid abbrev code: %s", | 
|  | llvm::toString(std::move(err)).c_str()); | 
|  | if (!isUInt<32>(ulebVal)) | 
|  | return createStringError(inconvertibleErrorCode(), | 
|  | "abbrev code too large for DWARF32: %" PRIu64, | 
|  | ulebVal); | 
|  | ie->abbrevCode = static_cast<uint32_t>(ulebVal); | 
|  | auto it = ni.getAbbrevs().find_as(ie->abbrevCode); | 
|  | if (it == ni.getAbbrevs().end()) | 
|  | return createStringError(inconvertibleErrorCode(), | 
|  | "abbrev code not found in abbrev table: %" PRIu32, | 
|  | ie->abbrevCode); | 
|  |  | 
|  | DebugNamesBaseSection::AttrValue attr, cuAttr = {0, 0}; | 
|  | for (DWARFDebugNames::AttributeEncoding a : it->Attributes) { | 
|  | if (a.Index == dwarf::DW_IDX_parent) { | 
|  | if (a.Form == dwarf::DW_FORM_ref4) { | 
|  | attr.attrValue = namesExtractor.getU32(&offset, &err); | 
|  | attr.attrSize = 4; | 
|  | ie->parentOffset = entriesBase + attr.attrValue; | 
|  | } else if (a.Form != DW_FORM_flag_present) | 
|  | return createStringError(inconvertibleErrorCode(), | 
|  | "invalid form for DW_IDX_parent"); | 
|  | } else { | 
|  | switch (a.Form) { | 
|  | case DW_FORM_data1: | 
|  | case DW_FORM_ref1: { | 
|  | attr.attrValue = namesExtractor.getU8(&offset, &err); | 
|  | attr.attrSize = 1; | 
|  | break; | 
|  | } | 
|  | case DW_FORM_data2: | 
|  | case DW_FORM_ref2: { | 
|  | attr.attrValue = namesExtractor.getU16(&offset, &err); | 
|  | attr.attrSize = 2; | 
|  | break; | 
|  | } | 
|  | case DW_FORM_data4: | 
|  | case DW_FORM_ref4: { | 
|  | attr.attrValue = namesExtractor.getU32(&offset, &err); | 
|  | attr.attrSize = 4; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return createStringError( | 
|  | inconvertibleErrorCode(), | 
|  | "unrecognized form encoding %d in abbrev table", a.Form); | 
|  | } | 
|  | } | 
|  | if (err) | 
|  | return createStringError(inconvertibleErrorCode(), | 
|  | "error while reading attributes: %s", | 
|  | llvm::toString(std::move(err)).c_str()); | 
|  | if (a.Index == DW_IDX_compile_unit) | 
|  | cuAttr = attr; | 
|  | else if (a.Form != DW_FORM_flag_present) | 
|  | ie->attrValues.push_back(attr); | 
|  | } | 
|  | // Canonicalize abbrev by placing the CU/TU index at the end. | 
|  | ie->attrValues.push_back(cuAttr); | 
|  | return ie; | 
|  | } | 
|  |  | 
|  | void DebugNamesBaseSection::parseDebugNames( | 
|  | Ctx &ctx, InputChunk &inputChunk, OutputChunk &chunk, | 
|  | DWARFDataExtractor &namesExtractor, DataExtractor &strExtractor, | 
|  | function_ref<SmallVector<uint32_t, 0>( | 
|  | uint32_t numCus, const DWARFDebugNames::Header &, | 
|  | const DWARFDebugNames::DWARFDebugNamesOffsets &)> | 
|  | readOffsets) { | 
|  | const LLDDWARFSection &namesSec = inputChunk.section; | 
|  | DenseMap<uint32_t, IndexEntry *> offsetMap; | 
|  | // Number of CUs seen in previous NameIndex sections within current chunk. | 
|  | uint32_t numCus = 0; | 
|  | for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) { | 
|  | NameData &nd = inputChunk.nameData.emplace_back(); | 
|  | nd.hdr = ni.getHeader(); | 
|  | if (nd.hdr.Format != DwarfFormat::DWARF32) { | 
|  | Err(ctx) << namesSec.sec | 
|  | << ": found DWARF64, which is currently unsupported"; | 
|  | return; | 
|  | } | 
|  | if (nd.hdr.Version != 5) { | 
|  | Err(ctx) << namesSec.sec << ": unsupported version: " << nd.hdr.Version; | 
|  | return; | 
|  | } | 
|  | uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(DwarfFormat::DWARF32); | 
|  | DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets(); | 
|  | if (locs.EntriesBase > namesExtractor.getData().size()) { | 
|  | Err(ctx) << namesSec.sec << ": entry pool start is beyond end of section"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs); | 
|  |  | 
|  | // Read the entry pool. | 
|  | offsetMap.clear(); | 
|  | nd.nameEntries.resize(nd.hdr.NameCount); | 
|  | for (auto i : seq(nd.hdr.NameCount)) { | 
|  | NameEntry &ne = nd.nameEntries[i]; | 
|  | uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize; | 
|  | ne.stringOffset = strOffset; | 
|  | uint64_t strp = namesExtractor.getRelocatedValue(dwarfSize, &strOffset); | 
|  | StringRef name = strExtractor.getCStrRef(&strp); | 
|  | ne.name = name.data(); | 
|  | ne.hashValue = caseFoldingDjbHash(name); | 
|  |  | 
|  | // Read a series of index entries that end with abbreviation code 0. | 
|  | uint64_t offset = locs.EntriesBase + entryOffsets[i]; | 
|  | while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) { | 
|  | // Read & store all entries (for the same string). | 
|  | Expected<IndexEntry *> ieOrErr = | 
|  | readEntry(offset, ni, locs.EntriesBase, namesExtractor, namesSec); | 
|  | if (!ieOrErr) { | 
|  | Err(ctx) << namesSec.sec << ": " << ieOrErr.takeError(); | 
|  | return; | 
|  | } | 
|  | ne.indexEntries.push_back(std::move(*ieOrErr)); | 
|  | } | 
|  | if (offset >= namesSec.Data.size()) | 
|  | Err(ctx) << namesSec.sec << ": index entry is out of bounds"; | 
|  |  | 
|  | for (IndexEntry &ie : ne.entries()) | 
|  | offsetMap[ie.poolOffset] = &ie; | 
|  | } | 
|  |  | 
|  | // Assign parent pointers, which will be used to update DW_IDX_parent index | 
|  | // attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will | 
|  | // get parentEntry == null as well. | 
|  | for (NameEntry &ne : nd.nameEntries) | 
|  | for (IndexEntry &ie : ne.entries()) | 
|  | ie.parentEntry = offsetMap.lookup(ie.parentOffset); | 
|  | numCus += nd.hdr.CompUnitCount; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the form for output DW_IDX_compile_unit attributes, similar to | 
|  | // DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all | 
|  | // the merged CU indices. | 
|  | std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm( | 
|  | uint32_t compUnitCount) { | 
|  | if (compUnitCount > UINT16_MAX) | 
|  | return {4, DW_FORM_data4}; | 
|  | if (compUnitCount > UINT8_MAX) | 
|  | return {2, DW_FORM_data2}; | 
|  | return {1, DW_FORM_data1}; | 
|  | } | 
|  |  | 
|  | void DebugNamesBaseSection::computeHdrAndAbbrevTable( | 
|  | MutableArrayRef<InputChunk> inputChunks) { | 
|  | TimeTraceScope timeScope("Merge .debug_names", "hdr and abbrev table"); | 
|  | size_t numCu = 0; | 
|  | hdr.Format = DwarfFormat::DWARF32; | 
|  | hdr.Version = 5; | 
|  | hdr.CompUnitCount = 0; | 
|  | hdr.LocalTypeUnitCount = 0; | 
|  | hdr.ForeignTypeUnitCount = 0; | 
|  | hdr.AugmentationStringSize = 0; | 
|  |  | 
|  | // Compute CU and TU counts. | 
|  | for (auto i : seq(numChunks)) { | 
|  | InputChunk &inputChunk = inputChunks[i]; | 
|  | inputChunk.baseCuIdx = numCu; | 
|  | numCu += chunks[i].compUnits.size(); | 
|  | for (const NameData &nd : inputChunk.nameData) { | 
|  | hdr.CompUnitCount += nd.hdr.CompUnitCount; | 
|  | // TODO: We don't handle type units yet, so LocalTypeUnitCount & | 
|  | // ForeignTypeUnitCount are left as 0. | 
|  | if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount) | 
|  | Warn(ctx) << inputChunk.section.sec | 
|  | << ": type units are not implemented"; | 
|  | // If augmentation strings are not identical, use an empty string. | 
|  | if (i == 0) { | 
|  | hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize; | 
|  | hdr.AugmentationString = nd.hdr.AugmentationString; | 
|  | } else if (hdr.AugmentationString != nd.hdr.AugmentationString) { | 
|  | // There are conflicting augmentation strings, so it's best for the | 
|  | // merged index to not use an augmentation string. | 
|  | hdr.AugmentationStringSize = 0; | 
|  | hdr.AugmentationString.clear(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the merged abbrev table, uniquifyinng the input abbrev tables and | 
|  | // computing mapping from old (per-cu) abbrev codes to new (merged) abbrev | 
|  | // codes. | 
|  | FoldingSet<Abbrev> abbrevSet; | 
|  | // Determine the form for the DW_IDX_compile_unit attributes in the merged | 
|  | // index. The input form may not be big enough for all CU indices. | 
|  | dwarf::Form cuAttrForm = getMergedCuCountForm(hdr.CompUnitCount).second; | 
|  | for (InputChunk &inputChunk : inputChunks) { | 
|  | for (auto [i, ni] : enumerate(*inputChunk.llvmDebugNames)) { | 
|  | for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) { | 
|  | // Canonicalize abbrev by placing the CU/TU index at the end, | 
|  | // similar to 'parseDebugNames'. | 
|  | Abbrev abbrev; | 
|  | DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit, | 
|  | cuAttrForm); | 
|  | abbrev.code = oldAbbrev.Code; | 
|  | abbrev.tag = oldAbbrev.Tag; | 
|  | for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) { | 
|  | if (a.Index == DW_IDX_compile_unit) | 
|  | cuAttr.Index = a.Index; | 
|  | else | 
|  | abbrev.attributes.push_back({a.Index, a.Form}); | 
|  | } | 
|  | // Put the CU/TU index at the end of the attributes list. | 
|  | abbrev.attributes.push_back(cuAttr); | 
|  |  | 
|  | // Profile the abbrev, get or assign a new code, then record the abbrev | 
|  | // code mapping. | 
|  | FoldingSetNodeID id; | 
|  | abbrev.Profile(id); | 
|  | uint32_t newCode; | 
|  | void *insertPos; | 
|  | if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(id, insertPos)) { | 
|  | // Found it; we've already seen an identical abbreviation. | 
|  | newCode = existing->code; | 
|  | } else { | 
|  | Abbrev *abbrev2 = | 
|  | new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev)); | 
|  | abbrevSet.InsertNode(abbrev2, insertPos); | 
|  | abbrevTable.push_back(abbrev2); | 
|  | newCode = abbrevTable.size(); | 
|  | abbrev2->code = newCode; | 
|  | } | 
|  | inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the merged abbrev table. | 
|  | raw_svector_ostream os(abbrevTableBuf); | 
|  | for (Abbrev *abbrev : abbrevTable) { | 
|  | encodeULEB128(abbrev->code, os); | 
|  | encodeULEB128(abbrev->tag, os); | 
|  | for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) { | 
|  | encodeULEB128(a.Index, os); | 
|  | encodeULEB128(a.Form, os); | 
|  | } | 
|  | os.write("\0", 2); // attribute specification end | 
|  | } | 
|  | os.write(0); // abbrev table end | 
|  | hdr.AbbrevTableSize = abbrevTableBuf.size(); | 
|  | } | 
|  |  | 
|  | void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const { | 
|  | id.AddInteger(tag); | 
|  | for (const DWARFDebugNames::AttributeEncoding &attr : attributes) { | 
|  | id.AddInteger(attr.Index); | 
|  | id.AddInteger(attr.Form); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool( | 
|  | MutableArrayRef<InputChunk> inputChunks) { | 
|  | TimeTraceScope timeScope("Merge .debug_names", "entry pool"); | 
|  | // Collect and de-duplicate all the names (preserving all the entries). | 
|  | // Speed it up using multithreading, as the number of symbols can be in the | 
|  | // order of millions. | 
|  | const size_t concurrency = | 
|  | bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards)); | 
|  | const size_t shift = 32 - countr_zero(numShards); | 
|  | const uint8_t cuAttrSize = getMergedCuCountForm(hdr.CompUnitCount).first; | 
|  | DenseMap<CachedHashStringRef, size_t> maps[numShards]; | 
|  |  | 
|  | parallelFor(0, concurrency, [&](size_t threadId) { | 
|  | for (auto i : seq(numChunks)) { | 
|  | InputChunk &inputChunk = inputChunks[i]; | 
|  | for (auto j : seq(inputChunk.nameData.size())) { | 
|  | NameData &nd = inputChunk.nameData[j]; | 
|  | // Deduplicate the NameEntry records (based on the string/name), | 
|  | // appending all IndexEntries from duplicate NameEntry records to | 
|  | // the single preserved copy. | 
|  | for (NameEntry &ne : nd.nameEntries) { | 
|  | auto shardId = ne.hashValue >> shift; | 
|  | if ((shardId & (concurrency - 1)) != threadId) | 
|  | continue; | 
|  |  | 
|  | ne.chunkIdx = i; | 
|  | for (IndexEntry &ie : ne.entries()) { | 
|  | // Update the IndexEntry's abbrev code to match the merged | 
|  | // abbreviations. | 
|  | ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode]; | 
|  | // Update the DW_IDX_compile_unit attribute (the last one after | 
|  | // canonicalization) to have correct merged offset value and size. | 
|  | auto &back = ie.attrValues.back(); | 
|  | back.attrValue += inputChunk.baseCuIdx + j; | 
|  | back.attrSize = cuAttrSize; | 
|  | } | 
|  |  | 
|  | auto &nameVec = nameVecs[shardId]; | 
|  | auto [it, inserted] = maps[shardId].try_emplace( | 
|  | CachedHashStringRef(ne.name, ne.hashValue), nameVec.size()); | 
|  | if (inserted) | 
|  | nameVec.push_back(std::move(ne)); | 
|  | else | 
|  | nameVec[it->second].indexEntries.append(std::move(ne.indexEntries)); | 
|  | } | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Compute entry offsets in parallel. First, compute offsets relative to the | 
|  | // current shard. | 
|  | uint32_t offsets[numShards]; | 
|  | parallelFor(0, numShards, [&](size_t shard) { | 
|  | uint32_t offset = 0; | 
|  | for (NameEntry &ne : nameVecs[shard]) { | 
|  | ne.entryOffset = offset; | 
|  | for (IndexEntry &ie : ne.entries()) { | 
|  | ie.poolOffset = offset; | 
|  | offset += getULEB128Size(ie.abbrevCode); | 
|  | for (AttrValue value : ie.attrValues) | 
|  | offset += value.attrSize; | 
|  | } | 
|  | ++offset; // index entry sentinel | 
|  | } | 
|  | offsets[shard] = offset; | 
|  | }); | 
|  | // Then add shard offsets. | 
|  | std::partial_sum(offsets, std::end(offsets), offsets); | 
|  | parallelFor(1, numShards, [&](size_t shard) { | 
|  | uint32_t offset = offsets[shard - 1]; | 
|  | for (NameEntry &ne : nameVecs[shard]) { | 
|  | ne.entryOffset += offset; | 
|  | for (IndexEntry &ie : ne.entries()) | 
|  | ie.poolOffset += offset; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Update the DW_IDX_parent entries that refer to real parents (have | 
|  | // DW_FORM_ref4). | 
|  | parallelFor(0, numShards, [&](size_t shard) { | 
|  | for (NameEntry &ne : nameVecs[shard]) { | 
|  | for (IndexEntry &ie : ne.entries()) { | 
|  | if (!ie.parentEntry) | 
|  | continue; | 
|  | // Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode | 
|  | // corresponds to position in the merged table vector). | 
|  | const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1]; | 
|  | for (const auto &[a, v] : zip_equal(abbrev->attributes, ie.attrValues)) | 
|  | if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4) | 
|  | v.attrValue = ie.parentEntry->poolOffset; | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Return (entry pool size, number of entries). | 
|  | uint32_t num = 0; | 
|  | for (auto &map : maps) | 
|  | num += map.size(); | 
|  | return {offsets[numShards - 1], num}; | 
|  | } | 
|  |  | 
|  | void DebugNamesBaseSection::init( | 
|  | function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) { | 
|  | TimeTraceScope timeScope("Merge .debug_names"); | 
|  | // Collect and remove input .debug_names sections. Save InputSection pointers | 
|  | // to relocate string offsets in `writeTo`. | 
|  | SetVector<InputFile *> files; | 
|  | for (InputSectionBase *s : ctx.inputSections) { | 
|  | InputSection *isec = dyn_cast<InputSection>(s); | 
|  | if (!isec) | 
|  | continue; | 
|  | if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names") { | 
|  | s->markDead(); | 
|  | inputSections.push_back(isec); | 
|  | files.insert(isec->file); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Parse input .debug_names sections and extract InputChunk and OutputChunk | 
|  | // data. OutputChunk contains CU information, which will be needed by | 
|  | // `writeTo`. | 
|  | auto inputChunksPtr = std::make_unique<InputChunk[]>(files.size()); | 
|  | MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size()); | 
|  | numChunks = files.size(); | 
|  | chunks = std::make_unique<OutputChunk[]>(files.size()); | 
|  | { | 
|  | TimeTraceScope timeScope("Merge .debug_names", "parse"); | 
|  | parallelFor(0, files.size(), [&](size_t i) { | 
|  | parseFile(files[i], inputChunks[i], chunks[i]); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Compute section header (except unit_length), abbrev table, and entry pool. | 
|  | computeHdrAndAbbrevTable(inputChunks); | 
|  | uint32_t entryPoolSize; | 
|  | std::tie(entryPoolSize, hdr.NameCount) = computeEntryPool(inputChunks); | 
|  | hdr.BucketCount = dwarf::getDebugNamesBucketCount(hdr.NameCount); | 
|  |  | 
|  | // Compute the section size. Subtract 4 to get the unit_length for DWARF32. | 
|  | uint32_t hdrSize = getDebugNamesHeaderSize(hdr.AugmentationStringSize); | 
|  | size = findDebugNamesOffsets(hdrSize, hdr).EntriesBase + entryPoolSize; | 
|  | hdr.UnitLength = size - 4; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | DebugNamesSection<ELFT>::DebugNamesSection(Ctx &ctx) | 
|  | : DebugNamesBaseSection(ctx) { | 
|  | init([&](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) { | 
|  | auto *file = cast<ObjFile<ELFT>>(f); | 
|  | DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); | 
|  | auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); | 
|  | chunk.infoSec = dobj.getInfoSection(); | 
|  | DWARFDataExtractor namesExtractor(dobj, dobj.getNamesSection(), | 
|  | ELFT::Endianness == endianness::little, | 
|  | ELFT::Is64Bits ? 8 : 4); | 
|  | // .debug_str is needed to get symbol names from string offsets. | 
|  | DataExtractor strExtractor(dobj.getStrSection(), | 
|  | ELFT::Endianness == endianness::little, | 
|  | ELFT::Is64Bits ? 8 : 4); | 
|  | inputChunk.section = dobj.getNamesSection(); | 
|  |  | 
|  | inputChunk.llvmDebugNames.emplace(namesExtractor, strExtractor); | 
|  | if (Error e = inputChunk.llvmDebugNames->extract()) { | 
|  | Err(ctx) << dobj.getNamesSection().sec << ": " << std::move(e); | 
|  | } | 
|  | parseDebugNames( | 
|  | ctx, inputChunk, chunk, namesExtractor, strExtractor, | 
|  | [&chunk, namesData = dobj.getNamesSection().Data.data()]( | 
|  | uint32_t numCus, const DWARFDebugNames::Header &hdr, | 
|  | const DWARFDebugNames::DWARFDebugNamesOffsets &locs) { | 
|  | // Read CU offsets, which are relocated by .debug_info + X | 
|  | // relocations. Record the section offset to be relocated by | 
|  | // `finalizeContents`. | 
|  | chunk.compUnits.resize_for_overwrite(numCus + hdr.CompUnitCount); | 
|  | for (auto i : seq(hdr.CompUnitCount)) | 
|  | chunk.compUnits[numCus + i] = locs.CUsBase + i * 4; | 
|  |  | 
|  | // Read entry offsets. | 
|  | const char *p = namesData + locs.EntryOffsetsBase; | 
|  | SmallVector<uint32_t, 0> entryOffsets; | 
|  | entryOffsets.resize_for_overwrite(hdr.NameCount); | 
|  | for (uint32_t &offset : entryOffsets) | 
|  | offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p); | 
|  | return entryOffsets; | 
|  | }); | 
|  | }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | template <class RelTy> | 
|  | void DebugNamesSection<ELFT>::getNameRelocs( | 
|  | const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs, | 
|  | Relocs<RelTy> rels) { | 
|  | for (const RelTy &rel : rels) { | 
|  | Symbol &sym = file.getRelocTargetSym(rel); | 
|  | relocs[rel.r_offset] = sym.getVA(ctx, getAddend<ELFT>(rel)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() { | 
|  | // Get relocations of .debug_names sections. | 
|  | auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks); | 
|  | parallelFor(0, numChunks, [&](size_t i) { | 
|  | InputSection *sec = inputSections[i]; | 
|  | invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]); | 
|  |  | 
|  | // Relocate CU offsets with .debug_info + X relocations. | 
|  | OutputChunk &chunk = chunks.get()[i]; | 
|  | for (auto [j, cuOffset] : enumerate(chunk.compUnits)) | 
|  | cuOffset = relocs.get()[i].lookup(cuOffset); | 
|  | }); | 
|  |  | 
|  | // Relocate string offsets in the name table with .debug_str + X relocations. | 
|  | parallelForEach(nameVecs, [&](auto &nameVec) { | 
|  | for (NameEntry &ne : nameVec) | 
|  | ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset); | 
|  | }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | [[maybe_unused]] const uint8_t *const beginBuf = buf; | 
|  | // Write the header. | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength); | 
|  | endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version); | 
|  | buf += 2; // padding | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount); | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount); | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount); | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount); | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount); | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize); | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, | 
|  | hdr.AugmentationStringSize); | 
|  | memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size()); | 
|  | buf += hdr.AugmentationStringSize; | 
|  |  | 
|  | // Write the CU list. | 
|  | for (auto &chunk : getChunks()) | 
|  | for (uint32_t cuOffset : chunk.compUnits) | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset); | 
|  |  | 
|  | // TODO: Write the local TU list, then the foreign TU list.. | 
|  |  | 
|  | // Write the hash lookup table. | 
|  | SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount); | 
|  | // Symbols enter into a bucket whose index is the hash modulo bucket_count. | 
|  | for (auto &nameVec : nameVecs) | 
|  | for (NameEntry &ne : nameVec) | 
|  | buckets[ne.hashValue % hdr.BucketCount].push_back(&ne); | 
|  |  | 
|  | // Write buckets (accumulated bucket counts). | 
|  | uint32_t bucketIdx = 1; | 
|  | for (const SmallVector<NameEntry *, 0> &bucket : buckets) { | 
|  | if (!bucket.empty()) | 
|  | endian::write32<ELFT::Endianness>(buf, bucketIdx); | 
|  | buf += 4; | 
|  | bucketIdx += bucket.size(); | 
|  | } | 
|  | // Write the hashes. | 
|  | for (const SmallVector<NameEntry *, 0> &bucket : buckets) | 
|  | for (const NameEntry *e : bucket) | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue); | 
|  |  | 
|  | // Write the name table. The name entries are ordered by bucket_idx and | 
|  | // correspond one-to-one with the hash lookup table. | 
|  | // | 
|  | // First, write the relocated string offsets. | 
|  | for (const SmallVector<NameEntry *, 0> &bucket : buckets) | 
|  | for (const NameEntry *ne : bucket) | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset); | 
|  |  | 
|  | // Then write the entry offsets. | 
|  | for (const SmallVector<NameEntry *, 0> &bucket : buckets) | 
|  | for (const NameEntry *ne : bucket) | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset); | 
|  |  | 
|  | // Write the abbrev table. | 
|  | buf = llvm::copy(abbrevTableBuf, buf); | 
|  |  | 
|  | // Write the entry pool. Unlike the name table, the name entries follow the | 
|  | // nameVecs order computed by `computeEntryPool`. | 
|  | for (auto &nameVec : nameVecs) { | 
|  | for (NameEntry &ne : nameVec) { | 
|  | // Write all the entries for the string. | 
|  | for (const IndexEntry &ie : ne.entries()) { | 
|  | buf += encodeULEB128(ie.abbrevCode, buf); | 
|  | for (AttrValue value : ie.attrValues) { | 
|  | switch (value.attrSize) { | 
|  | case 1: | 
|  | *buf++ = value.attrValue; | 
|  | break; | 
|  | case 2: | 
|  | endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue); | 
|  | break; | 
|  | case 4: | 
|  | endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("invalid attrSize"); | 
|  | } | 
|  | } | 
|  | } | 
|  | ++buf; // index entry sentinel | 
|  | } | 
|  | } | 
|  | assert(uint64_t(buf - beginBuf) == size); | 
|  | } | 
|  |  | 
|  | GdbIndexSection::GdbIndexSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".gdb_index", SHT_PROGBITS, 0, 1) {} | 
|  |  | 
|  | // Returns the desired size of an on-disk hash table for a .gdb_index section. | 
|  | // There's a tradeoff between size and collision rate. We aim 75% utilization. | 
|  | size_t GdbIndexSection::computeSymtabSize() const { | 
|  | return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); | 
|  | } | 
|  |  | 
|  | static SmallVector<GdbIndexSection::CuEntry, 0> | 
|  | readCuList(DWARFContext &dwarf) { | 
|  | SmallVector<GdbIndexSection::CuEntry, 0> ret; | 
|  | for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) | 
|  | ret.push_back({cu->getOffset(), cu->getLength() + 4}); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static SmallVector<GdbIndexSection::AddressEntry, 0> | 
|  | readAddressAreas(Ctx &ctx, DWARFContext &dwarf, InputSection *sec) { | 
|  | SmallVector<GdbIndexSection::AddressEntry, 0> ret; | 
|  |  | 
|  | uint32_t cuIdx = 0; | 
|  | for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { | 
|  | if (Error e = cu->tryExtractDIEsIfNeeded(false)) { | 
|  | Warn(ctx) << sec << ": " << std::move(e); | 
|  | return {}; | 
|  | } | 
|  | Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); | 
|  | if (!ranges) { | 
|  | Warn(ctx) << sec << ": " << ranges.takeError(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | ArrayRef<InputSectionBase *> sections = sec->file->getSections(); | 
|  | for (DWARFAddressRange &r : *ranges) { | 
|  | if (r.SectionIndex == -1ULL) | 
|  | continue; | 
|  | // Range list with zero size has no effect. | 
|  | InputSectionBase *s = sections[r.SectionIndex]; | 
|  | if (s && s != &InputSection::discarded && s->isLive()) | 
|  | if (r.LowPC != r.HighPC) | 
|  | ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); | 
|  | } | 
|  | ++cuIdx; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static SmallVector<GdbIndexSection::NameAttrEntry, 0> | 
|  | readPubNamesAndTypes(Ctx &ctx, const LLDDwarfObj<ELFT> &obj, | 
|  | const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { | 
|  | const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); | 
|  | const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); | 
|  |  | 
|  | SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; | 
|  | for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { | 
|  | DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little, | 
|  | ELFT::Is64Bits ? 8 : 4); | 
|  | DWARFDebugPubTable table; | 
|  | table.extract(data, /*GnuStyle=*/true, [&](Error e) { | 
|  | Warn(ctx) << pub->sec << ": " << std::move(e); | 
|  | }); | 
|  | for (const DWARFDebugPubTable::Set &set : table.getData()) { | 
|  | // The value written into the constant pool is kind << 24 | cuIndex. As we | 
|  | // don't know how many compilation units precede this object to compute | 
|  | // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add | 
|  | // the number of preceding compilation units later. | 
|  | uint32_t i = llvm::partition_point(cus, | 
|  | [&](GdbIndexSection::CuEntry cu) { | 
|  | return cu.cuOffset < set.Offset; | 
|  | }) - | 
|  | cus.begin(); | 
|  | for (const DWARFDebugPubTable::Entry &ent : set.Entries) | 
|  | ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, | 
|  | (ent.Descriptor.toBits() << 24) | i}); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Create a list of symbols from a given list of symbol names and types | 
|  | // by uniquifying them by name. | 
|  | static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t> | 
|  | createSymbols( | 
|  | Ctx &ctx, | 
|  | ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, | 
|  | const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { | 
|  | using GdbSymbol = GdbIndexSection::GdbSymbol; | 
|  | using NameAttrEntry = GdbIndexSection::NameAttrEntry; | 
|  |  | 
|  | // For each chunk, compute the number of compilation units preceding it. | 
|  | uint32_t cuIdx = 0; | 
|  | std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); | 
|  | for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { | 
|  | cuIdxs[i] = cuIdx; | 
|  | cuIdx += chunks[i].compilationUnits.size(); | 
|  | } | 
|  |  | 
|  | // Collect the compilation unitss for each unique name. Speed it up using | 
|  | // multi-threading as the number of symbols can be in the order of millions. | 
|  | // Shard GdbSymbols by hash's high bits. | 
|  | constexpr size_t numShards = 32; | 
|  | const size_t concurrency = | 
|  | llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards)); | 
|  | const size_t shift = 32 - llvm::countr_zero(numShards); | 
|  | auto map = | 
|  | std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards); | 
|  | auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards); | 
|  | parallelFor(0, concurrency, [&](size_t threadId) { | 
|  | uint32_t i = 0; | 
|  | for (ArrayRef<NameAttrEntry> entries : nameAttrs) { | 
|  | for (const NameAttrEntry &ent : entries) { | 
|  | size_t shardId = ent.name.hash() >> shift; | 
|  | if ((shardId & (concurrency - 1)) != threadId) | 
|  | continue; | 
|  |  | 
|  | uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; | 
|  | auto [it, inserted] = | 
|  | map[shardId].try_emplace(ent.name, symbols[shardId].size()); | 
|  | if (inserted) | 
|  | symbols[shardId].push_back({ent.name, {v}, 0, 0}); | 
|  | else | 
|  | symbols[shardId][it->second].cuVector.push_back(v); | 
|  | } | 
|  | ++i; | 
|  | } | 
|  | }); | 
|  |  | 
|  | size_t numSymbols = 0; | 
|  | for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards)) | 
|  | numSymbols += v.size(); | 
|  |  | 
|  | // The return type is a flattened vector, so we'll copy each vector | 
|  | // contents to Ret. | 
|  | SmallVector<GdbSymbol, 0> ret; | 
|  | ret.reserve(numSymbols); | 
|  | for (SmallVector<GdbSymbol, 0> &vec : | 
|  | MutableArrayRef(symbols.get(), numShards)) | 
|  | for (GdbSymbol &sym : vec) | 
|  | ret.push_back(std::move(sym)); | 
|  |  | 
|  | // CU vectors and symbol names are adjacent in the output file. | 
|  | // We can compute their offsets in the output file now. | 
|  | size_t off = 0; | 
|  | for (GdbSymbol &sym : ret) { | 
|  | sym.cuVectorOff = off; | 
|  | off += (sym.cuVector.size() + 1) * 4; | 
|  | } | 
|  | for (GdbSymbol &sym : ret) { | 
|  | sym.nameOff = off; | 
|  | off += sym.name.size() + 1; | 
|  | } | 
|  | // If off overflows, the last symbol's nameOff likely overflows. | 
|  | if (!isUInt<32>(off)) | 
|  | Err(ctx) << "--gdb-index: constant pool size (" << off | 
|  | << ") exceeds UINT32_MAX"; | 
|  |  | 
|  | return {ret, off}; | 
|  | } | 
|  |  | 
|  | // Returns a newly-created .gdb_index section. | 
|  | template <class ELFT> | 
|  | std::unique_ptr<GdbIndexSection> GdbIndexSection::create(Ctx &ctx) { | 
|  | llvm::TimeTraceScope timeScope("Create gdb index"); | 
|  |  | 
|  | // Collect InputFiles with .debug_info. See the comment in | 
|  | // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, | 
|  | // note that isec->data() may uncompress the full content, which should be | 
|  | // parallelized. | 
|  | SetVector<InputFile *> files; | 
|  | for (InputSectionBase *s : ctx.inputSections) { | 
|  | InputSection *isec = dyn_cast<InputSection>(s); | 
|  | if (!isec) | 
|  | continue; | 
|  | // .debug_gnu_pub{names,types} are useless in executables. | 
|  | // They are present in input object files solely for creating | 
|  | // a .gdb_index. So we can remove them from the output. | 
|  | if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") | 
|  | s->markDead(); | 
|  | else if (isec->name == ".debug_info") | 
|  | files.insert(isec->file); | 
|  | } | 
|  | // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. | 
|  | llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { | 
|  | if (auto *isec = dyn_cast<InputSection>(s)) | 
|  | if (InputSectionBase *rel = isec->getRelocatedSection()) | 
|  | return !rel->isLive(); | 
|  | return !s->isLive(); | 
|  | }); | 
|  |  | 
|  | SmallVector<GdbChunk, 0> chunks(files.size()); | 
|  | SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); | 
|  |  | 
|  | parallelFor(0, files.size(), [&](size_t i) { | 
|  | // To keep memory usage low, we don't want to keep cached DWARFContext, so | 
|  | // avoid getDwarf() here. | 
|  | ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); | 
|  | DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); | 
|  | auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); | 
|  |  | 
|  | // If the are multiple compile units .debug_info (very rare ld -r --unique), | 
|  | // this only picks the last one. Other address ranges are lost. | 
|  | chunks[i].sec = dobj.getInfoSection(); | 
|  | chunks[i].compilationUnits = readCuList(dwarf); | 
|  | chunks[i].addressAreas = readAddressAreas(ctx, dwarf, chunks[i].sec); | 
|  | nameAttrs[i] = | 
|  | readPubNamesAndTypes<ELFT>(ctx, dobj, chunks[i].compilationUnits); | 
|  | }); | 
|  |  | 
|  | auto ret = std::make_unique<GdbIndexSection>(ctx); | 
|  | ret->chunks = std::move(chunks); | 
|  | std::tie(ret->symbols, ret->size) = | 
|  | createSymbols(ctx, nameAttrs, ret->chunks); | 
|  |  | 
|  | // Count the areas other than the constant pool. | 
|  | ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8; | 
|  | for (GdbChunk &chunk : ret->chunks) | 
|  | ret->size += | 
|  | chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void GdbIndexSection::writeTo(uint8_t *buf) { | 
|  | // Write the header. | 
|  | auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); | 
|  | uint8_t *start = buf; | 
|  | hdr->version = 7; | 
|  | buf += sizeof(*hdr); | 
|  |  | 
|  | // Write the CU list. | 
|  | hdr->cuListOff = buf - start; | 
|  | for (GdbChunk &chunk : chunks) { | 
|  | for (CuEntry &cu : chunk.compilationUnits) { | 
|  | write64le(buf, chunk.sec->outSecOff + cu.cuOffset); | 
|  | write64le(buf + 8, cu.cuLength); | 
|  | buf += 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the address area. | 
|  | hdr->cuTypesOff = buf - start; | 
|  | hdr->addressAreaOff = buf - start; | 
|  | uint32_t cuOff = 0; | 
|  | for (GdbChunk &chunk : chunks) { | 
|  | for (AddressEntry &e : chunk.addressAreas) { | 
|  | // In the case of ICF there may be duplicate address range entries. | 
|  | const uint64_t baseAddr = e.section->repl->getVA(0); | 
|  | write64le(buf, baseAddr + e.lowAddress); | 
|  | write64le(buf + 8, baseAddr + e.highAddress); | 
|  | write32le(buf + 16, e.cuIndex + cuOff); | 
|  | buf += 20; | 
|  | } | 
|  | cuOff += chunk.compilationUnits.size(); | 
|  | } | 
|  |  | 
|  | // Write the on-disk open-addressing hash table containing symbols. | 
|  | hdr->symtabOff = buf - start; | 
|  | size_t symtabSize = computeSymtabSize(); | 
|  | uint32_t mask = symtabSize - 1; | 
|  |  | 
|  | for (GdbSymbol &sym : symbols) { | 
|  | uint32_t h = sym.name.hash(); | 
|  | uint32_t i = h & mask; | 
|  | uint32_t step = ((h * 17) & mask) | 1; | 
|  |  | 
|  | while (read32le(buf + i * 8)) | 
|  | i = (i + step) & mask; | 
|  |  | 
|  | write32le(buf + i * 8, sym.nameOff); | 
|  | write32le(buf + i * 8 + 4, sym.cuVectorOff); | 
|  | } | 
|  |  | 
|  | buf += symtabSize * 8; | 
|  |  | 
|  | // Write the string pool. | 
|  | hdr->constantPoolOff = buf - start; | 
|  | parallelForEach(symbols, [&](GdbSymbol &sym) { | 
|  | memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); | 
|  | }); | 
|  |  | 
|  | // Write the CU vectors. | 
|  | for (GdbSymbol &sym : symbols) { | 
|  | write32le(buf, sym.cuVector.size()); | 
|  | buf += 4; | 
|  | for (uint32_t val : sym.cuVector) { | 
|  | write32le(buf, val); | 
|  | buf += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } | 
|  |  | 
|  | EhFrameHeader::EhFrameHeader(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, 4) {} | 
|  |  | 
|  | void EhFrameHeader::writeTo(uint8_t *buf) { | 
|  | // Unlike most sections, the EhFrameHeader section is written while writing | 
|  | // another section, namely EhFrameSection, which calls the write() function | 
|  | // below from its writeTo() function. This is necessary because the contents | 
|  | // of EhFrameHeader depend on the relocated contents of EhFrameSection and we | 
|  | // don't know which order the sections will be written in. | 
|  | } | 
|  |  | 
|  | // .eh_frame_hdr contains a binary search table of pointers to FDEs. | 
|  | // Each entry of the search table consists of two values, | 
|  | // the starting PC from where FDEs covers, and the FDE's address. | 
|  | // It is sorted by PC. | 
|  | void EhFrameHeader::write() { | 
|  | uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; | 
|  | using FdeData = EhFrameSection::FdeData; | 
|  | SmallVector<FdeData, 0> fdes = getPartition(ctx).ehFrame->getFdeData(); | 
|  |  | 
|  | buf[0] = 1; | 
|  | buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; | 
|  | buf[2] = DW_EH_PE_udata4; | 
|  | buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; | 
|  | write32(ctx, buf + 4, | 
|  | getPartition(ctx).ehFrame->getParent()->addr - this->getVA() - 4); | 
|  | write32(ctx, buf + 8, fdes.size()); | 
|  | buf += 12; | 
|  |  | 
|  | for (FdeData &fde : fdes) { | 
|  | write32(ctx, buf, fde.pcRel); | 
|  | write32(ctx, buf + 4, fde.fdeVARel); | 
|  | buf += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t EhFrameHeader::getSize() const { | 
|  | // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. | 
|  | return 12 + getPartition(ctx).ehFrame->numFdes * 8; | 
|  | } | 
|  |  | 
|  | bool EhFrameHeader::isNeeded() const { | 
|  | return isLive() && getPartition(ctx).ehFrame->isNeeded(); | 
|  | } | 
|  |  | 
|  | VersionDefinitionSection::VersionDefinitionSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC, | 
|  | sizeof(uint32_t)) {} | 
|  |  | 
|  | StringRef VersionDefinitionSection::getFileDefName() { | 
|  | if (!getPartition(ctx).name.empty()) | 
|  | return getPartition(ctx).name; | 
|  | if (!ctx.arg.soName.empty()) | 
|  | return ctx.arg.soName; | 
|  | return ctx.arg.outputFile; | 
|  | } | 
|  |  | 
|  | void VersionDefinitionSection::finalizeContents() { | 
|  | fileDefNameOff = getPartition(ctx).dynStrTab->addString(getFileDefName()); | 
|  | for (const VersionDefinition &v : namedVersionDefs(ctx)) | 
|  | verDefNameOffs.push_back(getPartition(ctx).dynStrTab->addString(v.name)); | 
|  |  | 
|  | if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) | 
|  | getParent()->link = sec->sectionIndex; | 
|  |  | 
|  | // sh_info should be set to the number of definitions. This fact is missed in | 
|  | // documentation, but confirmed by binutils community: | 
|  | // https://sourceware.org/ml/binutils/2014-11/msg00355.html | 
|  | getParent()->info = getVerDefNum(ctx); | 
|  | } | 
|  |  | 
|  | void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, | 
|  | StringRef name, size_t nameOff) { | 
|  | uint16_t flags = index == 1 ? VER_FLG_BASE : 0; | 
|  |  | 
|  | // Write a verdef. | 
|  | write16(ctx, buf, 1);                  // vd_version | 
|  | write16(ctx, buf + 2, flags);          // vd_flags | 
|  | write16(ctx, buf + 4, index);          // vd_ndx | 
|  | write16(ctx, buf + 6, 1);              // vd_cnt | 
|  | write32(ctx, buf + 8, hashSysV(name)); // vd_hash | 
|  | write32(ctx, buf + 12, 20);            // vd_aux | 
|  | write32(ctx, buf + 16, 28);            // vd_next | 
|  |  | 
|  | // Write a veraux. | 
|  | write32(ctx, buf + 20, nameOff); // vda_name | 
|  | write32(ctx, buf + 24, 0);       // vda_next | 
|  | } | 
|  |  | 
|  | void VersionDefinitionSection::writeTo(uint8_t *buf) { | 
|  | writeOne(buf, 1, getFileDefName(), fileDefNameOff); | 
|  |  | 
|  | auto nameOffIt = verDefNameOffs.begin(); | 
|  | for (const VersionDefinition &v : namedVersionDefs(ctx)) { | 
|  | buf += EntrySize; | 
|  | writeOne(buf, v.id, v.name, *nameOffIt++); | 
|  | } | 
|  |  | 
|  | // Need to terminate the last version definition. | 
|  | write32(ctx, buf + 16, 0); // vd_next | 
|  | } | 
|  |  | 
|  | size_t VersionDefinitionSection::getSize() const { | 
|  | return EntrySize * getVerDefNum(ctx); | 
|  | } | 
|  |  | 
|  | // .gnu.version is a table where each entry is 2 byte long. | 
|  | VersionTableSection::VersionTableSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".gnu.version", SHT_GNU_versym, SHF_ALLOC, | 
|  | sizeof(uint16_t)) { | 
|  | this->entsize = 2; | 
|  | } | 
|  |  | 
|  | void VersionTableSection::finalizeContents() { | 
|  | if (OutputSection *osec = getPartition(ctx).dynSymTab->getParent()) | 
|  | getParent()->link = osec->sectionIndex; | 
|  | } | 
|  |  | 
|  | size_t VersionTableSection::getSize() const { | 
|  | return (getPartition(ctx).dynSymTab->getSymbols().size() + 1) * 2; | 
|  | } | 
|  |  | 
|  | void VersionTableSection::writeTo(uint8_t *buf) { | 
|  | buf += 2; | 
|  | for (const SymbolTableEntry &s : getPartition(ctx).dynSymTab->getSymbols()) { | 
|  | // For an unextracted lazy symbol (undefined weak), it must have been | 
|  | // converted to Undefined and have VER_NDX_GLOBAL version here. | 
|  | assert(!s.sym->isLazy()); | 
|  | write16(ctx, buf, s.sym->versionId); | 
|  | buf += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VersionTableSection::isNeeded() const { | 
|  | return isLive() && | 
|  | (getPartition(ctx).verDef || getPartition(ctx).verNeed->isNeeded()); | 
|  | } | 
|  |  | 
|  | void elf::addVerneed(Ctx &ctx, Symbol &ss) { | 
|  | auto &file = cast<SharedFile>(*ss.file); | 
|  | if (ss.versionId == VER_NDX_GLOBAL) | 
|  | return; | 
|  |  | 
|  | if (file.vernauxs.empty()) | 
|  | file.vernauxs.resize(file.verdefs.size()); | 
|  |  | 
|  | // Select a version identifier for the vernaux data structure, if we haven't | 
|  | // already allocated one. The verdef identifiers cover the range | 
|  | // [1..getVerDefNum(ctx)]; this causes the vernaux identifiers to start from | 
|  | // getVerDefNum(ctx)+1. | 
|  | if (file.vernauxs[ss.versionId] == 0) | 
|  | file.vernauxs[ss.versionId] = ++ctx.vernauxNum + getVerDefNum(ctx); | 
|  |  | 
|  | ss.versionId = file.vernauxs[ss.versionId]; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | VersionNeedSection<ELFT>::VersionNeedSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC, | 
|  | sizeof(uint32_t)) {} | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { | 
|  | for (SharedFile *f : ctx.sharedFiles) { | 
|  | if (f->vernauxs.empty()) | 
|  | continue; | 
|  | verneeds.emplace_back(); | 
|  | Verneed &vn = verneeds.back(); | 
|  | vn.nameStrTab = getPartition(ctx).dynStrTab->addString(f->soName); | 
|  | bool isLibc = ctx.arg.relrGlibc && f->soName.starts_with("libc.so."); | 
|  | bool isGlibc2 = false; | 
|  | for (unsigned i = 0; i != f->vernauxs.size(); ++i) { | 
|  | if (f->vernauxs[i] == 0) | 
|  | continue; | 
|  | auto *verdef = | 
|  | reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); | 
|  | StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); | 
|  | if (isLibc && ver.starts_with("GLIBC_2.")) | 
|  | isGlibc2 = true; | 
|  | vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], | 
|  | getPartition(ctx).dynStrTab->addString(ver)}); | 
|  | } | 
|  | if (isGlibc2) { | 
|  | const char *ver = "GLIBC_ABI_DT_RELR"; | 
|  | vn.vernauxs.push_back({hashSysV(ver), | 
|  | ++ctx.vernauxNum + getVerDefNum(ctx), | 
|  | getPartition(ctx).dynStrTab->addString(ver)}); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) | 
|  | getParent()->link = sec->sectionIndex; | 
|  | getParent()->info = verneeds.size(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. | 
|  | auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); | 
|  | auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); | 
|  |  | 
|  | for (auto &vn : verneeds) { | 
|  | // Create an Elf_Verneed for this DSO. | 
|  | verneed->vn_version = 1; | 
|  | verneed->vn_cnt = vn.vernauxs.size(); | 
|  | verneed->vn_file = vn.nameStrTab; | 
|  | verneed->vn_aux = | 
|  | reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); | 
|  | verneed->vn_next = sizeof(Elf_Verneed); | 
|  | ++verneed; | 
|  |  | 
|  | // Create the Elf_Vernauxs for this Elf_Verneed. | 
|  | for (auto &vna : vn.vernauxs) { | 
|  | vernaux->vna_hash = vna.hash; | 
|  | vernaux->vna_flags = 0; | 
|  | vernaux->vna_other = vna.verneedIndex; | 
|  | vernaux->vna_name = vna.nameStrTab; | 
|  | vernaux->vna_next = sizeof(Elf_Vernaux); | 
|  | ++vernaux; | 
|  | } | 
|  |  | 
|  | vernaux[-1].vna_next = 0; | 
|  | } | 
|  | verneed[-1].vn_next = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { | 
|  | return verneeds.size() * sizeof(Elf_Verneed) + | 
|  | ctx.vernauxNum * sizeof(Elf_Vernaux); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { | 
|  | return isLive() && ctx.vernauxNum != 0; | 
|  | } | 
|  |  | 
|  | void MergeSyntheticSection::addSection(MergeInputSection *ms) { | 
|  | ms->parent = this; | 
|  | sections.push_back(ms); | 
|  | assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS)); | 
|  | addralign = std::max(addralign, ms->addralign); | 
|  | } | 
|  |  | 
|  | MergeTailSection::MergeTailSection(Ctx &ctx, StringRef name, uint32_t type, | 
|  | uint64_t flags, uint32_t alignment) | 
|  | : MergeSyntheticSection(ctx, name, type, flags, alignment), | 
|  | builder(StringTableBuilder::RAW, llvm::Align(alignment)) {} | 
|  |  | 
|  | size_t MergeTailSection::getSize() const { return builder.getSize(); } | 
|  |  | 
|  | void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } | 
|  |  | 
|  | void MergeTailSection::finalizeContents() { | 
|  | // Add all string pieces to the string table builder to create section | 
|  | // contents. | 
|  | for (MergeInputSection *sec : sections) | 
|  | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) | 
|  | if (sec->pieces[i].live) | 
|  | builder.add(sec->getData(i)); | 
|  |  | 
|  | // Fix the string table content. After this, the contents will never change. | 
|  | builder.finalize(); | 
|  |  | 
|  | // finalize() fixed tail-optimized strings, so we can now get | 
|  | // offsets of strings. Get an offset for each string and save it | 
|  | // to a corresponding SectionPiece for easy access. | 
|  | for (MergeInputSection *sec : sections) | 
|  | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) | 
|  | if (sec->pieces[i].live) | 
|  | sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); | 
|  | } | 
|  |  | 
|  | void MergeNoTailSection::writeTo(uint8_t *buf) { | 
|  | parallelFor(0, numShards, | 
|  | [&](size_t i) { shards[i].write(buf + shardOffsets[i]); }); | 
|  | } | 
|  |  | 
|  | // This function is very hot (i.e. it can take several seconds to finish) | 
|  | // because sometimes the number of inputs is in an order of magnitude of | 
|  | // millions. So, we use multi-threading. | 
|  | // | 
|  | // For any strings S and T, we know S is not mergeable with T if S's hash | 
|  | // value is different from T's. If that's the case, we can safely put S and | 
|  | // T into different string builders without worrying about merge misses. | 
|  | // We do it in parallel. | 
|  | void MergeNoTailSection::finalizeContents() { | 
|  | // Initializes string table builders. | 
|  | for (size_t i = 0; i < numShards; ++i) | 
|  | shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign)); | 
|  |  | 
|  | // Concurrency level. Must be a power of 2 to avoid expensive modulo | 
|  | // operations in the following tight loop. | 
|  | const size_t concurrency = | 
|  | llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards)); | 
|  |  | 
|  | // Add section pieces to the builders. | 
|  | parallelFor(0, concurrency, [&](size_t threadId) { | 
|  | for (MergeInputSection *sec : sections) { | 
|  | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { | 
|  | if (!sec->pieces[i].live) | 
|  | continue; | 
|  | size_t shardId = getShardId(sec->pieces[i].hash); | 
|  | if ((shardId & (concurrency - 1)) == threadId) | 
|  | sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); | 
|  | } | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Compute an in-section offset for each shard. | 
|  | size_t off = 0; | 
|  | for (size_t i = 0; i < numShards; ++i) { | 
|  | shards[i].finalizeInOrder(); | 
|  | if (shards[i].getSize() > 0) | 
|  | off = alignToPowerOf2(off, addralign); | 
|  | shardOffsets[i] = off; | 
|  | off += shards[i].getSize(); | 
|  | } | 
|  | size = off; | 
|  |  | 
|  | // So far, section pieces have offsets from beginning of shards, but | 
|  | // we want offsets from beginning of the whole section. Fix them. | 
|  | parallelForEach(sections, [&](MergeInputSection *sec) { | 
|  | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) | 
|  | if (sec->pieces[i].live) | 
|  | sec->pieces[i].outputOff += | 
|  | shardOffsets[getShardId(sec->pieces[i].hash)]; | 
|  | }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::splitSections(Ctx &ctx) { | 
|  | llvm::TimeTraceScope timeScope("Split sections"); | 
|  | // splitIntoPieces needs to be called on each MergeInputSection | 
|  | // before calling finalizeContents(). | 
|  | parallelForEach(ctx.objectFiles, [](ELFFileBase *file) { | 
|  | for (InputSectionBase *sec : file->getSections()) { | 
|  | if (!sec) | 
|  | continue; | 
|  | if (auto *s = dyn_cast<MergeInputSection>(sec)) | 
|  | s->splitIntoPieces(); | 
|  | else if (auto *eh = dyn_cast<EhInputSection>(sec)) | 
|  | eh->split<ELFT>(); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | void elf::combineEhSections(Ctx &ctx) { | 
|  | llvm::TimeTraceScope timeScope("Combine EH sections"); | 
|  | for (EhInputSection *sec : ctx.ehInputSections) { | 
|  | EhFrameSection &eh = *sec->getPartition(ctx).ehFrame; | 
|  | sec->parent = &eh; | 
|  | eh.addralign = std::max(eh.addralign, sec->addralign); | 
|  | eh.sections.push_back(sec); | 
|  | llvm::append_range(eh.dependentSections, sec->dependentSections); | 
|  | } | 
|  |  | 
|  | if (!ctx.mainPart->armExidx) | 
|  | return; | 
|  | llvm::erase_if(ctx.inputSections, [&](InputSectionBase *s) { | 
|  | // Ignore dead sections and the partition end marker (.part.end), | 
|  | // whose partition number is out of bounds. | 
|  | if (!s->isLive() || s->partition == 255) | 
|  | return false; | 
|  | Partition &part = s->getPartition(ctx); | 
|  | return s->kind() == SectionBase::Regular && part.armExidx && | 
|  | part.armExidx->addSection(cast<InputSection>(s)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | MipsRldMapSection::MipsRldMapSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, | 
|  | ctx.arg.wordsize) {} | 
|  |  | 
|  | ARMExidxSyntheticSection::ARMExidxSyntheticSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".ARM.exidx", SHT_ARM_EXIDX, | 
|  | SHF_ALLOC | SHF_LINK_ORDER, ctx.arg.wordsize) {} | 
|  |  | 
|  | static InputSection *findExidxSection(InputSection *isec) { | 
|  | for (InputSection *d : isec->dependentSections) | 
|  | if (d->type == SHT_ARM_EXIDX && d->isLive()) | 
|  | return d; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isValidExidxSectionDep(InputSection *isec) { | 
|  | return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && | 
|  | isec->getSize() > 0; | 
|  | } | 
|  |  | 
|  | bool ARMExidxSyntheticSection::addSection(InputSection *isec) { | 
|  | if (isec->type == SHT_ARM_EXIDX) { | 
|  | if (InputSection *dep = isec->getLinkOrderDep()) | 
|  | if (isValidExidxSectionDep(dep)) { | 
|  | exidxSections.push_back(isec); | 
|  | // Every exidxSection is 8 bytes, we need an estimate of | 
|  | // size before assignAddresses can be called. Final size | 
|  | // will only be known after finalize is called. | 
|  | size += 8; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isValidExidxSectionDep(isec)) { | 
|  | executableSections.push_back(isec); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: we do not output a relocation section when --emit-relocs is used | 
|  | // as we do not have relocation sections for linker generated table entries | 
|  | // and we would have to erase at a late stage relocations from merged entries. | 
|  | // Given that exception tables are already position independent and a binary | 
|  | // analyzer could derive the relocations we choose to erase the relocations. | 
|  | if (ctx.arg.emitRelocs && isec->type == SHT_REL) | 
|  | if (InputSectionBase *ex = isec->getRelocatedSection()) | 
|  | if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // References to .ARM.Extab Sections have bit 31 clear and are not the | 
|  | // special EXIDX_CANTUNWIND bit-pattern. | 
|  | static bool isExtabRef(uint32_t unwind) { | 
|  | return (unwind & 0x80000000) == 0 && unwind != 0x1; | 
|  | } | 
|  |  | 
|  | // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx | 
|  | // section Prev, where Cur follows Prev in the table. This can be done if the | 
|  | // unwinding instructions in Cur are identical to Prev. Linker generated | 
|  | // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an | 
|  | // InputSection. | 
|  | static bool isDuplicateArmExidxSec(Ctx &ctx, InputSection *prev, | 
|  | InputSection *cur) { | 
|  | // Get the last table Entry from the previous .ARM.exidx section. If Prev is | 
|  | // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. | 
|  | uint32_t prevUnwind = 1; | 
|  | if (prev) | 
|  | prevUnwind = | 
|  | read32(ctx, prev->content().data() + prev->content().size() - 4); | 
|  | if (isExtabRef(prevUnwind)) | 
|  | return false; | 
|  |  | 
|  | // We consider the unwind instructions of an .ARM.exidx table entry | 
|  | // a duplicate if the previous unwind instructions if: | 
|  | // - Both are the special EXIDX_CANTUNWIND. | 
|  | // - Both are the same inline unwind instructions. | 
|  | // We do not attempt to follow and check links into .ARM.extab tables as | 
|  | // consecutive identical entries are rare and the effort to check that they | 
|  | // are identical is high. | 
|  |  | 
|  | // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. | 
|  | if (cur == nullptr) | 
|  | return prevUnwind == 1; | 
|  |  | 
|  | for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) { | 
|  | uint32_t curUnwind = read32(ctx, cur->content().data() + offset); | 
|  | if (isExtabRef(curUnwind) || curUnwind != prevUnwind) | 
|  | return false; | 
|  | } | 
|  | // All table entries in this .ARM.exidx Section can be merged into the | 
|  | // previous Section. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The .ARM.exidx table must be sorted in ascending order of the address of the | 
|  | // functions the table describes. std::optionally duplicate adjacent table | 
|  | // entries can be removed. At the end of the function the executableSections | 
|  | // must be sorted in ascending order of address, Sentinel is set to the | 
|  | // InputSection with the highest address and any InputSections that have | 
|  | // mergeable .ARM.exidx table entries are removed from it. | 
|  | void ARMExidxSyntheticSection::finalizeContents() { | 
|  | // Ensure that any fixed-point iterations after the first see the original set | 
|  | // of sections. | 
|  | if (!originalExecutableSections.empty()) | 
|  | executableSections = originalExecutableSections; | 
|  | else if (ctx.arg.enableNonContiguousRegions) | 
|  | originalExecutableSections = executableSections; | 
|  |  | 
|  | // The executableSections and exidxSections that we use to derive the final | 
|  | // contents of this SyntheticSection are populated before | 
|  | // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or | 
|  | // ICF may remove executable InputSections and their dependent .ARM.exidx | 
|  | // section that we recorded earlier. | 
|  | auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; | 
|  | llvm::erase_if(exidxSections, isDiscarded); | 
|  | // We need to remove discarded InputSections and InputSections without | 
|  | // .ARM.exidx sections that if we generated the .ARM.exidx it would be out | 
|  | // of range. | 
|  | auto isDiscardedOrOutOfRange = [this](InputSection *isec) { | 
|  | if (!isec->isLive()) | 
|  | return true; | 
|  | if (findExidxSection(isec)) | 
|  | return false; | 
|  | int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); | 
|  | return off != llvm::SignExtend64(off, 31); | 
|  | }; | 
|  | llvm::erase_if(executableSections, isDiscardedOrOutOfRange); | 
|  |  | 
|  | // Sort the executable sections that may or may not have associated | 
|  | // .ARM.exidx sections by order of ascending address. This requires the | 
|  | // relative positions of InputSections and OutputSections to be known. | 
|  | auto compareByFilePosition = [](const InputSection *a, | 
|  | const InputSection *b) { | 
|  | OutputSection *aOut = a->getParent(); | 
|  | OutputSection *bOut = b->getParent(); | 
|  |  | 
|  | if (aOut != bOut) | 
|  | return aOut->addr < bOut->addr; | 
|  | return a->outSecOff < b->outSecOff; | 
|  | }; | 
|  | llvm::stable_sort(executableSections, compareByFilePosition); | 
|  | sentinel = executableSections.back(); | 
|  | // std::optionally merge adjacent duplicate entries. | 
|  | if (ctx.arg.mergeArmExidx) { | 
|  | SmallVector<InputSection *, 0> selectedSections; | 
|  | selectedSections.reserve(executableSections.size()); | 
|  | selectedSections.push_back(executableSections[0]); | 
|  | size_t prev = 0; | 
|  | for (size_t i = 1; i < executableSections.size(); ++i) { | 
|  | InputSection *ex1 = findExidxSection(executableSections[prev]); | 
|  | InputSection *ex2 = findExidxSection(executableSections[i]); | 
|  | if (!isDuplicateArmExidxSec(ctx, ex1, ex2)) { | 
|  | selectedSections.push_back(executableSections[i]); | 
|  | prev = i; | 
|  | } | 
|  | } | 
|  | executableSections = std::move(selectedSections); | 
|  | } | 
|  | // offset is within the SyntheticSection. | 
|  | size_t offset = 0; | 
|  | size = 0; | 
|  | for (InputSection *isec : executableSections) { | 
|  | if (InputSection *d = findExidxSection(isec)) { | 
|  | d->outSecOff = offset; | 
|  | d->parent = getParent(); | 
|  | offset += d->getSize(); | 
|  | } else { | 
|  | offset += 8; | 
|  | } | 
|  | } | 
|  | // Size includes Sentinel. | 
|  | size = offset + 8; | 
|  | } | 
|  |  | 
|  | InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { | 
|  | return executableSections.front(); | 
|  | } | 
|  |  | 
|  | // To write the .ARM.exidx table from the ExecutableSections we have three cases | 
|  | // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. | 
|  | //     We write the .ARM.exidx section contents and apply its relocations. | 
|  | // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We | 
|  | //     must write the contents of an EXIDX_CANTUNWIND directly. We use the | 
|  | //     start of the InputSection as the purpose of the linker generated | 
|  | //     section is to terminate the address range of the previous entry. | 
|  | // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of | 
|  | //     the table to terminate the address range of the final entry. | 
|  | void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { | 
|  |  | 
|  | // A linker generated CANTUNWIND entry is made up of two words: | 
|  | // 0x0 with R_ARM_PREL31 relocation to target. | 
|  | // 0x1 with EXIDX_CANTUNWIND. | 
|  | uint64_t offset = 0; | 
|  | for (InputSection *isec : executableSections) { | 
|  | assert(isec->getParent() != nullptr); | 
|  | if (InputSection *d = findExidxSection(isec)) { | 
|  | for (int dataOffset = 0; dataOffset != (int)d->content().size(); | 
|  | dataOffset += 4) | 
|  | write32(ctx, buf + offset + dataOffset, | 
|  | read32(ctx, d->content().data() + dataOffset)); | 
|  | // Recalculate outSecOff as finalizeAddressDependentContent() | 
|  | // may have altered syntheticSection outSecOff. | 
|  | d->outSecOff = offset + outSecOff; | 
|  | ctx.target->relocateAlloc(*d, buf + offset); | 
|  | offset += d->getSize(); | 
|  | } else { | 
|  | // A Linker generated CANTUNWIND section. | 
|  | write32(ctx, buf + offset + 0, 0x0); | 
|  | write32(ctx, buf + offset + 4, 0x1); | 
|  | uint64_t s = isec->getVA(); | 
|  | uint64_t p = getVA() + offset; | 
|  | ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); | 
|  | offset += 8; | 
|  | } | 
|  | } | 
|  | // Write Sentinel CANTUNWIND entry. | 
|  | write32(ctx, buf + offset + 0, 0x0); | 
|  | write32(ctx, buf + offset + 4, 0x1); | 
|  | uint64_t s = sentinel->getVA(sentinel->getSize()); | 
|  | uint64_t p = getVA() + offset; | 
|  | ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); | 
|  | assert(size == offset + 8); | 
|  | } | 
|  |  | 
|  | bool ARMExidxSyntheticSection::isNeeded() const { | 
|  | return llvm::any_of(exidxSections, | 
|  | [](InputSection *isec) { return isec->isLive(); }); | 
|  | } | 
|  |  | 
|  | ThunkSection::ThunkSection(Ctx &ctx, OutputSection *os, uint64_t off) | 
|  | : SyntheticSection(ctx, ".text.thunk", SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_EXECINSTR, | 
|  | ctx.arg.emachine == EM_PPC64 ? 16 : 4) { | 
|  | this->parent = os; | 
|  | this->outSecOff = off; | 
|  | } | 
|  |  | 
|  | size_t ThunkSection::getSize() const { | 
|  | if (roundUpSizeForErrata) | 
|  | return alignTo(size, 4096); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | void ThunkSection::addThunk(Thunk *t) { | 
|  | thunks.push_back(t); | 
|  | t->addSymbols(*this); | 
|  | } | 
|  |  | 
|  | void ThunkSection::writeTo(uint8_t *buf) { | 
|  | for (Thunk *t : thunks) | 
|  | t->writeTo(buf + t->offset); | 
|  | } | 
|  |  | 
|  | InputSection *ThunkSection::getTargetInputSection() const { | 
|  | if (thunks.empty()) | 
|  | return nullptr; | 
|  | const Thunk *t = thunks.front(); | 
|  | return t->getTargetInputSection(); | 
|  | } | 
|  |  | 
|  | bool ThunkSection::assignOffsets() { | 
|  | uint64_t off = 0; | 
|  | for (Thunk *t : thunks) { | 
|  | off = alignToPowerOf2(off, t->alignment); | 
|  | t->setOffset(off); | 
|  | uint32_t size = t->size(); | 
|  | t->getThunkTargetSym()->size = size; | 
|  | off += size; | 
|  | } | 
|  | bool changed = off != size; | 
|  | size = off; | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | PPC32Got2Section::PPC32Got2Section(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".got2", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 4) {} | 
|  |  | 
|  | bool PPC32Got2Section::isNeeded() const { | 
|  | // See the comment below. This is not needed if there is no other | 
|  | // InputSection. | 
|  | for (SectionCommand *cmd : getParent()->commands) | 
|  | if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) | 
|  | for (InputSection *isec : isd->sections) | 
|  | if (isec != this) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void PPC32Got2Section::finalizeContents() { | 
|  | // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in | 
|  | // .got2 . This function computes outSecOff of each .got2 to be used in | 
|  | // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is | 
|  | // to collect input sections named ".got2". | 
|  | for (SectionCommand *cmd : getParent()->commands) | 
|  | if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { | 
|  | for (InputSection *isec : isd->sections) { | 
|  | // isec->file may be nullptr for MergeSyntheticSection. | 
|  | if (isec != this && isec->file) | 
|  | isec->file->ppc32Got2 = isec; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If linking position-dependent code then the table will store the addresses | 
|  | // directly in the binary so the section has type SHT_PROGBITS. If linking | 
|  | // position-independent code the section has type SHT_NOBITS since it will be | 
|  | // allocated and filled in by the dynamic linker. | 
|  | PPC64LongBranchTargetSection::PPC64LongBranchTargetSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".branch_lt", | 
|  | ctx.arg.isPic ? SHT_NOBITS : SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_WRITE, 8) {} | 
|  |  | 
|  | uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, | 
|  | int64_t addend) { | 
|  | return getVA() + entry_index.find({sym, addend})->second * 8; | 
|  | } | 
|  |  | 
|  | std::optional<uint32_t> | 
|  | PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) { | 
|  | auto res = | 
|  | entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); | 
|  | if (!res.second) | 
|  | return std::nullopt; | 
|  | entries.emplace_back(sym, addend); | 
|  | return res.first->second; | 
|  | } | 
|  |  | 
|  | size_t PPC64LongBranchTargetSection::getSize() const { | 
|  | return entries.size() * 8; | 
|  | } | 
|  |  | 
|  | void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { | 
|  | // If linking non-pic we have the final addresses of the targets and they get | 
|  | // written to the table directly. For pic the dynamic linker will allocate | 
|  | // the section and fill it. | 
|  | if (ctx.arg.isPic) | 
|  | return; | 
|  |  | 
|  | for (auto entry : entries) { | 
|  | const Symbol *sym = entry.first; | 
|  | int64_t addend = entry.second; | 
|  | assert(sym->getVA(ctx)); | 
|  | // Need calls to branch to the local entry-point since a long-branch | 
|  | // must be a local-call. | 
|  | write64(ctx, buf, | 
|  | sym->getVA(ctx, addend) + | 
|  | getPPC64GlobalEntryToLocalEntryOffset(ctx, sym->stOther)); | 
|  | buf += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPC64LongBranchTargetSection::isNeeded() const { | 
|  | // `removeUnusedSyntheticSections()` is called before thunk allocation which | 
|  | // is too early to determine if this section will be empty or not. We need | 
|  | // Finalized to keep the section alive until after thunk creation. Finalized | 
|  | // only gets set to true once `finalizeSections()` is called after thunk | 
|  | // creation. Because of this, if we don't create any long-branch thunks we end | 
|  | // up with an empty .branch_lt section in the binary. | 
|  | return !finalized || !entries.empty(); | 
|  | } | 
|  |  | 
|  | static uint8_t getAbiVersion(Ctx &ctx) { | 
|  | // MIPS non-PIC executable gets ABI version 1. | 
|  | if (ctx.arg.emachine == EM_MIPS) { | 
|  | if (!ctx.arg.isPic && !ctx.arg.relocatable && | 
|  | (ctx.arg.eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_AMDGPU && !ctx.objectFiles.empty()) { | 
|  | uint8_t ver = ctx.objectFiles[0]->abiVersion; | 
|  | for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1)) | 
|  | if (file->abiVersion != ver) | 
|  | Err(ctx) << "incompatible ABI version: " << file; | 
|  | return ver; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | void elf::writeEhdr(Ctx &ctx, uint8_t *buf, Partition &part) { | 
|  | memcpy(buf, "\177ELF", 4); | 
|  |  | 
|  | auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); | 
|  | eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | eHdr->e_ident[EI_DATA] = | 
|  | ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB; | 
|  | eHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | eHdr->e_ident[EI_OSABI] = ctx.arg.osabi; | 
|  | eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(ctx); | 
|  | eHdr->e_machine = ctx.arg.emachine; | 
|  | eHdr->e_version = EV_CURRENT; | 
|  | eHdr->e_flags = ctx.arg.eflags; | 
|  | eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); | 
|  | eHdr->e_phnum = part.phdrs.size(); | 
|  | eHdr->e_shentsize = sizeof(typename ELFT::Shdr); | 
|  |  | 
|  | if (!ctx.arg.relocatable) { | 
|  | eHdr->e_phoff = sizeof(typename ELFT::Ehdr); | 
|  | eHdr->e_phentsize = sizeof(typename ELFT::Phdr); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { | 
|  | // Write the program header table. | 
|  | auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); | 
|  | for (std::unique_ptr<PhdrEntry> &p : part.phdrs) { | 
|  | hBuf->p_type = p->p_type; | 
|  | hBuf->p_flags = p->p_flags; | 
|  | hBuf->p_offset = p->p_offset; | 
|  | hBuf->p_vaddr = p->p_vaddr; | 
|  | hBuf->p_paddr = p->p_paddr; | 
|  | hBuf->p_filesz = p->p_filesz; | 
|  | hBuf->p_memsz = p->p_memsz; | 
|  | hBuf->p_align = p->p_align; | 
|  | ++hBuf; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, "", SHT_LLVM_PART_EHDR, SHF_ALLOC, 1) {} | 
|  |  | 
|  | template <typename ELFT> | 
|  | size_t PartitionElfHeaderSection<ELFT>::getSize() const { | 
|  | return sizeof(typename ELFT::Ehdr); | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | writeEhdr<ELFT>(ctx, buf, getPartition(ctx)); | 
|  |  | 
|  | // Loadable partitions are always ET_DYN. | 
|  | auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); | 
|  | eHdr->e_type = ET_DYN; | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".phdrs", SHT_LLVM_PART_PHDR, SHF_ALLOC, 1) {} | 
|  |  | 
|  | template <typename ELFT> | 
|  | size_t PartitionProgramHeadersSection<ELFT>::getSize() const { | 
|  | return sizeof(typename ELFT::Phdr) * getPartition(ctx).phdrs.size(); | 
|  | } | 
|  |  | 
|  | template <typename ELFT> | 
|  | void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { | 
|  | writePhdrs<ELFT>(buf, getPartition(ctx)); | 
|  | } | 
|  |  | 
|  | PartitionIndexSection::PartitionIndexSection(Ctx &ctx) | 
|  | : SyntheticSection(ctx, ".rodata", SHT_PROGBITS, SHF_ALLOC, 4) {} | 
|  |  | 
|  | size_t PartitionIndexSection::getSize() const { | 
|  | return 12 * (ctx.partitions.size() - 1); | 
|  | } | 
|  |  | 
|  | void PartitionIndexSection::finalizeContents() { | 
|  | for (size_t i = 1; i != ctx.partitions.size(); ++i) | 
|  | ctx.partitions[i].nameStrTab = | 
|  | ctx.mainPart->dynStrTab->addString(ctx.partitions[i].name); | 
|  | } | 
|  |  | 
|  | void PartitionIndexSection::writeTo(uint8_t *buf) { | 
|  | uint64_t va = getVA(); | 
|  | for (size_t i = 1; i != ctx.partitions.size(); ++i) { | 
|  | write32(ctx, buf, | 
|  | ctx.mainPart->dynStrTab->getVA() + ctx.partitions[i].nameStrTab - | 
|  | va); | 
|  | write32(ctx, buf + 4, ctx.partitions[i].elfHeader->getVA() - (va + 4)); | 
|  |  | 
|  | SyntheticSection *next = i == ctx.partitions.size() - 1 | 
|  | ? ctx.in.partEnd.get() | 
|  | : ctx.partitions[i + 1].elfHeader.get(); | 
|  | write32(ctx, buf + 8, next->getVA() - ctx.partitions[i].elfHeader->getVA()); | 
|  |  | 
|  | va += 12; | 
|  | buf += 12; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool needsInterpSection(Ctx &ctx) { | 
|  | return !ctx.arg.relocatable && !ctx.arg.shared && | 
|  | !ctx.arg.dynamicLinker.empty() && ctx.script->needsInterpSection(); | 
|  | } | 
|  |  | 
|  | bool elf::hasMemtag(Ctx &ctx) { | 
|  | return ctx.arg.emachine == EM_AARCH64 && | 
|  | ctx.arg.androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; | 
|  | } | 
|  |  | 
|  | // Fully static executables don't support MTE globals at this point in time, as | 
|  | // we currently rely on: | 
|  | //   - A dynamic loader to process relocations, and | 
|  | //   - Dynamic entries. | 
|  | // This restriction could be removed in future by re-using some of the ideas | 
|  | // that ifuncs use in fully static executables. | 
|  | bool elf::canHaveMemtagGlobals(Ctx &ctx) { | 
|  | return hasMemtag(ctx) && | 
|  | (ctx.arg.relocatable || ctx.arg.shared || needsInterpSection(ctx)); | 
|  | } | 
|  |  | 
|  | constexpr char kMemtagAndroidNoteName[] = "Android"; | 
|  | void MemtagAndroidNote::writeTo(uint8_t *buf) { | 
|  | static_assert( | 
|  | sizeof(kMemtagAndroidNoteName) == 8, | 
|  | "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it " | 
|  | "that way for backwards compatibility."); | 
|  |  | 
|  | write32(ctx, buf, sizeof(kMemtagAndroidNoteName)); | 
|  | write32(ctx, buf + 4, sizeof(uint32_t)); | 
|  | write32(ctx, buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG); | 
|  | memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName)); | 
|  | buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4); | 
|  |  | 
|  | uint32_t value = 0; | 
|  | value |= ctx.arg.androidMemtagMode; | 
|  | if (ctx.arg.androidMemtagHeap) | 
|  | value |= ELF::NT_MEMTAG_HEAP; | 
|  | // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled | 
|  | // binary on Android 11 or 12 will result in a checkfail in the loader. | 
|  | if (ctx.arg.androidMemtagStack) | 
|  | value |= ELF::NT_MEMTAG_STACK; | 
|  | write32(ctx, buf, value); // note value | 
|  | } | 
|  |  | 
|  | size_t MemtagAndroidNote::getSize() const { | 
|  | return sizeof(llvm::ELF::Elf64_Nhdr) + | 
|  | /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) + | 
|  | /*descsz=*/sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | void PackageMetadataNote::writeTo(uint8_t *buf) { | 
|  | write32(ctx, buf, 4); | 
|  | write32(ctx, buf + 4, ctx.arg.packageMetadata.size() + 1); | 
|  | write32(ctx, buf + 8, FDO_PACKAGING_METADATA); | 
|  | memcpy(buf + 12, "FDO", 4); | 
|  | memcpy(buf + 16, ctx.arg.packageMetadata.data(), | 
|  | ctx.arg.packageMetadata.size()); | 
|  | } | 
|  |  | 
|  | size_t PackageMetadataNote::getSize() const { | 
|  | return sizeof(llvm::ELF::Elf64_Nhdr) + 4 + | 
|  | alignTo(ctx.arg.packageMetadata.size() + 1, 4); | 
|  | } | 
|  |  | 
|  | // Helper function, return the size of the ULEB128 for 'v', optionally writing | 
|  | // it to `*(buf + offset)` if `buf` is non-null. | 
|  | static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) { | 
|  | if (buf) | 
|  | return encodeULEB128(v, buf + offset); | 
|  | return getULEB128Size(v); | 
|  | } | 
|  |  | 
|  | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic | 
|  | constexpr uint64_t kMemtagStepSizeBits = 3; | 
|  | constexpr uint64_t kMemtagGranuleSize = 16; | 
|  | static size_t | 
|  | createMemtagGlobalDescriptors(Ctx &ctx, | 
|  | const SmallVector<const Symbol *, 0> &symbols, | 
|  | uint8_t *buf = nullptr) { | 
|  | size_t sectionSize = 0; | 
|  | uint64_t lastGlobalEnd = 0; | 
|  |  | 
|  | for (const Symbol *sym : symbols) { | 
|  | if (!includeInSymtab(ctx, *sym)) | 
|  | continue; | 
|  | const uint64_t addr = sym->getVA(ctx); | 
|  | const uint64_t size = sym->getSize(); | 
|  |  | 
|  | if (addr <= kMemtagGranuleSize && buf != nullptr) | 
|  | Err(ctx) << "address of the tagged symbol \"" << sym->getName() | 
|  | << "\" falls in the ELF header. This is indicative of a " | 
|  | "compiler/linker bug"; | 
|  | if (addr % kMemtagGranuleSize != 0) | 
|  | Err(ctx) << "address of the tagged symbol \"" << sym->getName() | 
|  | << "\" at 0x" << Twine::utohexstr(addr) | 
|  | << "\" is not granule (16-byte) aligned"; | 
|  | if (size == 0) | 
|  | Err(ctx) << "size of the tagged symbol \"" << sym->getName() | 
|  | << "\" is not allowed to be zero"; | 
|  | if (size % kMemtagGranuleSize != 0) | 
|  | Err(ctx) << "size of the tagged symbol \"" << sym->getName() | 
|  | << "\" (size 0x" << Twine::utohexstr(size) | 
|  | << ") is not granule (16-byte) aligned"; | 
|  |  | 
|  | const uint64_t sizeToEncode = size / kMemtagGranuleSize; | 
|  | const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize) | 
|  | << kMemtagStepSizeBits; | 
|  | if (sizeToEncode < (1 << kMemtagStepSizeBits)) { | 
|  | sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize); | 
|  | } else { | 
|  | sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize); | 
|  | sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize); | 
|  | } | 
|  | lastGlobalEnd = addr + size; | 
|  | } | 
|  |  | 
|  | return sectionSize; | 
|  | } | 
|  |  | 
|  | bool MemtagGlobalDescriptors::updateAllocSize(Ctx &ctx) { | 
|  | size_t oldSize = getSize(); | 
|  | std::stable_sort(symbols.begin(), symbols.end(), | 
|  | [&ctx = ctx](const Symbol *s1, const Symbol *s2) { | 
|  | return s1->getVA(ctx) < s2->getVA(ctx); | 
|  | }); | 
|  | return oldSize != getSize(); | 
|  | } | 
|  |  | 
|  | void MemtagGlobalDescriptors::writeTo(uint8_t *buf) { | 
|  | createMemtagGlobalDescriptors(ctx, symbols, buf); | 
|  | } | 
|  |  | 
|  | size_t MemtagGlobalDescriptors::getSize() const { | 
|  | return createMemtagGlobalDescriptors(ctx, symbols); | 
|  | } | 
|  |  | 
|  | static OutputSection *findSection(Ctx &ctx, StringRef name) { | 
|  | for (SectionCommand *cmd : ctx.script->sectionCommands) | 
|  | if (auto *osd = dyn_cast<OutputDesc>(cmd)) | 
|  | if (osd->osec.name == name) | 
|  | return &osd->osec; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Defined *addOptionalRegular(Ctx &ctx, StringRef name, SectionBase *sec, | 
|  | uint64_t val, uint8_t stOther = STV_HIDDEN) { | 
|  | Symbol *s = ctx.symtab->find(name); | 
|  | if (!s || s->isDefined() || s->isCommon()) | 
|  | return nullptr; | 
|  |  | 
|  | s->resolve(ctx, Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL, | 
|  | stOther, STT_NOTYPE, val, | 
|  | /*size=*/0, sec}); | 
|  | s->isUsedInRegularObj = true; | 
|  | return cast<Defined>(s); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::createSyntheticSections(Ctx &ctx) { | 
|  | // Add the .interp section first because it is not a SyntheticSection. | 
|  | // The removeUnusedSyntheticSections() function relies on the | 
|  | // SyntheticSections coming last. | 
|  | if (needsInterpSection(ctx)) { | 
|  | for (size_t i = 1; i <= ctx.partitions.size(); ++i) { | 
|  | InputSection *sec = createInterpSection(ctx); | 
|  | sec->partition = i; | 
|  | ctx.inputSections.push_back(sec); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto add = [&](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; | 
|  |  | 
|  | if (ctx.arg.zSectionHeader) | 
|  | ctx.in.shStrTab = | 
|  | std::make_unique<StringTableSection>(ctx, ".shstrtab", false); | 
|  |  | 
|  | ctx.out.programHeaders = | 
|  | std::make_unique<OutputSection>(ctx, "", 0, SHF_ALLOC); | 
|  | ctx.out.programHeaders->addralign = ctx.arg.wordsize; | 
|  |  | 
|  | if (ctx.arg.strip != StripPolicy::All) { | 
|  | ctx.in.strTab = std::make_unique<StringTableSection>(ctx, ".strtab", false); | 
|  | ctx.in.symTab = | 
|  | std::make_unique<SymbolTableSection<ELFT>>(ctx, *ctx.in.strTab); | 
|  | ctx.in.symTabShndx = std::make_unique<SymtabShndxSection>(ctx); | 
|  | } | 
|  |  | 
|  | ctx.in.bss = std::make_unique<BssSection>(ctx, ".bss", 0, 1); | 
|  | add(*ctx.in.bss); | 
|  |  | 
|  | // If there is a SECTIONS command and a .data.rel.ro section name use name | 
|  | // .data.rel.ro.bss so that we match in the .data.rel.ro output section. | 
|  | // This makes sure our relro is contiguous. | 
|  | bool hasDataRelRo = | 
|  | ctx.script->hasSectionsCommand && findSection(ctx, ".data.rel.ro"); | 
|  | ctx.in.bssRelRo = std::make_unique<BssSection>( | 
|  | ctx, hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); | 
|  | add(*ctx.in.bssRelRo); | 
|  |  | 
|  | // Add MIPS-specific sections. | 
|  | if (ctx.arg.emachine == EM_MIPS) { | 
|  | if (!ctx.arg.shared && ctx.arg.hasDynSymTab) { | 
|  | ctx.in.mipsRldMap = std::make_unique<MipsRldMapSection>(ctx); | 
|  | add(*ctx.in.mipsRldMap); | 
|  | } | 
|  | if ((ctx.in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create(ctx))) | 
|  | add(*ctx.in.mipsAbiFlags); | 
|  | if ((ctx.in.mipsOptions = MipsOptionsSection<ELFT>::create(ctx))) | 
|  | add(*ctx.in.mipsOptions); | 
|  | if ((ctx.in.mipsReginfo = MipsReginfoSection<ELFT>::create(ctx))) | 
|  | add(*ctx.in.mipsReginfo); | 
|  | } | 
|  |  | 
|  | StringRef relaDynName = ctx.arg.isRela ? ".rela.dyn" : ".rel.dyn"; | 
|  |  | 
|  | const unsigned threadCount = ctx.arg.threadCount; | 
|  | for (Partition &part : ctx.partitions) { | 
|  | auto add = [&](SyntheticSection &sec) { | 
|  | sec.partition = part.getNumber(ctx); | 
|  | ctx.inputSections.push_back(&sec); | 
|  | }; | 
|  |  | 
|  | if (!part.name.empty()) { | 
|  | part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(ctx); | 
|  | part.elfHeader->name = part.name; | 
|  | add(*part.elfHeader); | 
|  |  | 
|  | part.programHeaders = | 
|  | std::make_unique<PartitionProgramHeadersSection<ELFT>>(ctx); | 
|  | add(*part.programHeaders); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.buildId != BuildIdKind::None) { | 
|  | part.buildId = std::make_unique<BuildIdSection>(ctx); | 
|  | add(*part.buildId); | 
|  | } | 
|  |  | 
|  | // dynSymTab is always present to simplify sym->includeInDynsym(ctx) in | 
|  | // finalizeSections. | 
|  | part.dynStrTab = std::make_unique<StringTableSection>(ctx, ".dynstr", true); | 
|  | part.dynSymTab = | 
|  | std::make_unique<SymbolTableSection<ELFT>>(ctx, *part.dynStrTab); | 
|  |  | 
|  | if (ctx.arg.relocatable) | 
|  | continue; | 
|  | part.dynamic = std::make_unique<DynamicSection<ELFT>>(ctx); | 
|  |  | 
|  | if (hasMemtag(ctx)) { | 
|  | part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(ctx); | 
|  | add(*part.memtagAndroidNote); | 
|  | if (canHaveMemtagGlobals(ctx)) { | 
|  | part.memtagGlobalDescriptors = | 
|  | std::make_unique<MemtagGlobalDescriptors>(ctx); | 
|  | add(*part.memtagGlobalDescriptors); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ctx.arg.androidPackDynRelocs) | 
|  | part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( | 
|  | ctx, relaDynName, threadCount); | 
|  | else | 
|  | part.relaDyn = std::make_unique<RelocationSection<ELFT>>( | 
|  | ctx, relaDynName, ctx.arg.zCombreloc, threadCount); | 
|  |  | 
|  | if (ctx.arg.hasDynSymTab) { | 
|  | add(*part.dynSymTab); | 
|  |  | 
|  | part.verSym = std::make_unique<VersionTableSection>(ctx); | 
|  | add(*part.verSym); | 
|  |  | 
|  | if (!namedVersionDefs(ctx).empty()) { | 
|  | part.verDef = std::make_unique<VersionDefinitionSection>(ctx); | 
|  | add(*part.verDef); | 
|  | } | 
|  |  | 
|  | part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(ctx); | 
|  | add(*part.verNeed); | 
|  |  | 
|  | if (ctx.arg.gnuHash) { | 
|  | part.gnuHashTab = std::make_unique<GnuHashTableSection>(ctx); | 
|  | add(*part.gnuHashTab); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.sysvHash) { | 
|  | part.hashTab = std::make_unique<HashTableSection>(ctx); | 
|  | add(*part.hashTab); | 
|  | } | 
|  |  | 
|  | add(*part.dynamic); | 
|  | add(*part.dynStrTab); | 
|  | } | 
|  | add(*part.relaDyn); | 
|  |  | 
|  | if (ctx.arg.relrPackDynRelocs) { | 
|  | part.relrDyn = std::make_unique<RelrSection<ELFT>>(ctx, threadCount); | 
|  | add(*part.relrDyn); | 
|  | part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>( | 
|  | ctx, threadCount, /*isAArch64Auth=*/true); | 
|  | add(*part.relrAuthDyn); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.ehFrameHdr) { | 
|  | part.ehFrameHdr = std::make_unique<EhFrameHeader>(ctx); | 
|  | add(*part.ehFrameHdr); | 
|  | } | 
|  | part.ehFrame = std::make_unique<EhFrameSection>(ctx); | 
|  | add(*part.ehFrame); | 
|  |  | 
|  | if (ctx.arg.emachine == EM_ARM) { | 
|  | // This section replaces all the individual .ARM.exidx InputSections. | 
|  | part.armExidx = std::make_unique<ARMExidxSyntheticSection>(ctx); | 
|  | add(*part.armExidx); | 
|  | } | 
|  |  | 
|  | if (!ctx.arg.packageMetadata.empty()) { | 
|  | part.packageMetadataNote = std::make_unique<PackageMetadataNote>(ctx); | 
|  | add(*part.packageMetadataNote); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ctx.partitions.size() != 1) { | 
|  | // Create the partition end marker. This needs to be in partition number 255 | 
|  | // so that it is sorted after all other partitions. It also has other | 
|  | // special handling (see createPhdrs() and combineEhSections()). | 
|  | ctx.in.partEnd = | 
|  | std::make_unique<BssSection>(ctx, ".part.end", ctx.arg.maxPageSize, 1); | 
|  | ctx.in.partEnd->partition = 255; | 
|  | add(*ctx.in.partEnd); | 
|  |  | 
|  | ctx.in.partIndex = std::make_unique<PartitionIndexSection>(ctx); | 
|  | addOptionalRegular(ctx, "__part_index_begin", ctx.in.partIndex.get(), 0); | 
|  | addOptionalRegular(ctx, "__part_index_end", ctx.in.partIndex.get(), | 
|  | ctx.in.partIndex->getSize()); | 
|  | add(*ctx.in.partIndex); | 
|  | } | 
|  |  | 
|  | // Add .got. MIPS' .got is so different from the other archs, | 
|  | // it has its own class. | 
|  | if (ctx.arg.emachine == EM_MIPS) { | 
|  | ctx.in.mipsGot = std::make_unique<MipsGotSection>(ctx); | 
|  | add(*ctx.in.mipsGot); | 
|  | } else { | 
|  | ctx.in.got = std::make_unique<GotSection>(ctx); | 
|  | add(*ctx.in.got); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_PPC) { | 
|  | ctx.in.ppc32Got2 = std::make_unique<PPC32Got2Section>(ctx); | 
|  | add(*ctx.in.ppc32Got2); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_PPC64) { | 
|  | ctx.in.ppc64LongBranchTarget = | 
|  | std::make_unique<PPC64LongBranchTargetSection>(ctx); | 
|  | add(*ctx.in.ppc64LongBranchTarget); | 
|  | } | 
|  |  | 
|  | ctx.in.gotPlt = std::make_unique<GotPltSection>(ctx); | 
|  | add(*ctx.in.gotPlt); | 
|  | ctx.in.igotPlt = std::make_unique<IgotPltSection>(ctx); | 
|  | add(*ctx.in.igotPlt); | 
|  | // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the | 
|  | // section in the absence of PHDRS/SECTIONS commands. | 
|  | if (ctx.arg.zRelro && | 
|  | ((ctx.script->phdrsCommands.empty() && !ctx.script->hasSectionsCommand) || | 
|  | ctx.script->seenRelroEnd)) { | 
|  | ctx.in.relroPadding = std::make_unique<RelroPaddingSection>(ctx); | 
|  | add(*ctx.in.relroPadding); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_ARM) { | 
|  | ctx.in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(ctx); | 
|  | add(*ctx.in.armCmseSGSection); | 
|  | } | 
|  |  | 
|  | // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat | 
|  | // it as a relocation and ensure the referenced section is created. | 
|  | if (ctx.sym.globalOffsetTable && ctx.arg.emachine != EM_MIPS) { | 
|  | if (ctx.target->gotBaseSymInGotPlt) | 
|  | ctx.in.gotPlt->hasGotPltOffRel = true; | 
|  | else | 
|  | ctx.in.got->hasGotOffRel = true; | 
|  | } | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even for static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | ctx.in.relaPlt = std::make_unique<RelocationSection<ELFT>>( | 
|  | ctx, ctx.arg.isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, | 
|  | /*threadCount=*/1); | 
|  | add(*ctx.in.relaPlt); | 
|  |  | 
|  | if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) && | 
|  | (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { | 
|  | ctx.in.ibtPlt = std::make_unique<IBTPltSection>(ctx); | 
|  | add(*ctx.in.ibtPlt); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.emachine == EM_PPC) | 
|  | ctx.in.plt = std::make_unique<PPC32GlinkSection>(ctx); | 
|  | else | 
|  | ctx.in.plt = std::make_unique<PltSection>(ctx); | 
|  | add(*ctx.in.plt); | 
|  | ctx.in.iplt = std::make_unique<IpltSection>(ctx); | 
|  | add(*ctx.in.iplt); | 
|  |  | 
|  | if (ctx.arg.andFeatures || !ctx.aarch64PauthAbiCoreInfo.empty()) { | 
|  | ctx.in.gnuProperty = std::make_unique<GnuPropertySection>(ctx); | 
|  | add(*ctx.in.gnuProperty); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.debugNames) { | 
|  | ctx.in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(ctx); | 
|  | add(*ctx.in.debugNames); | 
|  | } | 
|  |  | 
|  | if (ctx.arg.gdbIndex) { | 
|  | ctx.in.gdbIndex = GdbIndexSection::create<ELFT>(ctx); | 
|  | add(*ctx.in.gdbIndex); | 
|  | } | 
|  |  | 
|  | // .note.GNU-stack is always added when we are creating a re-linkable | 
|  | // object file. Other linkers are using the presence of this marker | 
|  | // section to control the executable-ness of the stack area, but that | 
|  | // is irrelevant these days. Stack area should always be non-executable | 
|  | // by default. So we emit this section unconditionally. | 
|  | if (ctx.arg.relocatable) { | 
|  | ctx.in.gnuStack = std::make_unique<GnuStackSection>(ctx); | 
|  | add(*ctx.in.gnuStack); | 
|  | } | 
|  |  | 
|  | if (ctx.in.symTab) | 
|  | add(*ctx.in.symTab); | 
|  | if (ctx.in.symTabShndx) | 
|  | add(*ctx.in.symTabShndx); | 
|  | if (ctx.in.shStrTab) | 
|  | add(*ctx.in.shStrTab); | 
|  | if (ctx.in.strTab) | 
|  | add(*ctx.in.strTab); | 
|  | } | 
|  |  | 
|  | template void elf::splitSections<ELF32LE>(Ctx &); | 
|  | template void elf::splitSections<ELF32BE>(Ctx &); | 
|  | template void elf::splitSections<ELF64LE>(Ctx &); | 
|  | template void elf::splitSections<ELF64BE>(Ctx &); | 
|  |  | 
|  | template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( | 
|  | function_ref<void(InputSection &)>); | 
|  | template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( | 
|  | function_ref<void(InputSection &)>); | 
|  | template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( | 
|  | function_ref<void(InputSection &)>); | 
|  | template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( | 
|  | function_ref<void(InputSection &)>); | 
|  |  | 
|  | template class elf::SymbolTableSection<ELF32LE>; | 
|  | template class elf::SymbolTableSection<ELF32BE>; | 
|  | template class elf::SymbolTableSection<ELF64LE>; | 
|  | template class elf::SymbolTableSection<ELF64BE>; | 
|  |  | 
|  | template void elf::writeEhdr<ELF32LE>(Ctx &, uint8_t *Buf, Partition &Part); | 
|  | template void elf::writeEhdr<ELF32BE>(Ctx &, uint8_t *Buf, Partition &Part); | 
|  | template void elf::writeEhdr<ELF64LE>(Ctx &, uint8_t *Buf, Partition &Part); | 
|  | template void elf::writeEhdr<ELF64BE>(Ctx &, uint8_t *Buf, Partition &Part); | 
|  |  | 
|  | template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); | 
|  | template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); | 
|  | template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); | 
|  | template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); | 
|  |  | 
|  | template void elf::createSyntheticSections<ELF32LE>(Ctx &); | 
|  | template void elf::createSyntheticSections<ELF32BE>(Ctx &); | 
|  | template void elf::createSyntheticSections<ELF64LE>(Ctx &); | 
|  | template void elf::createSyntheticSections<ELF64BE>(Ctx &); |