|  | //===- AArch64ErrataFix.cpp -----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // This file implements Section Patching for the purpose of working around | 
|  | // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 | 
|  | // versions of the core. | 
|  | // | 
|  | // The general principle is that an erratum sequence of one or | 
|  | // more instructions is detected in the instruction stream, one of the | 
|  | // instructions in the sequence is replaced with a branch to a patch sequence | 
|  | // of replacement instructions. At the end of the replacement sequence the | 
|  | // patch branches back to the instruction stream. | 
|  |  | 
|  | // This technique is only suitable for fixing an erratum when: | 
|  | // - There is a set of necessary conditions required to trigger the erratum that | 
|  | // can be detected at static link time. | 
|  | // - There is a set of replacement instructions that can be used to remove at | 
|  | // least one of the necessary conditions that trigger the erratum. | 
|  | // - We can overwrite an instruction in the erratum sequence with a branch to | 
|  | // the replacement sequence. | 
|  | // - We can place the replacement sequence within range of the branch. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64ErrataFix.h" | 
|  | #include "InputFiles.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Relocations.h" | 
|  | #include "Symbols.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  | #include "lld/Common/CommonLinkerContext.h" | 
|  | #include "lld/Common/Strings.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | // Helper functions to identify instructions and conditions needed to trigger | 
|  | // the Cortex-A53-843419 erratum. | 
|  |  | 
|  | // ADRP | 
|  | // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | | 
|  | static bool isADRP(uint32_t instr) { | 
|  | return (instr & 0x9f000000) == 0x90000000; | 
|  | } | 
|  |  | 
|  | // Load and store bit patterns from ARMv8-A. | 
|  | // Instructions appear in order of appearance starting from table in | 
|  | // C4.1.3 Loads and Stores. | 
|  |  | 
|  | // All loads and stores have 1 (at bit position 27), (0 at bit position 25). | 
|  | // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | | 
|  | static bool isLoadStoreClass(uint32_t instr) { | 
|  | return (instr & 0x0a000000) == 0x08000000; | 
|  | } | 
|  |  | 
|  | // LDN/STN multiple no offset | 
|  | // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | | 
|  | // LDN/STN multiple post-indexed | 
|  | // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | | 
|  | // L == 0 for stores. | 
|  |  | 
|  | // Utility routine to decode opcode field of LDN/STN multiple structure | 
|  | // instructions to find the ST1 instructions. | 
|  | // opcode == 0010 ST1 4 registers. | 
|  | // opcode == 0110 ST1 3 registers. | 
|  | // opcode == 0111 ST1 1 register. | 
|  | // opcode == 1010 ST1 2 registers. | 
|  | static bool isST1MultipleOpcode(uint32_t instr) { | 
|  | return (instr & 0x0000f000) == 0x00002000 || | 
|  | (instr & 0x0000f000) == 0x00006000 || | 
|  | (instr & 0x0000f000) == 0x00007000 || | 
|  | (instr & 0x0000f000) == 0x0000a000; | 
|  | } | 
|  |  | 
|  | static bool isST1Multiple(uint32_t instr) { | 
|  | return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr); | 
|  | } | 
|  |  | 
|  | // Writes to Rn (writeback). | 
|  | static bool isST1MultiplePost(uint32_t instr) { | 
|  | return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr); | 
|  | } | 
|  |  | 
|  | // LDN/STN single no offset | 
|  | // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| | 
|  | // LDN/STN single post-indexed | 
|  | // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| | 
|  | // L == 0 for stores | 
|  |  | 
|  | // Utility routine to decode opcode field of LDN/STN single structure | 
|  | // instructions to find the ST1 instructions. | 
|  | // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. | 
|  | // opcode == 000 ST1 8-bit. | 
|  | // opcode == 010 ST1 16-bit. | 
|  | // opcode == 100 ST1 32 or 64-bit (Size determines which). | 
|  | static bool isST1SingleOpcode(uint32_t instr) { | 
|  | return (instr & 0x0040e000) == 0x00000000 || | 
|  | (instr & 0x0040e000) == 0x00004000 || | 
|  | (instr & 0x0040e000) == 0x00008000; | 
|  | } | 
|  |  | 
|  | static bool isST1Single(uint32_t instr) { | 
|  | return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr); | 
|  | } | 
|  |  | 
|  | // Writes to Rn (writeback). | 
|  | static bool isST1SinglePost(uint32_t instr) { | 
|  | return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr); | 
|  | } | 
|  |  | 
|  | static bool isST1(uint32_t instr) { | 
|  | return isST1Multiple(instr) || isST1MultiplePost(instr) || | 
|  | isST1Single(instr) || isST1SinglePost(instr); | 
|  | } | 
|  |  | 
|  | // Load/store exclusive | 
|  | // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | | 
|  | // L == 0 for Stores. | 
|  | static bool isLoadStoreExclusive(uint32_t instr) { | 
|  | return (instr & 0x3f000000) == 0x08000000; | 
|  | } | 
|  |  | 
|  | static bool isLoadExclusive(uint32_t instr) { | 
|  | return (instr & 0x3f400000) == 0x08400000; | 
|  | } | 
|  |  | 
|  | // Load register literal | 
|  | // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | | 
|  | static bool isLoadLiteral(uint32_t instr) { | 
|  | return (instr & 0x3b000000) == 0x18000000; | 
|  | } | 
|  |  | 
|  | // Load/store no-allocate pair | 
|  | // (offset) | 
|  | // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | | 
|  | // L == 0 for stores. | 
|  | // Never writes to register | 
|  | static bool isSTNP(uint32_t instr) { | 
|  | return (instr & 0x3bc00000) == 0x28000000; | 
|  | } | 
|  |  | 
|  | // Load/store register pair | 
|  | // (post-indexed) | 
|  | // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | | 
|  | // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP | 
|  | // Writes to Rn. | 
|  | static bool isSTPPost(uint32_t instr) { | 
|  | return (instr & 0x3bc00000) == 0x28800000; | 
|  | } | 
|  |  | 
|  | // (offset) | 
|  | // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | | 
|  | static bool isSTPOffset(uint32_t instr) { | 
|  | return (instr & 0x3bc00000) == 0x29000000; | 
|  | } | 
|  |  | 
|  | // (pre-index) | 
|  | // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | | 
|  | // Writes to Rn. | 
|  | static bool isSTPPre(uint32_t instr) { | 
|  | return (instr & 0x3bc00000) == 0x29800000; | 
|  | } | 
|  |  | 
|  | static bool isSTP(uint32_t instr) { | 
|  | return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr); | 
|  | } | 
|  |  | 
|  | // Load/store register (unscaled immediate) | 
|  | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | | 
|  | // V == 0 for Scalar, V == 1 for Simd/FP. | 
|  | static bool isLoadStoreUnscaled(uint32_t instr) { | 
|  | return (instr & 0x3b000c00) == 0x38000000; | 
|  | } | 
|  |  | 
|  | // Load/store register (immediate post-indexed) | 
|  | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | | 
|  | static bool isLoadStoreImmediatePost(uint32_t instr) { | 
|  | return (instr & 0x3b200c00) == 0x38000400; | 
|  | } | 
|  |  | 
|  | // Load/store register (unprivileged) | 
|  | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | | 
|  | static bool isLoadStoreUnpriv(uint32_t instr) { | 
|  | return (instr & 0x3b200c00) == 0x38000800; | 
|  | } | 
|  |  | 
|  | // Load/store register (immediate pre-indexed) | 
|  | // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | | 
|  | static bool isLoadStoreImmediatePre(uint32_t instr) { | 
|  | return (instr & 0x3b200c00) == 0x38000c00; | 
|  | } | 
|  |  | 
|  | // Load/store register (register offset) | 
|  | // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | | 
|  | static bool isLoadStoreRegisterOff(uint32_t instr) { | 
|  | return (instr & 0x3b200c00) == 0x38200800; | 
|  | } | 
|  |  | 
|  | // Load/store register (unsigned immediate) | 
|  | // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | | 
|  | static bool isLoadStoreRegisterUnsigned(uint32_t instr) { | 
|  | return (instr & 0x3b000000) == 0x39000000; | 
|  | } | 
|  |  | 
|  | // Rt is always in bit position 0 - 4. | 
|  | static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); } | 
|  |  | 
|  | // Rn is always in bit position 5 - 9. | 
|  | static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; } | 
|  |  | 
|  | // C4.1.2 Branches, Exception Generating and System instructions | 
|  | // | op0 (3) 1 | 01 op1 (4) | x (22) | | 
|  | // op0 == 010 101 op1 == 0xxx Conditional Branch. | 
|  | // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. | 
|  | // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. | 
|  | // op0 == x01 101 op1 == 0xxx Compare and branch immediate. | 
|  | // op0 == x01 101 op1 == 1xxx Test and branch immediate. | 
|  | static bool isBranch(uint32_t instr) { | 
|  | return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch. | 
|  | ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. | 
|  | ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. | 
|  | ((instr & 0x7c000000) == 0x34000000);   // Compare and test branch. | 
|  | } | 
|  |  | 
|  | static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) { | 
|  | return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) || | 
|  | isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) || | 
|  | isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr); | 
|  | } | 
|  |  | 
|  | // Note that this function refers to v8.0 only and does not include the | 
|  | // additional load and store instructions added for in later revisions of | 
|  | // the architecture such as the Atomic memory operations introduced | 
|  | // in v8.1. | 
|  | static bool isV8NonStructureLoad(uint32_t instr) { | 
|  | if (isLoadExclusive(instr)) | 
|  | return true; | 
|  | if (isLoadLiteral(instr)) | 
|  | return true; | 
|  | else if (isV8SingleRegisterNonStructureLoadStore(instr)) { | 
|  | // For Load and Store single register, Loads are derived from a | 
|  | // combination of the Size, V and Opc fields. | 
|  | uint32_t size = (instr >> 30) & 0xff; | 
|  | uint32_t v = (instr >> 26) & 0x1; | 
|  | uint32_t opc = (instr >> 22) & 0x3; | 
|  | // For the load and store instructions that we are decoding. | 
|  | // Opc == 0 are all stores. | 
|  | // Opc == 1 with a couple of exceptions are loads. The exceptions are: | 
|  | // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and | 
|  | // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. | 
|  | return opc != 0 && !(size == 0 && v == 1 && opc == 2) && | 
|  | !(size == 3 && v == 0 && opc == 2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The following decode instructions are only complete up to the instructions | 
|  | // needed for errata 843419. | 
|  |  | 
|  | // Instruction with writeback updates the index register after the load/store. | 
|  | static bool hasWriteback(uint32_t instr) { | 
|  | return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) || | 
|  | isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) || | 
|  | isST1MultiplePost(instr); | 
|  | } | 
|  |  | 
|  | // For the load and store class of instructions, a load can write to the | 
|  | // destination register, a load and a store can write to the base register when | 
|  | // the instruction has writeback. | 
|  | static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) { | 
|  | return (isV8NonStructureLoad(instr) && getRt(instr) == reg) || | 
|  | (hasWriteback(instr) && getRn(instr) == reg); | 
|  | } | 
|  |  | 
|  | // Scanner for Cortex-A53 errata 843419 | 
|  | // Full details are available in the Cortex A53 MPCore revision 0 Software | 
|  | // Developers Errata Notice (ARM-EPM-048406). | 
|  | // | 
|  | // The instruction sequence that triggers the erratum is common in compiled | 
|  | // AArch64 code, however it is sensitive to the offset of the sequence within | 
|  | // a 4k page. This means that by scanning and fixing the patch after we have | 
|  | // assigned addresses we only need to disassemble and fix instances of the | 
|  | // sequence in the range of affected offsets. | 
|  | // | 
|  | // In summary the erratum conditions are a series of 4 instructions: | 
|  | // 1.) An ADRP instruction that writes to register Rn with low 12 bits of | 
|  | //     address of instruction either 0xff8 or 0xffc. | 
|  | // 2.) A load or store instruction that can be: | 
|  | // - A single register load or store, of either integer or vector registers. | 
|  | // - An STP or STNP, of either integer or vector registers. | 
|  | // - An Advanced SIMD ST1 store instruction. | 
|  | // - Must not write to Rn, but may optionally read from it. | 
|  | // 3.) An optional instruction that is not a branch and does not write to Rn. | 
|  | // 4.) A load or store from the  Load/store register (unsigned immediate) class | 
|  | //     that uses Rn as the base address register. | 
|  | // | 
|  | // Note that we do not attempt to scan for Sequence 2 as described in the | 
|  | // Software Developers Errata Notice as this has been assessed to be extremely | 
|  | // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. | 
|  |  | 
|  | // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match | 
|  | // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), | 
|  | // and 4.) in the Scanner for Cortex-A53 errata comment above. | 
|  | static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2, | 
|  | uint32_t instr4) { | 
|  | if (!isADRP(instr1)) | 
|  | return false; | 
|  |  | 
|  | uint32_t rn = getRt(instr1); | 
|  | return isLoadStoreClass(instr2) && | 
|  | (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) || | 
|  | isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) || | 
|  | isSTNP(instr2) || isST1(instr2)) && | 
|  | !doesLoadStoreWriteToReg(instr2, rn) && | 
|  | isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn; | 
|  | } | 
|  |  | 
|  | // Scan the instruction sequence starting at Offset Off from the base of | 
|  | // InputSection isec. We update Off in this function rather than in the caller | 
|  | // as we can skip ahead much further into the section when we know how many | 
|  | // instructions we've scanned. | 
|  | // Return the offset of the load or store instruction in isec that we want to | 
|  | // patch or 0 if no patch required. | 
|  | static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off, | 
|  | uint64_t limit) { | 
|  | uint64_t isecAddr = isec->getVA(0); | 
|  |  | 
|  | // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8. | 
|  | uint64_t initialPageOff = (isecAddr + off) & 0xfff; | 
|  | if (initialPageOff < 0xff8) | 
|  | off += 0xff8 - initialPageOff; | 
|  |  | 
|  | bool optionalAllowed = limit - off > 12; | 
|  | if (off >= limit || limit - off < 12) { | 
|  | // Need at least 3 4-byte sized instructions to trigger erratum. | 
|  | off = limit; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t patchOff = 0; | 
|  | const uint8_t *buf = isec->content().begin(); | 
|  | const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off); | 
|  | uint32_t instr1 = *instBuf++; | 
|  | uint32_t instr2 = *instBuf++; | 
|  | uint32_t instr3 = *instBuf++; | 
|  | if (is843419ErratumSequence(instr1, instr2, instr3)) { | 
|  | patchOff = off + 8; | 
|  | } else if (optionalAllowed && !isBranch(instr3)) { | 
|  | uint32_t instr4 = *instBuf++; | 
|  | if (is843419ErratumSequence(instr1, instr2, instr4)) | 
|  | patchOff = off + 12; | 
|  | } | 
|  | if (((isecAddr + off) & 0xfff) == 0xff8) | 
|  | off += 4; | 
|  | else | 
|  | off += 0xffc; | 
|  | return patchOff; | 
|  | } | 
|  |  | 
|  | class elf::Patch843419Section final : public SyntheticSection { | 
|  | public: | 
|  | Patch843419Section(Ctx &, InputSection *p, uint64_t off); | 
|  |  | 
|  | void writeTo(uint8_t *buf) override; | 
|  |  | 
|  | size_t getSize() const override { return 8; } | 
|  |  | 
|  | uint64_t getLDSTAddr() const; | 
|  |  | 
|  | static bool classof(const SectionBase *d) { | 
|  | return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch"; | 
|  | } | 
|  |  | 
|  | // The Section we are patching. | 
|  | const InputSection *patchee; | 
|  | // The offset of the instruction in the patchee section we are patching. | 
|  | uint64_t patcheeOffset; | 
|  | // A label for the start of the Patch that we can use as a relocation target. | 
|  | Symbol *patchSym; | 
|  | }; | 
|  |  | 
|  | Patch843419Section::Patch843419Section(Ctx &ctx, InputSection *p, uint64_t off) | 
|  | : SyntheticSection(ctx, ".text.patch", SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_EXECINSTR, 4), | 
|  | patchee(p), patcheeOffset(off) { | 
|  | this->parent = p->getParent(); | 
|  | patchSym = addSyntheticLocal( | 
|  | ctx, ctx.saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), | 
|  | STT_FUNC, 0, getSize(), *this); | 
|  | addSyntheticLocal(ctx, ctx.saver.save("$x"), STT_NOTYPE, 0, 0, *this); | 
|  | } | 
|  |  | 
|  | uint64_t Patch843419Section::getLDSTAddr() const { | 
|  | return patchee->getVA(patcheeOffset); | 
|  | } | 
|  |  | 
|  | void Patch843419Section::writeTo(uint8_t *buf) { | 
|  | // Copy the instruction that we will be replacing with a branch in the | 
|  | // patchee Section. | 
|  | write32le(buf, read32le(patchee->content().begin() + patcheeOffset)); | 
|  |  | 
|  | // Apply any relocation transferred from the original patchee section. | 
|  | ctx.target->relocateAlloc(*this, buf); | 
|  |  | 
|  | // Return address is the next instruction after the one we have just copied. | 
|  | uint64_t s = getLDSTAddr() + 4; | 
|  | uint64_t p = patchSym->getVA(ctx) + 4; | 
|  | ctx.target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p); | 
|  | } | 
|  |  | 
|  | void AArch64Err843419Patcher::init() { | 
|  | // The AArch64 ABI permits data in executable sections. We must avoid scanning | 
|  | // this data as if it were instructions to avoid false matches. We use the | 
|  | // mapping symbols in the InputObjects to identify this data, caching the | 
|  | // results in sectionMap so we don't have to recalculate it each pass. | 
|  |  | 
|  | // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe | 
|  | // half open intervals [Symbol Value, Next Symbol Value) of code and data | 
|  | // within sections. If there is no next symbol then the half open interval is | 
|  | // [Symbol Value, End of section). The type, code or data, is determined by | 
|  | // the mapping symbol name, $x for code, $d for data. | 
|  | auto isCodeMapSymbol = [](const Symbol *b) { | 
|  | return b->getName() == "$x" || b->getName().starts_with("$x."); | 
|  | }; | 
|  | auto isDataMapSymbol = [](const Symbol *b) { | 
|  | return b->getName() == "$d" || b->getName().starts_with("$d."); | 
|  | }; | 
|  |  | 
|  | // Collect mapping symbols for every executable InputSection. | 
|  | for (ELFFileBase *file : ctx.objectFiles) { | 
|  | for (Symbol *b : file->getLocalSymbols()) { | 
|  | auto *def = dyn_cast<Defined>(b); | 
|  | if (!def) | 
|  | continue; | 
|  | if (!isCodeMapSymbol(def) && !isDataMapSymbol(def)) | 
|  | continue; | 
|  | if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) | 
|  | if (sec->flags & SHF_EXECINSTR) | 
|  | sectionMap[sec].push_back(def); | 
|  | } | 
|  | } | 
|  | // For each InputSection make sure the mapping symbols are in sorted in | 
|  | // ascending order and free from consecutive runs of mapping symbols with | 
|  | // the same type. For example we must remove the redundant $d.1 from $x.0 | 
|  | // $d.0 $d.1 $x.1. | 
|  | for (auto &kv : sectionMap) { | 
|  | std::vector<const Defined *> &mapSyms = kv.second; | 
|  | llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { | 
|  | return a->value < b->value; | 
|  | }); | 
|  | mapSyms.erase( | 
|  | std::unique(mapSyms.begin(), mapSyms.end(), | 
|  | [=](const Defined *a, const Defined *b) { | 
|  | return isCodeMapSymbol(a) == isCodeMapSymbol(b); | 
|  | }), | 
|  | mapSyms.end()); | 
|  | // Always start with a Code Mapping Symbol. | 
|  | if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front())) | 
|  | mapSyms.erase(mapSyms.begin()); | 
|  | } | 
|  | initialized = true; | 
|  | } | 
|  |  | 
|  | // Insert the PatchSections we have created back into the | 
|  | // InputSectionDescription. As inserting patches alters the addresses of | 
|  | // InputSections that follow them, we try and place the patches after all the | 
|  | // executable sections, although we may need to insert them earlier if the | 
|  | // InputSectionDescription is larger than the maximum branch range. | 
|  | void AArch64Err843419Patcher::insertPatches( | 
|  | InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) { | 
|  | uint64_t isecLimit; | 
|  | uint64_t prevIsecLimit = isd.sections.front()->outSecOff; | 
|  | uint64_t patchUpperBound = | 
|  | prevIsecLimit + ctx.target->getThunkSectionSpacing(); | 
|  | uint64_t outSecAddr = isd.sections.front()->getParent()->addr; | 
|  |  | 
|  | // Set the outSecOff of patches to the place where we want to insert them. | 
|  | // We use a similar strategy to Thunk placement. Place patches roughly | 
|  | // every multiple of maximum branch range. | 
|  | auto patchIt = patches.begin(); | 
|  | auto patchEnd = patches.end(); | 
|  | for (const InputSection *isec : isd.sections) { | 
|  | isecLimit = isec->outSecOff + isec->getSize(); | 
|  | if (isecLimit > patchUpperBound) { | 
|  | while (patchIt != patchEnd) { | 
|  | if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit) | 
|  | break; | 
|  | (*patchIt)->outSecOff = prevIsecLimit; | 
|  | ++patchIt; | 
|  | } | 
|  | patchUpperBound = prevIsecLimit + ctx.target->getThunkSectionSpacing(); | 
|  | } | 
|  | prevIsecLimit = isecLimit; | 
|  | } | 
|  | for (; patchIt != patchEnd; ++patchIt) { | 
|  | (*patchIt)->outSecOff = isecLimit; | 
|  | } | 
|  |  | 
|  | // Merge all patch sections. We use the outSecOff assigned above to | 
|  | // determine the insertion point. This is ok as we only merge into an | 
|  | // InputSectionDescription once per pass, and at the end of the pass | 
|  | // assignAddresses() will recalculate all the outSecOff values. | 
|  | SmallVector<InputSection *, 0> tmp; | 
|  | tmp.reserve(isd.sections.size() + patches.size()); | 
|  | auto mergeCmp = [](const InputSection *a, const InputSection *b) { | 
|  | if (a->outSecOff != b->outSecOff) | 
|  | return a->outSecOff < b->outSecOff; | 
|  | return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b); | 
|  | }; | 
|  | std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), | 
|  | patches.end(), std::back_inserter(tmp), mergeCmp); | 
|  | isd.sections = std::move(tmp); | 
|  | } | 
|  |  | 
|  | // Given an erratum sequence that starts at address adrpAddr, with an | 
|  | // instruction that we need to patch at patcheeOffset from the start of | 
|  | // InputSection isec, create a Patch843419 Section and add it to the | 
|  | // Patches that we need to insert. | 
|  | static void implementPatch(Ctx &ctx, uint64_t adrpAddr, uint64_t patcheeOffset, | 
|  | InputSection *isec, | 
|  | std::vector<Patch843419Section *> &patches) { | 
|  | // There may be a relocation at the same offset that we are patching. There | 
|  | // are four cases that we need to consider. | 
|  | // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this | 
|  | // instance of the erratum on a previous patch and altered the relocation. We | 
|  | // have nothing more to do. | 
|  | // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that | 
|  | // we read will be transformed into a MOVZ later so we actually don't match | 
|  | // the sequence and have nothing more to do. | 
|  | // Case 3: A load/store register (unsigned immediate) class relocation. There | 
|  | // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and | 
|  | // they are both absolute. We need to add the same relocation to the patch, | 
|  | // and replace the relocation with a R_AARCH_JUMP26 branch relocation. | 
|  | // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch | 
|  | // relocation at the offset. | 
|  | auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) { | 
|  | return r.offset == patcheeOffset; | 
|  | }); | 
|  | if (relIt != isec->relocs().end() && | 
|  | (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE)) | 
|  | return; | 
|  |  | 
|  | Log(ctx) << "detected cortex-a53-843419 erratum sequence starting at " << | 
|  | utohexstr(adrpAddr) << " in unpatched output."; | 
|  |  | 
|  | auto *ps = make<Patch843419Section>(ctx, isec, patcheeOffset); | 
|  | patches.push_back(ps); | 
|  |  | 
|  | auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) { | 
|  | return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym}; | 
|  | }; | 
|  |  | 
|  | if (relIt != isec->relocs().end()) { | 
|  | ps->addReloc({relIt->expr, relIt->type, 0, relIt->addend, relIt->sym}); | 
|  | *relIt = makeRelToPatch(patcheeOffset, ps->patchSym); | 
|  | } else | 
|  | isec->addReloc(makeRelToPatch(patcheeOffset, ps->patchSym)); | 
|  | } | 
|  |  | 
|  | // Scan all the instructions in InputSectionDescription, for each instance of | 
|  | // the erratum sequence create a Patch843419Section. We return the list of | 
|  | // Patch843419Sections that need to be applied to the InputSectionDescription. | 
|  | std::vector<Patch843419Section *> | 
|  | AArch64Err843419Patcher::patchInputSectionDescription( | 
|  | InputSectionDescription &isd) { | 
|  | std::vector<Patch843419Section *> patches; | 
|  | for (InputSection *isec : isd.sections) { | 
|  | //  LLD doesn't use the erratum sequence in SyntheticSections. | 
|  | if (isa<SyntheticSection>(isec)) | 
|  | continue; | 
|  | // Use sectionMap to make sure we only scan code and not inline data. | 
|  | // We have already sorted MapSyms in ascending order and removed consecutive | 
|  | // mapping symbols of the same type. Our range of executable instructions to | 
|  | // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value, | 
|  | // section size). | 
|  | std::vector<const Defined *> &mapSyms = sectionMap[isec]; | 
|  |  | 
|  | auto codeSym = mapSyms.begin(); | 
|  | while (codeSym != mapSyms.end()) { | 
|  | auto dataSym = std::next(codeSym); | 
|  | uint64_t off = (*codeSym)->value; | 
|  | uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size() | 
|  | : (*dataSym)->value; | 
|  |  | 
|  | while (off < limit) { | 
|  | uint64_t startAddr = isec->getVA(off); | 
|  | if (uint64_t patcheeOffset = | 
|  | scanCortexA53Errata843419(isec, off, limit)) | 
|  | implementPatch(ctx, startAddr, patcheeOffset, isec, patches); | 
|  | } | 
|  | if (dataSym == mapSyms.end()) | 
|  | break; | 
|  | codeSym = std::next(dataSym); | 
|  | } | 
|  | } | 
|  | return patches; | 
|  | } | 
|  |  | 
|  | // For each InputSectionDescription make one pass over the executable sections | 
|  | // looking for the erratum sequence; creating a synthetic Patch843419Section | 
|  | // for each instance found. We insert these synthetic patch sections after the | 
|  | // executable code in each InputSectionDescription. | 
|  | // | 
|  | // PreConditions: | 
|  | // The Output and Input Sections have had their final addresses assigned. | 
|  | // | 
|  | // PostConditions: | 
|  | // Returns true if at least one patch was added. The addresses of the | 
|  | // Output and Input Sections may have been changed. | 
|  | // Returns false if no patches were required and no changes were made. | 
|  | bool AArch64Err843419Patcher::createFixes() { | 
|  | if (!initialized) | 
|  | init(); | 
|  |  | 
|  | bool addressesChanged = false; | 
|  | for (OutputSection *os : ctx.outputSections) { | 
|  | if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) | 
|  | continue; | 
|  | for (SectionCommand *cmd : os->commands) | 
|  | if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { | 
|  | std::vector<Patch843419Section *> patches = | 
|  | patchInputSectionDescription(*isd); | 
|  | if (!patches.empty()) { | 
|  | insertPatches(*isd, patches); | 
|  | addressesChanged = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return addressesChanged; | 
|  | } |