blob: 568843d72bbb50edadad198dbd74e76ecc10fef3 [file] [log] [blame] [edit]
//===- BPSectionOrderer.cpp--------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "BPSectionOrderer.h"
#include "InputSection.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/BalancedPartitioning.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/xxhash.h"
#define DEBUG_TYPE "bp-section-orderer"
using namespace llvm;
using namespace lld::macho;
/// Symbols can be appended with "(.__uniq.xxxx)?.llvm.yyyy" where "xxxx" and
/// "yyyy" are numbers that could change between builds. We need to use the root
/// symbol name before this suffix so these symbols can be matched with profiles
/// which may have different suffixes.
static StringRef getRootSymbol(StringRef Name) {
auto [P0, S0] = Name.rsplit(".llvm.");
auto [P1, S1] = P0.rsplit(".__uniq.");
return P1;
}
static uint64_t getRelocHash(StringRef kind, uint64_t sectionIdx,
uint64_t offset, uint64_t addend) {
return xxHash64((kind + ": " + Twine::utohexstr(sectionIdx) + " + " +
Twine::utohexstr(offset) + " + " + Twine::utohexstr(addend))
.str());
}
static uint64_t
getRelocHash(const Reloc &reloc,
const DenseMap<const InputSection *, uint64_t> &sectionToIdx) {
auto *isec = reloc.getReferentInputSection();
std::optional<uint64_t> sectionIdx;
auto sectionIdxIt = sectionToIdx.find(isec);
if (sectionIdxIt != sectionToIdx.end())
sectionIdx = sectionIdxIt->getSecond();
std::string kind;
if (isec)
kind = ("Section " + Twine(static_cast<uint8_t>(isec->kind()))).str();
if (auto *sym = reloc.referent.dyn_cast<Symbol *>()) {
kind += (" Symbol " + Twine(static_cast<uint8_t>(sym->kind()))).str();
if (auto *d = dyn_cast<Defined>(sym)) {
if (isa_and_nonnull<CStringInputSection>(isec))
return getRelocHash(kind, 0, isec->getOffset(d->value), reloc.addend);
return getRelocHash(kind, sectionIdx.value_or(0), d->value, reloc.addend);
}
}
return getRelocHash(kind, sectionIdx.value_or(0), 0, reloc.addend);
}
static void constructNodesForCompression(
const SmallVector<const InputSection *> &sections,
const DenseMap<const InputSection *, uint64_t> &sectionToIdx,
const SmallVector<unsigned> &sectionIdxs,
std::vector<BPFunctionNode> &nodes,
DenseMap<unsigned, SmallVector<unsigned>> &duplicateSectionIdxs,
BPFunctionNode::UtilityNodeT &maxUN) {
TimeTraceScope timeScope("Build nodes for compression");
SmallVector<std::pair<unsigned, SmallVector<uint64_t>>> sectionHashes;
sectionHashes.reserve(sectionIdxs.size());
SmallVector<uint64_t> hashes;
for (unsigned sectionIdx : sectionIdxs) {
const auto *isec = sections[sectionIdx];
constexpr unsigned windowSize = 4;
for (size_t i = 0; i < isec->data.size(); i++) {
auto window = isec->data.drop_front(i).take_front(windowSize);
hashes.push_back(xxHash64(window));
}
for (const auto &r : isec->relocs) {
if (r.length == 0 || r.referent.isNull() || r.offset >= isec->data.size())
continue;
uint64_t relocHash = getRelocHash(r, sectionToIdx);
uint32_t start = (r.offset < windowSize) ? 0 : r.offset - windowSize + 1;
for (uint32_t i = start; i < r.offset + r.length; i++) {
auto window = isec->data.drop_front(i).take_front(windowSize);
hashes.push_back(xxHash64(window) + relocHash);
}
}
llvm::sort(hashes);
hashes.erase(std::unique(hashes.begin(), hashes.end()), hashes.end());
sectionHashes.emplace_back(sectionIdx, hashes);
hashes.clear();
}
DenseMap<uint64_t, unsigned> hashFrequency;
for (auto &[sectionIdx, hashes] : sectionHashes)
for (auto hash : hashes)
++hashFrequency[hash];
// Merge section that are nearly identical
SmallVector<std::pair<unsigned, SmallVector<uint64_t>>> newSectionHashes;
DenseMap<uint64_t, unsigned> wholeHashToSectionIdx;
for (auto &[sectionIdx, hashes] : sectionHashes) {
uint64_t wholeHash = 0;
for (auto hash : hashes)
if (hashFrequency[hash] > 5)
wholeHash ^= hash;
auto [it, wasInserted] =
wholeHashToSectionIdx.insert(std::make_pair(wholeHash, sectionIdx));
if (wasInserted) {
newSectionHashes.emplace_back(sectionIdx, hashes);
} else {
duplicateSectionIdxs[it->getSecond()].push_back(sectionIdx);
}
}
sectionHashes = newSectionHashes;
// Recompute hash frequencies
hashFrequency.clear();
for (auto &[sectionIdx, hashes] : sectionHashes)
for (auto hash : hashes)
++hashFrequency[hash];
// Filter rare and common hashes and assign each a unique utility node that
// doesn't conflict with the trace utility nodes
DenseMap<uint64_t, BPFunctionNode::UtilityNodeT> hashToUN;
for (auto &[hash, frequency] : hashFrequency) {
if (frequency <= 1 || frequency * 2 > wholeHashToSectionIdx.size())
continue;
hashToUN[hash] = ++maxUN;
}
std::vector<BPFunctionNode::UtilityNodeT> uns;
for (auto &[sectionIdx, hashes] : sectionHashes) {
for (auto &hash : hashes) {
auto it = hashToUN.find(hash);
if (it != hashToUN.end())
uns.push_back(it->second);
}
nodes.emplace_back(sectionIdx, uns);
uns.clear();
}
}
DenseMap<const InputSection *, size_t> lld::macho::runBalancedPartitioning(
size_t &highestAvailablePriority, StringRef profilePath,
bool forFunctionCompression, bool forDataCompression, bool verbose) {
SmallVector<const InputSection *> sections;
DenseMap<const InputSection *, uint64_t> sectionToIdx;
StringMap<DenseSet<unsigned>> symbolToSectionIdxs;
for (const auto *file : inputFiles) {
for (auto *sec : file->sections) {
for (auto &subsec : sec->subsections) {
auto *isec = subsec.isec;
if (!isec || isec->data.empty() || !isec->data.data())
continue;
unsigned sectionIdx = sections.size();
sectionToIdx.try_emplace(isec, sectionIdx);
sections.push_back(isec);
for (Symbol *sym : isec->symbols)
if (auto *d = dyn_cast_or_null<Defined>(sym))
symbolToSectionIdxs[d->getName()].insert(sectionIdx);
}
}
}
StringMap<DenseSet<unsigned>> rootSymbolToSectionIdxs;
for (auto &entry : symbolToSectionIdxs) {
StringRef name = entry.getKey();
auto &sectionIdxs = entry.getValue();
name = getRootSymbol(name);
rootSymbolToSectionIdxs[name].insert(sectionIdxs.begin(),
sectionIdxs.end());
// Linkage names can be prefixed with "_" or "l_" on Mach-O. See
// Mangler::getNameWithPrefix() for details.
if (name.consume_front("_") || name.consume_front("l_"))
rootSymbolToSectionIdxs[name].insert(sectionIdxs.begin(),
sectionIdxs.end());
}
std::vector<BPFunctionNode> nodesForStartup;
BPFunctionNode::UtilityNodeT maxUN = 0;
DenseMap<unsigned, SmallVector<BPFunctionNode::UtilityNodeT>>
startupSectionIdxUNs;
std::unique_ptr<InstrProfReader> reader;
if (!profilePath.empty()) {
auto fs = vfs::getRealFileSystem();
auto readerOrErr = InstrProfReader::create(profilePath, *fs);
lld::checkError(readerOrErr.takeError());
reader = std::move(readerOrErr.get());
for (auto &entry : *reader) {
// Read all entries
(void)entry;
}
auto &traces = reader->getTemporalProfTraces();
// Used to define the initial order for startup functions.
DenseMap<unsigned, size_t> sectionIdxToTimestamp;
DenseMap<unsigned, BPFunctionNode::UtilityNodeT> sectionIdxToFirstUN;
for (size_t traceIdx = 0; traceIdx < traces.size(); traceIdx++) {
uint64_t currentSize = 0, cutoffSize = 1;
size_t cutoffTimestamp = 1;
auto &trace = traces[traceIdx].FunctionNameRefs;
for (size_t timestamp = 0; timestamp < trace.size(); timestamp++) {
auto [Filename, ParsedFuncName] = getParsedIRPGOName(
reader->getSymtab().getFuncOrVarName(trace[timestamp]));
ParsedFuncName = getRootSymbol(ParsedFuncName);
auto sectionIdxsIt = rootSymbolToSectionIdxs.find(ParsedFuncName);
if (sectionIdxsIt == rootSymbolToSectionIdxs.end())
continue;
auto &sectionIdxs = sectionIdxsIt->getValue();
// If the same symbol is found in multiple sections, they might be
// identical, so we arbitrarily use the size from the first section.
currentSize += sections[*sectionIdxs.begin()]->getSize();
// Since BalancedPartitioning is sensitive to the initial order, we need
// to explicitly define it to be ordered by earliest timestamp.
for (unsigned sectionIdx : sectionIdxs) {
auto [it, wasInserted] =
sectionIdxToTimestamp.try_emplace(sectionIdx, timestamp);
if (!wasInserted)
it->getSecond() = std::min<size_t>(it->getSecond(), timestamp);
}
if (timestamp >= cutoffTimestamp || currentSize >= cutoffSize) {
++maxUN;
cutoffSize = 2 * currentSize;
cutoffTimestamp = 2 * cutoffTimestamp;
}
for (unsigned sectionIdx : sectionIdxs)
sectionIdxToFirstUN.try_emplace(sectionIdx, maxUN);
}
for (auto &[sectionIdx, firstUN] : sectionIdxToFirstUN)
for (auto un = firstUN; un <= maxUN; ++un)
startupSectionIdxUNs[sectionIdx].push_back(un);
++maxUN;
sectionIdxToFirstUN.clear();
}
// These uns should already be sorted without duplicates.
for (auto &[sectionIdx, uns] : startupSectionIdxUNs)
nodesForStartup.emplace_back(sectionIdx, uns);
llvm::sort(nodesForStartup, [&sectionIdxToTimestamp](auto &L, auto &R) {
return std::make_pair(sectionIdxToTimestamp[L.Id], L.Id) <
std::make_pair(sectionIdxToTimestamp[R.Id], R.Id);
});
}
SmallVector<unsigned> sectionIdxsForFunctionCompression,
sectionIdxsForDataCompression;
for (unsigned sectionIdx = 0; sectionIdx < sections.size(); sectionIdx++) {
if (startupSectionIdxUNs.count(sectionIdx))
continue;
const auto *isec = sections[sectionIdx];
if (isCodeSection(isec)) {
if (forFunctionCompression)
sectionIdxsForFunctionCompression.push_back(sectionIdx);
} else {
if (forDataCompression)
sectionIdxsForDataCompression.push_back(sectionIdx);
}
}
std::vector<BPFunctionNode> nodesForFunctionCompression,
nodesForDataCompression;
// Map a section index (to be ordered for compression) to a list of duplicate
// section indices (not ordered for compression).
DenseMap<unsigned, SmallVector<unsigned>> duplicateFunctionSectionIdxs,
duplicateDataSectionIdxs;
constructNodesForCompression(
sections, sectionToIdx, sectionIdxsForFunctionCompression,
nodesForFunctionCompression, duplicateFunctionSectionIdxs, maxUN);
constructNodesForCompression(
sections, sectionToIdx, sectionIdxsForDataCompression,
nodesForDataCompression, duplicateDataSectionIdxs, maxUN);
// Sort nodes by their Id (which is the section index) because the input
// linker order tends to be not bad
llvm::sort(nodesForFunctionCompression,
[](auto &L, auto &R) { return L.Id < R.Id; });
llvm::sort(nodesForDataCompression,
[](auto &L, auto &R) { return L.Id < R.Id; });
{
TimeTraceScope timeScope("Balanced Partitioning");
BalancedPartitioningConfig config;
BalancedPartitioning bp(config);
bp.run(nodesForStartup);
bp.run(nodesForFunctionCompression);
bp.run(nodesForDataCompression);
}
unsigned numStartupSections = 0;
unsigned numCodeCompressionSections = 0;
unsigned numDuplicateCodeSections = 0;
unsigned numDataCompressionSections = 0;
unsigned numDuplicateDataSections = 0;
SetVector<const InputSection *> orderedSections;
// Order startup functions,
for (auto &node : nodesForStartup) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numStartupSections;
}
// then functions for compression,
for (auto &node : nodesForFunctionCompression) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numCodeCompressionSections;
auto It = duplicateFunctionSectionIdxs.find(node.Id);
if (It == duplicateFunctionSectionIdxs.end())
continue;
for (auto dupSecIdx : It->getSecond()) {
const auto *dupIsec = sections[dupSecIdx];
if (orderedSections.insert(dupIsec))
++numDuplicateCodeSections;
}
}
// then data for compression.
for (auto &node : nodesForDataCompression) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numDataCompressionSections;
auto It = duplicateDataSectionIdxs.find(node.Id);
if (It == duplicateDataSectionIdxs.end())
continue;
for (auto dupSecIdx : It->getSecond()) {
const auto *dupIsec = sections[dupSecIdx];
if (orderedSections.insert(dupIsec))
++numDuplicateDataSections;
}
}
if (verbose) {
unsigned numTotalOrderedSections =
numStartupSections + numCodeCompressionSections +
numDuplicateCodeSections + numDataCompressionSections +
numDuplicateDataSections;
dbgs()
<< "Ordered " << numTotalOrderedSections
<< " sections using balanced partitioning:\n Functions for startup: "
<< numStartupSections
<< "\n Functions for compression: " << numCodeCompressionSections
<< "\n Duplicate functions: " << numDuplicateCodeSections
<< "\n Data for compression: " << numDataCompressionSections
<< "\n Duplicate data: " << numDuplicateDataSections << "\n";
if (!profilePath.empty()) {
// Evaluate this function order for startup
StringMap<std::pair<uint64_t, uint64_t>> symbolToPageNumbers;
const uint64_t pageSize = (1 << 14);
uint64_t currentAddress = 0;
for (const auto *isec : orderedSections) {
for (Symbol *sym : isec->symbols) {
if (auto *d = dyn_cast_or_null<Defined>(sym)) {
uint64_t startAddress = currentAddress + d->value;
uint64_t endAddress = startAddress + d->size;
uint64_t firstPage = startAddress / pageSize;
// I think the kernel might pull in a few pages when one it touched,
// so it might be more accurate to force lastPage to be aligned by
// 4?
uint64_t lastPage = endAddress / pageSize;
StringRef rootSymbol = d->getName();
rootSymbol = getRootSymbol(rootSymbol);
symbolToPageNumbers.try_emplace(rootSymbol, firstPage, lastPage);
if (rootSymbol.consume_front("_") || rootSymbol.consume_front("l_"))
symbolToPageNumbers.try_emplace(rootSymbol, firstPage, lastPage);
}
}
currentAddress += isec->getSize();
}
// The area under the curve F where F(t) is the total number of page
// faults at step t.
unsigned area = 0;
for (auto &trace : reader->getTemporalProfTraces()) {
SmallSet<uint64_t, 0> touchedPages;
for (unsigned step = 0; step < trace.FunctionNameRefs.size(); step++) {
auto traceId = trace.FunctionNameRefs[step];
auto [Filename, ParsedFuncName] =
getParsedIRPGOName(reader->getSymtab().getFuncOrVarName(traceId));
ParsedFuncName = getRootSymbol(ParsedFuncName);
auto it = symbolToPageNumbers.find(ParsedFuncName);
if (it != symbolToPageNumbers.end()) {
auto &[firstPage, lastPage] = it->getValue();
for (uint64_t i = firstPage; i <= lastPage; i++)
touchedPages.insert(i);
}
area += touchedPages.size();
}
}
dbgs() << "Total area under the page fault curve: " << (float)area
<< "\n";
}
}
DenseMap<const InputSection *, size_t> sectionPriorities;
for (const auto *isec : orderedSections)
sectionPriorities[isec] = --highestAvailablePriority;
return sectionPriorities;
}