| //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "bolt/Profile/BoltAddressTranslation.h" |
| #include "bolt/Core/BinaryFunction.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/LEB128.h" |
| |
| #define DEBUG_TYPE "bolt-bat" |
| |
| namespace llvm { |
| namespace bolt { |
| |
| const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat"; |
| |
| void BoltAddressTranslation::writeEntriesForBB(MapTy &Map, |
| const BinaryBasicBlock &BB, |
| uint64_t FuncAddress) { |
| const uint64_t BBOutputOffset = |
| BB.getOutputAddressRange().first - FuncAddress; |
| const uint32_t BBInputOffset = BB.getInputOffset(); |
| |
| // Every output BB must track back to an input BB for profile collection |
| // in bolted binaries. If we are missing an offset, it means this block was |
| // created by a pass. We will skip writing any entries for it, and this means |
| // any traffic happening in this block will map to the previous block in the |
| // layout. This covers the case where an input basic block is split into two, |
| // and the second one lacks any offset. |
| if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n"); |
| LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) |
| << " Val: " << Twine::utohexstr(BBInputOffset) << "\n"); |
| // In case of conflicts (same Key mapping to different Vals), the last |
| // update takes precedence. Of course it is not ideal to have conflicts and |
| // those happen when we have an empty BB that either contained only |
| // NOPs or a jump to the next block (successor). Either way, the successor |
| // and this deleted block will both share the same output address (the same |
| // key), and we need to map back. We choose here to privilege the successor by |
| // allowing it to overwrite the previously inserted key in the map. |
| Map[BBOutputOffset] = BBInputOffset << 1; |
| |
| const auto &IOAddressMap = |
| BB.getFunction()->getBinaryContext().getIOAddressMap(); |
| |
| for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { |
| const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; |
| const auto OutputAddress = IOAddressMap.lookup(InputAddress); |
| assert(OutputAddress && "Unknown instruction address"); |
| const auto OutputOffset = *OutputAddress - FuncAddress; |
| |
| // Is this the first instruction in the BB? No need to duplicate the entry. |
| if (OutputOffset == BBOutputOffset) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " |
| << Twine::utohexstr(InputOffset) << " (branch)\n"); |
| Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, |
| (InputOffset << 1) | BRANCHENTRY)); |
| } |
| } |
| |
| void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n"); |
| for (auto &BFI : BC.getBinaryFunctions()) { |
| const BinaryFunction &Function = BFI.second; |
| // We don't need a translation table if the body of the function hasn't |
| // changed |
| if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n"); |
| LLVM_DEBUG(dbgs() << " Address reference: 0x" |
| << Twine::utohexstr(Function.getOutputAddress()) << "\n"); |
| |
| MapTy Map; |
| for (const BinaryBasicBlock *const BB : |
| Function.getLayout().getMainFragment()) |
| writeEntriesForBB(Map, *BB, Function.getOutputAddress()); |
| Maps.emplace(Function.getOutputAddress(), std::move(Map)); |
| |
| if (!Function.isSplit()) |
| continue; |
| |
| // Split maps |
| LLVM_DEBUG(dbgs() << " Cold part\n"); |
| for (const FunctionFragment &FF : |
| Function.getLayout().getSplitFragments()) { |
| Map.clear(); |
| for (const BinaryBasicBlock *const BB : FF) |
| writeEntriesForBB(Map, *BB, FF.getAddress()); |
| |
| Maps.emplace(FF.getAddress(), std::move(Map)); |
| ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress()); |
| } |
| } |
| |
| // Output addresses are delta-encoded |
| uint64_t PrevAddress = 0; |
| writeMaps</*Cold=*/false>(Maps, PrevAddress, OS); |
| writeMaps</*Cold=*/true>(Maps, PrevAddress, OS); |
| |
| BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n"; |
| } |
| |
| APInt BoltAddressTranslation::calculateBranchEntriesBitMask(MapTy &Map, |
| size_t EqualElems) { |
| APInt BitMask(alignTo(EqualElems, 8), 0); |
| size_t Index = 0; |
| for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { |
| if (Index == EqualElems) |
| break; |
| const uint32_t OutputOffset = KeyVal.second; |
| if (OutputOffset & BRANCHENTRY) |
| BitMask.setBit(Index); |
| ++Index; |
| } |
| return BitMask; |
| } |
| |
| size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map) const { |
| size_t EqualOffsets = 0; |
| for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) { |
| const uint32_t OutputOffset = KeyVal.first; |
| const uint32_t InputOffset = KeyVal.second >> 1; |
| if (OutputOffset == InputOffset) |
| ++EqualOffsets; |
| else |
| break; |
| } |
| return EqualOffsets; |
| } |
| |
| template <bool Cold> |
| void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps, |
| uint64_t &PrevAddress, raw_ostream &OS) { |
| const uint32_t NumFuncs = |
| llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) { |
| return Cold == ColdPartSource.count(Address); |
| }); |
| encodeULEB128(NumFuncs, OS); |
| LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "") |
| << " functions for BAT.\n"); |
| size_t PrevIndex = 0; |
| for (auto &MapEntry : Maps) { |
| const uint64_t Address = MapEntry.first; |
| // Only process cold fragments in cold mode, and vice versa. |
| if (Cold != ColdPartSource.count(Address)) |
| continue; |
| MapTy &Map = MapEntry.second; |
| const uint32_t NumEntries = Map.size(); |
| LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" |
| << Twine::utohexstr(Address) << ".\n"); |
| encodeULEB128(Address - PrevAddress, OS); |
| PrevAddress = Address; |
| if (Cold) { |
| size_t HotIndex = |
| std::distance(ColdPartSource.begin(), ColdPartSource.find(Address)); |
| encodeULEB128(HotIndex - PrevIndex, OS); |
| PrevIndex = HotIndex; |
| } |
| encodeULEB128(NumEntries, OS); |
| // For hot fragments only: encode the number of equal offsets |
| // (output = input) in the beginning of the function. Only encode one offset |
| // in these cases. |
| const size_t EqualElems = Cold ? 0 : getNumEqualOffsets(Map); |
| if (!Cold) { |
| encodeULEB128(EqualElems, OS); |
| if (EqualElems) { |
| const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; |
| APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems); |
| OS.write(reinterpret_cast<const char *>(BranchEntries.getRawData()), |
| BranchEntriesBytes); |
| LLVM_DEBUG({ |
| dbgs() << "BranchEntries: "; |
| SmallString<8> BitMaskStr; |
| BranchEntries.toString(BitMaskStr, 2, false); |
| dbgs() << BitMaskStr << '\n'; |
| }); |
| } |
| } |
| size_t Index = 0; |
| uint64_t InOffset = 0; |
| // Output and Input addresses and delta-encoded |
| for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { |
| const uint64_t OutputAddress = KeyVal.first + Address; |
| encodeULEB128(OutputAddress - PrevAddress, OS); |
| PrevAddress = OutputAddress; |
| if (Index++ >= EqualElems) |
| encodeSLEB128(KeyVal.second - InOffset, OS); |
| InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded |
| } |
| } |
| } |
| |
| std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) { |
| DataExtractor DE = DataExtractor(Buf, true, 8); |
| uint64_t Offset = 0; |
| if (Buf.size() < 12) |
| return make_error_code(llvm::errc::io_error); |
| |
| const uint32_t NameSz = DE.getU32(&Offset); |
| const uint32_t DescSz = DE.getU32(&Offset); |
| const uint32_t Type = DE.getU32(&Offset); |
| |
| if (Type != BinarySection::NT_BOLT_BAT || |
| Buf.size() + Offset < alignTo(NameSz, 4) + DescSz) |
| return make_error_code(llvm::errc::io_error); |
| |
| StringRef Name = Buf.slice(Offset, Offset + NameSz); |
| Offset = alignTo(Offset + NameSz, 4); |
| if (Name.substr(0, 4) != "BOLT") |
| return make_error_code(llvm::errc::io_error); |
| |
| Error Err(Error::success()); |
| std::vector<uint64_t> HotFuncs; |
| uint64_t PrevAddress = 0; |
| parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err); |
| parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err); |
| OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n"; |
| return errorToErrorCode(std::move(Err)); |
| } |
| |
| template <bool Cold> |
| void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs, |
| uint64_t &PrevAddress, DataExtractor &DE, |
| uint64_t &Offset, Error &Err) { |
| const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err); |
| LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "") |
| << " functions\n"); |
| size_t HotIndex = 0; |
| for (uint32_t I = 0; I < NumFunctions; ++I) { |
| const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err); |
| PrevAddress = Address; |
| if (Cold) { |
| HotIndex += DE.getULEB128(&Offset, &Err); |
| ColdPartSource.emplace(Address, HotFuncs[HotIndex]); |
| } else { |
| HotFuncs.push_back(Address); |
| } |
| const uint32_t NumEntries = DE.getULEB128(&Offset, &Err); |
| // Equal offsets, hot fragments only. |
| size_t EqualElems = 0; |
| APInt BEBitMask; |
| if (!Cold) { |
| EqualElems = DE.getULEB128(&Offset, &Err); |
| LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n", |
| EqualElems, getULEB128Size(EqualElems))); |
| if (EqualElems) { |
| const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; |
| BEBitMask = APInt(alignTo(EqualElems, 8), 0); |
| LoadIntFromMemory( |
| BEBitMask, |
| reinterpret_cast<const uint8_t *>( |
| DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()), |
| BranchEntriesBytes); |
| LLVM_DEBUG({ |
| dbgs() << "BEBitMask: "; |
| SmallString<8> BitMaskStr; |
| BEBitMask.toString(BitMaskStr, 2, false); |
| dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n"; |
| }); |
| } |
| } |
| MapTy Map; |
| |
| LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" |
| << Twine::utohexstr(Address) << "\n"); |
| uint64_t InputOffset = 0; |
| for (uint32_t J = 0; J < NumEntries; ++J) { |
| const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err); |
| const uint64_t OutputAddress = PrevAddress + OutputDelta; |
| const uint64_t OutputOffset = OutputAddress - Address; |
| PrevAddress = OutputAddress; |
| int64_t InputDelta = 0; |
| if (J < EqualElems) { |
| InputOffset = (OutputOffset << 1) | BEBitMask[J]; |
| } else { |
| InputDelta = DE.getSLEB128(&Offset, &Err); |
| InputOffset += InputDelta; |
| } |
| Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset)); |
| LLVM_DEBUG( |
| dbgs() << formatv("{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}\n", |
| OutputOffset, InputOffset, OutputDelta, |
| getULEB128Size(OutputDelta), InputDelta, |
| (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), |
| OutputAddress)); |
| } |
| Maps.insert(std::pair<uint64_t, MapTy>(Address, Map)); |
| } |
| } |
| |
| void BoltAddressTranslation::dump(raw_ostream &OS) { |
| const size_t NumTables = Maps.size(); |
| OS << "BAT tables for " << NumTables << " functions:\n"; |
| for (const auto &MapEntry : Maps) { |
| OS << "Function Address: 0x" << Twine::utohexstr(MapEntry.first) << "\n"; |
| OS << "BB mappings:\n"; |
| for (const auto &Entry : MapEntry.second) { |
| const bool IsBranch = Entry.second & BRANCHENTRY; |
| const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit |
| OS << "0x" << Twine::utohexstr(Entry.first) << " -> " |
| << "0x" << Twine::utohexstr(Val); |
| if (IsBranch) |
| OS << " (branch)"; |
| OS << "\n"; |
| } |
| OS << "\n"; |
| } |
| const size_t NumColdParts = ColdPartSource.size(); |
| if (!NumColdParts) |
| return; |
| |
| OS << NumColdParts << " cold mappings:\n"; |
| for (const auto &Entry : ColdPartSource) { |
| OS << "0x" << Twine::utohexstr(Entry.first) << " -> " |
| << Twine::utohexstr(Entry.second) << "\n"; |
| } |
| OS << "\n"; |
| } |
| |
| uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, |
| uint64_t Offset, |
| bool IsBranchSrc) const { |
| auto Iter = Maps.find(FuncAddress); |
| if (Iter == Maps.end()) |
| return Offset; |
| |
| const MapTy &Map = Iter->second; |
| auto KeyVal = Map.upper_bound(Offset); |
| if (KeyVal == Map.begin()) |
| return Offset; |
| |
| --KeyVal; |
| |
| const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit |
| // Branch source addresses are translated to the first instruction of the |
| // source BB to avoid accounting for modifications BOLT may have made in the |
| // BB regarding deletion/addition of instructions. |
| if (IsBranchSrc) |
| return Val; |
| return Offset - KeyVal->first + Val; |
| } |
| |
| std::optional<BoltAddressTranslation::FallthroughListTy> |
| BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, |
| uint64_t From, |
| uint64_t To) const { |
| SmallVector<std::pair<uint64_t, uint64_t>, 16> Res; |
| |
| // Filter out trivial case |
| if (From >= To) |
| return Res; |
| |
| From -= FuncAddress; |
| To -= FuncAddress; |
| |
| auto Iter = Maps.find(FuncAddress); |
| if (Iter == Maps.end()) |
| return std::nullopt; |
| |
| const MapTy &Map = Iter->second; |
| auto FromIter = Map.upper_bound(From); |
| if (FromIter == Map.begin()) |
| return Res; |
| // Skip instruction entries, to create fallthroughs we are only interested in |
| // BB boundaries |
| do { |
| if (FromIter == Map.begin()) |
| return Res; |
| --FromIter; |
| } while (FromIter->second & BRANCHENTRY); |
| |
| auto ToIter = Map.upper_bound(To); |
| if (ToIter == Map.begin()) |
| return Res; |
| --ToIter; |
| if (FromIter->first >= ToIter->first) |
| return Res; |
| |
| for (auto Iter = FromIter; Iter != ToIter;) { |
| const uint32_t Src = Iter->first; |
| if (Iter->second & BRANCHENTRY) { |
| ++Iter; |
| continue; |
| } |
| |
| ++Iter; |
| while (Iter->second & BRANCHENTRY && Iter != ToIter) |
| ++Iter; |
| if (Iter->second & BRANCHENTRY) |
| break; |
| Res.emplace_back(Src, Iter->first); |
| } |
| |
| return Res; |
| } |
| |
| uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const { |
| auto Iter = ColdPartSource.find(Address); |
| if (Iter == ColdPartSource.end()) |
| return 0; |
| return Iter->second; |
| } |
| |
| bool BoltAddressTranslation::enabledFor( |
| llvm::object::ELFObjectFileBase *InputFile) const { |
| for (const SectionRef &Section : InputFile->sections()) { |
| Expected<StringRef> SectionNameOrErr = Section.getName(); |
| if (Error E = SectionNameOrErr.takeError()) |
| continue; |
| |
| if (SectionNameOrErr.get() == SECTION_NAME) |
| return true; |
| } |
| return false; |
| } |
| |
| void BoltAddressTranslation::saveMetadata(BinaryContext &BC) { |
| for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) { |
| // We don't need a translation table if the body of the function hasn't |
| // changed |
| if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple())) |
| continue; |
| // Prepare function and block hashes |
| FuncHashes[BF.getAddress()].first = BF.computeHash(); |
| BF.computeBlockHashes(); |
| for (const BinaryBasicBlock &BB : BF) |
| FuncHashes[BF.getAddress()].second.emplace(BB.getInputOffset(), |
| BB.getHash()); |
| } |
| } |
| } // namespace bolt |
| } // namespace llvm |