|  | /* | 
|  | * kmp_tasking.cpp -- OpenMP 3.0 tasking support. | 
|  | */ | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "kmp.h" | 
|  | #include "kmp_i18n.h" | 
|  | #include "kmp_itt.h" | 
|  | #include "kmp_stats.h" | 
|  | #include "kmp_wait_release.h" | 
|  | #include "kmp_taskdeps.h" | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | #include "ompt-specific.h" | 
|  | #endif | 
|  |  | 
|  | #if ENABLE_LIBOMPTARGET | 
|  | static void (*tgt_target_nowait_query)(void **); | 
|  |  | 
|  | void __kmp_init_target_task() { | 
|  | *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* forward declaration */ | 
|  | static void __kmp_enable_tasking(kmp_task_team_t *task_team, | 
|  | kmp_info_t *this_thr); | 
|  | static void __kmp_alloc_task_deque(kmp_info_t *thread, | 
|  | kmp_thread_data_t *thread_data); | 
|  | static int __kmp_realloc_task_threads_data(kmp_info_t *thread, | 
|  | kmp_task_team_t *task_team); | 
|  | static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); | 
|  | #if OMPX_TASKGRAPH | 
|  | static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id); | 
|  | int __kmp_taskloop_task(int gtid, void *ptask); | 
|  | #endif | 
|  |  | 
|  | #ifdef BUILD_TIED_TASK_STACK | 
|  |  | 
|  | //  __kmp_trace_task_stack: print the tied tasks from the task stack in order | 
|  | //  from top do bottom | 
|  | // | 
|  | //  gtid: global thread identifier for thread containing stack | 
|  | //  thread_data: thread data for task team thread containing stack | 
|  | //  threshold: value above which the trace statement triggers | 
|  | //  location: string identifying call site of this function (for trace) | 
|  | static void __kmp_trace_task_stack(kmp_int32 gtid, | 
|  | kmp_thread_data_t *thread_data, | 
|  | int threshold, char *location) { | 
|  | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; | 
|  | kmp_taskdata_t **stack_top = task_stack->ts_top; | 
|  | kmp_int32 entries = task_stack->ts_entries; | 
|  | kmp_taskdata_t *tied_task; | 
|  |  | 
|  | KA_TRACE( | 
|  | threshold, | 
|  | ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " | 
|  | "first_block = %p, stack_top = %p \n", | 
|  | location, gtid, entries, task_stack->ts_first_block, stack_top)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(stack_top != NULL); | 
|  | KMP_DEBUG_ASSERT(entries > 0); | 
|  |  | 
|  | while (entries != 0) { | 
|  | KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); | 
|  | // fix up ts_top if we need to pop from previous block | 
|  | if (entries & TASK_STACK_INDEX_MASK == 0) { | 
|  | kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); | 
|  |  | 
|  | stack_block = stack_block->sb_prev; | 
|  | stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; | 
|  | } | 
|  |  | 
|  | // finish bookkeeping | 
|  | stack_top--; | 
|  | entries--; | 
|  |  | 
|  | tied_task = *stack_top; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(tied_task != NULL); | 
|  | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); | 
|  |  | 
|  | KA_TRACE(threshold, | 
|  | ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, " | 
|  | "stack_top=%p, tied_task=%p\n", | 
|  | location, gtid, entries, stack_top, tied_task)); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); | 
|  |  | 
|  | KA_TRACE(threshold, | 
|  | ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", | 
|  | location, gtid)); | 
|  | } | 
|  |  | 
|  | //  __kmp_init_task_stack: initialize the task stack for the first time | 
|  | //  after a thread_data structure is created. | 
|  | //  It should not be necessary to do this again (assuming the stack works). | 
|  | // | 
|  | //  gtid: global thread identifier of calling thread | 
|  | //  thread_data: thread data for task team thread containing stack | 
|  | static void __kmp_init_task_stack(kmp_int32 gtid, | 
|  | kmp_thread_data_t *thread_data) { | 
|  | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; | 
|  | kmp_stack_block_t *first_block; | 
|  |  | 
|  | // set up the first block of the stack | 
|  | first_block = &task_stack->ts_first_block; | 
|  | task_stack->ts_top = (kmp_taskdata_t **)first_block; | 
|  | memset((void *)first_block, '\0', | 
|  | TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); | 
|  |  | 
|  | // initialize the stack to be empty | 
|  | task_stack->ts_entries = TASK_STACK_EMPTY; | 
|  | first_block->sb_next = NULL; | 
|  | first_block->sb_prev = NULL; | 
|  | } | 
|  |  | 
|  | //  __kmp_free_task_stack: free the task stack when thread_data is destroyed. | 
|  | // | 
|  | //  gtid: global thread identifier for calling thread | 
|  | //  thread_data: thread info for thread containing stack | 
|  | static void __kmp_free_task_stack(kmp_int32 gtid, | 
|  | kmp_thread_data_t *thread_data) { | 
|  | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; | 
|  | kmp_stack_block_t *stack_block = &task_stack->ts_first_block; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); | 
|  | // free from the second block of the stack | 
|  | while (stack_block != NULL) { | 
|  | kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; | 
|  |  | 
|  | stack_block->sb_next = NULL; | 
|  | stack_block->sb_prev = NULL; | 
|  | if (stack_block != &task_stack->ts_first_block) { | 
|  | __kmp_thread_free(thread, | 
|  | stack_block); // free the block, if not the first | 
|  | } | 
|  | stack_block = next_block; | 
|  | } | 
|  | // initialize the stack to be empty | 
|  | task_stack->ts_entries = 0; | 
|  | task_stack->ts_top = NULL; | 
|  | } | 
|  |  | 
|  | //  __kmp_push_task_stack: Push the tied task onto the task stack. | 
|  | //     Grow the stack if necessary by allocating another block. | 
|  | // | 
|  | //  gtid: global thread identifier for calling thread | 
|  | //  thread: thread info for thread containing stack | 
|  | //  tied_task: the task to push on the stack | 
|  | static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, | 
|  | kmp_taskdata_t *tied_task) { | 
|  | // GEH - need to consider what to do if tt_threads_data not allocated yet | 
|  | kmp_thread_data_t *thread_data = | 
|  | &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; | 
|  | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; | 
|  |  | 
|  | if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { | 
|  | return; // Don't push anything on stack if team or team tasks are serialized | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); | 
|  | KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); | 
|  |  | 
|  | KA_TRACE(20, | 
|  | ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", | 
|  | gtid, thread, tied_task)); | 
|  | // Store entry | 
|  | *(task_stack->ts_top) = tied_task; | 
|  |  | 
|  | // Do bookkeeping for next push | 
|  | task_stack->ts_top++; | 
|  | task_stack->ts_entries++; | 
|  |  | 
|  | if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { | 
|  | // Find beginning of this task block | 
|  | kmp_stack_block_t *stack_block = | 
|  | (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); | 
|  |  | 
|  | // Check if we already have a block | 
|  | if (stack_block->sb_next != | 
|  | NULL) { // reset ts_top to beginning of next block | 
|  | task_stack->ts_top = &stack_block->sb_next->sb_block[0]; | 
|  | } else { // Alloc new block and link it up | 
|  | kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( | 
|  | thread, sizeof(kmp_stack_block_t)); | 
|  |  | 
|  | task_stack->ts_top = &new_block->sb_block[0]; | 
|  | stack_block->sb_next = new_block; | 
|  | new_block->sb_prev = stack_block; | 
|  | new_block->sb_next = NULL; | 
|  |  | 
|  | KA_TRACE( | 
|  | 30, | 
|  | ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", | 
|  | gtid, tied_task, new_block)); | 
|  | } | 
|  | } | 
|  | KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, | 
|  | tied_task)); | 
|  | } | 
|  |  | 
|  | //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return | 
|  | //  the task, just check to make sure it matches the ending task passed in. | 
|  | // | 
|  | //  gtid: global thread identifier for the calling thread | 
|  | //  thread: thread info structure containing stack | 
|  | //  tied_task: the task popped off the stack | 
|  | //  ending_task: the task that is ending (should match popped task) | 
|  | static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, | 
|  | kmp_taskdata_t *ending_task) { | 
|  | // GEH - need to consider what to do if tt_threads_data not allocated yet | 
|  | kmp_thread_data_t *thread_data = | 
|  | &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; | 
|  | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; | 
|  | kmp_taskdata_t *tied_task; | 
|  |  | 
|  | if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { | 
|  | // Don't pop anything from stack if team or team tasks are serialized | 
|  | return; | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); | 
|  | KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, | 
|  | thread)); | 
|  |  | 
|  | // fix up ts_top if we need to pop from previous block | 
|  | if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { | 
|  | kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); | 
|  |  | 
|  | stack_block = stack_block->sb_prev; | 
|  | task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; | 
|  | } | 
|  |  | 
|  | // finish bookkeeping | 
|  | task_stack->ts_top--; | 
|  | task_stack->ts_entries--; | 
|  |  | 
|  | tied_task = *(task_stack->ts_top); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(tied_task != NULL); | 
|  | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); | 
|  | KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, | 
|  | tied_task)); | 
|  | return; | 
|  | } | 
|  | #endif /* BUILD_TIED_TASK_STACK */ | 
|  |  | 
|  | // returns 1 if new task is allowed to execute, 0 otherwise | 
|  | // checks Task Scheduling constraint (if requested) and | 
|  | // mutexinoutset dependencies if any | 
|  | static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, | 
|  | const kmp_taskdata_t *tasknew, | 
|  | const kmp_taskdata_t *taskcurr) { | 
|  | if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { | 
|  | // Check if the candidate obeys the Task Scheduling Constraints (TSC) | 
|  | // only descendant of all deferred tied tasks can be scheduled, checking | 
|  | // the last one is enough, as it in turn is the descendant of all others | 
|  | kmp_taskdata_t *current = taskcurr->td_last_tied; | 
|  | KMP_DEBUG_ASSERT(current != NULL); | 
|  | // check if the task is not suspended on barrier | 
|  | if (current->td_flags.tasktype == TASK_EXPLICIT || | 
|  | current->td_taskwait_thread > 0) { // <= 0 on barrier | 
|  | kmp_int32 level = current->td_level; | 
|  | kmp_taskdata_t *parent = tasknew->td_parent; | 
|  | while (parent != current && parent->td_level > level) { | 
|  | // check generation up to the level of the current task | 
|  | parent = parent->td_parent; | 
|  | KMP_DEBUG_ASSERT(parent != NULL); | 
|  | } | 
|  | if (parent != current) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Check mutexinoutset dependencies, acquire locks | 
|  | kmp_depnode_t *node = tasknew->td_depnode; | 
|  | #if OMPX_TASKGRAPH | 
|  | if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { | 
|  | #else | 
|  | if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { | 
|  | #endif | 
|  | for (int i = 0; i < node->dn.mtx_num_locks; ++i) { | 
|  | KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); | 
|  | if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) | 
|  | continue; | 
|  | // could not get the lock, release previous locks | 
|  | for (int j = i - 1; j >= 0; --j) | 
|  | __kmp_release_lock(node->dn.mtx_locks[j], gtid); | 
|  | return false; | 
|  | } | 
|  | // negative num_locks means all locks acquired successfully | 
|  | node->dn.mtx_num_locks = -node->dn.mtx_num_locks; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // __kmp_realloc_task_deque: | 
|  | // Re-allocates a task deque for a particular thread, copies the content from | 
|  | // the old deque and adjusts the necessary data structures relating to the | 
|  | // deque. This operation must be done with the deque_lock being held | 
|  | static void __kmp_realloc_task_deque(kmp_info_t *thread, | 
|  | kmp_thread_data_t *thread_data) { | 
|  | kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); | 
|  | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); | 
|  | kmp_int32 new_size = 2 * size; | 
|  |  | 
|  | KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " | 
|  | "%d] for thread_data %p\n", | 
|  | __kmp_gtid_from_thread(thread), size, new_size, thread_data)); | 
|  |  | 
|  | kmp_taskdata_t **new_deque = | 
|  | (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); | 
|  |  | 
|  | int i, j; | 
|  | for (i = thread_data->td.td_deque_head, j = 0; j < size; | 
|  | i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) | 
|  | new_deque[j] = thread_data->td.td_deque[i]; | 
|  |  | 
|  | __kmp_free(thread_data->td.td_deque); | 
|  |  | 
|  | thread_data->td.td_deque_head = 0; | 
|  | thread_data->td.td_deque_tail = size; | 
|  | thread_data->td.td_deque = new_deque; | 
|  | thread_data->td.td_deque_size = new_size; | 
|  | } | 
|  |  | 
|  | static kmp_task_pri_t *__kmp_alloc_task_pri_list() { | 
|  | kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t)); | 
|  | kmp_thread_data_t *thread_data = &l->td; | 
|  | __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | thread_data->td.td_deque_last_stolen = -1; | 
|  | KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] " | 
|  | "for thread_data %p\n", | 
|  | __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data)); | 
|  | thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( | 
|  | INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); | 
|  | thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; | 
|  | return l; | 
|  | } | 
|  |  | 
|  | // The function finds the deque of priority tasks with given priority, or | 
|  | // allocates a new deque and put it into sorted (high -> low) list of deques. | 
|  | // Deques of non-default priority tasks are shared between all threads in team, | 
|  | // as opposed to per-thread deques of tasks with default priority. | 
|  | // The function is called under the lock task_team->tt.tt_task_pri_lock. | 
|  | static kmp_thread_data_t * | 
|  | __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) { | 
|  | kmp_thread_data_t *thread_data; | 
|  | kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; | 
|  | if (lst->priority == pri) { | 
|  | // Found queue of tasks with given priority. | 
|  | thread_data = &lst->td; | 
|  | } else if (lst->priority < pri) { | 
|  | // All current priority queues contain tasks with lower priority. | 
|  | // Allocate new one for given priority tasks. | 
|  | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); | 
|  | thread_data = &list->td; | 
|  | list->priority = pri; | 
|  | list->next = lst; | 
|  | task_team->tt.tt_task_pri_list = list; | 
|  | } else { // task_team->tt.tt_task_pri_list->priority > pri | 
|  | kmp_task_pri_t *next_queue = lst->next; | 
|  | while (next_queue && next_queue->priority > pri) { | 
|  | lst = next_queue; | 
|  | next_queue = lst->next; | 
|  | } | 
|  | // lst->priority > pri && (next == NULL || pri >= next->priority) | 
|  | if (next_queue == NULL) { | 
|  | // No queue with pri priority, need to allocate new one. | 
|  | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); | 
|  | thread_data = &list->td; | 
|  | list->priority = pri; | 
|  | list->next = NULL; | 
|  | lst->next = list; | 
|  | } else if (next_queue->priority == pri) { | 
|  | // Found queue of tasks with given priority. | 
|  | thread_data = &next_queue->td; | 
|  | } else { // lst->priority > pri > next->priority | 
|  | // insert newly allocated between existed queues | 
|  | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); | 
|  | thread_data = &list->td; | 
|  | list->priority = pri; | 
|  | list->next = next_queue; | 
|  | lst->next = list; | 
|  | } | 
|  | } | 
|  | return thread_data; | 
|  | } | 
|  |  | 
|  | //  __kmp_push_priority_task: Add a task to the team's priority task deque | 
|  | static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread, | 
|  | kmp_taskdata_t *taskdata, | 
|  | kmp_task_team_t *task_team, | 
|  | kmp_int32 pri) { | 
|  | kmp_thread_data_t *thread_data = NULL; | 
|  | KA_TRACE(20, | 
|  | ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n", | 
|  | gtid, taskdata, pri)); | 
|  |  | 
|  | // Find task queue specific to priority value | 
|  | kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; | 
|  | if (UNLIKELY(lst == NULL)) { | 
|  | __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | if (task_team->tt.tt_task_pri_list == NULL) { | 
|  | // List of queues is still empty, allocate one. | 
|  | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); | 
|  | thread_data = &list->td; | 
|  | list->priority = pri; | 
|  | list->next = NULL; | 
|  | task_team->tt.tt_task_pri_list = list; | 
|  | } else { | 
|  | // Other thread initialized a queue. Check if it fits and get thread_data. | 
|  | thread_data = __kmp_get_priority_deque_data(task_team, pri); | 
|  | } | 
|  | __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | } else { | 
|  | if (lst->priority == pri) { | 
|  | // Found queue of tasks with given priority. | 
|  | thread_data = &lst->td; | 
|  | } else { | 
|  | __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | thread_data = __kmp_get_priority_deque_data(task_team, pri); | 
|  | __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | } | 
|  | } | 
|  | KMP_DEBUG_ASSERT(thread_data); | 
|  |  | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | // Check if deque is full | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | if (__kmp_enable_task_throttling && | 
|  | __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, | 
|  | thread->th.th_current_task)) { | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning " | 
|  | "TASK_NOT_PUSHED for task %p\n", | 
|  | gtid, taskdata)); | 
|  | return TASK_NOT_PUSHED; | 
|  | } else { | 
|  | // expand deque to push the task which is not allowed to execute | 
|  | __kmp_realloc_task_deque(thread, thread_data); | 
|  | } | 
|  | } | 
|  | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < | 
|  | TASK_DEQUE_SIZE(thread_data->td)); | 
|  | // Push taskdata. | 
|  | thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; | 
|  | // Wrap index. | 
|  | thread_data->td.td_deque_tail = | 
|  | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); | 
|  | TCW_4(thread_data->td.td_deque_ntasks, | 
|  | TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count | 
|  | KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self | 
|  | KMP_FSYNC_RELEASING(taskdata); // releasing child | 
|  | KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning " | 
|  | "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, taskdata, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | task_team->tt.tt_num_task_pri++; // atomic inc | 
|  | return TASK_SUCCESSFULLY_PUSHED; | 
|  | } | 
|  |  | 
|  | //  __kmp_push_task: Add a task to the thread's deque | 
|  | static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  |  | 
|  | // If we encounter a hidden helper task, and the current thread is not a | 
|  | // hidden helper thread, we have to give the task to any hidden helper thread | 
|  | // starting from its shadow one. | 
|  | if (UNLIKELY(taskdata->td_flags.hidden_helper && | 
|  | !KMP_HIDDEN_HELPER_THREAD(gtid))) { | 
|  | kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid); | 
|  | __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid)); | 
|  | // Signal the hidden helper threads. | 
|  | __kmp_hidden_helper_worker_thread_signal(); | 
|  | return TASK_SUCCESSFULLY_PUSHED; | 
|  | } | 
|  |  | 
|  | kmp_task_team_t *task_team = thread->th.th_task_team; | 
|  | kmp_int32 tid = __kmp_tid_from_gtid(gtid); | 
|  | kmp_thread_data_t *thread_data; | 
|  |  | 
|  | KA_TRACE(20, | 
|  | ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); | 
|  |  | 
|  | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { | 
|  | // untied task needs to increment counter so that the task structure is not | 
|  | // freed prematurely | 
|  | kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); | 
|  | KMP_DEBUG_USE_VAR(counter); | 
|  | KA_TRACE( | 
|  | 20, | 
|  | ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", | 
|  | gtid, counter, taskdata)); | 
|  | } | 
|  |  | 
|  | // The first check avoids building task_team thread data if serialized | 
|  | if (UNLIKELY(taskdata->td_flags.task_serial)) { | 
|  | KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " | 
|  | "TASK_NOT_PUSHED for task %p\n", | 
|  | gtid, taskdata)); | 
|  | return TASK_NOT_PUSHED; | 
|  | } | 
|  |  | 
|  | // Now that serialized tasks have returned, we can assume that we are not in | 
|  | // immediate exec mode | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  | if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { | 
|  | __kmp_enable_tasking(task_team, thread); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); | 
|  | KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); | 
|  |  | 
|  | if (taskdata->td_flags.priority_specified && task->data2.priority > 0 && | 
|  | __kmp_max_task_priority > 0) { | 
|  | int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority); | 
|  | return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri); | 
|  | } | 
|  |  | 
|  | // Find tasking deque specific to encountering thread | 
|  | thread_data = &task_team->tt.tt_threads_data[tid]; | 
|  |  | 
|  | // No lock needed since only owner can allocate. If the task is hidden_helper, | 
|  | // we don't need it either because we have initialized the dequeue for hidden | 
|  | // helper thread data. | 
|  | if (UNLIKELY(thread_data->td.td_deque == NULL)) { | 
|  | __kmp_alloc_task_deque(thread, thread_data); | 
|  | } | 
|  |  | 
|  | int locked = 0; | 
|  | // Check if deque is full | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | if (__kmp_enable_task_throttling && | 
|  | __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, | 
|  | thread->th.th_current_task)) { | 
|  | KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " | 
|  | "TASK_NOT_PUSHED for task %p\n", | 
|  | gtid, taskdata)); | 
|  | return TASK_NOT_PUSHED; | 
|  | } else { | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | locked = 1; | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | // expand deque to push the task which is not allowed to execute | 
|  | __kmp_realloc_task_deque(thread, thread_data); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Lock the deque for the task push operation | 
|  | if (!locked) { | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | // Need to recheck as we can get a proxy task from thread outside of OpenMP | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | if (__kmp_enable_task_throttling && | 
|  | __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, | 
|  | thread->th.th_current_task)) { | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " | 
|  | "returning TASK_NOT_PUSHED for task %p\n", | 
|  | gtid, taskdata)); | 
|  | return TASK_NOT_PUSHED; | 
|  | } else { | 
|  | // expand deque to push the task which is not allowed to execute | 
|  | __kmp_realloc_task_deque(thread, thread_data); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Must have room since no thread can add tasks but calling thread | 
|  | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < | 
|  | TASK_DEQUE_SIZE(thread_data->td)); | 
|  |  | 
|  | thread_data->td.td_deque[thread_data->td.td_deque_tail] = | 
|  | taskdata; // Push taskdata | 
|  | // Wrap index. | 
|  | thread_data->td.td_deque_tail = | 
|  | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); | 
|  | TCW_4(thread_data->td.td_deque_ntasks, | 
|  | TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count | 
|  | KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self | 
|  | KMP_FSYNC_RELEASING(taskdata); // releasing child | 
|  | KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " | 
|  | "task=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, taskdata, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  |  | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  |  | 
|  | return TASK_SUCCESSFULLY_PUSHED; | 
|  | } | 
|  |  | 
|  | // __kmp_pop_current_task_from_thread: set up current task from called thread | 
|  | // when team ends | 
|  | // | 
|  | // this_thr: thread structure to set current_task in. | 
|  | void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { | 
|  | KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " | 
|  | "this_thread=%p, curtask=%p, " | 
|  | "curtask_parent=%p\n", | 
|  | 0, this_thr, this_thr->th.th_current_task, | 
|  | this_thr->th.th_current_task->td_parent)); | 
|  |  | 
|  | this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; | 
|  |  | 
|  | KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " | 
|  | "this_thread=%p, curtask=%p, " | 
|  | "curtask_parent=%p\n", | 
|  | 0, this_thr, this_thr->th.th_current_task, | 
|  | this_thr->th.th_current_task->td_parent)); | 
|  | } | 
|  |  | 
|  | // __kmp_push_current_task_to_thread: set up current task in called thread for a | 
|  | // new team | 
|  | // | 
|  | // this_thr: thread structure to set up | 
|  | // team: team for implicit task data | 
|  | // tid: thread within team to set up | 
|  | void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, | 
|  | int tid) { | 
|  | // current task of the thread is a parent of the new just created implicit | 
|  | // tasks of new team | 
|  | KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " | 
|  | "curtask=%p " | 
|  | "parent_task=%p\n", | 
|  | tid, this_thr, this_thr->th.th_current_task, | 
|  | team->t.t_implicit_task_taskdata[tid].td_parent)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(this_thr != NULL); | 
|  |  | 
|  | if (tid == 0) { | 
|  | if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { | 
|  | team->t.t_implicit_task_taskdata[0].td_parent = | 
|  | this_thr->th.th_current_task; | 
|  | this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; | 
|  | } | 
|  | } else { | 
|  | team->t.t_implicit_task_taskdata[tid].td_parent = | 
|  | team->t.t_implicit_task_taskdata[0].td_parent; | 
|  | this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; | 
|  | } | 
|  |  | 
|  | KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " | 
|  | "curtask=%p " | 
|  | "parent_task=%p\n", | 
|  | tid, this_thr, this_thr->th.th_current_task, | 
|  | team->t.t_implicit_task_taskdata[tid].td_parent)); | 
|  | } | 
|  |  | 
|  | // __kmp_task_start: bookkeeping for a task starting execution | 
|  | // | 
|  | // GTID: global thread id of calling thread | 
|  | // task: task starting execution | 
|  | // current_task: task suspending | 
|  | static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, | 
|  | kmp_taskdata_t *current_task) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  |  | 
|  | KA_TRACE(10, | 
|  | ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", | 
|  | gtid, taskdata, current_task)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); | 
|  |  | 
|  | // mark currently executing task as suspended | 
|  | // TODO: GEH - make sure root team implicit task is initialized properly. | 
|  | // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); | 
|  | current_task->td_flags.executing = 0; | 
|  |  | 
|  | // Add task to stack if tied | 
|  | #ifdef BUILD_TIED_TASK_STACK | 
|  | if (taskdata->td_flags.tiedness == TASK_TIED) { | 
|  | __kmp_push_task_stack(gtid, thread, taskdata); | 
|  | } | 
|  | #endif /* BUILD_TIED_TASK_STACK */ | 
|  |  | 
|  | // mark starting task as executing and as current task | 
|  | thread->th.th_current_task = taskdata; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || | 
|  | taskdata->td_flags.tiedness == TASK_UNTIED); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || | 
|  | taskdata->td_flags.tiedness == TASK_UNTIED); | 
|  | taskdata->td_flags.started = 1; | 
|  | taskdata->td_flags.executing = 1; | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); | 
|  |  | 
|  | // GEH TODO: shouldn't we pass some sort of location identifier here? | 
|  | // APT: yes, we will pass location here. | 
|  | // need to store current thread state (in a thread or taskdata structure) | 
|  | // before setting work_state, otherwise wrong state is set after end of task | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | //------------------------------------------------------------------------------ | 
|  | // __ompt_task_init: | 
|  | //   Initialize OMPT fields maintained by a task. This will only be called after | 
|  | //   ompt_start_tool, so we already know whether ompt is enabled or not. | 
|  |  | 
|  | static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { | 
|  | // The calls to __ompt_task_init already have the ompt_enabled condition. | 
|  | task->ompt_task_info.task_data.value = 0; | 
|  | task->ompt_task_info.frame.exit_frame = ompt_data_none; | 
|  | task->ompt_task_info.frame.enter_frame = ompt_data_none; | 
|  | task->ompt_task_info.frame.exit_frame_flags = | 
|  | ompt_frame_runtime | ompt_frame_framepointer; | 
|  | task->ompt_task_info.frame.enter_frame_flags = | 
|  | ompt_frame_runtime | ompt_frame_framepointer; | 
|  | task->ompt_task_info.dispatch_chunk.start = 0; | 
|  | task->ompt_task_info.dispatch_chunk.iterations = 0; | 
|  | } | 
|  |  | 
|  | // __ompt_task_start: | 
|  | //   Build and trigger task-begin event | 
|  | static inline void __ompt_task_start(kmp_task_t *task, | 
|  | kmp_taskdata_t *current_task, | 
|  | kmp_int32 gtid) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | ompt_task_status_t status = ompt_task_switch; | 
|  | if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { | 
|  | status = ompt_task_yield; | 
|  | __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; | 
|  | } | 
|  | /* let OMPT know that we're about to run this task */ | 
|  | if (ompt_enabled.ompt_callback_task_schedule) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( | 
|  | &(current_task->ompt_task_info.task_data), status, | 
|  | &(taskdata->ompt_task_info.task_data)); | 
|  | } | 
|  | taskdata->ompt_task_info.scheduling_parent = current_task; | 
|  | } | 
|  |  | 
|  | // __ompt_task_finish: | 
|  | //   Build and trigger final task-schedule event | 
|  | static inline void __ompt_task_finish(kmp_task_t *task, | 
|  | kmp_taskdata_t *resumed_task, | 
|  | ompt_task_status_t status) { | 
|  | if (ompt_enabled.ompt_callback_task_schedule) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | if (__kmp_omp_cancellation && taskdata->td_taskgroup && | 
|  | taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { | 
|  | status = ompt_task_cancel; | 
|  | } | 
|  |  | 
|  | /* let OMPT know that we're returning to the callee task */ | 
|  | ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( | 
|  | &(taskdata->ompt_task_info.task_data), status, | 
|  | (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template <bool ompt> | 
|  | static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *task, | 
|  | void *frame_address, | 
|  | void *return_address) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " | 
|  | "current_task=%p\n", | 
|  | gtid, loc_ref, taskdata, current_task)); | 
|  |  | 
|  | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { | 
|  | // untied task needs to increment counter so that the task structure is not | 
|  | // freed prematurely | 
|  | kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); | 
|  | KMP_DEBUG_USE_VAR(counter); | 
|  | KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " | 
|  | "incremented for task %p\n", | 
|  | gtid, counter, taskdata)); | 
|  | } | 
|  |  | 
|  | taskdata->td_flags.task_serial = | 
|  | 1; // Execute this task immediately, not deferred. | 
|  | __kmp_task_start(gtid, task, current_task); | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | if (ompt) { | 
|  | if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { | 
|  | current_task->ompt_task_info.frame.enter_frame.ptr = | 
|  | taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; | 
|  | current_task->ompt_task_info.frame.enter_frame_flags = | 
|  | taskdata->ompt_task_info.frame.exit_frame_flags = | 
|  | ompt_frame_application | ompt_frame_framepointer; | 
|  | } | 
|  | if (ompt_enabled.ompt_callback_task_create) { | 
|  | ompt_task_info_t *parent_info = &(current_task->ompt_task_info); | 
|  | ompt_callbacks.ompt_callback(ompt_callback_task_create)( | 
|  | &(parent_info->task_data), &(parent_info->frame), | 
|  | &(taskdata->ompt_task_info.task_data), | 
|  | ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, | 
|  | return_address); | 
|  | } | 
|  | __ompt_task_start(task, current_task, gtid); | 
|  | } | 
|  | #endif // OMPT_SUPPORT | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, | 
|  | loc_ref, taskdata)); | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | OMPT_NOINLINE | 
|  | static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *task, | 
|  | void *frame_address, | 
|  | void *return_address) { | 
|  | __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, | 
|  | return_address); | 
|  | } | 
|  | #endif // OMPT_SUPPORT | 
|  |  | 
|  | // __kmpc_omp_task_begin_if0: report that a given serialized task has started | 
|  | // execution | 
|  | // | 
|  | // loc_ref: source location information; points to beginning of task block. | 
|  | // gtid: global thread number. | 
|  | // task: task thunk for the started task. | 
|  | #ifdef __s390x__ | 
|  | // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x. | 
|  | // In order for it to work correctly, the caller also needs to be compiled with | 
|  | // backchain. If a caller is compiled without backchain, | 
|  | // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not | 
|  | // crash. | 
|  | __attribute__((target("backchain"))) | 
|  | #endif | 
|  | void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *task) { | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | OMPT_STORE_RETURN_ADDRESS(gtid); | 
|  | __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, | 
|  | OMPT_GET_FRAME_ADDRESS(1), | 
|  | OMPT_LOAD_RETURN_ADDRESS(gtid)); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef TASK_UNUSED | 
|  | // __kmpc_omp_task_begin: report that a given task has started execution | 
|  | // NEVER GENERATED BY COMPILER, DEPRECATED!!! | 
|  | void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { | 
|  | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; | 
|  |  | 
|  | KA_TRACE( | 
|  | 10, | 
|  | ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", | 
|  | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); | 
|  |  | 
|  | __kmp_task_start(gtid, task, current_task); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, | 
|  | loc_ref, KMP_TASK_TO_TASKDATA(task))); | 
|  | return; | 
|  | } | 
|  | #endif // TASK_UNUSED | 
|  |  | 
|  | // __kmp_free_task: free the current task space and the space for shareds | 
|  | // | 
|  | // gtid: Global thread ID of calling thread | 
|  | // taskdata: task to free | 
|  | // thread: thread data structure of caller | 
|  | static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, | 
|  | kmp_info_t *thread) { | 
|  | KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, | 
|  | taskdata)); | 
|  |  | 
|  | // Check to make sure all flags and counters have the correct values | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || | 
|  | taskdata->td_flags.task_serial == 1); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); | 
|  | kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata); | 
|  | // Clear data to not be re-used later by mistake. | 
|  | task->data1.destructors = NULL; | 
|  | task->data2.priority = 0; | 
|  |  | 
|  | taskdata->td_flags.freed = 1; | 
|  | #if OMPX_TASKGRAPH | 
|  | // do not free tasks in taskgraph | 
|  | if (!taskdata->is_taskgraph) { | 
|  | #endif | 
|  | // deallocate the taskdata and shared variable blocks associated with this task | 
|  | #if USE_FAST_MEMORY | 
|  | __kmp_fast_free(thread, taskdata); | 
|  | #else /* ! USE_FAST_MEMORY */ | 
|  | __kmp_thread_free(thread, taskdata); | 
|  | #endif | 
|  | #if OMPX_TASKGRAPH | 
|  | } else { | 
|  | taskdata->td_flags.complete = 0; | 
|  | taskdata->td_flags.started = 0; | 
|  | taskdata->td_flags.freed = 0; | 
|  | taskdata->td_flags.executing = 0; | 
|  | taskdata->td_flags.task_serial = | 
|  | (taskdata->td_parent->td_flags.final || | 
|  | taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser); | 
|  |  | 
|  | // taskdata->td_allow_completion_event.pending_events_count = 1; | 
|  | KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); | 
|  | KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); | 
|  | // start at one because counts current task and children | 
|  | KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); | 
|  | } | 
|  |  | 
|  | // __kmp_free_task_and_ancestors: free the current task and ancestors without | 
|  | // children | 
|  | // | 
|  | // gtid: Global thread ID of calling thread | 
|  | // taskdata: task to free | 
|  | // thread: thread data structure of caller | 
|  | static void __kmp_free_task_and_ancestors(kmp_int32 gtid, | 
|  | kmp_taskdata_t *taskdata, | 
|  | kmp_info_t *thread) { | 
|  | // Proxy tasks must always be allowed to free their parents | 
|  | // because they can be run in background even in serial mode. | 
|  | kmp_int32 team_serial = | 
|  | (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && | 
|  | !taskdata->td_flags.proxy; | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); | 
|  |  | 
|  | kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; | 
|  | KMP_DEBUG_ASSERT(children >= 0); | 
|  |  | 
|  | // Now, go up the ancestor tree to see if any ancestors can now be freed. | 
|  | while (children == 0) { | 
|  | kmp_taskdata_t *parent_taskdata = taskdata->td_parent; | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " | 
|  | "and freeing itself\n", | 
|  | gtid, taskdata)); | 
|  |  | 
|  | // --- Deallocate my ancestor task --- | 
|  | __kmp_free_task(gtid, taskdata, thread); | 
|  |  | 
|  | taskdata = parent_taskdata; | 
|  |  | 
|  | if (team_serial) | 
|  | return; | 
|  | // Stop checking ancestors at implicit task instead of walking up ancestor | 
|  | // tree to avoid premature deallocation of ancestors. | 
|  | if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { | 
|  | if (taskdata->td_dephash) { // do we need to cleanup dephash? | 
|  | int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); | 
|  | kmp_tasking_flags_t flags_old = taskdata->td_flags; | 
|  | if (children == 0 && flags_old.complete == 1) { | 
|  | kmp_tasking_flags_t flags_new = flags_old; | 
|  | flags_new.complete = 0; | 
|  | if (KMP_COMPARE_AND_STORE_ACQ32( | 
|  | RCAST(kmp_int32 *, &taskdata->td_flags), | 
|  | *RCAST(kmp_int32 *, &flags_old), | 
|  | *RCAST(kmp_int32 *, &flags_new))) { | 
|  | KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " | 
|  | "dephash of implicit task %p\n", | 
|  | gtid, taskdata)); | 
|  | // cleanup dephash of finished implicit task | 
|  | __kmp_dephash_free_entries(thread, taskdata->td_dephash); | 
|  | } | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | // Predecrement simulated by "- 1" calculation | 
|  | children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; | 
|  | KMP_DEBUG_ASSERT(children >= 0); | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " | 
|  | "not freeing it yet\n", | 
|  | gtid, taskdata, children)); | 
|  | } | 
|  |  | 
|  | // Only need to keep track of child task counts if any of the following: | 
|  | // 1. team parallel and tasking not serialized; | 
|  | // 2. it is a proxy or detachable or hidden helper task | 
|  | // 3. the children counter of its parent task is greater than 0. | 
|  | // The reason for the 3rd one is for serialized team that found detached task, | 
|  | // hidden helper task, T. In this case, the execution of T is still deferred, | 
|  | // and it is also possible that a regular task depends on T. In this case, if we | 
|  | // don't track the children, task synchronization will be broken. | 
|  | static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) { | 
|  | kmp_tasking_flags_t flags = taskdata->td_flags; | 
|  | bool ret = !(flags.team_serial || flags.tasking_ser); | 
|  | ret = ret || flags.proxy == TASK_PROXY || | 
|  | flags.detachable == TASK_DETACHABLE || flags.hidden_helper; | 
|  | ret = ret || | 
|  | KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0; | 
|  | #if OMPX_TASKGRAPH | 
|  | if (taskdata->td_taskgroup && taskdata->is_taskgraph) | 
|  | ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0; | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // __kmp_task_finish: bookkeeping to do when a task finishes execution | 
|  | // | 
|  | // gtid: global thread ID for calling thread | 
|  | // task: task to be finished | 
|  | // resumed_task: task to be resumed.  (may be NULL if task is serialized) | 
|  | // | 
|  | // template<ompt>: effectively ompt_enabled.enabled!=0 | 
|  | // the version with ompt=false is inlined, allowing to optimize away all ompt | 
|  | // code in this case | 
|  | template <bool ompt> | 
|  | static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, | 
|  | kmp_taskdata_t *resumed_task) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_task_team_t *task_team = | 
|  | thread->th.th_task_team; // might be NULL for serial teams... | 
|  | #if OMPX_TASKGRAPH | 
|  | // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop | 
|  | bool is_taskgraph; | 
|  | #endif | 
|  | #if KMP_DEBUG | 
|  | kmp_int32 children = 0; | 
|  | #endif | 
|  | KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " | 
|  | "task %p\n", | 
|  | gtid, taskdata, resumed_task)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | is_taskgraph = taskdata->is_taskgraph; | 
|  | #endif | 
|  |  | 
|  | // Pop task from stack if tied | 
|  | #ifdef BUILD_TIED_TASK_STACK | 
|  | if (taskdata->td_flags.tiedness == TASK_TIED) { | 
|  | __kmp_pop_task_stack(gtid, thread, taskdata); | 
|  | } | 
|  | #endif /* BUILD_TIED_TASK_STACK */ | 
|  |  | 
|  | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { | 
|  | // untied task needs to check the counter so that the task structure is not | 
|  | // freed prematurely | 
|  | kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; | 
|  | KA_TRACE( | 
|  | 20, | 
|  | ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", | 
|  | gtid, counter, taskdata)); | 
|  | if (counter > 0) { | 
|  | // untied task is not done, to be continued possibly by other thread, do | 
|  | // not free it now | 
|  | if (resumed_task == NULL) { | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); | 
|  | resumed_task = taskdata->td_parent; // In a serialized task, the resumed | 
|  | // task is the parent | 
|  | } | 
|  | thread->th.th_current_task = resumed_task; // restore current_task | 
|  | resumed_task->td_flags.executing = 1; // resume previous task | 
|  | KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " | 
|  | "resuming task %p\n", | 
|  | gtid, taskdata, resumed_task)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // bookkeeping for resuming task: | 
|  | // GEH - note tasking_ser => task_serial | 
|  | KMP_DEBUG_ASSERT( | 
|  | (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == | 
|  | taskdata->td_flags.task_serial); | 
|  | if (taskdata->td_flags.task_serial) { | 
|  | if (resumed_task == NULL) { | 
|  | resumed_task = taskdata->td_parent; // In a serialized task, the resumed | 
|  | // task is the parent | 
|  | } | 
|  | } else { | 
|  | KMP_DEBUG_ASSERT(resumed_task != | 
|  | NULL); // verify that resumed task is passed as argument | 
|  | } | 
|  |  | 
|  | /* If the tasks' destructor thunk flag has been set, we need to invoke the | 
|  | destructor thunk that has been generated by the compiler. The code is | 
|  | placed here, since at this point other tasks might have been released | 
|  | hence overlapping the destructor invocations with some other work in the | 
|  | released tasks.  The OpenMP spec is not specific on when the destructors | 
|  | are invoked, so we should be free to choose. */ | 
|  | if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { | 
|  | kmp_routine_entry_t destr_thunk = task->data1.destructors; | 
|  | KMP_ASSERT(destr_thunk); | 
|  | destr_thunk(gtid, task); | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); | 
|  |  | 
|  | bool completed = true; | 
|  | if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { | 
|  | if (taskdata->td_allow_completion_event.type == | 
|  | KMP_EVENT_ALLOW_COMPLETION) { | 
|  | // event hasn't been fulfilled yet. Try to detach task. | 
|  | __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); | 
|  | if (taskdata->td_allow_completion_event.type == | 
|  | KMP_EVENT_ALLOW_COMPLETION) { | 
|  | // task finished execution | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); | 
|  | taskdata->td_flags.executing = 0; // suspend the finishing task | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | // For a detached task, which is not completed, we switch back | 
|  | // the omp_fulfill_event signals completion | 
|  | // locking is necessary to avoid a race with ompt_task_late_fulfill | 
|  | if (ompt) | 
|  | __ompt_task_finish(task, resumed_task, ompt_task_detach); | 
|  | #endif | 
|  |  | 
|  | // no access to taskdata after this point! | 
|  | // __kmp_fulfill_event might free taskdata at any time from now | 
|  |  | 
|  | taskdata->td_flags.proxy = TASK_PROXY; // proxify! | 
|  | completed = false; | 
|  | } | 
|  | __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tasks with valid target async handles must be re-enqueued. | 
|  | if (taskdata->td_target_data.async_handle != NULL) { | 
|  | // Note: no need to translate gtid to its shadow. If the current thread is a | 
|  | // hidden helper one, then the gtid is already correct. Otherwise, hidden | 
|  | // helper threads are disabled, and gtid refers to a OpenMP thread. | 
|  | __kmpc_give_task(task, __kmp_tid_from_gtid(gtid)); | 
|  | if (KMP_HIDDEN_HELPER_THREAD(gtid)) | 
|  | __kmp_hidden_helper_worker_thread_signal(); | 
|  | completed = false; | 
|  | } | 
|  |  | 
|  | if (completed) { | 
|  | taskdata->td_flags.complete = 1; // mark the task as completed | 
|  | #if OMPX_TASKGRAPH | 
|  | taskdata->td_flags.onced = 1; // mark the task as ran once already | 
|  | #endif | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | // This is not a detached task, we are done here | 
|  | if (ompt) | 
|  | __ompt_task_finish(task, resumed_task, ompt_task_complete); | 
|  | #endif | 
|  | // TODO: What would be the balance between the conditions in the function | 
|  | // and an atomic operation? | 
|  | if (__kmp_track_children_task(taskdata)) { | 
|  | __kmp_release_deps(gtid, taskdata); | 
|  | // Predecrement simulated by "- 1" calculation | 
|  | #if KMP_DEBUG | 
|  | children = -1 + | 
|  | #endif | 
|  | KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); | 
|  | KMP_DEBUG_ASSERT(children >= 0); | 
|  | #if OMPX_TASKGRAPH | 
|  | if (taskdata->td_taskgroup && !taskdata->is_taskgraph) | 
|  | #else | 
|  | if (taskdata->td_taskgroup) | 
|  | #endif | 
|  | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); | 
|  | } else if (task_team && (task_team->tt.tt_found_proxy_tasks || | 
|  | task_team->tt.tt_hidden_helper_task_encountered)) { | 
|  | // if we found proxy or hidden helper tasks there could exist a dependency | 
|  | // chain with the proxy task as origin | 
|  | __kmp_release_deps(gtid, taskdata); | 
|  | } | 
|  | // td_flags.executing must be marked as 0 after __kmp_release_deps has been | 
|  | // called. Othertwise, if a task is executed immediately from the | 
|  | // release_deps code, the flag will be reset to 1 again by this same | 
|  | // function | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); | 
|  | taskdata->td_flags.executing = 0; // suspend the finishing task | 
|  |  | 
|  | // Decrement the counter of hidden helper tasks to be executed. | 
|  | if (taskdata->td_flags.hidden_helper) { | 
|  | // Hidden helper tasks can only be executed by hidden helper threads. | 
|  | KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); | 
|  | KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); | 
|  | } | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", | 
|  | gtid, taskdata, children)); | 
|  |  | 
|  | // Free this task and then ancestor tasks if they have no children. | 
|  | // Restore th_current_task first as suggested by John: | 
|  | // johnmc: if an asynchronous inquiry peers into the runtime system | 
|  | // it doesn't see the freed task as the current task. | 
|  | thread->th.th_current_task = resumed_task; | 
|  | if (completed) | 
|  | __kmp_free_task_and_ancestors(gtid, taskdata, thread); | 
|  |  | 
|  | // TODO: GEH - make sure root team implicit task is initialized properly. | 
|  | // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); | 
|  | resumed_task->td_flags.executing = 1; // resume previous task | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | if (is_taskgraph && __kmp_track_children_task(taskdata) && | 
|  | taskdata->td_taskgroup) { | 
|  | // TDG: we only release taskgroup barrier here because | 
|  | // free_task_and_ancestors will call | 
|  | // __kmp_free_task, which resets all task parameters such as | 
|  | // taskdata->started, etc. If we release the barrier earlier, these | 
|  | // parameters could be read before being reset. This is not an issue for | 
|  | // non-TDG implementation because we never reuse a task(data) structure | 
|  | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | KA_TRACE( | 
|  | 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", | 
|  | gtid, taskdata, resumed_task)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | template <bool ompt> | 
|  | static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, | 
|  | kmp_int32 gtid, | 
|  | kmp_task_t *task) { | 
|  | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", | 
|  | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); | 
|  | KMP_DEBUG_ASSERT(gtid >= 0); | 
|  | // this routine will provide task to resume | 
|  | __kmp_task_finish<ompt>(gtid, task, NULL); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", | 
|  | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | if (ompt) { | 
|  | ompt_frame_t *ompt_frame; | 
|  | __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); | 
|  | ompt_frame->enter_frame = ompt_data_none; | 
|  | ompt_frame->enter_frame_flags = | 
|  | ompt_frame_runtime | ompt_frame_framepointer; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | OMPT_NOINLINE | 
|  | void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *task) { | 
|  | __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); | 
|  | } | 
|  | #endif // OMPT_SUPPORT | 
|  |  | 
|  | // __kmpc_omp_task_complete_if0: report that a task has completed execution | 
|  | // | 
|  | // loc_ref: source location information; points to end of task block. | 
|  | // gtid: global thread number. | 
|  | // task: task thunk for the completed task. | 
|  | void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *task) { | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); | 
|  | } | 
|  |  | 
|  | #ifdef TASK_UNUSED | 
|  | // __kmpc_omp_task_complete: report that a task has completed execution | 
|  | // NEVER GENERATED BY COMPILER, DEPRECATED!!! | 
|  | void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *task) { | 
|  | KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, | 
|  | loc_ref, KMP_TASK_TO_TASKDATA(task))); | 
|  |  | 
|  | __kmp_task_finish<false>(gtid, task, | 
|  | NULL); // Not sure how to find task to resume | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, | 
|  | loc_ref, KMP_TASK_TO_TASKDATA(task))); | 
|  | return; | 
|  | } | 
|  | #endif // TASK_UNUSED | 
|  |  | 
|  | // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit | 
|  | // task for a given thread | 
|  | // | 
|  | // loc_ref:  reference to source location of parallel region | 
|  | // this_thr:  thread data structure corresponding to implicit task | 
|  | // team: team for this_thr | 
|  | // tid: thread id of given thread within team | 
|  | // set_curr_task: TRUE if need to push current task to thread | 
|  | // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to | 
|  | // have already been done elsewhere. | 
|  | // TODO: Get better loc_ref.  Value passed in may be NULL | 
|  | void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, | 
|  | kmp_team_t *team, int tid, int set_curr_task) { | 
|  | kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; | 
|  |  | 
|  | KF_TRACE( | 
|  | 10, | 
|  | ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", | 
|  | tid, team, task, set_curr_task ? "TRUE" : "FALSE")); | 
|  |  | 
|  | task->td_task_id = KMP_GEN_TASK_ID(); | 
|  | task->td_team = team; | 
|  | //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info | 
|  | //    in debugger) | 
|  | task->td_ident = loc_ref; | 
|  | task->td_taskwait_ident = NULL; | 
|  | task->td_taskwait_counter = 0; | 
|  | task->td_taskwait_thread = 0; | 
|  |  | 
|  | task->td_flags.tiedness = TASK_TIED; | 
|  | task->td_flags.tasktype = TASK_IMPLICIT; | 
|  | task->td_flags.proxy = TASK_FULL; | 
|  |  | 
|  | // All implicit tasks are executed immediately, not deferred | 
|  | task->td_flags.task_serial = 1; | 
|  | task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); | 
|  | task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; | 
|  |  | 
|  | task->td_flags.started = 1; | 
|  | task->td_flags.executing = 1; | 
|  | task->td_flags.complete = 0; | 
|  | task->td_flags.freed = 0; | 
|  | #if OMPX_TASKGRAPH | 
|  | task->td_flags.onced = 0; | 
|  | #endif | 
|  |  | 
|  | task->td_depnode = NULL; | 
|  | task->td_last_tied = task; | 
|  | task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; | 
|  |  | 
|  | if (set_curr_task) { // only do this init first time thread is created | 
|  | KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); | 
|  | // Not used: don't need to deallocate implicit task | 
|  | KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); | 
|  | task->td_taskgroup = NULL; // An implicit task does not have taskgroup | 
|  | task->td_dephash = NULL; | 
|  | __kmp_push_current_task_to_thread(this_thr, team, tid); | 
|  | } else { | 
|  | KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); | 
|  | KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | __ompt_task_init(task, tid); | 
|  | #endif | 
|  |  | 
|  | KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, | 
|  | team, task)); | 
|  | } | 
|  |  | 
|  | // __kmp_finish_implicit_task: Release resources associated to implicit tasks | 
|  | // at the end of parallel regions. Some resources are kept for reuse in the next | 
|  | // parallel region. | 
|  | // | 
|  | // thread:  thread data structure corresponding to implicit task | 
|  | void __kmp_finish_implicit_task(kmp_info_t *thread) { | 
|  | kmp_taskdata_t *task = thread->th.th_current_task; | 
|  | if (task->td_dephash) { | 
|  | int children; | 
|  | task->td_flags.complete = 1; | 
|  | #if OMPX_TASKGRAPH | 
|  | task->td_flags.onced = 1; | 
|  | #endif | 
|  | children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); | 
|  | kmp_tasking_flags_t flags_old = task->td_flags; | 
|  | if (children == 0 && flags_old.complete == 1) { | 
|  | kmp_tasking_flags_t flags_new = flags_old; | 
|  | flags_new.complete = 0; | 
|  | if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), | 
|  | *RCAST(kmp_int32 *, &flags_old), | 
|  | *RCAST(kmp_int32 *, &flags_new))) { | 
|  | KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " | 
|  | "dephash of implicit task %p\n", | 
|  | thread->th.th_info.ds.ds_gtid, task)); | 
|  | __kmp_dephash_free_entries(thread, task->td_dephash); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // __kmp_free_implicit_task: Release resources associated to implicit tasks | 
|  | // when these are destroyed regions | 
|  | // | 
|  | // thread:  thread data structure corresponding to implicit task | 
|  | void __kmp_free_implicit_task(kmp_info_t *thread) { | 
|  | kmp_taskdata_t *task = thread->th.th_current_task; | 
|  | if (task && task->td_dephash) { | 
|  | __kmp_dephash_free(thread, task->td_dephash); | 
|  | task->td_dephash = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Round up a size to a power of two specified by val: Used to insert padding | 
|  | // between structures co-allocated using a single malloc() call | 
|  | static size_t __kmp_round_up_to_val(size_t size, size_t val) { | 
|  | if (size & (val - 1)) { | 
|  | size &= ~(val - 1); | 
|  | if (size <= KMP_SIZE_T_MAX - val) { | 
|  | size += val; // Round up if there is no overflow. | 
|  | } | 
|  | } | 
|  | return size; | 
|  | } // __kmp_round_up_to_va | 
|  |  | 
|  | // __kmp_task_alloc: Allocate the taskdata and task data structures for a task | 
|  | // | 
|  | // loc_ref: source location information | 
|  | // gtid: global thread number. | 
|  | // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' | 
|  | // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. | 
|  | // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including | 
|  | // private vars accessed in task. | 
|  | // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed | 
|  | // in task. | 
|  | // task_entry: Pointer to task code entry point generated by compiler. | 
|  | // returns: a pointer to the allocated kmp_task_t structure (task). | 
|  | kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_tasking_flags_t *flags, | 
|  | size_t sizeof_kmp_task_t, size_t sizeof_shareds, | 
|  | kmp_routine_entry_t task_entry) { | 
|  | kmp_task_t *task; | 
|  | kmp_taskdata_t *taskdata; | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_team_t *team = thread->th.th_team; | 
|  | kmp_taskdata_t *parent_task = thread->th.th_current_task; | 
|  | size_t shareds_offset; | 
|  |  | 
|  | if (UNLIKELY(!TCR_4(__kmp_init_middle))) | 
|  | __kmp_middle_initialize(); | 
|  |  | 
|  | if (flags->hidden_helper) { | 
|  | if (__kmp_enable_hidden_helper) { | 
|  | if (!TCR_4(__kmp_init_hidden_helper)) | 
|  | __kmp_hidden_helper_initialize(); | 
|  | } else { | 
|  | // If the hidden helper task is not enabled, reset the flag to FALSE. | 
|  | flags->hidden_helper = FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " | 
|  | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", | 
|  | gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, | 
|  | sizeof_shareds, task_entry)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(parent_task); | 
|  | if (parent_task->td_flags.final) { | 
|  | if (flags->merged_if0) { | 
|  | } | 
|  | flags->final = 1; | 
|  | } | 
|  |  | 
|  | if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { | 
|  | // Untied task encountered causes the TSC algorithm to check entire deque of | 
|  | // the victim thread. If no untied task encountered, then checking the head | 
|  | // of the deque should be enough. | 
|  | KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); | 
|  | } | 
|  |  | 
|  | // Detachable tasks are not proxy tasks yet but could be in the future. Doing | 
|  | // the tasking setup | 
|  | // when that happens is too late. | 
|  | if (UNLIKELY(flags->proxy == TASK_PROXY || | 
|  | flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { | 
|  | if (flags->proxy == TASK_PROXY) { | 
|  | flags->tiedness = TASK_UNTIED; | 
|  | flags->merged_if0 = 1; | 
|  | } | 
|  | /* are we running in a sequential parallel or tskm_immediate_exec... we need | 
|  | tasking support enabled */ | 
|  | if ((thread->th.th_task_team) == NULL) { | 
|  | /* This should only happen if the team is serialized | 
|  | setup a task team and propagate it to the thread */ | 
|  | KMP_DEBUG_ASSERT(team->t.t_serialized); | 
|  | KA_TRACE(30, | 
|  | ("T#%d creating task team in __kmp_task_alloc for proxy task\n", | 
|  | gtid)); | 
|  | // 1 indicates setup the current team regardless of nthreads | 
|  | __kmp_task_team_setup(thread, team, 1); | 
|  | thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; | 
|  | } | 
|  | kmp_task_team_t *task_team = thread->th.th_task_team; | 
|  |  | 
|  | /* tasking must be enabled now as the task might not be pushed */ | 
|  | if (!KMP_TASKING_ENABLED(task_team)) { | 
|  | KA_TRACE( | 
|  | 30, | 
|  | ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); | 
|  | __kmp_enable_tasking(task_team, thread); | 
|  | kmp_int32 tid = thread->th.th_info.ds.ds_tid; | 
|  | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; | 
|  | // No lock needed since only owner can allocate | 
|  | if (thread_data->td.td_deque == NULL) { | 
|  | __kmp_alloc_task_deque(thread, thread_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && | 
|  | task_team->tt.tt_found_proxy_tasks == FALSE) | 
|  | TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); | 
|  | if (flags->hidden_helper && | 
|  | task_team->tt.tt_hidden_helper_task_encountered == FALSE) | 
|  | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); | 
|  | } | 
|  |  | 
|  | // Calculate shared structure offset including padding after kmp_task_t struct | 
|  | // to align pointers in shared struct | 
|  | shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; | 
|  | shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); | 
|  |  | 
|  | // Allocate a kmp_taskdata_t block and a kmp_task_t block. | 
|  | KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, | 
|  | shareds_offset)); | 
|  | KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, | 
|  | sizeof_shareds)); | 
|  |  | 
|  | // Avoid double allocation here by combining shareds with taskdata | 
|  | #if USE_FAST_MEMORY | 
|  | taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + | 
|  | sizeof_shareds); | 
|  | #else /* ! USE_FAST_MEMORY */ | 
|  | taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + | 
|  | sizeof_shareds); | 
|  | #endif /* USE_FAST_MEMORY */ | 
|  |  | 
|  | task = KMP_TASKDATA_TO_TASK(taskdata); | 
|  |  | 
|  | // Make sure task & taskdata are aligned appropriately | 
|  | #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD | 
|  | KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); | 
|  | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); | 
|  | #else | 
|  | KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); | 
|  | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); | 
|  | #endif | 
|  | if (sizeof_shareds > 0) { | 
|  | // Avoid double allocation here by combining shareds with taskdata | 
|  | task->shareds = &((char *)taskdata)[shareds_offset]; | 
|  | // Make sure shareds struct is aligned to pointer size | 
|  | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == | 
|  | 0); | 
|  | } else { | 
|  | task->shareds = NULL; | 
|  | } | 
|  | task->routine = task_entry; | 
|  | task->part_id = 0; // AC: Always start with 0 part id | 
|  |  | 
|  | taskdata->td_task_id = KMP_GEN_TASK_ID(); | 
|  | taskdata->td_team = thread->th.th_team; | 
|  | taskdata->td_alloc_thread = thread; | 
|  | taskdata->td_parent = parent_task; | 
|  | taskdata->td_level = parent_task->td_level + 1; // increment nesting level | 
|  | KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); | 
|  | taskdata->td_ident = loc_ref; | 
|  | taskdata->td_taskwait_ident = NULL; | 
|  | taskdata->td_taskwait_counter = 0; | 
|  | taskdata->td_taskwait_thread = 0; | 
|  | KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); | 
|  | // avoid copying icvs for proxy tasks | 
|  | if (flags->proxy == TASK_FULL) | 
|  | copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); | 
|  |  | 
|  | taskdata->td_flags = *flags; | 
|  | taskdata->td_task_team = thread->th.th_task_team; | 
|  | taskdata->td_size_alloc = shareds_offset + sizeof_shareds; | 
|  | taskdata->td_flags.tasktype = TASK_EXPLICIT; | 
|  | // If it is hidden helper task, we need to set the team and task team | 
|  | // correspondingly. | 
|  | if (flags->hidden_helper) { | 
|  | kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; | 
|  | taskdata->td_team = shadow_thread->th.th_team; | 
|  | taskdata->td_task_team = shadow_thread->th.th_task_team; | 
|  | } | 
|  |  | 
|  | // GEH - TODO: fix this to copy parent task's value of tasking_ser flag | 
|  | taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); | 
|  |  | 
|  | // GEH - TODO: fix this to copy parent task's value of team_serial flag | 
|  | taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; | 
|  |  | 
|  | // GEH - Note we serialize the task if the team is serialized to make sure | 
|  | // implicit parallel region tasks are not left until program termination to | 
|  | // execute. Also, it helps locality to execute immediately. | 
|  |  | 
|  | taskdata->td_flags.task_serial = | 
|  | (parent_task->td_flags.final || taskdata->td_flags.team_serial || | 
|  | taskdata->td_flags.tasking_ser || flags->merged_if0); | 
|  |  | 
|  | taskdata->td_flags.started = 0; | 
|  | taskdata->td_flags.executing = 0; | 
|  | taskdata->td_flags.complete = 0; | 
|  | taskdata->td_flags.freed = 0; | 
|  | #if OMPX_TASKGRAPH | 
|  | taskdata->td_flags.onced = 0; | 
|  | #endif | 
|  | KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); | 
|  | // start at one because counts current task and children | 
|  | KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); | 
|  | taskdata->td_taskgroup = | 
|  | parent_task->td_taskgroup; // task inherits taskgroup from the parent task | 
|  | taskdata->td_dephash = NULL; | 
|  | taskdata->td_depnode = NULL; | 
|  | taskdata->td_target_data.async_handle = NULL; | 
|  | if (flags->tiedness == TASK_UNTIED) | 
|  | taskdata->td_last_tied = NULL; // will be set when the task is scheduled | 
|  | else | 
|  | taskdata->td_last_tied = taskdata; | 
|  | taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | __ompt_task_init(taskdata, gtid); | 
|  | #endif | 
|  | // TODO: What would be the balance between the conditions in the function and | 
|  | // an atomic operation? | 
|  | if (__kmp_track_children_task(taskdata)) { | 
|  | KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); | 
|  | if (parent_task->td_taskgroup) | 
|  | KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); | 
|  | // Only need to keep track of allocated child tasks for explicit tasks since | 
|  | // implicit not deallocated | 
|  | if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { | 
|  | KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); | 
|  | } | 
|  | if (flags->hidden_helper) { | 
|  | taskdata->td_flags.task_serial = FALSE; | 
|  | // Increment the number of hidden helper tasks to be executed | 
|  | KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); | 
|  | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) && | 
|  | (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) { | 
|  | taskdata->is_taskgraph = 1; | 
|  | taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; | 
|  | taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); | 
|  | } | 
|  | #endif | 
|  | KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", | 
|  | gtid, taskdata, taskdata->td_parent)); | 
|  |  | 
|  | return task; | 
|  | } | 
|  |  | 
|  | kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_int32 flags, size_t sizeof_kmp_task_t, | 
|  | size_t sizeof_shareds, | 
|  | kmp_routine_entry_t task_entry) { | 
|  | kmp_task_t *retval; | 
|  | kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | input_flags->native = FALSE; | 
|  | // __kmp_task_alloc() sets up all other runtime flags | 
|  | KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " | 
|  | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", | 
|  | gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied", | 
|  | input_flags->proxy ? "proxy" : "", | 
|  | input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, | 
|  | sizeof_shareds, task_entry)); | 
|  |  | 
|  | retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, | 
|  | sizeof_shareds, task_entry); | 
|  |  | 
|  | KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_int32 flags, | 
|  | size_t sizeof_kmp_task_t, | 
|  | size_t sizeof_shareds, | 
|  | kmp_routine_entry_t task_entry, | 
|  | kmp_int64 device_id) { | 
|  | auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); | 
|  | // target task is untied defined in the specification | 
|  | input_flags.tiedness = TASK_UNTIED; | 
|  |  | 
|  | if (__kmp_enable_hidden_helper) | 
|  | input_flags.hidden_helper = TRUE; | 
|  |  | 
|  | return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, | 
|  | sizeof_shareds, task_entry); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param loc_ref location of the original task directive | 
|  | @param gtid Global Thread ID of encountering thread | 
|  | @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new | 
|  | task'' | 
|  | @param naffins Number of affinity items | 
|  | @param affin_list List of affinity items | 
|  | @return Returns non-zero if registering affinity information was not successful. | 
|  | Returns 0 if registration was successful | 
|  | This entry registers the affinity information attached to a task with the task | 
|  | thunk structure kmp_taskdata_t. | 
|  | */ | 
|  | kmp_int32 | 
|  | __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *new_task, kmp_int32 naffins, | 
|  | kmp_task_affinity_info_t *affin_list) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  __kmp_invoke_task: invoke the specified task | 
|  | // | 
|  | // gtid: global thread ID of caller | 
|  | // task: the task to invoke | 
|  | // current_task: the task to resume after task invocation | 
|  | #ifdef __s390x__ | 
|  | __attribute__((target("backchain"))) | 
|  | #endif | 
|  | static void | 
|  | __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, | 
|  | kmp_taskdata_t *current_task) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | kmp_info_t *thread; | 
|  | int discard = 0 /* false */; | 
|  | KA_TRACE( | 
|  | 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", | 
|  | gtid, taskdata, current_task)); | 
|  | KMP_DEBUG_ASSERT(task); | 
|  | if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && | 
|  | taskdata->td_flags.complete == 1)) { | 
|  | // This is a proxy task that was already completed but it needs to run | 
|  | // its bottom-half finish | 
|  | KA_TRACE( | 
|  | 30, | 
|  | ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", | 
|  | gtid, taskdata)); | 
|  |  | 
|  | __kmp_bottom_half_finish_proxy(gtid, task); | 
|  |  | 
|  | KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " | 
|  | "proxy task %p, resuming task %p\n", | 
|  | gtid, taskdata, current_task)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | // For untied tasks, the first task executed only calls __kmpc_omp_task and | 
|  | // does not execute code. | 
|  | ompt_thread_info_t oldInfo; | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | // Store the threads states and restore them after the task | 
|  | thread = __kmp_threads[gtid]; | 
|  | oldInfo = thread->th.ompt_thread_info; | 
|  | thread->th.ompt_thread_info.wait_id = 0; | 
|  | thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) | 
|  | ? ompt_state_work_serial | 
|  | : ompt_state_work_parallel; | 
|  | taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Proxy tasks are not handled by the runtime | 
|  | if (taskdata->td_flags.proxy != TASK_PROXY) { | 
|  | __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded | 
|  | } | 
|  |  | 
|  | // TODO: cancel tasks if the parallel region has also been cancelled | 
|  | // TODO: check if this sequence can be hoisted above __kmp_task_start | 
|  | // if cancellation has been enabled for this run ... | 
|  | if (UNLIKELY(__kmp_omp_cancellation)) { | 
|  | thread = __kmp_threads[gtid]; | 
|  | kmp_team_t *this_team = thread->th.th_team; | 
|  | kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; | 
|  | if ((taskgroup && taskgroup->cancel_request) || | 
|  | (this_team->t.t_cancel_request == cancel_parallel)) { | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | ompt_data_t *task_data; | 
|  | if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { | 
|  | __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); | 
|  | ompt_callbacks.ompt_callback(ompt_callback_cancel)( | 
|  | task_data, | 
|  | ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup | 
|  | : ompt_cancel_parallel) | | 
|  | ompt_cancel_discarded_task, | 
|  | NULL); | 
|  | } | 
|  | #endif | 
|  | KMP_COUNT_BLOCK(TASK_cancelled); | 
|  | // this task belongs to a task group and we need to cancel it | 
|  | discard = 1 /* true */; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Invoke the task routine and pass in relevant data. | 
|  | // Thunks generated by gcc take a different argument list. | 
|  | if (!discard) { | 
|  | if (taskdata->td_flags.tiedness == TASK_UNTIED) { | 
|  | taskdata->td_last_tied = current_task->td_last_tied; | 
|  | KMP_DEBUG_ASSERT(taskdata->td_last_tied); | 
|  | } | 
|  | #if KMP_STATS_ENABLED | 
|  | KMP_COUNT_BLOCK(TASK_executed); | 
|  | switch (KMP_GET_THREAD_STATE()) { | 
|  | case FORK_JOIN_BARRIER: | 
|  | KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); | 
|  | break; | 
|  | case PLAIN_BARRIER: | 
|  | KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); | 
|  | break; | 
|  | case TASKYIELD: | 
|  | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); | 
|  | break; | 
|  | case TASKWAIT: | 
|  | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); | 
|  | break; | 
|  | case TASKGROUP: | 
|  | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); | 
|  | break; | 
|  | default: | 
|  | KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); | 
|  | break; | 
|  | } | 
|  | #endif // KMP_STATS_ENABLED | 
|  |  | 
|  | // OMPT task begin | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | __ompt_task_start(task, current_task, gtid); | 
|  | #endif | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (UNLIKELY(ompt_enabled.ompt_callback_dispatch && | 
|  | taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) { | 
|  | ompt_data_t instance = ompt_data_none; | 
|  | instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk); | 
|  | ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); | 
|  | ompt_callbacks.ompt_callback(ompt_callback_dispatch)( | 
|  | &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data), | 
|  | ompt_dispatch_taskloop_chunk, instance); | 
|  | taskdata->ompt_task_info.dispatch_chunk = {0, 0}; | 
|  | } | 
|  | #endif // OMPT_SUPPORT && OMPT_OPTIONAL | 
|  |  | 
|  | #if OMPD_SUPPORT | 
|  | if (ompd_state & OMPD_ENABLE_BP) | 
|  | ompd_bp_task_begin(); | 
|  | #endif | 
|  |  | 
|  | #if USE_ITT_BUILD && USE_ITT_NOTIFY | 
|  | kmp_uint64 cur_time; | 
|  | kmp_int32 kmp_itt_count_task = | 
|  | __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && | 
|  | current_task->td_flags.tasktype == TASK_IMPLICIT; | 
|  | if (kmp_itt_count_task) { | 
|  | thread = __kmp_threads[gtid]; | 
|  | // Time outer level explicit task on barrier for adjusting imbalance time | 
|  | if (thread->th.th_bar_arrive_time) | 
|  | cur_time = __itt_get_timestamp(); | 
|  | else | 
|  | kmp_itt_count_task = 0; // thread is not on a barrier - skip timing | 
|  | } | 
|  | KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) | 
|  | #endif | 
|  |  | 
|  | #if ENABLE_LIBOMPTARGET | 
|  | if (taskdata->td_target_data.async_handle != NULL) { | 
|  | // If we have a valid target async handle, that means that we have already | 
|  | // executed the task routine once. We must query for the handle completion | 
|  | // instead of re-executing the routine. | 
|  | KMP_ASSERT(tgt_target_nowait_query); | 
|  | tgt_target_nowait_query(&taskdata->td_target_data.async_handle); | 
|  | } else | 
|  | #endif | 
|  | if (task->routine != NULL) { | 
|  | #ifdef KMP_GOMP_COMPAT | 
|  | if (taskdata->td_flags.native) { | 
|  | ((void (*)(void *))(*(task->routine)))(task->shareds); | 
|  | } else | 
|  | #endif /* KMP_GOMP_COMPAT */ | 
|  | { | 
|  | (*(task->routine))(gtid, task); | 
|  | } | 
|  | } | 
|  | KMP_POP_PARTITIONED_TIMER(); | 
|  |  | 
|  | #if USE_ITT_BUILD && USE_ITT_NOTIFY | 
|  | if (kmp_itt_count_task) { | 
|  | // Barrier imbalance - adjust arrive time with the task duration | 
|  | thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); | 
|  | } | 
|  | KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) | 
|  | KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if OMPD_SUPPORT | 
|  | if (ompd_state & OMPD_ENABLE_BP) | 
|  | ompd_bp_task_end(); | 
|  | #endif | 
|  |  | 
|  | // Proxy tasks are not handled by the runtime | 
|  | if (taskdata->td_flags.proxy != TASK_PROXY) { | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | thread->th.ompt_thread_info = oldInfo; | 
|  | if (taskdata->td_flags.tiedness == TASK_TIED) { | 
|  | taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; | 
|  | } | 
|  | __kmp_task_finish<true>(gtid, task, current_task); | 
|  | } else | 
|  | #endif | 
|  | __kmp_task_finish<false>(gtid, task, current_task); | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 30, | 
|  | ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", | 
|  | gtid, taskdata, current_task)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution | 
|  | // | 
|  | // loc_ref: location of original task pragma (ignored) | 
|  | // gtid: Global Thread ID of encountering thread | 
|  | // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' | 
|  | // Returns: | 
|  | //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to | 
|  | //    be resumed later. | 
|  | //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be | 
|  | //    resumed later. | 
|  | kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *new_task) { | 
|  | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, | 
|  | loc_ref, new_taskdata)); | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | kmp_taskdata_t *parent; | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | parent = new_taskdata->td_parent; | 
|  | if (ompt_enabled.ompt_callback_task_create) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_task_create)( | 
|  | &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), | 
|  | &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, | 
|  | OMPT_GET_RETURN_ADDRESS(0)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Should we execute the new task or queue it? For now, let's just always try | 
|  | to queue it.  If the queue fills up, then we'll execute it.  */ | 
|  |  | 
|  | if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer | 
|  | { // Execute this task immediately | 
|  | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; | 
|  | new_taskdata->td_flags.task_serial = 1; | 
|  | __kmp_invoke_task(gtid, new_task, current_task); | 
|  | } | 
|  |  | 
|  | KA_TRACE( | 
|  | 10, | 
|  | ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " | 
|  | "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", | 
|  | gtid, loc_ref, new_taskdata)); | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | parent->ompt_task_info.frame.enter_frame = ompt_data_none; | 
|  | } | 
|  | #endif | 
|  | return TASK_CURRENT_NOT_QUEUED; | 
|  | } | 
|  |  | 
|  | // __kmp_omp_task: Schedule a non-thread-switchable task for execution | 
|  | // | 
|  | // gtid: Global Thread ID of encountering thread | 
|  | // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() | 
|  | // serialize_immediate: if TRUE then if the task is executed immediately its | 
|  | // execution will be serialized | 
|  | // Returns: | 
|  | //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to | 
|  | //    be resumed later. | 
|  | //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be | 
|  | //    resumed later. | 
|  | kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, | 
|  | bool serialize_immediate) { | 
|  | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | if (new_taskdata->is_taskgraph && | 
|  | __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) { | 
|  | kmp_tdg_info_t *tdg = new_taskdata->tdg; | 
|  | // extend the record_map if needed | 
|  | if (new_taskdata->td_task_id >= new_taskdata->tdg->map_size) { | 
|  | __kmp_acquire_bootstrap_lock(&tdg->graph_lock); | 
|  | // map_size could have been updated by another thread if recursive | 
|  | // taskloop | 
|  | if (new_taskdata->td_task_id >= tdg->map_size) { | 
|  | kmp_uint old_size = tdg->map_size; | 
|  | kmp_uint new_size = old_size * 2; | 
|  | kmp_node_info_t *old_record = tdg->record_map; | 
|  | kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate( | 
|  | new_size * sizeof(kmp_node_info_t)); | 
|  |  | 
|  | KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t)); | 
|  | tdg->record_map = new_record; | 
|  |  | 
|  | __kmp_free(old_record); | 
|  |  | 
|  | for (kmp_int i = old_size; i < new_size; i++) { | 
|  | kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate( | 
|  | __kmp_successors_size * sizeof(kmp_int32)); | 
|  | new_record[i].task = nullptr; | 
|  | new_record[i].successors = successorsList; | 
|  | new_record[i].nsuccessors = 0; | 
|  | new_record[i].npredecessors = 0; | 
|  | new_record[i].successors_size = __kmp_successors_size; | 
|  | KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0); | 
|  | } | 
|  | // update the size at the end, so that we avoid other | 
|  | // threads use old_record while map_size is already updated | 
|  | tdg->map_size = new_size; | 
|  | } | 
|  | __kmp_release_bootstrap_lock(&tdg->graph_lock); | 
|  | } | 
|  | // record a task | 
|  | if (tdg->record_map[new_taskdata->td_task_id].task == nullptr) { | 
|  | tdg->record_map[new_taskdata->td_task_id].task = new_task; | 
|  | tdg->record_map[new_taskdata->td_task_id].parent_task = | 
|  | new_taskdata->td_parent; | 
|  | KMP_ATOMIC_INC(&tdg->num_tasks); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Should we execute the new task or queue it? For now, let's just always try | 
|  | to queue it.  If the queue fills up, then we'll execute it.  */ | 
|  | if (new_taskdata->td_flags.proxy == TASK_PROXY || | 
|  | __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer | 
|  | { // Execute this task immediately | 
|  | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; | 
|  | if (serialize_immediate) | 
|  | new_taskdata->td_flags.task_serial = 1; | 
|  | __kmp_invoke_task(gtid, new_task, current_task); | 
|  | } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && | 
|  | __kmp_wpolicy_passive) { | 
|  | kmp_info_t *this_thr = __kmp_threads[gtid]; | 
|  | kmp_team_t *team = this_thr->th.th_team; | 
|  | kmp_int32 nthreads = this_thr->th.th_team_nproc; | 
|  | for (int i = 0; i < nthreads; ++i) { | 
|  | kmp_info_t *thread = team->t.t_threads[i]; | 
|  | if (thread == this_thr) | 
|  | continue; | 
|  | if (thread->th.th_sleep_loc != NULL) { | 
|  | __kmp_null_resume_wrapper(thread); | 
|  | break; // awake one thread at a time | 
|  | } | 
|  | } | 
|  | } | 
|  | return TASK_CURRENT_NOT_QUEUED; | 
|  | } | 
|  |  | 
|  | // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a | 
|  | // non-thread-switchable task from the parent thread only! | 
|  | // | 
|  | // loc_ref: location of original task pragma (ignored) | 
|  | // gtid: Global Thread ID of encountering thread | 
|  | // new_task: non-thread-switchable task thunk allocated by | 
|  | // __kmp_omp_task_alloc() | 
|  | // Returns: | 
|  | //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to | 
|  | //    be resumed later. | 
|  | //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be | 
|  | //    resumed later. | 
|  | kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *new_task) { | 
|  | kmp_int32 res; | 
|  | KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); | 
|  |  | 
|  | #if KMP_DEBUG || OMPT_SUPPORT | 
|  | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); | 
|  | #endif | 
|  | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, | 
|  | new_taskdata)); | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | kmp_taskdata_t *parent = NULL; | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | if (!new_taskdata->td_flags.started) { | 
|  | OMPT_STORE_RETURN_ADDRESS(gtid); | 
|  | parent = new_taskdata->td_parent; | 
|  | if (!parent->ompt_task_info.frame.enter_frame.ptr) { | 
|  | parent->ompt_task_info.frame.enter_frame.ptr = | 
|  | OMPT_GET_FRAME_ADDRESS(0); | 
|  | } | 
|  | if (ompt_enabled.ompt_callback_task_create) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_task_create)( | 
|  | &(parent->ompt_task_info.task_data), | 
|  | &(parent->ompt_task_info.frame), | 
|  | &(new_taskdata->ompt_task_info.task_data), | 
|  | ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, | 
|  | OMPT_LOAD_RETURN_ADDRESS(gtid)); | 
|  | } | 
|  | } else { | 
|  | // We are scheduling the continuation of an UNTIED task. | 
|  | // Scheduling back to the parent task. | 
|  | __ompt_task_finish(new_task, | 
|  | new_taskdata->ompt_task_info.scheduling_parent, | 
|  | ompt_task_switch); | 
|  | new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | res = __kmp_omp_task(gtid, new_task, true); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " | 
|  | "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", | 
|  | gtid, loc_ref, new_taskdata)); | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { | 
|  | parent->ompt_task_info.frame.enter_frame = ompt_data_none; | 
|  | } | 
|  | #endif | 
|  | return res; | 
|  | } | 
|  |  | 
|  | // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule | 
|  | // a taskloop task with the correct OMPT return address | 
|  | // | 
|  | // loc_ref: location of original task pragma (ignored) | 
|  | // gtid: Global Thread ID of encountering thread | 
|  | // new_task: non-thread-switchable task thunk allocated by | 
|  | // __kmp_omp_task_alloc() | 
|  | // codeptr_ra: return address for OMPT callback | 
|  | // Returns: | 
|  | //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to | 
|  | //    be resumed later. | 
|  | //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be | 
|  | //    resumed later. | 
|  | kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_task_t *new_task, void *codeptr_ra) { | 
|  | kmp_int32 res; | 
|  | KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); | 
|  |  | 
|  | #if KMP_DEBUG || OMPT_SUPPORT | 
|  | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); | 
|  | #endif | 
|  | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, | 
|  | new_taskdata)); | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | kmp_taskdata_t *parent = NULL; | 
|  | if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { | 
|  | parent = new_taskdata->td_parent; | 
|  | if (!parent->ompt_task_info.frame.enter_frame.ptr) | 
|  | parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); | 
|  | if (ompt_enabled.ompt_callback_task_create) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_task_create)( | 
|  | &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), | 
|  | &(new_taskdata->ompt_task_info.task_data), | 
|  | ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, | 
|  | codeptr_ra); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | res = __kmp_omp_task(gtid, new_task, true); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " | 
|  | "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", | 
|  | gtid, loc_ref, new_taskdata)); | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { | 
|  | parent->ompt_task_info.frame.enter_frame = ompt_data_none; | 
|  | } | 
|  | #endif | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <bool ompt> | 
|  | static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, | 
|  | void *frame_address, | 
|  | void *return_address) { | 
|  | kmp_taskdata_t *taskdata = nullptr; | 
|  | kmp_info_t *thread; | 
|  | int thread_finished = FALSE; | 
|  | KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); | 
|  | KMP_DEBUG_ASSERT(gtid >= 0); | 
|  |  | 
|  | if (__kmp_tasking_mode != tskm_immediate_exec) { | 
|  | thread = __kmp_threads[gtid]; | 
|  | taskdata = thread->th.th_current_task; | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | ompt_data_t *my_task_data; | 
|  | ompt_data_t *my_parallel_data; | 
|  |  | 
|  | if (ompt) { | 
|  | my_task_data = &(taskdata->ompt_task_info.task_data); | 
|  | my_parallel_data = OMPT_CUR_TEAM_DATA(thread); | 
|  |  | 
|  | taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; | 
|  |  | 
|  | if (ompt_enabled.ompt_callback_sync_region) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( | 
|  | ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, | 
|  | my_task_data, return_address); | 
|  | } | 
|  |  | 
|  | if (ompt_enabled.ompt_callback_sync_region_wait) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( | 
|  | ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, | 
|  | my_task_data, return_address); | 
|  | } | 
|  | } | 
|  | #endif // OMPT_SUPPORT && OMPT_OPTIONAL | 
|  |  | 
|  | // Debugger: The taskwait is active. Store location and thread encountered the | 
|  | // taskwait. | 
|  | #if USE_ITT_BUILD | 
|  | // Note: These values are used by ITT events as well. | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | taskdata->td_taskwait_counter += 1; | 
|  | taskdata->td_taskwait_ident = loc_ref; | 
|  | taskdata->td_taskwait_thread = gtid + 1; | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | void *itt_sync_obj = NULL; | 
|  | #if USE_ITT_NOTIFY | 
|  | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); | 
|  | #endif /* USE_ITT_NOTIFY */ | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | bool must_wait = | 
|  | !taskdata->td_flags.team_serial && !taskdata->td_flags.final; | 
|  |  | 
|  | must_wait = must_wait || (thread->th.th_task_team != NULL && | 
|  | thread->th.th_task_team->tt.tt_found_proxy_tasks); | 
|  | // If hidden helper thread is encountered, we must enable wait here. | 
|  | must_wait = | 
|  | must_wait || | 
|  | (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && | 
|  | thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); | 
|  |  | 
|  | if (must_wait) { | 
|  | kmp_flag_32<false, false> flag( | 
|  | RCAST(std::atomic<kmp_uint32> *, | 
|  | &(taskdata->td_incomplete_child_tasks)), | 
|  | 0U); | 
|  | while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { | 
|  | flag.execute_tasks(thread, gtid, FALSE, | 
|  | &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), | 
|  | __kmp_task_stealing_constraint); | 
|  | } | 
|  | } | 
|  | #if USE_ITT_BUILD | 
|  | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); | 
|  | KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | // Debugger:  The taskwait is completed. Location remains, but thread is | 
|  | // negated. | 
|  | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (ompt) { | 
|  | if (ompt_enabled.ompt_callback_sync_region_wait) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( | 
|  | ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, | 
|  | my_task_data, return_address); | 
|  | } | 
|  | if (ompt_enabled.ompt_callback_sync_region) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( | 
|  | ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, | 
|  | my_task_data, return_address); | 
|  | } | 
|  | taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; | 
|  | } | 
|  | #endif // OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " | 
|  | "returning TASK_CURRENT_NOT_QUEUED\n", | 
|  | gtid, taskdata)); | 
|  |  | 
|  | return TASK_CURRENT_NOT_QUEUED; | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | OMPT_NOINLINE | 
|  | static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, | 
|  | void *frame_address, | 
|  | void *return_address) { | 
|  | return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, | 
|  | return_address); | 
|  | } | 
|  | #endif // OMPT_SUPPORT && OMPT_OPTIONAL | 
|  |  | 
|  | // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are | 
|  | // complete | 
|  | kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | OMPT_STORE_RETURN_ADDRESS(gtid); | 
|  | return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), | 
|  | OMPT_LOAD_RETURN_ADDRESS(gtid)); | 
|  | } | 
|  | #endif | 
|  | return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); | 
|  | } | 
|  |  | 
|  | // __kmpc_omp_taskyield: switch to a different task | 
|  | kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { | 
|  | kmp_taskdata_t *taskdata = NULL; | 
|  | kmp_info_t *thread; | 
|  | int thread_finished = FALSE; | 
|  |  | 
|  | KMP_COUNT_BLOCK(OMP_TASKYIELD); | 
|  | KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", | 
|  | gtid, loc_ref, end_part)); | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  |  | 
|  | if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { | 
|  | thread = __kmp_threads[gtid]; | 
|  | taskdata = thread->th.th_current_task; | 
|  | // Should we model this as a task wait or not? | 
|  | // Debugger: The taskwait is active. Store location and thread encountered the | 
|  | // taskwait. | 
|  | #if USE_ITT_BUILD | 
|  | // Note: These values are used by ITT events as well. | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | taskdata->td_taskwait_counter += 1; | 
|  | taskdata->td_taskwait_ident = loc_ref; | 
|  | taskdata->td_taskwait_thread = gtid + 1; | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | void *itt_sync_obj = NULL; | 
|  | #if USE_ITT_NOTIFY | 
|  | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); | 
|  | #endif /* USE_ITT_NOTIFY */ | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | if (!taskdata->td_flags.team_serial) { | 
|  | kmp_task_team_t *task_team = thread->th.th_task_team; | 
|  | if (task_team != NULL) { | 
|  | if (KMP_TASKING_ENABLED(task_team)) { | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | thread->th.ompt_thread_info.ompt_task_yielded = 1; | 
|  | #endif | 
|  | __kmp_execute_tasks_32( | 
|  | thread, gtid, (kmp_flag_32<> *)NULL, FALSE, | 
|  | &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), | 
|  | __kmp_task_stealing_constraint); | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | thread->th.ompt_thread_info.ompt_task_yielded = 0; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #if USE_ITT_BUILD | 
|  | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | // Debugger:  The taskwait is completed. Location remains, but thread is | 
|  | // negated. | 
|  | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " | 
|  | "returning TASK_CURRENT_NOT_QUEUED\n", | 
|  | gtid, taskdata)); | 
|  |  | 
|  | return TASK_CURRENT_NOT_QUEUED; | 
|  | } | 
|  |  | 
|  | // Task Reduction implementation | 
|  | // | 
|  | // Note: initial implementation didn't take into account the possibility | 
|  | // to specify omp_orig for initializer of the UDR (user defined reduction). | 
|  | // Corrected implementation takes into account the omp_orig object. | 
|  | // Compiler is free to use old implementation if omp_orig is not specified. | 
|  |  | 
|  | /*! | 
|  | @ingroup BASIC_TYPES | 
|  | @{ | 
|  | */ | 
|  |  | 
|  | /*! | 
|  | Flags for special info per task reduction item. | 
|  | */ | 
|  | typedef struct kmp_taskred_flags { | 
|  | /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */ | 
|  | unsigned lazy_priv : 1; | 
|  | unsigned reserved31 : 31; | 
|  | } kmp_taskred_flags_t; | 
|  |  | 
|  | /*! | 
|  | Internal struct for reduction data item related info set up by compiler. | 
|  | */ | 
|  | typedef struct kmp_task_red_input { | 
|  | void *reduce_shar; /**< shared between tasks item to reduce into */ | 
|  | size_t reduce_size; /**< size of data item in bytes */ | 
|  | // three compiler-generated routines (init, fini are optional): | 
|  | void *reduce_init; /**< data initialization routine (single parameter) */ | 
|  | void *reduce_fini; /**< data finalization routine */ | 
|  | void *reduce_comb; /**< data combiner routine */ | 
|  | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ | 
|  | } kmp_task_red_input_t; | 
|  |  | 
|  | /*! | 
|  | Internal struct for reduction data item related info saved by the library. | 
|  | */ | 
|  | typedef struct kmp_taskred_data { | 
|  | void *reduce_shar; /**< shared between tasks item to reduce into */ | 
|  | size_t reduce_size; /**< size of data item */ | 
|  | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ | 
|  | void *reduce_priv; /**< array of thread specific items */ | 
|  | void *reduce_pend; /**< end of private data for faster comparison op */ | 
|  | // three compiler-generated routines (init, fini are optional): | 
|  | void *reduce_comb; /**< data combiner routine */ | 
|  | void *reduce_init; /**< data initialization routine (two parameters) */ | 
|  | void *reduce_fini; /**< data finalization routine */ | 
|  | void *reduce_orig; /**< original item (can be used in UDR initializer) */ | 
|  | } kmp_taskred_data_t; | 
|  |  | 
|  | /*! | 
|  | Internal struct for reduction data item related info set up by compiler. | 
|  |  | 
|  | New interface: added reduce_orig field to provide omp_orig for UDR initializer. | 
|  | */ | 
|  | typedef struct kmp_taskred_input { | 
|  | void *reduce_shar; /**< shared between tasks item to reduce into */ | 
|  | void *reduce_orig; /**< original reduction item used for initialization */ | 
|  | size_t reduce_size; /**< size of data item */ | 
|  | // three compiler-generated routines (init, fini are optional): | 
|  | void *reduce_init; /**< data initialization routine (two parameters) */ | 
|  | void *reduce_fini; /**< data finalization routine */ | 
|  | void *reduce_comb; /**< data combiner routine */ | 
|  | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ | 
|  | } kmp_taskred_input_t; | 
|  | /*! | 
|  | @} | 
|  | */ | 
|  |  | 
|  | template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); | 
|  | template <> | 
|  | void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, | 
|  | kmp_task_red_input_t &src) { | 
|  | item.reduce_orig = NULL; | 
|  | } | 
|  | template <> | 
|  | void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, | 
|  | kmp_taskred_input_t &src) { | 
|  | if (src.reduce_orig != NULL) { | 
|  | item.reduce_orig = src.reduce_orig; | 
|  | } else { | 
|  | item.reduce_orig = src.reduce_shar; | 
|  | } // non-NULL reduce_orig means new interface used | 
|  | } | 
|  |  | 
|  | template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); | 
|  | template <> | 
|  | void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, | 
|  | size_t offset) { | 
|  | ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); | 
|  | } | 
|  | template <> | 
|  | void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, | 
|  | size_t offset) { | 
|  | ((void (*)(void *, void *))item.reduce_init)( | 
|  | (char *)(item.reduce_priv) + offset, item.reduce_orig); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void *__kmp_task_reduction_init(int gtid, int num, T *data) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; | 
|  | kmp_uint32 nth = thread->th.th_team_nproc; | 
|  | kmp_taskred_data_t *arr; | 
|  |  | 
|  | // check input data just in case | 
|  | KMP_ASSERT(tg != NULL); | 
|  | KMP_ASSERT(data != NULL); | 
|  | KMP_ASSERT(num > 0); | 
|  | if (nth == 1 && !__kmp_enable_hidden_helper) { | 
|  | KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", | 
|  | gtid, tg)); | 
|  | return (void *)tg; | 
|  | } | 
|  | KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", | 
|  | gtid, tg, num)); | 
|  | arr = (kmp_taskred_data_t *)__kmp_thread_malloc( | 
|  | thread, num * sizeof(kmp_taskred_data_t)); | 
|  | for (int i = 0; i < num; ++i) { | 
|  | size_t size = data[i].reduce_size - 1; | 
|  | // round the size up to cache line per thread-specific item | 
|  | size += CACHE_LINE - size % CACHE_LINE; | 
|  | KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory | 
|  | arr[i].reduce_shar = data[i].reduce_shar; | 
|  | arr[i].reduce_size = size; | 
|  | arr[i].flags = data[i].flags; | 
|  | arr[i].reduce_comb = data[i].reduce_comb; | 
|  | arr[i].reduce_init = data[i].reduce_init; | 
|  | arr[i].reduce_fini = data[i].reduce_fini; | 
|  | __kmp_assign_orig<T>(arr[i], data[i]); | 
|  | if (!arr[i].flags.lazy_priv) { | 
|  | // allocate cache-line aligned block and fill it with zeros | 
|  | arr[i].reduce_priv = __kmp_allocate(nth * size); | 
|  | arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; | 
|  | if (arr[i].reduce_init != NULL) { | 
|  | // initialize all thread-specific items | 
|  | for (size_t j = 0; j < nth; ++j) { | 
|  | __kmp_call_init<T>(arr[i], j * size); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // only allocate space for pointers now, | 
|  | // objects will be lazily allocated/initialized if/when requested | 
|  | // note that __kmp_allocate zeroes the allocated memory | 
|  | arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); | 
|  | } | 
|  | } | 
|  | tg->reduce_data = (void *)arr; | 
|  | tg->reduce_num_data = num; | 
|  | return (void *)tg; | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param gtid      Global thread ID | 
|  | @param num       Number of data items to reduce | 
|  | @param data      Array of data for reduction | 
|  | @return The taskgroup identifier | 
|  |  | 
|  | Initialize task reduction for the taskgroup. | 
|  |  | 
|  | Note: this entry supposes the optional compiler-generated initializer routine | 
|  | has single parameter - pointer to object to be initialized. That means | 
|  | the reduction either does not use omp_orig object, or the omp_orig is accessible | 
|  | without help of the runtime library. | 
|  | */ | 
|  | void *__kmpc_task_reduction_init(int gtid, int num, void *data) { | 
|  | #if OMPX_TASKGRAPH | 
|  | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); | 
|  | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { | 
|  | kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; | 
|  | this_tdg->rec_taskred_data = | 
|  | __kmp_allocate(sizeof(kmp_task_red_input_t) * num); | 
|  | this_tdg->rec_num_taskred = num; | 
|  | KMP_MEMCPY(this_tdg->rec_taskred_data, data, | 
|  | sizeof(kmp_task_red_input_t) * num); | 
|  | } | 
|  | #endif | 
|  | return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param gtid      Global thread ID | 
|  | @param num       Number of data items to reduce | 
|  | @param data      Array of data for reduction | 
|  | @return The taskgroup identifier | 
|  |  | 
|  | Initialize task reduction for the taskgroup. | 
|  |  | 
|  | Note: this entry supposes the optional compiler-generated initializer routine | 
|  | has two parameters, pointer to object to be initialized and pointer to omp_orig | 
|  | */ | 
|  | void *__kmpc_taskred_init(int gtid, int num, void *data) { | 
|  | #if OMPX_TASKGRAPH | 
|  | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); | 
|  | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { | 
|  | kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; | 
|  | this_tdg->rec_taskred_data = | 
|  | __kmp_allocate(sizeof(kmp_task_red_input_t) * num); | 
|  | this_tdg->rec_num_taskred = num; | 
|  | KMP_MEMCPY(this_tdg->rec_taskred_data, data, | 
|  | sizeof(kmp_task_red_input_t) * num); | 
|  | } | 
|  | #endif | 
|  | return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); | 
|  | } | 
|  |  | 
|  | // Copy task reduction data (except for shared pointers). | 
|  | template <typename T> | 
|  | void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, | 
|  | kmp_taskgroup_t *tg, void *reduce_data) { | 
|  | kmp_taskred_data_t *arr; | 
|  | KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," | 
|  | " from data %p\n", | 
|  | thr, tg, reduce_data)); | 
|  | arr = (kmp_taskred_data_t *)__kmp_thread_malloc( | 
|  | thr, num * sizeof(kmp_taskred_data_t)); | 
|  | // threads will share private copies, thunk routines, sizes, flags, etc.: | 
|  | KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); | 
|  | for (int i = 0; i < num; ++i) { | 
|  | arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers | 
|  | } | 
|  | tg->reduce_data = (void *)arr; | 
|  | tg->reduce_num_data = num; | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param gtid    Global thread ID | 
|  | @param tskgrp  The taskgroup ID (optional) | 
|  | @param data    Shared location of the item | 
|  | @return The pointer to per-thread data | 
|  |  | 
|  | Get thread-specific location of data item | 
|  | */ | 
|  | void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_int32 nth = thread->th.th_team_nproc; | 
|  | if (nth == 1) | 
|  | return data; // nothing to do | 
|  |  | 
|  | kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; | 
|  | if (tg == NULL) | 
|  | tg = thread->th.th_current_task->td_taskgroup; | 
|  | KMP_ASSERT(tg != NULL); | 
|  | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); | 
|  | kmp_int32 num = tg->reduce_num_data; | 
|  | kmp_int32 tid = thread->th.th_info.ds.ds_tid; | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | if ((thread->th.th_current_task->is_taskgraph) && | 
|  | (!__kmp_tdg_is_recording( | 
|  | __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) { | 
|  | tg = thread->th.th_current_task->td_taskgroup; | 
|  | KMP_ASSERT(tg != NULL); | 
|  | KMP_ASSERT(tg->reduce_data != NULL); | 
|  | arr = (kmp_taskred_data_t *)(tg->reduce_data); | 
|  | num = tg->reduce_num_data; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | KMP_ASSERT(data != NULL); | 
|  | while (tg != NULL) { | 
|  | for (int i = 0; i < num; ++i) { | 
|  | if (!arr[i].flags.lazy_priv) { | 
|  | if (data == arr[i].reduce_shar || | 
|  | (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) | 
|  | return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; | 
|  | } else { | 
|  | // check shared location first | 
|  | void **p_priv = (void **)(arr[i].reduce_priv); | 
|  | if (data == arr[i].reduce_shar) | 
|  | goto found; | 
|  | // check if we get some thread specific location as parameter | 
|  | for (int j = 0; j < nth; ++j) | 
|  | if (data == p_priv[j]) | 
|  | goto found; | 
|  | continue; // not found, continue search | 
|  | found: | 
|  | if (p_priv[tid] == NULL) { | 
|  | // allocate thread specific object lazily | 
|  | p_priv[tid] = __kmp_allocate(arr[i].reduce_size); | 
|  | if (arr[i].reduce_init != NULL) { | 
|  | if (arr[i].reduce_orig != NULL) { // new interface | 
|  | ((void (*)(void *, void *))arr[i].reduce_init)( | 
|  | p_priv[tid], arr[i].reduce_orig); | 
|  | } else { // old interface (single parameter) | 
|  | ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); | 
|  | } | 
|  | } | 
|  | } | 
|  | return p_priv[tid]; | 
|  | } | 
|  | } | 
|  | KMP_ASSERT(tg->parent); | 
|  | tg = tg->parent; | 
|  | arr = (kmp_taskred_data_t *)(tg->reduce_data); | 
|  | num = tg->reduce_num_data; | 
|  | } | 
|  | KMP_ASSERT2(0, "Unknown task reduction item"); | 
|  | return NULL; // ERROR, this line never executed | 
|  | } | 
|  |  | 
|  | // Finalize task reduction. | 
|  | // Called from __kmpc_end_taskgroup() | 
|  | static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { | 
|  | kmp_int32 nth = th->th.th_team_nproc; | 
|  | KMP_DEBUG_ASSERT( | 
|  | nth > 1 || | 
|  | __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we | 
|  | // are using hidden helper threads | 
|  | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; | 
|  | kmp_int32 num = tg->reduce_num_data; | 
|  | for (int i = 0; i < num; ++i) { | 
|  | void *sh_data = arr[i].reduce_shar; | 
|  | void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); | 
|  | void (*f_comb)(void *, void *) = | 
|  | (void (*)(void *, void *))(arr[i].reduce_comb); | 
|  | if (!arr[i].flags.lazy_priv) { | 
|  | void *pr_data = arr[i].reduce_priv; | 
|  | size_t size = arr[i].reduce_size; | 
|  | for (int j = 0; j < nth; ++j) { | 
|  | void *priv_data = (char *)pr_data + j * size; | 
|  | f_comb(sh_data, priv_data); // combine results | 
|  | if (f_fini) | 
|  | f_fini(priv_data); // finalize if needed | 
|  | } | 
|  | } else { | 
|  | void **pr_data = (void **)(arr[i].reduce_priv); | 
|  | for (int j = 0; j < nth; ++j) { | 
|  | if (pr_data[j] != NULL) { | 
|  | f_comb(sh_data, pr_data[j]); // combine results | 
|  | if (f_fini) | 
|  | f_fini(pr_data[j]); // finalize if needed | 
|  | __kmp_free(pr_data[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  | __kmp_free(arr[i].reduce_priv); | 
|  | } | 
|  | __kmp_thread_free(th, arr); | 
|  | tg->reduce_data = NULL; | 
|  | tg->reduce_num_data = 0; | 
|  | } | 
|  |  | 
|  | // Cleanup task reduction data for parallel or worksharing, | 
|  | // do not touch task private data other threads still working with. | 
|  | // Called from __kmpc_end_taskgroup() | 
|  | static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { | 
|  | __kmp_thread_free(th, tg->reduce_data); | 
|  | tg->reduce_data = NULL; | 
|  | tg->reduce_num_data = 0; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, | 
|  | int num, T *data) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | kmp_info_t *thr = __kmp_threads[gtid]; | 
|  | kmp_int32 nth = thr->th.th_team_nproc; | 
|  | __kmpc_taskgroup(loc, gtid); // form new taskgroup first | 
|  | if (nth == 1) { | 
|  | KA_TRACE(10, | 
|  | ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", | 
|  | gtid, thr->th.th_current_task->td_taskgroup)); | 
|  | return (void *)thr->th.th_current_task->td_taskgroup; | 
|  | } | 
|  | kmp_team_t *team = thr->th.th_team; | 
|  | void *reduce_data; | 
|  | kmp_taskgroup_t *tg; | 
|  | reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); | 
|  | if (reduce_data == NULL && | 
|  | __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, | 
|  | (void *)1)) { | 
|  | // single thread enters this block to initialize common reduction data | 
|  | KMP_DEBUG_ASSERT(reduce_data == NULL); | 
|  | // first initialize own data, then make a copy other threads can use | 
|  | tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); | 
|  | reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); | 
|  | KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); | 
|  | // fini counters should be 0 at this point | 
|  | KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); | 
|  | KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); | 
|  | KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); | 
|  | } else { | 
|  | while ( | 
|  | (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == | 
|  | (void *)1) { // wait for task reduction initialization | 
|  | KMP_CPU_PAUSE(); | 
|  | } | 
|  | KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here | 
|  | tg = thr->th.th_current_task->td_taskgroup; | 
|  | __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); | 
|  | } | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param loc       Source location info | 
|  | @param gtid      Global thread ID | 
|  | @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise | 
|  | @param num       Number of data items to reduce | 
|  | @param data      Array of data for reduction | 
|  | @return The taskgroup identifier | 
|  |  | 
|  | Initialize task reduction for a parallel or worksharing. | 
|  |  | 
|  | Note: this entry supposes the optional compiler-generated initializer routine | 
|  | has single parameter - pointer to object to be initialized. That means | 
|  | the reduction either does not use omp_orig object, or the omp_orig is accessible | 
|  | without help of the runtime library. | 
|  | */ | 
|  | void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, | 
|  | int num, void *data) { | 
|  | return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, | 
|  | (kmp_task_red_input_t *)data); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param loc       Source location info | 
|  | @param gtid      Global thread ID | 
|  | @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise | 
|  | @param num       Number of data items to reduce | 
|  | @param data      Array of data for reduction | 
|  | @return The taskgroup identifier | 
|  |  | 
|  | Initialize task reduction for a parallel or worksharing. | 
|  |  | 
|  | Note: this entry supposes the optional compiler-generated initializer routine | 
|  | has two parameters, pointer to object to be initialized and pointer to omp_orig | 
|  | */ | 
|  | void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, | 
|  | void *data) { | 
|  | return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, | 
|  | (kmp_taskred_input_t *)data); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param loc       Source location info | 
|  | @param gtid      Global thread ID | 
|  | @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise | 
|  |  | 
|  | Finalize task reduction for a parallel or worksharing. | 
|  | */ | 
|  | void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { | 
|  | __kmpc_end_taskgroup(loc, gtid); | 
|  | } | 
|  |  | 
|  | // __kmpc_taskgroup: Start a new taskgroup | 
|  | void __kmpc_taskgroup(ident_t *loc, int gtid) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskdata_t *taskdata = thread->th.th_current_task; | 
|  | kmp_taskgroup_t *tg_new = | 
|  | (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); | 
|  | KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); | 
|  | KMP_ATOMIC_ST_RLX(&tg_new->count, 0); | 
|  | KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); | 
|  | tg_new->parent = taskdata->td_taskgroup; | 
|  | tg_new->reduce_data = NULL; | 
|  | tg_new->reduce_num_data = 0; | 
|  | tg_new->gomp_data = NULL; | 
|  | taskdata->td_taskgroup = tg_new; | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { | 
|  | void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); | 
|  | if (!codeptr) | 
|  | codeptr = OMPT_GET_RETURN_ADDRESS(0); | 
|  | kmp_team_t *team = thread->th.th_team; | 
|  | ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; | 
|  | // FIXME: I think this is wrong for lwt! | 
|  | ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; | 
|  |  | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( | 
|  | ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), | 
|  | &(my_task_data), codeptr); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // __kmpc_end_taskgroup: Wait until all tasks generated by the current task | 
|  | //                       and its descendants are complete | 
|  | void __kmpc_end_taskgroup(ident_t *loc, int gtid) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskdata_t *taskdata = thread->th.th_current_task; | 
|  | kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; | 
|  | int thread_finished = FALSE; | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | kmp_team_t *team; | 
|  | ompt_data_t my_task_data; | 
|  | ompt_data_t my_parallel_data; | 
|  | void *codeptr = nullptr; | 
|  | if (UNLIKELY(ompt_enabled.enabled)) { | 
|  | team = thread->th.th_team; | 
|  | my_task_data = taskdata->ompt_task_info.task_data; | 
|  | // FIXME: I think this is wrong for lwt! | 
|  | my_parallel_data = team->t.ompt_team_info.parallel_data; | 
|  | codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); | 
|  | if (!codeptr) | 
|  | codeptr = OMPT_GET_RETURN_ADDRESS(0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); | 
|  | KMP_DEBUG_ASSERT(taskgroup != NULL); | 
|  | KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); | 
|  |  | 
|  | if (__kmp_tasking_mode != tskm_immediate_exec) { | 
|  | // mark task as waiting not on a barrier | 
|  | taskdata->td_taskwait_counter += 1; | 
|  | taskdata->td_taskwait_ident = loc; | 
|  | taskdata->td_taskwait_thread = gtid + 1; | 
|  | #if USE_ITT_BUILD | 
|  | // For ITT the taskgroup wait is similar to taskwait until we need to | 
|  | // distinguish them | 
|  | void *itt_sync_obj = NULL; | 
|  | #if USE_ITT_NOTIFY | 
|  | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); | 
|  | #endif /* USE_ITT_NOTIFY */ | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( | 
|  | ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), | 
|  | &(my_task_data), codeptr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!taskdata->td_flags.team_serial || | 
|  | (thread->th.th_task_team != NULL && | 
|  | (thread->th.th_task_team->tt.tt_found_proxy_tasks || | 
|  | thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) { | 
|  | kmp_flag_32<false, false> flag( | 
|  | RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); | 
|  | while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { | 
|  | flag.execute_tasks(thread, gtid, FALSE, | 
|  | &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), | 
|  | __kmp_task_stealing_constraint); | 
|  | } | 
|  | } | 
|  | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( | 
|  | ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), | 
|  | &(my_task_data), codeptr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); | 
|  | KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | } | 
|  | KMP_DEBUG_ASSERT(taskgroup->count == 0); | 
|  |  | 
|  | if (taskgroup->reduce_data != NULL && | 
|  | !taskgroup->gomp_data) { // need to reduce? | 
|  | int cnt; | 
|  | void *reduce_data; | 
|  | kmp_team_t *t = thread->th.th_team; | 
|  | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; | 
|  | // check if <priv> data of the first reduction variable shared for the team | 
|  | void *priv0 = arr[0].reduce_priv; | 
|  | if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && | 
|  | ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { | 
|  | // finishing task reduction on parallel | 
|  | cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); | 
|  | if (cnt == thread->th.th_team_nproc - 1) { | 
|  | // we are the last thread passing __kmpc_reduction_modifier_fini() | 
|  | // finalize task reduction: | 
|  | __kmp_task_reduction_fini(thread, taskgroup); | 
|  | // cleanup fields in the team structure: | 
|  | // TODO: is relaxed store enough here (whole barrier should follow)? | 
|  | __kmp_thread_free(thread, reduce_data); | 
|  | KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); | 
|  | KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); | 
|  | } else { | 
|  | // we are not the last thread passing __kmpc_reduction_modifier_fini(), | 
|  | // so do not finalize reduction, just clean own copy of the data | 
|  | __kmp_task_reduction_clean(thread, taskgroup); | 
|  | } | 
|  | } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != | 
|  | NULL && | 
|  | ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { | 
|  | // finishing task reduction on worksharing | 
|  | cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); | 
|  | if (cnt == thread->th.th_team_nproc - 1) { | 
|  | // we are the last thread passing __kmpc_reduction_modifier_fini() | 
|  | __kmp_task_reduction_fini(thread, taskgroup); | 
|  | // cleanup fields in team structure: | 
|  | // TODO: is relaxed store enough here (whole barrier should follow)? | 
|  | __kmp_thread_free(thread, reduce_data); | 
|  | KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); | 
|  | KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); | 
|  | } else { | 
|  | // we are not the last thread passing __kmpc_reduction_modifier_fini(), | 
|  | // so do not finalize reduction, just clean own copy of the data | 
|  | __kmp_task_reduction_clean(thread, taskgroup); | 
|  | } | 
|  | } else { | 
|  | // finishing task reduction on taskgroup | 
|  | __kmp_task_reduction_fini(thread, taskgroup); | 
|  | } | 
|  | } | 
|  | // Restore parent taskgroup for the current task | 
|  | taskdata->td_taskgroup = taskgroup->parent; | 
|  | __kmp_thread_free(thread, taskgroup); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", | 
|  | gtid, taskdata)); | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( | 
|  | ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), | 
|  | &(my_task_data), codeptr); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid, | 
|  | kmp_task_team_t *task_team, | 
|  | kmp_int32 is_constrained) { | 
|  | kmp_task_t *task = NULL; | 
|  | kmp_taskdata_t *taskdata; | 
|  | kmp_taskdata_t *current; | 
|  | kmp_thread_data_t *thread_data; | 
|  | int ntasks = task_team->tt.tt_num_task_pri; | 
|  | if (ntasks == 0) { | 
|  | KA_TRACE( | 
|  | 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid)); | 
|  | return NULL; | 
|  | } | 
|  | do { | 
|  | // decrement num_tasks to "reserve" one task to get for execution | 
|  | if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks, | 
|  | ntasks - 1)) | 
|  | break; | 
|  | ntasks = task_team->tt.tt_num_task_pri; | 
|  | } while (ntasks > 0); | 
|  | if (ntasks == 0) { | 
|  | KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n", | 
|  | __kmp_get_gtid())); | 
|  | return NULL; | 
|  | } | 
|  | // We got a "ticket" to get a "reserved" priority task | 
|  | int deque_ntasks; | 
|  | kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; | 
|  | do { | 
|  | KMP_ASSERT(list != NULL); | 
|  | thread_data = &list->td; | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | deque_ntasks = thread_data->td.td_deque_ntasks; | 
|  | if (deque_ntasks == 0) { | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n", | 
|  | __kmp_get_gtid(), thread_data)); | 
|  | list = list->next; | 
|  | } | 
|  | } while (deque_ntasks == 0); | 
|  | KMP_DEBUG_ASSERT(deque_ntasks); | 
|  | int target = thread_data->td.td_deque_head; | 
|  | current = __kmp_threads[gtid]->th.th_current_task; | 
|  | taskdata = thread_data->td.td_deque[target]; | 
|  | if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { | 
|  | // Bump head pointer and Wrap. | 
|  | thread_data->td.td_deque_head = | 
|  | (target + 1) & TASK_DEQUE_MASK(thread_data->td); | 
|  | } else { | 
|  | if (!task_team->tt.tt_untied_task_encountered) { | 
|  | // The TSC does not allow to steal victim task | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task " | 
|  | "from %p: task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, thread_data, task_team, deque_ntasks, target, | 
|  | thread_data->td.td_deque_tail)); | 
|  | task_team->tt.tt_num_task_pri++; // atomic inc, restore value | 
|  | return NULL; | 
|  | } | 
|  | int i; | 
|  | // walk through the deque trying to steal any task | 
|  | taskdata = NULL; | 
|  | for (i = 1; i < deque_ntasks; ++i) { | 
|  | target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); | 
|  | taskdata = thread_data->td.td_deque[target]; | 
|  | if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { | 
|  | break; // found task to execute | 
|  | } else { | 
|  | taskdata = NULL; | 
|  | } | 
|  | } | 
|  | if (taskdata == NULL) { | 
|  | // No appropriate candidate found to execute | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE( | 
|  | 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from " | 
|  | "%p: task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, thread_data, task_team, deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  | task_team->tt.tt_num_task_pri++; // atomic inc, restore value | 
|  | return NULL; | 
|  | } | 
|  | int prev = target; | 
|  | for (i = i + 1; i < deque_ntasks; ++i) { | 
|  | // shift remaining tasks in the deque left by 1 | 
|  | target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); | 
|  | thread_data->td.td_deque[prev] = thread_data->td.td_deque[target]; | 
|  | prev = target; | 
|  | } | 
|  | KMP_DEBUG_ASSERT( | 
|  | thread_data->td.td_deque_tail == | 
|  | (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td))); | 
|  | thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped)) | 
|  | } | 
|  | thread_data->td.td_deque_ntasks = deque_ntasks - 1; | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | task = KMP_TASKDATA_TO_TASK(taskdata); | 
|  | return task; | 
|  | } | 
|  |  | 
|  | // __kmp_remove_my_task: remove a task from my own deque | 
|  | static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, | 
|  | kmp_task_team_t *task_team, | 
|  | kmp_int32 is_constrained) { | 
|  | kmp_task_t *task; | 
|  | kmp_taskdata_t *taskdata; | 
|  | kmp_thread_data_t *thread_data; | 
|  | kmp_uint32 tail; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  | KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != | 
|  | NULL); // Caller should check this condition | 
|  |  | 
|  | thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", | 
|  | gtid, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  |  | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { | 
|  | KA_TRACE(10, | 
|  | ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " | 
|  | "ntasks=%d head=%u tail=%u\n", | 
|  | gtid, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  |  | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE(10, | 
|  | ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " | 
|  | "ntasks=%d head=%u tail=%u\n", | 
|  | gtid, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | tail = (thread_data->td.td_deque_tail - 1) & | 
|  | TASK_DEQUE_MASK(thread_data->td); // Wrap index. | 
|  | taskdata = thread_data->td.td_deque[tail]; | 
|  |  | 
|  | if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, | 
|  | thread->th.th_current_task)) { | 
|  | // The TSC does not allow to steal victim task | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KA_TRACE(10, | 
|  | ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " | 
|  | "ntasks=%d head=%u tail=%u\n", | 
|  | gtid, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | thread_data->td.td_deque_tail = tail; | 
|  | TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); | 
|  |  | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " | 
|  | "ntasks=%d head=%u tail=%u\n", | 
|  | gtid, taskdata, thread_data->td.td_deque_ntasks, | 
|  | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); | 
|  |  | 
|  | task = KMP_TASKDATA_TO_TASK(taskdata); | 
|  | return task; | 
|  | } | 
|  |  | 
|  | // __kmp_steal_task: remove a task from another thread's deque | 
|  | // Assume that calling thread has already checked existence of | 
|  | // task_team thread_data before calling this routine. | 
|  | static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, | 
|  | kmp_task_team_t *task_team, | 
|  | std::atomic<kmp_int32> *unfinished_threads, | 
|  | int *thread_finished, | 
|  | kmp_int32 is_constrained) { | 
|  | kmp_task_t *task; | 
|  | kmp_taskdata_t *taskdata; | 
|  | kmp_taskdata_t *current; | 
|  | kmp_thread_data_t *victim_td, *threads_data; | 
|  | kmp_int32 target; | 
|  | kmp_int32 victim_tid; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  |  | 
|  | threads_data = task_team->tt.tt_threads_data; | 
|  | KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition | 
|  |  | 
|  | victim_tid = victim_thr->th.th_info.ds.ds_tid; | 
|  | victim_td = &threads_data[victim_tid]; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " | 
|  | "task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, __kmp_gtid_from_thread(victim_thr), task_team, | 
|  | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, | 
|  | victim_td->td.td_deque_tail)); | 
|  |  | 
|  | if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { | 
|  | KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " | 
|  | "task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, __kmp_gtid_from_thread(victim_thr), task_team, | 
|  | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, | 
|  | victim_td->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); | 
|  |  | 
|  | int ntasks = TCR_4(victim_td->td.td_deque_ntasks); | 
|  | // Check again after we acquire the lock | 
|  | if (ntasks == 0) { | 
|  | __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); | 
|  | KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " | 
|  | "task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, | 
|  | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); | 
|  | current = __kmp_threads[gtid]->th.th_current_task; | 
|  | taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; | 
|  | if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { | 
|  | // Bump head pointer and Wrap. | 
|  | victim_td->td.td_deque_head = | 
|  | (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); | 
|  | } else { | 
|  | if (!task_team->tt.tt_untied_task_encountered) { | 
|  | // The TSC does not allow to steal victim task | 
|  | __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); | 
|  | KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " | 
|  | "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, | 
|  | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  | int i; | 
|  | // walk through victim's deque trying to steal any task | 
|  | target = victim_td->td.td_deque_head; | 
|  | taskdata = NULL; | 
|  | for (i = 1; i < ntasks; ++i) { | 
|  | target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); | 
|  | taskdata = victim_td->td.td_deque[target]; | 
|  | if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { | 
|  | break; // found victim task | 
|  | } else { | 
|  | taskdata = NULL; | 
|  | } | 
|  | } | 
|  | if (taskdata == NULL) { | 
|  | // No appropriate candidate to steal found | 
|  | __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); | 
|  | KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " | 
|  | "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, | 
|  | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); | 
|  | return NULL; | 
|  | } | 
|  | int prev = target; | 
|  | for (i = i + 1; i < ntasks; ++i) { | 
|  | // shift remaining tasks in the deque left by 1 | 
|  | target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); | 
|  | victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; | 
|  | prev = target; | 
|  | } | 
|  | KMP_DEBUG_ASSERT( | 
|  | victim_td->td.td_deque_tail == | 
|  | (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); | 
|  | victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) | 
|  | } | 
|  | if (*thread_finished) { | 
|  | // We need to un-mark this victim as a finished victim.  This must be done | 
|  | // before releasing the lock, or else other threads (starting with the | 
|  | // primary thread victim) might be prematurely released from the barrier!!! | 
|  | #if KMP_DEBUG | 
|  | kmp_int32 count = | 
|  | #endif | 
|  | KMP_ATOMIC_INC(unfinished_threads); | 
|  | KA_TRACE( | 
|  | 20, | 
|  | ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", | 
|  | gtid, count + 1, task_team)); | 
|  | *thread_finished = FALSE; | 
|  | } | 
|  | TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); | 
|  |  | 
|  | __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); | 
|  |  | 
|  | KMP_COUNT_BLOCK(TASK_stolen); | 
|  | KA_TRACE(10, | 
|  | ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " | 
|  | "task_team=%p ntasks=%d head=%u tail=%u\n", | 
|  | gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, | 
|  | ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); | 
|  |  | 
|  | task = KMP_TASKDATA_TO_TASK(taskdata); | 
|  | return task; | 
|  | } | 
|  |  | 
|  | // __kmp_execute_tasks_template: Choose and execute tasks until either the | 
|  | // condition is statisfied (return true) or there are none left (return false). | 
|  | // | 
|  | // final_spin is TRUE if this is the spin at the release barrier. | 
|  | // thread_finished indicates whether the thread is finished executing all | 
|  | // the tasks it has on its deque, and is at the release barrier. | 
|  | // spinner is the location on which to spin. | 
|  | // spinner == NULL means only execute a single task and return. | 
|  | // checker is the value to check to terminate the spin. | 
|  | template <class C> | 
|  | static inline int __kmp_execute_tasks_template( | 
|  | kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, | 
|  | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), | 
|  | kmp_int32 is_constrained) { | 
|  | kmp_task_team_t *task_team = thread->th.th_task_team; | 
|  | kmp_thread_data_t *threads_data; | 
|  | kmp_task_t *task; | 
|  | kmp_info_t *other_thread; | 
|  | kmp_taskdata_t *current_task = thread->th.th_current_task; | 
|  | std::atomic<kmp_int32> *unfinished_threads; | 
|  | kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, | 
|  | tid = thread->th.th_info.ds.ds_tid; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  | KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); | 
|  |  | 
|  | if (task_team == NULL || current_task == NULL) | 
|  | return FALSE; | 
|  |  | 
|  | KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " | 
|  | "*thread_finished=%d\n", | 
|  | gtid, final_spin, *thread_finished)); | 
|  |  | 
|  | thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; | 
|  | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(threads_data != NULL); | 
|  |  | 
|  | nthreads = task_team->tt.tt_nproc; | 
|  | unfinished_threads = &(task_team->tt.tt_unfinished_threads); | 
|  | KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || | 
|  | task_team->tt.tt_hidden_helper_task_encountered); | 
|  | KMP_DEBUG_ASSERT(*unfinished_threads >= 0); | 
|  |  | 
|  | while (1) { // Outer loop keeps trying to find tasks in case of single thread | 
|  | // getting tasks from target constructs | 
|  | while (1) { // Inner loop to find a task and execute it | 
|  | task = NULL; | 
|  | if (task_team->tt.tt_num_task_pri) { // get priority task first | 
|  | task = __kmp_get_priority_task(gtid, task_team, is_constrained); | 
|  | } | 
|  | if (task == NULL && use_own_tasks) { // check own queue next | 
|  | task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); | 
|  | } | 
|  | if ((task == NULL) && (nthreads > 1)) { // Steal a task finally | 
|  | int asleep = 1; | 
|  | use_own_tasks = 0; | 
|  | // Try to steal from the last place I stole from successfully. | 
|  | if (victim_tid == -2) { // haven't stolen anything yet | 
|  | victim_tid = threads_data[tid].td.td_deque_last_stolen; | 
|  | if (victim_tid != | 
|  | -1) // if we have a last stolen from victim, get the thread | 
|  | other_thread = threads_data[victim_tid].td.td_thr; | 
|  | } | 
|  | if (victim_tid != -1) { // found last victim | 
|  | asleep = 0; | 
|  | } else if (!new_victim) { // no recent steals and we haven't already | 
|  | // used a new victim; select a random thread | 
|  | do { // Find a different thread to steal work from. | 
|  | // Pick a random thread. Initial plan was to cycle through all the | 
|  | // threads, and only return if we tried to steal from every thread, | 
|  | // and failed.  Arch says that's not such a great idea. | 
|  | victim_tid = __kmp_get_random(thread) % (nthreads - 1); | 
|  | if (victim_tid >= tid) { | 
|  | ++victim_tid; // Adjusts random distribution to exclude self | 
|  | } | 
|  | // Found a potential victim | 
|  | other_thread = threads_data[victim_tid].td.td_thr; | 
|  | // There is a slight chance that __kmp_enable_tasking() did not wake | 
|  | // up all threads waiting at the barrier.  If victim is sleeping, | 
|  | // then wake it up. Since we were going to pay the cache miss | 
|  | // penalty for referencing another thread's kmp_info_t struct | 
|  | // anyway, | 
|  | // the check shouldn't cost too much performance at this point. In | 
|  | // extra barrier mode, tasks do not sleep at the separate tasking | 
|  | // barrier, so this isn't a problem. | 
|  | asleep = 0; | 
|  | if ((__kmp_tasking_mode == tskm_task_teams) && | 
|  | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && | 
|  | (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != | 
|  | NULL)) { | 
|  | asleep = 1; | 
|  | __kmp_null_resume_wrapper(other_thread); | 
|  | // A sleeping thread should not have any tasks on it's queue. | 
|  | // There is a slight possibility that it resumes, steals a task | 
|  | // from another thread, which spawns more tasks, all in the time | 
|  | // that it takes this thread to check => don't write an assertion | 
|  | // that the victim's queue is empty.  Try stealing from a | 
|  | // different thread. | 
|  | } | 
|  | } while (asleep); | 
|  | } | 
|  |  | 
|  | if (!asleep) { | 
|  | // We have a victim to try to steal from | 
|  | task = __kmp_steal_task(other_thread, gtid, task_team, | 
|  | unfinished_threads, thread_finished, | 
|  | is_constrained); | 
|  | } | 
|  | if (task != NULL) { // set last stolen to victim | 
|  | if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { | 
|  | threads_data[tid].td.td_deque_last_stolen = victim_tid; | 
|  | // The pre-refactored code did not try more than 1 successful new | 
|  | // vicitm, unless the last one generated more local tasks; | 
|  | // new_victim keeps track of this | 
|  | new_victim = 1; | 
|  | } | 
|  | } else { // No tasks found; unset last_stolen | 
|  | KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); | 
|  | victim_tid = -2; // no successful victim found | 
|  | } | 
|  | } | 
|  |  | 
|  | if (task == NULL) | 
|  | break; // break out of tasking loop | 
|  |  | 
|  | // Found a task; execute it | 
|  | #if USE_ITT_BUILD && USE_ITT_NOTIFY | 
|  | if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { | 
|  | if (itt_sync_obj == NULL) { // we are at fork barrier where we could not | 
|  | // get the object reliably | 
|  | itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); | 
|  | } | 
|  | __kmp_itt_task_starting(itt_sync_obj); | 
|  | } | 
|  | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ | 
|  | __kmp_invoke_task(gtid, task, current_task); | 
|  | #if USE_ITT_BUILD | 
|  | if (itt_sync_obj != NULL) | 
|  | __kmp_itt_task_finished(itt_sync_obj); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | // If this thread is only partway through the barrier and the condition is | 
|  | // met, then return now, so that the barrier gather/release pattern can | 
|  | // proceed. If this thread is in the last spin loop in the barrier, | 
|  | // waiting to be released, we know that the termination condition will not | 
|  | // be satisfied, so don't waste any cycles checking it. | 
|  | if (flag == NULL || (!final_spin && flag->done_check())) { | 
|  | KA_TRACE( | 
|  | 15, | 
|  | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", | 
|  | gtid)); | 
|  | return TRUE; | 
|  | } | 
|  | if (thread->th.th_task_team == NULL) { | 
|  | break; | 
|  | } | 
|  | KMP_YIELD(__kmp_library == library_throughput); // Yield before next task | 
|  | // If execution of a stolen task results in more tasks being placed on our | 
|  | // run queue, reset use_own_tasks | 
|  | if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { | 
|  | KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " | 
|  | "other tasks, restart\n", | 
|  | gtid)); | 
|  | use_own_tasks = 1; | 
|  | new_victim = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The task source has been exhausted. If in final spin loop of barrier, | 
|  | // check if termination condition is satisfied. The work queue may be empty | 
|  | // but there might be proxy tasks still executing. | 
|  | if (final_spin && | 
|  | KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { | 
|  | // First, decrement the #unfinished threads, if that has not already been | 
|  | // done.  This decrement might be to the spin location, and result in the | 
|  | // termination condition being satisfied. | 
|  | if (!*thread_finished) { | 
|  | #if KMP_DEBUG | 
|  | kmp_int32 count = -1 + | 
|  | #endif | 
|  | KMP_ATOMIC_DEC(unfinished_threads); | 
|  | KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " | 
|  | "unfinished_threads to %d task_team=%p\n", | 
|  | gtid, count, task_team)); | 
|  | *thread_finished = TRUE; | 
|  | } | 
|  |  | 
|  | // It is now unsafe to reference thread->th.th_team !!! | 
|  | // Decrementing task_team->tt.tt_unfinished_threads can allow the primary | 
|  | // thread to pass through the barrier, where it might reset each thread's | 
|  | // th.th_team field for the next parallel region. If we can steal more | 
|  | // work, we know that this has not happened yet. | 
|  | if (flag != NULL && flag->done_check()) { | 
|  | KA_TRACE( | 
|  | 15, | 
|  | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", | 
|  | gtid)); | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this thread's task team is NULL, primary thread has recognized that | 
|  | // there are no more tasks; bail out | 
|  | if (thread->th.th_task_team == NULL) { | 
|  | KA_TRACE(15, | 
|  | ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | // Check the flag again to see if it has already done in case to be trapped | 
|  | // into infinite loop when a if0 task depends on a hidden helper task | 
|  | // outside any parallel region. Detached tasks are not impacted in this case | 
|  | // because the only thread executing this function has to execute the proxy | 
|  | // task so it is in another code path that has the same check. | 
|  | if (flag == NULL || (!final_spin && flag->done_check())) { | 
|  | KA_TRACE(15, | 
|  | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", | 
|  | gtid)); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | // We could be getting tasks from target constructs; if this is the only | 
|  | // thread, keep trying to execute tasks from own queue | 
|  | if (nthreads == 1 && | 
|  | KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) | 
|  | use_own_tasks = 1; | 
|  | else { | 
|  | KA_TRACE(15, | 
|  | ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <bool C, bool S> | 
|  | int __kmp_execute_tasks_32( | 
|  | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, | 
|  | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), | 
|  | kmp_int32 is_constrained) { | 
|  | return __kmp_execute_tasks_template( | 
|  | thread, gtid, flag, final_spin, | 
|  | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); | 
|  | } | 
|  |  | 
|  | template <bool C, bool S> | 
|  | int __kmp_execute_tasks_64( | 
|  | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, | 
|  | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), | 
|  | kmp_int32 is_constrained) { | 
|  | return __kmp_execute_tasks_template( | 
|  | thread, gtid, flag, final_spin, | 
|  | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); | 
|  | } | 
|  |  | 
|  | template <bool C, bool S> | 
|  | int __kmp_atomic_execute_tasks_64( | 
|  | kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag, | 
|  | int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), | 
|  | kmp_int32 is_constrained) { | 
|  | return __kmp_execute_tasks_template( | 
|  | thread, gtid, flag, final_spin, | 
|  | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); | 
|  | } | 
|  |  | 
|  | int __kmp_execute_tasks_oncore( | 
|  | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, | 
|  | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), | 
|  | kmp_int32 is_constrained) { | 
|  | return __kmp_execute_tasks_template( | 
|  | thread, gtid, flag, final_spin, | 
|  | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); | 
|  | } | 
|  |  | 
|  | template int | 
|  | __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, | 
|  | kmp_flag_32<false, false> *, int, | 
|  | int *USE_ITT_BUILD_ARG(void *), kmp_int32); | 
|  |  | 
|  | template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, | 
|  | kmp_flag_64<false, true> *, | 
|  | int, | 
|  | int *USE_ITT_BUILD_ARG(void *), | 
|  | kmp_int32); | 
|  |  | 
|  | template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, | 
|  | kmp_flag_64<true, false> *, | 
|  | int, | 
|  | int *USE_ITT_BUILD_ARG(void *), | 
|  | kmp_int32); | 
|  |  | 
|  | template int __kmp_atomic_execute_tasks_64<false, true>( | 
|  | kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int, | 
|  | int *USE_ITT_BUILD_ARG(void *), kmp_int32); | 
|  |  | 
|  | template int __kmp_atomic_execute_tasks_64<true, false>( | 
|  | kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int, | 
|  | int *USE_ITT_BUILD_ARG(void *), kmp_int32); | 
|  |  | 
|  | // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the | 
|  | // next barrier so they can assist in executing enqueued tasks. | 
|  | // First thread in allocates the task team atomically. | 
|  | static void __kmp_enable_tasking(kmp_task_team_t *task_team, | 
|  | kmp_info_t *this_thr) { | 
|  | kmp_thread_data_t *threads_data; | 
|  | int nthreads, i, is_init_thread; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", | 
|  | __kmp_gtid_from_thread(this_thr))); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(task_team != NULL); | 
|  | KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); | 
|  |  | 
|  | nthreads = task_team->tt.tt_nproc; | 
|  | KMP_DEBUG_ASSERT(nthreads > 0); | 
|  | KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); | 
|  |  | 
|  | // Allocate or increase the size of threads_data if necessary | 
|  | is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); | 
|  |  | 
|  | if (!is_init_thread) { | 
|  | // Some other thread already set up the array. | 
|  | KA_TRACE( | 
|  | 20, | 
|  | ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", | 
|  | __kmp_gtid_from_thread(this_thr))); | 
|  | return; | 
|  | } | 
|  | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); | 
|  | KMP_DEBUG_ASSERT(threads_data != NULL); | 
|  |  | 
|  | if (__kmp_tasking_mode == tskm_task_teams && | 
|  | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { | 
|  | // Release any threads sleeping at the barrier, so that they can steal | 
|  | // tasks and execute them.  In extra barrier mode, tasks do not sleep | 
|  | // at the separate tasking barrier, so this isn't a problem. | 
|  | for (i = 0; i < nthreads; i++) { | 
|  | void *sleep_loc; | 
|  | kmp_info_t *thread = threads_data[i].td.td_thr; | 
|  |  | 
|  | if (i == this_thr->th.th_info.ds.ds_tid) { | 
|  | continue; | 
|  | } | 
|  | // Since we haven't locked the thread's suspend mutex lock at this | 
|  | // point, there is a small window where a thread might be putting | 
|  | // itself to sleep, but hasn't set the th_sleep_loc field yet. | 
|  | // To work around this, __kmp_execute_tasks_template() periodically checks | 
|  | // see if other threads are sleeping (using the same random mechanism that | 
|  | // is used for task stealing) and awakens them if they are. | 
|  | if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != | 
|  | NULL) { | 
|  | KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", | 
|  | __kmp_gtid_from_thread(this_thr), | 
|  | __kmp_gtid_from_thread(thread))); | 
|  | __kmp_null_resume_wrapper(thread); | 
|  | } else { | 
|  | KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", | 
|  | __kmp_gtid_from_thread(this_thr), | 
|  | __kmp_gtid_from_thread(thread))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", | 
|  | __kmp_gtid_from_thread(this_thr))); | 
|  | } | 
|  |  | 
|  | /* // TODO: Check the comment consistency | 
|  | * Utility routines for "task teams".  A task team (kmp_task_t) is kind of | 
|  | * like a shadow of the kmp_team_t data struct, with a different lifetime. | 
|  | * After a child * thread checks into a barrier and calls __kmp_release() from | 
|  | * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no | 
|  | * longer assume that the kmp_team_t structure is intact (at any moment, the | 
|  | * primary thread may exit the barrier code and free the team data structure, | 
|  | * and return the threads to the thread pool). | 
|  | * | 
|  | * This does not work with the tasking code, as the thread is still | 
|  | * expected to participate in the execution of any tasks that may have been | 
|  | * spawned my a member of the team, and the thread still needs access to all | 
|  | * to each thread in the team, so that it can steal work from it. | 
|  | * | 
|  | * Enter the existence of the kmp_task_team_t struct.  It employs a reference | 
|  | * counting mechanism, and is allocated by the primary thread before calling | 
|  | * __kmp_<barrier_kind>_release, and then is release by the last thread to | 
|  | * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes | 
|  | * of the kmp_task_team_t structs for consecutive barriers can overlap | 
|  | * (and will, unless the primary thread is the last thread to exit the barrier | 
|  | * release phase, which is not typical). The existence of such a struct is | 
|  | * useful outside the context of tasking. | 
|  | * | 
|  | * We currently use the existence of the threads array as an indicator that | 
|  | * tasks were spawned since the last barrier.  If the structure is to be | 
|  | * useful outside the context of tasking, then this will have to change, but | 
|  | * not setting the field minimizes the performance impact of tasking on | 
|  | * barriers, when no explicit tasks were spawned (pushed, actually). | 
|  | */ | 
|  |  | 
|  | static kmp_task_team_t *__kmp_free_task_teams = | 
|  | NULL; // Free list for task_team data structures | 
|  | // Lock for task team data structures | 
|  | kmp_bootstrap_lock_t __kmp_task_team_lock = | 
|  | KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); | 
|  |  | 
|  | // __kmp_alloc_task_deque: | 
|  | // Allocates a task deque for a particular thread, and initialize the necessary | 
|  | // data structures relating to the deque.  This only happens once per thread | 
|  | // per task team since task teams are recycled. No lock is needed during | 
|  | // allocation since each thread allocates its own deque. | 
|  | static void __kmp_alloc_task_deque(kmp_info_t *thread, | 
|  | kmp_thread_data_t *thread_data) { | 
|  | __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); | 
|  |  | 
|  | // Initialize last stolen task field to "none" | 
|  | thread_data->td.td_deque_last_stolen = -1; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); | 
|  | KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); | 
|  | KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); | 
|  |  | 
|  | KE_TRACE( | 
|  | 10, | 
|  | ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", | 
|  | __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); | 
|  | // Allocate space for task deque, and zero the deque | 
|  | // Cannot use __kmp_thread_calloc() because threads not around for | 
|  | // kmp_reap_task_team( ). | 
|  | thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( | 
|  | INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); | 
|  | thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; | 
|  | } | 
|  |  | 
|  | // __kmp_free_task_deque: | 
|  | // Deallocates a task deque for a particular thread. Happens at library | 
|  | // deallocation so don't need to reset all thread data fields. | 
|  | static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { | 
|  | if (thread_data->td.td_deque != NULL) { | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | TCW_4(thread_data->td.td_deque_ntasks, 0); | 
|  | __kmp_free(thread_data->td.td_deque); | 
|  | thread_data->td.td_deque = NULL; | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | } | 
|  |  | 
|  | #ifdef BUILD_TIED_TASK_STACK | 
|  | // GEH: Figure out what to do here for td_susp_tied_tasks | 
|  | if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { | 
|  | __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); | 
|  | } | 
|  | #endif // BUILD_TIED_TASK_STACK | 
|  | } | 
|  |  | 
|  | // __kmp_realloc_task_threads_data: | 
|  | // Allocates a threads_data array for a task team, either by allocating an | 
|  | // initial array or enlarging an existing array.  Only the first thread to get | 
|  | // the lock allocs or enlarges the array and re-initializes the array elements. | 
|  | // That thread returns "TRUE", the rest return "FALSE". | 
|  | // Assumes that the new array size is given by task_team -> tt.tt_nproc. | 
|  | // The current size is given by task_team -> tt.tt_max_threads. | 
|  | static int __kmp_realloc_task_threads_data(kmp_info_t *thread, | 
|  | kmp_task_team_t *task_team) { | 
|  | kmp_thread_data_t **threads_data_p; | 
|  | kmp_int32 nthreads, maxthreads; | 
|  | int is_init_thread = FALSE; | 
|  |  | 
|  | if (TCR_4(task_team->tt.tt_found_tasks)) { | 
|  | // Already reallocated and initialized. | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | threads_data_p = &task_team->tt.tt_threads_data; | 
|  | nthreads = task_team->tt.tt_nproc; | 
|  | maxthreads = task_team->tt.tt_max_threads; | 
|  |  | 
|  | // All threads must lock when they encounter the first task of the implicit | 
|  | // task region to make sure threads_data fields are (re)initialized before | 
|  | // used. | 
|  | __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); | 
|  |  | 
|  | if (!TCR_4(task_team->tt.tt_found_tasks)) { | 
|  | // first thread to enable tasking | 
|  | kmp_team_t *team = thread->th.th_team; | 
|  | int i; | 
|  |  | 
|  | is_init_thread = TRUE; | 
|  | if (maxthreads < nthreads) { | 
|  |  | 
|  | if (*threads_data_p != NULL) { | 
|  | kmp_thread_data_t *old_data = *threads_data_p; | 
|  | kmp_thread_data_t *new_data = NULL; | 
|  |  | 
|  | KE_TRACE( | 
|  | 10, | 
|  | ("__kmp_realloc_task_threads_data: T#%d reallocating " | 
|  | "threads data for task_team %p, new_size = %d, old_size = %d\n", | 
|  | __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); | 
|  | // Reallocate threads_data to have more elements than current array | 
|  | // Cannot use __kmp_thread_realloc() because threads not around for | 
|  | // kmp_reap_task_team( ).  Note all new array entries are initialized | 
|  | // to zero by __kmp_allocate(). | 
|  | new_data = (kmp_thread_data_t *)__kmp_allocate( | 
|  | nthreads * sizeof(kmp_thread_data_t)); | 
|  | // copy old data to new data | 
|  | KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), | 
|  | (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); | 
|  |  | 
|  | #ifdef BUILD_TIED_TASK_STACK | 
|  | // GEH: Figure out if this is the right thing to do | 
|  | for (i = maxthreads; i < nthreads; i++) { | 
|  | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; | 
|  | __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); | 
|  | } | 
|  | #endif // BUILD_TIED_TASK_STACK | 
|  | // Install the new data and free the old data | 
|  | (*threads_data_p) = new_data; | 
|  | __kmp_free(old_data); | 
|  | } else { | 
|  | KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " | 
|  | "threads data for task_team %p, size = %d\n", | 
|  | __kmp_gtid_from_thread(thread), task_team, nthreads)); | 
|  | // Make the initial allocate for threads_data array, and zero entries | 
|  | // Cannot use __kmp_thread_calloc() because threads not around for | 
|  | // kmp_reap_task_team( ). | 
|  | *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( | 
|  | nthreads * sizeof(kmp_thread_data_t)); | 
|  | #ifdef BUILD_TIED_TASK_STACK | 
|  | // GEH: Figure out if this is the right thing to do | 
|  | for (i = 0; i < nthreads; i++) { | 
|  | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; | 
|  | __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); | 
|  | } | 
|  | #endif // BUILD_TIED_TASK_STACK | 
|  | } | 
|  | task_team->tt.tt_max_threads = nthreads; | 
|  | } else { | 
|  | // If array has (more than) enough elements, go ahead and use it | 
|  | KMP_DEBUG_ASSERT(*threads_data_p != NULL); | 
|  | } | 
|  |  | 
|  | // initialize threads_data pointers back to thread_info structures | 
|  | for (i = 0; i < nthreads; i++) { | 
|  | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; | 
|  | thread_data->td.td_thr = team->t.t_threads[i]; | 
|  |  | 
|  | if (thread_data->td.td_deque_last_stolen >= nthreads) { | 
|  | // The last stolen field survives across teams / barrier, and the number | 
|  | // of threads may have changed.  It's possible (likely?) that a new | 
|  | // parallel region will exhibit the same behavior as previous region. | 
|  | thread_data->td.td_deque_last_stolen = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | KMP_MB(); | 
|  | TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); | 
|  | } | 
|  |  | 
|  | __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); | 
|  | return is_init_thread; | 
|  | } | 
|  |  | 
|  | // __kmp_free_task_threads_data: | 
|  | // Deallocates a threads_data array for a task team, including any attached | 
|  | // tasking deques.  Only occurs at library shutdown. | 
|  | static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { | 
|  | __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); | 
|  | if (task_team->tt.tt_threads_data != NULL) { | 
|  | int i; | 
|  | for (i = 0; i < task_team->tt.tt_max_threads; i++) { | 
|  | __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); | 
|  | } | 
|  | __kmp_free(task_team->tt.tt_threads_data); | 
|  | task_team->tt.tt_threads_data = NULL; | 
|  | } | 
|  | __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); | 
|  | } | 
|  |  | 
|  | // __kmp_free_task_pri_list: | 
|  | // Deallocates tasking deques used for priority tasks. | 
|  | // Only occurs at library shutdown. | 
|  | static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) { | 
|  | __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | if (task_team->tt.tt_task_pri_list != NULL) { | 
|  | kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; | 
|  | while (list != NULL) { | 
|  | kmp_task_pri_t *next = list->next; | 
|  | __kmp_free_task_deque(&list->td); | 
|  | __kmp_free(list); | 
|  | list = next; | 
|  | } | 
|  | task_team->tt.tt_task_pri_list = NULL; | 
|  | } | 
|  | __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | } | 
|  |  | 
|  | // __kmp_allocate_task_team: | 
|  | // Allocates a task team associated with a specific team, taking it from | 
|  | // the global task team free list if possible.  Also initializes data | 
|  | // structures. | 
|  | static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, | 
|  | kmp_team_t *team) { | 
|  | kmp_task_team_t *task_team = NULL; | 
|  | int nthreads; | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", | 
|  | (thread ? __kmp_gtid_from_thread(thread) : -1), team)); | 
|  |  | 
|  | if (TCR_PTR(__kmp_free_task_teams) != NULL) { | 
|  | // Take a task team from the task team pool | 
|  | __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); | 
|  | if (__kmp_free_task_teams != NULL) { | 
|  | task_team = __kmp_free_task_teams; | 
|  | TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); | 
|  | task_team->tt.tt_next = NULL; | 
|  | } | 
|  | __kmp_release_bootstrap_lock(&__kmp_task_team_lock); | 
|  | } | 
|  |  | 
|  | if (task_team == NULL) { | 
|  | KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " | 
|  | "task team for team %p\n", | 
|  | __kmp_gtid_from_thread(thread), team)); | 
|  | // Allocate a new task team if one is not available. Cannot use | 
|  | // __kmp_thread_malloc because threads not around for kmp_reap_task_team. | 
|  | task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); | 
|  | __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); | 
|  | __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock); | 
|  | #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG | 
|  | // suppress race conditions detection on synchronization flags in debug mode | 
|  | // this helps to analyze library internals eliminating false positives | 
|  | __itt_suppress_mark_range( | 
|  | __itt_suppress_range, __itt_suppress_threading_errors, | 
|  | &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); | 
|  | __itt_suppress_mark_range(__itt_suppress_range, | 
|  | __itt_suppress_threading_errors, | 
|  | CCAST(kmp_uint32 *, &task_team->tt.tt_active), | 
|  | sizeof(task_team->tt.tt_active)); | 
|  | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ | 
|  | // Note: __kmp_allocate zeroes returned memory, othewise we would need: | 
|  | // task_team->tt.tt_threads_data = NULL; | 
|  | // task_team->tt.tt_max_threads = 0; | 
|  | // task_team->tt.tt_next = NULL; | 
|  | } | 
|  |  | 
|  | TCW_4(task_team->tt.tt_found_tasks, FALSE); | 
|  | TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); | 
|  | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); | 
|  | task_team->tt.tt_nproc = nthreads = team->t.t_nproc; | 
|  |  | 
|  | KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); | 
|  | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); | 
|  | TCW_4(task_team->tt.tt_active, TRUE); | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " | 
|  | "unfinished_threads init'd to %d\n", | 
|  | (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, | 
|  | KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); | 
|  | return task_team; | 
|  | } | 
|  |  | 
|  | // __kmp_free_task_team: | 
|  | // Frees the task team associated with a specific thread, and adds it | 
|  | // to the global task team free list. | 
|  | void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { | 
|  | KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", | 
|  | thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); | 
|  |  | 
|  | // Put task team back on free list | 
|  | __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); | 
|  | task_team->tt.tt_next = __kmp_free_task_teams; | 
|  | TCW_PTR(__kmp_free_task_teams, task_team); | 
|  |  | 
|  | __kmp_release_bootstrap_lock(&__kmp_task_team_lock); | 
|  | } | 
|  |  | 
|  | // __kmp_reap_task_teams: | 
|  | // Free all the task teams on the task team free list. | 
|  | // Should only be done during library shutdown. | 
|  | // Cannot do anything that needs a thread structure or gtid since they are | 
|  | // already gone. | 
|  | void __kmp_reap_task_teams(void) { | 
|  | kmp_task_team_t *task_team; | 
|  |  | 
|  | if (TCR_PTR(__kmp_free_task_teams) != NULL) { | 
|  | // Free all task_teams on the free list | 
|  | __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); | 
|  | while ((task_team = __kmp_free_task_teams) != NULL) { | 
|  | __kmp_free_task_teams = task_team->tt.tt_next; | 
|  | task_team->tt.tt_next = NULL; | 
|  |  | 
|  | // Free threads_data if necessary | 
|  | if (task_team->tt.tt_threads_data != NULL) { | 
|  | __kmp_free_task_threads_data(task_team); | 
|  | } | 
|  | if (task_team->tt.tt_task_pri_list != NULL) { | 
|  | __kmp_free_task_pri_list(task_team); | 
|  | } | 
|  | __kmp_free(task_team); | 
|  | } | 
|  | __kmp_release_bootstrap_lock(&__kmp_task_team_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | // __kmp_wait_to_unref_task_teams: | 
|  | // Some threads could still be in the fork barrier release code, possibly | 
|  | // trying to steal tasks.  Wait for each thread to unreference its task team. | 
|  | void __kmp_wait_to_unref_task_teams(void) { | 
|  | kmp_info_t *thread; | 
|  | kmp_uint32 spins; | 
|  | kmp_uint64 time; | 
|  | int done; | 
|  |  | 
|  | KMP_INIT_YIELD(spins); | 
|  | KMP_INIT_BACKOFF(time); | 
|  |  | 
|  | for (;;) { | 
|  | done = TRUE; | 
|  |  | 
|  | // TODO: GEH - this may be is wrong because some sync would be necessary | 
|  | // in case threads are added to the pool during the traversal. Need to | 
|  | // verify that lock for thread pool is held when calling this routine. | 
|  | for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; | 
|  | thread = thread->th.th_next_pool) { | 
|  | #if KMP_OS_WINDOWS | 
|  | DWORD exit_val; | 
|  | #endif | 
|  | if (TCR_PTR(thread->th.th_task_team) == NULL) { | 
|  | KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", | 
|  | __kmp_gtid_from_thread(thread))); | 
|  | continue; | 
|  | } | 
|  | #if KMP_OS_WINDOWS | 
|  | // TODO: GEH - add this check for Linux* OS / OS X* as well? | 
|  | if (!__kmp_is_thread_alive(thread, &exit_val)) { | 
|  | thread->th.th_task_team = NULL; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | done = FALSE; // Because th_task_team pointer is not NULL for this thread | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " | 
|  | "unreference task_team\n", | 
|  | __kmp_gtid_from_thread(thread))); | 
|  |  | 
|  | if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { | 
|  | void *sleep_loc; | 
|  | // If the thread is sleeping, awaken it. | 
|  | if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != | 
|  | NULL) { | 
|  | KA_TRACE( | 
|  | 10, | 
|  | ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", | 
|  | __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); | 
|  | __kmp_null_resume_wrapper(thread); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (done) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If oversubscribed or have waited a bit, yield. | 
|  | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kmp_shift_task_state_stack(kmp_info_t *this_thr, kmp_uint8 value) { | 
|  | // Shift values from th_task_state_top+1 to task_state_stack_sz | 
|  | if (this_thr->th.th_task_state_top + 1 >= | 
|  | this_thr->th.th_task_state_stack_sz) { // increase size | 
|  | kmp_uint32 new_size = 2 * this_thr->th.th_task_state_stack_sz; | 
|  | kmp_uint8 *old_stack, *new_stack; | 
|  | kmp_uint32 i; | 
|  | new_stack = (kmp_uint8 *)__kmp_allocate(new_size); | 
|  | for (i = 0; i <= this_thr->th.th_task_state_top; ++i) { | 
|  | new_stack[i] = this_thr->th.th_task_state_memo_stack[i]; | 
|  | } | 
|  | // If we need to reallocate do the shift at the same time. | 
|  | for (; i < this_thr->th.th_task_state_stack_sz; ++i) { | 
|  | new_stack[i + 1] = this_thr->th.th_task_state_memo_stack[i]; | 
|  | } | 
|  | for (i = this_thr->th.th_task_state_stack_sz; i < new_size; | 
|  | ++i) { // zero-init rest of stack | 
|  | new_stack[i] = 0; | 
|  | } | 
|  | old_stack = this_thr->th.th_task_state_memo_stack; | 
|  | this_thr->th.th_task_state_memo_stack = new_stack; | 
|  | this_thr->th.th_task_state_stack_sz = new_size; | 
|  | __kmp_free(old_stack); | 
|  | } else { | 
|  | kmp_uint8 *end; | 
|  | kmp_uint32 i; | 
|  |  | 
|  | end = &this_thr->th | 
|  | .th_task_state_memo_stack[this_thr->th.th_task_state_stack_sz]; | 
|  |  | 
|  | for (i = this_thr->th.th_task_state_stack_sz - 1; | 
|  | i > this_thr->th.th_task_state_top; i--, end--) | 
|  | end[0] = end[-1]; | 
|  | } | 
|  | this_thr->th.th_task_state_memo_stack[this_thr->th.th_task_state_top + 1] = | 
|  | value; | 
|  | } | 
|  |  | 
|  | // __kmp_task_team_setup:  Create a task_team for the current team, but use | 
|  | // an already created, unused one if it already exists. | 
|  | void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  |  | 
|  | // If this task_team hasn't been created yet, allocate it. It will be used in | 
|  | // the region after the next. | 
|  | // If it exists, it is the current task team and shouldn't be touched yet as | 
|  | // it may still be in use. | 
|  | if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && | 
|  | (always || team->t.t_nproc > 1)) { | 
|  | team->t.t_task_team[this_thr->th.th_task_state] = | 
|  | __kmp_allocate_task_team(this_thr, team); | 
|  | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" | 
|  | " for team %d at parity=%d\n", | 
|  | __kmp_gtid_from_thread(this_thr), | 
|  | team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, | 
|  | this_thr->th.th_task_state)); | 
|  | } | 
|  | if (this_thr->th.th_task_state == 1 && always && team->t.t_nproc == 1) { | 
|  | // fix task state stack to adjust for proxy and helper tasks | 
|  | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d needs to shift stack" | 
|  | " for team %d at parity=%d\n", | 
|  | __kmp_gtid_from_thread(this_thr), team->t.t_id, | 
|  | this_thr->th.th_task_state)); | 
|  | __kmp_shift_task_state_stack(this_thr, this_thr->th.th_task_state); | 
|  | } | 
|  |  | 
|  | // After threads exit the release, they will call sync, and then point to this | 
|  | // other task_team; make sure it is allocated and properly initialized. As | 
|  | // threads spin in the barrier release phase, they will continue to use the | 
|  | // previous task_team struct(above), until they receive the signal to stop | 
|  | // checking for tasks (they can't safely reference the kmp_team_t struct, | 
|  | // which could be reallocated by the primary thread). No task teams are formed | 
|  | // for serialized teams. | 
|  | if (team->t.t_nproc > 1) { | 
|  | int other_team = 1 - this_thr->th.th_task_state; | 
|  | KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); | 
|  | if (team->t.t_task_team[other_team] == NULL) { // setup other team as well | 
|  | team->t.t_task_team[other_team] = | 
|  | __kmp_allocate_task_team(this_thr, team); | 
|  | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " | 
|  | "task_team %p for team %d at parity=%d\n", | 
|  | __kmp_gtid_from_thread(this_thr), | 
|  | team->t.t_task_team[other_team], team->t.t_id, other_team)); | 
|  | } else { // Leave the old task team struct in place for the upcoming region; | 
|  | // adjust as needed | 
|  | kmp_task_team_t *task_team = team->t.t_task_team[other_team]; | 
|  | if (!task_team->tt.tt_active || | 
|  | team->t.t_nproc != task_team->tt.tt_nproc) { | 
|  | TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); | 
|  | TCW_4(task_team->tt.tt_found_tasks, FALSE); | 
|  | TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); | 
|  | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); | 
|  | KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, | 
|  | team->t.t_nproc); | 
|  | TCW_4(task_team->tt.tt_active, TRUE); | 
|  | } | 
|  | // if team size has changed, the first thread to enable tasking will | 
|  | // realloc threads_data if necessary | 
|  | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " | 
|  | "%p for team %d at parity=%d\n", | 
|  | __kmp_gtid_from_thread(this_thr), | 
|  | team->t.t_task_team[other_team], team->t.t_id, other_team)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For regular thread, task enabling should be called when the task is going | 
|  | // to be pushed to a dequeue. However, for the hidden helper thread, we need | 
|  | // it ahead of time so that some operations can be performed without race | 
|  | // condition. | 
|  | if (this_thr == __kmp_hidden_helper_main_thread) { | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | kmp_task_team_t *task_team = team->t.t_task_team[i]; | 
|  | if (KMP_TASKING_ENABLED(task_team)) { | 
|  | continue; | 
|  | } | 
|  | __kmp_enable_tasking(task_team, this_thr); | 
|  | for (int j = 0; j < task_team->tt.tt_nproc; ++j) { | 
|  | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; | 
|  | if (thread_data->td.td_deque == NULL) { | 
|  | __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // __kmp_task_team_sync: Propagation of task team data from team to threads | 
|  | // which happens just after the release phase of a team barrier.  This may be | 
|  | // called by any thread, but only for teams with # threads > 1. | 
|  | void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  |  | 
|  | // Toggle the th_task_state field, to switch which task_team this thread | 
|  | // refers to | 
|  | this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); | 
|  |  | 
|  | // It is now safe to propagate the task team pointer from the team struct to | 
|  | // the current thread. | 
|  | TCW_PTR(this_thr->th.th_task_team, | 
|  | team->t.t_task_team[this_thr->th.th_task_state]); | 
|  | KA_TRACE(20, | 
|  | ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " | 
|  | "%p from Team #%d (parity=%d)\n", | 
|  | __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, | 
|  | team->t.t_id, this_thr->th.th_task_state)); | 
|  | } | 
|  |  | 
|  | // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the | 
|  | // barrier gather phase. Only called by primary thread if #threads in team > 1 | 
|  | // or if proxy tasks were created. | 
|  | // | 
|  | // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off | 
|  | // by passing in 0 optionally as the last argument. When wait is zero, primary | 
|  | // thread does not wait for unfinished_threads to reach 0. | 
|  | void __kmp_task_team_wait( | 
|  | kmp_info_t *this_thr, | 
|  | kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { | 
|  | kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); | 
|  | KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); | 
|  |  | 
|  | if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { | 
|  | if (wait) { | 
|  | KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " | 
|  | "(for unfinished_threads to reach 0) on task_team = %p\n", | 
|  | __kmp_gtid_from_thread(this_thr), task_team)); | 
|  | // Worker threads may have dropped through to release phase, but could | 
|  | // still be executing tasks. Wait here for tasks to complete. To avoid | 
|  | // memory contention, only primary thread checks termination condition. | 
|  | kmp_flag_32<false, false> flag( | 
|  | RCAST(std::atomic<kmp_uint32> *, | 
|  | &task_team->tt.tt_unfinished_threads), | 
|  | 0U); | 
|  | flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); | 
|  | } | 
|  | // Deactivate the old task team, so that the worker threads will stop | 
|  | // referencing it while spinning. | 
|  | KA_TRACE( | 
|  | 20, | 
|  | ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " | 
|  | "setting active to false, setting local and team's pointer to NULL\n", | 
|  | __kmp_gtid_from_thread(this_thr), task_team)); | 
|  | KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || | 
|  | task_team->tt.tt_found_proxy_tasks == TRUE || | 
|  | task_team->tt.tt_hidden_helper_task_encountered == TRUE); | 
|  | TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); | 
|  | TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); | 
|  | KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); | 
|  | TCW_SYNC_4(task_team->tt.tt_active, FALSE); | 
|  | KMP_MB(); | 
|  |  | 
|  | TCW_PTR(this_thr->th.th_task_team, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | // __kmp_tasking_barrier: | 
|  | // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. | 
|  | // Internal function to execute all tasks prior to a regular barrier or a join | 
|  | // barrier. It is a full barrier itself, which unfortunately turns regular | 
|  | // barriers into double barriers and join barriers into 1 1/2 barriers. | 
|  | void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { | 
|  | std::atomic<kmp_uint32> *spin = RCAST( | 
|  | std::atomic<kmp_uint32> *, | 
|  | &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); | 
|  | int flag = FALSE; | 
|  | KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); | 
|  |  | 
|  | #if USE_ITT_BUILD | 
|  | KMP_FSYNC_SPIN_INIT(spin, NULL); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | kmp_flag_32<false, false> spin_flag(spin, 0U); | 
|  | while (!spin_flag.execute_tasks(thread, gtid, TRUE, | 
|  | &flag USE_ITT_BUILD_ARG(NULL), 0)) { | 
|  | #if USE_ITT_BUILD | 
|  | // TODO: What about itt_sync_obj?? | 
|  | KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  |  | 
|  | if (TCR_4(__kmp_global.g.g_done)) { | 
|  | if (__kmp_global.g.g_abort) | 
|  | __kmp_abort_thread(); | 
|  | break; | 
|  | } | 
|  | KMP_YIELD(TRUE); | 
|  | } | 
|  | #if USE_ITT_BUILD | 
|  | KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); | 
|  | #endif /* USE_ITT_BUILD */ | 
|  | } | 
|  |  | 
|  | // __kmp_give_task puts a task into a given thread queue if: | 
|  | //  - the queue for that thread was created | 
|  | //  - there's space in that queue | 
|  | // Because of this, __kmp_push_task needs to check if there's space after | 
|  | // getting the lock | 
|  | static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, | 
|  | kmp_int32 pass) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | kmp_task_team_t *task_team = taskdata->td_task_team; | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", | 
|  | taskdata, tid)); | 
|  |  | 
|  | // If task_team is NULL something went really bad... | 
|  | KMP_DEBUG_ASSERT(task_team != NULL); | 
|  |  | 
|  | bool result = false; | 
|  | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; | 
|  |  | 
|  | if (thread_data->td.td_deque == NULL) { | 
|  | // There's no queue in this thread, go find another one | 
|  | // We're guaranteed that at least one thread has a queue | 
|  | KA_TRACE(30, | 
|  | ("__kmp_give_task: thread %d has no queue while giving task %p.\n", | 
|  | tid, taskdata)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | KA_TRACE( | 
|  | 30, | 
|  | ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", | 
|  | taskdata, tid)); | 
|  |  | 
|  | // if this deque is bigger than the pass ratio give a chance to another | 
|  | // thread | 
|  | if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) | 
|  | return result; | 
|  |  | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | // expand deque to push the task which is not allowed to execute | 
|  | __kmp_realloc_task_deque(thread, thread_data); | 
|  | } | 
|  |  | 
|  | } else { | 
|  |  | 
|  | __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  |  | 
|  | if (TCR_4(thread_data->td.td_deque_ntasks) >= | 
|  | TASK_DEQUE_SIZE(thread_data->td)) { | 
|  | KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " | 
|  | "thread %d.\n", | 
|  | taskdata, tid)); | 
|  |  | 
|  | // if this deque is bigger than the pass ratio give a chance to another | 
|  | // thread | 
|  | if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) | 
|  | goto release_and_exit; | 
|  |  | 
|  | __kmp_realloc_task_deque(thread, thread_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | // lock is held here, and there is space in the deque | 
|  |  | 
|  | thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; | 
|  | // Wrap index. | 
|  | thread_data->td.td_deque_tail = | 
|  | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); | 
|  | TCW_4(thread_data->td.td_deque_ntasks, | 
|  | TCR_4(thread_data->td.td_deque_ntasks) + 1); | 
|  |  | 
|  | result = true; | 
|  | KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", | 
|  | taskdata, tid)); | 
|  |  | 
|  | release_and_exit: | 
|  | __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #define PROXY_TASK_FLAG 0x40000000 | 
|  | /* The finish of the proxy tasks is divided in two pieces: | 
|  | - the top half is the one that can be done from a thread outside the team | 
|  | - the bottom half must be run from a thread within the team | 
|  |  | 
|  | In order to run the bottom half the task gets queued back into one of the | 
|  | threads of the team. Once the td_incomplete_child_task counter of the parent | 
|  | is decremented the threads can leave the barriers. So, the bottom half needs | 
|  | to be queued before the counter is decremented. The top half is therefore | 
|  | divided in two parts: | 
|  | - things that can be run before queuing the bottom half | 
|  | - things that must be run after queuing the bottom half | 
|  |  | 
|  | This creates a second race as the bottom half can free the task before the | 
|  | second top half is executed. To avoid this we use the | 
|  | td_incomplete_child_task of the proxy task to synchronize the top and bottom | 
|  | half. */ | 
|  | static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); | 
|  |  | 
|  | taskdata->td_flags.complete = 1; // mark the task as completed | 
|  | #if OMPX_TASKGRAPH | 
|  | taskdata->td_flags.onced = 1; | 
|  | #endif | 
|  |  | 
|  | if (taskdata->td_taskgroup) | 
|  | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); | 
|  |  | 
|  | // Create an imaginary children for this task so the bottom half cannot | 
|  | // release the task before we have completed the second top half | 
|  | KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG); | 
|  | } | 
|  |  | 
|  | static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { | 
|  | #if KMP_DEBUG | 
|  | kmp_int32 children = 0; | 
|  | // Predecrement simulated by "- 1" calculation | 
|  | children = -1 + | 
|  | #endif | 
|  | KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); | 
|  | KMP_DEBUG_ASSERT(children >= 0); | 
|  |  | 
|  | // Remove the imaginary children | 
|  | KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG); | 
|  | } | 
|  |  | 
|  | static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == | 
|  | 1); // top half must run before bottom half | 
|  |  | 
|  | // We need to wait to make sure the top half is finished | 
|  | // Spinning here should be ok as this should happen quickly | 
|  | while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) & | 
|  | PROXY_TASK_FLAG) > 0) | 
|  | ; | 
|  |  | 
|  | __kmp_release_deps(gtid, taskdata); | 
|  | __kmp_free_task_and_ancestors(gtid, taskdata, thread); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param gtid Global Thread ID of encountering thread | 
|  | @param ptask Task which execution is completed | 
|  |  | 
|  | Execute the completion of a proxy task from a thread of that is part of the | 
|  | team. Run first and bottom halves directly. | 
|  | */ | 
|  | void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { | 
|  | KMP_DEBUG_ASSERT(ptask != NULL); | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); | 
|  | KA_TRACE( | 
|  | 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", | 
|  | gtid, taskdata)); | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); | 
|  |  | 
|  | __kmp_first_top_half_finish_proxy(taskdata); | 
|  | __kmp_second_top_half_finish_proxy(taskdata); | 
|  | __kmp_bottom_half_finish_proxy(gtid, ptask); | 
|  |  | 
|  | KA_TRACE(10, | 
|  | ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", | 
|  | gtid, taskdata)); | 
|  | } | 
|  |  | 
|  | void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) { | 
|  | KMP_DEBUG_ASSERT(ptask != NULL); | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); | 
|  |  | 
|  | // Enqueue task to complete bottom half completion from a thread within the | 
|  | // corresponding team | 
|  | kmp_team_t *team = taskdata->td_team; | 
|  | kmp_int32 nthreads = team->t.t_nproc; | 
|  | kmp_info_t *thread; | 
|  |  | 
|  | // This should be similar to start_k = __kmp_get_random( thread ) % nthreads | 
|  | // but we cannot use __kmp_get_random here | 
|  | kmp_int32 start_k = start % nthreads; | 
|  | kmp_int32 pass = 1; | 
|  | kmp_int32 k = start_k; | 
|  |  | 
|  | do { | 
|  | // For now we're just linearly trying to find a thread | 
|  | thread = team->t.t_threads[k]; | 
|  | k = (k + 1) % nthreads; | 
|  |  | 
|  | // we did a full pass through all the threads | 
|  | if (k == start_k) | 
|  | pass = pass << 1; | 
|  |  | 
|  | } while (!__kmp_give_task(thread, k, ptask, pass)); | 
|  |  | 
|  | if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) { | 
|  | // awake at least one thread to execute given task | 
|  | for (int i = 0; i < nthreads; ++i) { | 
|  | thread = team->t.t_threads[i]; | 
|  | if (thread->th.th_sleep_loc != NULL) { | 
|  | __kmp_null_resume_wrapper(thread); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param ptask Task which execution is completed | 
|  |  | 
|  | Execute the completion of a proxy task from a thread that could not belong to | 
|  | the team. | 
|  | */ | 
|  | void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { | 
|  | KMP_DEBUG_ASSERT(ptask != NULL); | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); | 
|  |  | 
|  | KA_TRACE( | 
|  | 10, | 
|  | ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", | 
|  | taskdata)); | 
|  |  | 
|  | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); | 
|  |  | 
|  | __kmp_first_top_half_finish_proxy(taskdata); | 
|  |  | 
|  | __kmpc_give_task(ptask); | 
|  |  | 
|  | __kmp_second_top_half_finish_proxy(taskdata); | 
|  |  | 
|  | KA_TRACE( | 
|  | 10, | 
|  | ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", | 
|  | taskdata)); | 
|  | } | 
|  |  | 
|  | kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, | 
|  | kmp_task_t *task) { | 
|  | kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); | 
|  | if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { | 
|  | td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; | 
|  | td->td_allow_completion_event.ed.task = task; | 
|  | __kmp_init_tas_lock(&td->td_allow_completion_event.lock); | 
|  | } | 
|  | return &td->td_allow_completion_event; | 
|  | } | 
|  |  | 
|  | void __kmp_fulfill_event(kmp_event_t *event) { | 
|  | if (event->type == KMP_EVENT_ALLOW_COMPLETION) { | 
|  | kmp_task_t *ptask = event->ed.task; | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); | 
|  | bool detached = false; | 
|  | int gtid = __kmp_get_gtid(); | 
|  |  | 
|  | // The associated task might have completed or could be completing at this | 
|  | // point. | 
|  | // We need to take the lock to avoid races | 
|  | __kmp_acquire_tas_lock(&event->lock, gtid); | 
|  | if (taskdata->td_flags.proxy == TASK_PROXY) { | 
|  | detached = true; | 
|  | } else { | 
|  | #if OMPT_SUPPORT | 
|  | // The OMPT event must occur under mutual exclusion, | 
|  | // otherwise the tool might access ptask after free | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); | 
|  | #endif | 
|  | } | 
|  | event->type = KMP_EVENT_UNINITIALIZED; | 
|  | __kmp_release_tas_lock(&event->lock, gtid); | 
|  |  | 
|  | if (detached) { | 
|  | #if OMPT_SUPPORT | 
|  | // We free ptask afterwards and know the task is finished, | 
|  | // so locking is not necessary | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); | 
|  | #endif | 
|  | // If the task detached complete the proxy task | 
|  | if (gtid >= 0) { | 
|  | kmp_team_t *team = taskdata->td_team; | 
|  | kmp_info_t *thread = __kmp_get_thread(); | 
|  | if (thread->th.th_team == team) { | 
|  | __kmpc_proxy_task_completed(gtid, ptask); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // fallback | 
|  | __kmpc_proxy_task_completed_ooo(ptask); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task | 
|  | // for taskloop | 
|  | // | 
|  | // thread:   allocating thread | 
|  | // task_src: pointer to source task to be duplicated | 
|  | // taskloop_recur: used only when dealing with taskgraph, | 
|  | //      indicating whether we need to update task->td_task_id | 
|  | // returns:  a pointer to the allocated kmp_task_t structure (task). | 
|  | kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src | 
|  | #if OMPX_TASKGRAPH | 
|  | , int taskloop_recur | 
|  | #endif | 
|  | ) { | 
|  | kmp_task_t *task; | 
|  | kmp_taskdata_t *taskdata; | 
|  | kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); | 
|  | kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task | 
|  | size_t shareds_offset; | 
|  | size_t task_size; | 
|  |  | 
|  | KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, | 
|  | task_src)); | 
|  | KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == | 
|  | TASK_FULL); // it should not be proxy task | 
|  | KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); | 
|  | task_size = taskdata_src->td_size_alloc; | 
|  |  | 
|  | // Allocate a kmp_taskdata_t block and a kmp_task_t block. | 
|  | KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, | 
|  | task_size)); | 
|  | #if USE_FAST_MEMORY | 
|  | taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); | 
|  | #else | 
|  | taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); | 
|  | #endif /* USE_FAST_MEMORY */ | 
|  | KMP_MEMCPY(taskdata, taskdata_src, task_size); | 
|  |  | 
|  | task = KMP_TASKDATA_TO_TASK(taskdata); | 
|  |  | 
|  | // Initialize new task (only specific fields not affected by memcpy) | 
|  | #if OMPX_TASKGRAPH | 
|  | if (!taskdata->is_taskgraph || taskloop_recur) | 
|  | taskdata->td_task_id = KMP_GEN_TASK_ID(); | 
|  | else if (taskdata->is_taskgraph && | 
|  | __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status)) | 
|  | taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); | 
|  | #else | 
|  | taskdata->td_task_id = KMP_GEN_TASK_ID(); | 
|  | #endif | 
|  | if (task->shareds != NULL) { // need setup shareds pointer | 
|  | shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; | 
|  | task->shareds = &((char *)taskdata)[shareds_offset]; | 
|  | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == | 
|  | 0); | 
|  | } | 
|  | taskdata->td_alloc_thread = thread; | 
|  | taskdata->td_parent = parent_task; | 
|  | // task inherits the taskgroup from the parent task | 
|  | taskdata->td_taskgroup = parent_task->td_taskgroup; | 
|  | // tied task needs to initialize the td_last_tied at creation, | 
|  | // untied one does this when it is scheduled for execution | 
|  | if (taskdata->td_flags.tiedness == TASK_TIED) | 
|  | taskdata->td_last_tied = taskdata; | 
|  |  | 
|  | // Only need to keep track of child task counts if team parallel and tasking | 
|  | // not serialized | 
|  | if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { | 
|  | KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); | 
|  | if (parent_task->td_taskgroup) | 
|  | KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); | 
|  | // Only need to keep track of allocated child tasks for explicit tasks since | 
|  | // implicit not deallocated | 
|  | if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) | 
|  | KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); | 
|  | } | 
|  |  | 
|  | KA_TRACE(20, | 
|  | ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", | 
|  | thread, taskdata, taskdata->td_parent)); | 
|  | #if OMPT_SUPPORT | 
|  | if (UNLIKELY(ompt_enabled.enabled)) | 
|  | __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); | 
|  | #endif | 
|  | return task; | 
|  | } | 
|  |  | 
|  | // Routine optionally generated by the compiler for setting the lastprivate flag | 
|  | // and calling needed constructors for private/firstprivate objects | 
|  | // (used to form taskloop tasks from pattern task) | 
|  | // Parameters: dest task, src task, lastprivate flag. | 
|  | typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); | 
|  |  | 
|  | KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); | 
|  |  | 
|  | // class to encapsulate manipulating loop bounds in a taskloop task. | 
|  | // this abstracts away the Intel vs GOMP taskloop interface for setting/getting | 
|  | // the loop bound variables. | 
|  | class kmp_taskloop_bounds_t { | 
|  | kmp_task_t *task; | 
|  | const kmp_taskdata_t *taskdata; | 
|  | size_t lower_offset; | 
|  | size_t upper_offset; | 
|  |  | 
|  | public: | 
|  | kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) | 
|  | : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), | 
|  | lower_offset((char *)lb - (char *)task), | 
|  | upper_offset((char *)ub - (char *)task) { | 
|  | KMP_DEBUG_ASSERT((char *)lb > (char *)_task); | 
|  | KMP_DEBUG_ASSERT((char *)ub > (char *)_task); | 
|  | } | 
|  | kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) | 
|  | : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), | 
|  | lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} | 
|  | size_t get_lower_offset() const { return lower_offset; } | 
|  | size_t get_upper_offset() const { return upper_offset; } | 
|  | kmp_uint64 get_lb() const { | 
|  | kmp_int64 retval; | 
|  | #if defined(KMP_GOMP_COMPAT) | 
|  | // Intel task just returns the lower bound normally | 
|  | if (!taskdata->td_flags.native) { | 
|  | retval = *(kmp_int64 *)((char *)task + lower_offset); | 
|  | } else { | 
|  | // GOMP task has to take into account the sizeof(long) | 
|  | if (taskdata->td_size_loop_bounds == 4) { | 
|  | kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); | 
|  | retval = (kmp_int64)*lb; | 
|  | } else { | 
|  | kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); | 
|  | retval = (kmp_int64)*lb; | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)taskdata; | 
|  | retval = *(kmp_int64 *)((char *)task + lower_offset); | 
|  | #endif // defined(KMP_GOMP_COMPAT) | 
|  | return retval; | 
|  | } | 
|  | kmp_uint64 get_ub() const { | 
|  | kmp_int64 retval; | 
|  | #if defined(KMP_GOMP_COMPAT) | 
|  | // Intel task just returns the upper bound normally | 
|  | if (!taskdata->td_flags.native) { | 
|  | retval = *(kmp_int64 *)((char *)task + upper_offset); | 
|  | } else { | 
|  | // GOMP task has to take into account the sizeof(long) | 
|  | if (taskdata->td_size_loop_bounds == 4) { | 
|  | kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; | 
|  | retval = (kmp_int64)*ub; | 
|  | } else { | 
|  | kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; | 
|  | retval = (kmp_int64)*ub; | 
|  | } | 
|  | } | 
|  | #else | 
|  | retval = *(kmp_int64 *)((char *)task + upper_offset); | 
|  | #endif // defined(KMP_GOMP_COMPAT) | 
|  | return retval; | 
|  | } | 
|  | void set_lb(kmp_uint64 lb) { | 
|  | #if defined(KMP_GOMP_COMPAT) | 
|  | // Intel task just sets the lower bound normally | 
|  | if (!taskdata->td_flags.native) { | 
|  | *(kmp_uint64 *)((char *)task + lower_offset) = lb; | 
|  | } else { | 
|  | // GOMP task has to take into account the sizeof(long) | 
|  | if (taskdata->td_size_loop_bounds == 4) { | 
|  | kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); | 
|  | *lower = (kmp_uint32)lb; | 
|  | } else { | 
|  | kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); | 
|  | *lower = (kmp_uint64)lb; | 
|  | } | 
|  | } | 
|  | #else | 
|  | *(kmp_uint64 *)((char *)task + lower_offset) = lb; | 
|  | #endif // defined(KMP_GOMP_COMPAT) | 
|  | } | 
|  | void set_ub(kmp_uint64 ub) { | 
|  | #if defined(KMP_GOMP_COMPAT) | 
|  | // Intel task just sets the upper bound normally | 
|  | if (!taskdata->td_flags.native) { | 
|  | *(kmp_uint64 *)((char *)task + upper_offset) = ub; | 
|  | } else { | 
|  | // GOMP task has to take into account the sizeof(long) | 
|  | if (taskdata->td_size_loop_bounds == 4) { | 
|  | kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; | 
|  | *upper = (kmp_uint32)ub; | 
|  | } else { | 
|  | kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; | 
|  | *upper = (kmp_uint64)ub; | 
|  | } | 
|  | } | 
|  | #else | 
|  | *(kmp_uint64 *)((char *)task + upper_offset) = ub; | 
|  | #endif // defined(KMP_GOMP_COMPAT) | 
|  | } | 
|  | }; | 
|  |  | 
|  | // __kmp_taskloop_linear: Start tasks of the taskloop linearly | 
|  | // | 
|  | // loc        Source location information | 
|  | // gtid       Global thread ID | 
|  | // task       Pattern task, exposes the loop iteration range | 
|  | // lb         Pointer to loop lower bound in task structure | 
|  | // ub         Pointer to loop upper bound in task structure | 
|  | // st         Loop stride | 
|  | // ub_glob    Global upper bound (used for lastprivate check) | 
|  | // num_tasks  Number of tasks to execute | 
|  | // grainsize  Number of loop iterations per task | 
|  | // extras     Number of chunks with grainsize+1 iterations | 
|  | // last_chunk Reduction of grainsize for last task | 
|  | // tc         Iterations count | 
|  | // task_dup   Tasks duplication routine | 
|  | // codeptr_ra Return address for OMPT events | 
|  | void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, | 
|  | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, | 
|  | kmp_uint64 ub_glob, kmp_uint64 num_tasks, | 
|  | kmp_uint64 grainsize, kmp_uint64 extras, | 
|  | kmp_int64 last_chunk, kmp_uint64 tc, | 
|  | #if OMPT_SUPPORT | 
|  | void *codeptr_ra, | 
|  | #endif | 
|  | void *task_dup) { | 
|  | KMP_COUNT_BLOCK(OMP_TASKLOOP); | 
|  | KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); | 
|  | p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; | 
|  | // compiler provides global bounds here | 
|  | kmp_taskloop_bounds_t task_bounds(task, lb, ub); | 
|  | kmp_uint64 lower = task_bounds.get_lb(); | 
|  | kmp_uint64 upper = task_bounds.get_ub(); | 
|  | kmp_uint64 i; | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskdata_t *current_task = thread->th.th_current_task; | 
|  | kmp_task_t *next_task; | 
|  | kmp_int32 lastpriv = 0; | 
|  |  | 
|  | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + | 
|  | (last_chunk < 0 ? last_chunk : extras)); | 
|  | KMP_DEBUG_ASSERT(num_tasks > extras); | 
|  | KMP_DEBUG_ASSERT(num_tasks > 0); | 
|  | KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " | 
|  | "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", | 
|  | gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, | 
|  | ub_glob, st, task_dup)); | 
|  |  | 
|  | // Launch num_tasks tasks, assign grainsize iterations each task | 
|  | for (i = 0; i < num_tasks; ++i) { | 
|  | kmp_uint64 chunk_minus_1; | 
|  | if (extras == 0) { | 
|  | chunk_minus_1 = grainsize - 1; | 
|  | } else { | 
|  | chunk_minus_1 = grainsize; | 
|  | --extras; // first extras iterations get bigger chunk (grainsize+1) | 
|  | } | 
|  | upper = lower + st * chunk_minus_1; | 
|  | if (upper > *ub) { | 
|  | upper = *ub; | 
|  | } | 
|  | if (i == num_tasks - 1) { | 
|  | // schedule the last task, set lastprivate flag if needed | 
|  | if (st == 1) { // most common case | 
|  | KMP_DEBUG_ASSERT(upper == *ub); | 
|  | if (upper == ub_glob) | 
|  | lastpriv = 1; | 
|  | } else if (st > 0) { // positive loop stride | 
|  | KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); | 
|  | if ((kmp_uint64)st > ub_glob - upper) | 
|  | lastpriv = 1; | 
|  | } else { // negative loop stride | 
|  | KMP_DEBUG_ASSERT(upper + st < *ub); | 
|  | if (upper - ub_glob < (kmp_uint64)(-st)) | 
|  | lastpriv = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0); | 
|  | #else | 
|  | next_task = __kmp_task_dup_alloc(thread, task); // allocate new task | 
|  | #endif | 
|  |  | 
|  | kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); | 
|  | kmp_taskloop_bounds_t next_task_bounds = | 
|  | kmp_taskloop_bounds_t(next_task, task_bounds); | 
|  |  | 
|  | // adjust task-specific bounds | 
|  | next_task_bounds.set_lb(lower); | 
|  | if (next_taskdata->td_flags.native) { | 
|  | next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); | 
|  | } else { | 
|  | next_task_bounds.set_ub(upper); | 
|  | } | 
|  | if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, | 
|  | // etc. | 
|  | ptask_dup(next_task, task, lastpriv); | 
|  | KA_TRACE(40, | 
|  | ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " | 
|  | "upper %lld stride %lld, (offsets %p %p)\n", | 
|  | gtid, i, next_task, lower, upper, st, | 
|  | next_task_bounds.get_lower_offset(), | 
|  | next_task_bounds.get_upper_offset())); | 
|  | #if OMPT_SUPPORT | 
|  | __kmp_omp_taskloop_task(NULL, gtid, next_task, | 
|  | codeptr_ra); // schedule new task | 
|  | #if OMPT_OPTIONAL | 
|  | if (ompt_enabled.ompt_callback_dispatch) { | 
|  | OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk, | 
|  | lower, upper, st); | 
|  | } | 
|  | #endif // OMPT_OPTIONAL | 
|  | #else | 
|  | __kmp_omp_task(gtid, next_task, true); // schedule new task | 
|  | #endif | 
|  | lower = upper + st; // adjust lower bound for the next iteration | 
|  | } | 
|  | // free the pattern task and exit | 
|  | __kmp_task_start(gtid, task, current_task); // make internal bookkeeping | 
|  | // do not execute the pattern task, just do internal bookkeeping | 
|  | __kmp_task_finish<false>(gtid, task, current_task); | 
|  | } | 
|  |  | 
|  | // Structure to keep taskloop parameters for auxiliary task | 
|  | // kept in the shareds of the task structure. | 
|  | typedef struct __taskloop_params { | 
|  | kmp_task_t *task; | 
|  | kmp_uint64 *lb; | 
|  | kmp_uint64 *ub; | 
|  | void *task_dup; | 
|  | kmp_int64 st; | 
|  | kmp_uint64 ub_glob; | 
|  | kmp_uint64 num_tasks; | 
|  | kmp_uint64 grainsize; | 
|  | kmp_uint64 extras; | 
|  | kmp_int64 last_chunk; | 
|  | kmp_uint64 tc; | 
|  | kmp_uint64 num_t_min; | 
|  | #if OMPT_SUPPORT | 
|  | void *codeptr_ra; | 
|  | #endif | 
|  | } __taskloop_params_t; | 
|  |  | 
|  | void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, | 
|  | kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, | 
|  | kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, | 
|  | kmp_uint64, | 
|  | #if OMPT_SUPPORT | 
|  | void *, | 
|  | #endif | 
|  | void *); | 
|  |  | 
|  | // Execute part of the taskloop submitted as a task. | 
|  | int __kmp_taskloop_task(int gtid, void *ptask) { | 
|  | __taskloop_params_t *p = | 
|  | (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; | 
|  | kmp_task_t *task = p->task; | 
|  | kmp_uint64 *lb = p->lb; | 
|  | kmp_uint64 *ub = p->ub; | 
|  | void *task_dup = p->task_dup; | 
|  | //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; | 
|  | kmp_int64 st = p->st; | 
|  | kmp_uint64 ub_glob = p->ub_glob; | 
|  | kmp_uint64 num_tasks = p->num_tasks; | 
|  | kmp_uint64 grainsize = p->grainsize; | 
|  | kmp_uint64 extras = p->extras; | 
|  | kmp_int64 last_chunk = p->last_chunk; | 
|  | kmp_uint64 tc = p->tc; | 
|  | kmp_uint64 num_t_min = p->num_t_min; | 
|  | #if OMPT_SUPPORT | 
|  | void *codeptr_ra = p->codeptr_ra; | 
|  | #endif | 
|  | #if KMP_DEBUG | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | KMP_DEBUG_ASSERT(task != NULL); | 
|  | KA_TRACE(20, | 
|  | ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" | 
|  | " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", | 
|  | gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, | 
|  | st, task_dup)); | 
|  | #endif | 
|  | KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); | 
|  | if (num_tasks > num_t_min) | 
|  | __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, | 
|  | grainsize, extras, last_chunk, tc, num_t_min, | 
|  | #if OMPT_SUPPORT | 
|  | codeptr_ra, | 
|  | #endif | 
|  | task_dup); | 
|  | else | 
|  | __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, | 
|  | grainsize, extras, last_chunk, tc, | 
|  | #if OMPT_SUPPORT | 
|  | codeptr_ra, | 
|  | #endif | 
|  | task_dup); | 
|  |  | 
|  | KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Schedule part of the taskloop as a task, | 
|  | // execute the rest of the taskloop. | 
|  | // | 
|  | // loc        Source location information | 
|  | // gtid       Global thread ID | 
|  | // task       Pattern task, exposes the loop iteration range | 
|  | // lb         Pointer to loop lower bound in task structure | 
|  | // ub         Pointer to loop upper bound in task structure | 
|  | // st         Loop stride | 
|  | // ub_glob    Global upper bound (used for lastprivate check) | 
|  | // num_tasks  Number of tasks to execute | 
|  | // grainsize  Number of loop iterations per task | 
|  | // extras     Number of chunks with grainsize+1 iterations | 
|  | // last_chunk Reduction of grainsize for last task | 
|  | // tc         Iterations count | 
|  | // num_t_min  Threshold to launch tasks recursively | 
|  | // task_dup   Tasks duplication routine | 
|  | // codeptr_ra Return address for OMPT events | 
|  | void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, | 
|  | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, | 
|  | kmp_uint64 ub_glob, kmp_uint64 num_tasks, | 
|  | kmp_uint64 grainsize, kmp_uint64 extras, | 
|  | kmp_int64 last_chunk, kmp_uint64 tc, | 
|  | kmp_uint64 num_t_min, | 
|  | #if OMPT_SUPPORT | 
|  | void *codeptr_ra, | 
|  | #endif | 
|  | void *task_dup) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | KMP_DEBUG_ASSERT(task != NULL); | 
|  | KMP_DEBUG_ASSERT(num_tasks > num_t_min); | 
|  | KA_TRACE(20, | 
|  | ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" | 
|  | " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", | 
|  | gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, | 
|  | st, task_dup)); | 
|  | p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; | 
|  | kmp_uint64 lower = *lb; | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | //  kmp_taskdata_t *current_task = thread->th.th_current_task; | 
|  | kmp_task_t *next_task; | 
|  | size_t lower_offset = | 
|  | (char *)lb - (char *)task; // remember offset of lb in the task structure | 
|  | size_t upper_offset = | 
|  | (char *)ub - (char *)task; // remember offset of ub in the task structure | 
|  |  | 
|  | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + | 
|  | (last_chunk < 0 ? last_chunk : extras)); | 
|  | KMP_DEBUG_ASSERT(num_tasks > extras); | 
|  | KMP_DEBUG_ASSERT(num_tasks > 0); | 
|  |  | 
|  | // split the loop in two halves | 
|  | kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; | 
|  | kmp_int64 last_chunk0 = 0, last_chunk1 = 0; | 
|  | kmp_uint64 gr_size0 = grainsize; | 
|  | kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute | 
|  | kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task | 
|  | if (last_chunk < 0) { | 
|  | ext0 = ext1 = 0; | 
|  | last_chunk1 = last_chunk; | 
|  | tc0 = grainsize * n_tsk0; | 
|  | tc1 = tc - tc0; | 
|  | } else if (n_tsk0 <= extras) { | 
|  | gr_size0++; // integrate extras into grainsize | 
|  | ext0 = 0; // no extra iters in 1st half | 
|  | ext1 = extras - n_tsk0; // remaining extras | 
|  | tc0 = gr_size0 * n_tsk0; | 
|  | tc1 = tc - tc0; | 
|  | } else { // n_tsk0 > extras | 
|  | ext1 = 0; // no extra iters in 2nd half | 
|  | ext0 = extras; | 
|  | tc1 = grainsize * n_tsk1; | 
|  | tc0 = tc - tc1; | 
|  | } | 
|  | ub0 = lower + st * (tc0 - 1); | 
|  | lb1 = ub0 + st; | 
|  |  | 
|  | // create pattern task for 2nd half of the loop | 
|  | #if OMPX_TASKGRAPH | 
|  | next_task = __kmp_task_dup_alloc(thread, task, | 
|  | /* taskloop_recur */ 1); | 
|  | #else | 
|  | next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task | 
|  | #endif | 
|  | // adjust lower bound (upper bound is not changed) for the 2nd half | 
|  | *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; | 
|  | if (ptask_dup != NULL) // construct firstprivates, etc. | 
|  | ptask_dup(next_task, task, 0); | 
|  | *ub = ub0; // adjust upper bound for the 1st half | 
|  |  | 
|  | // create auxiliary task for 2nd half of the loop | 
|  | // make sure new task has same parent task as the pattern task | 
|  | kmp_taskdata_t *current_task = thread->th.th_current_task; | 
|  | thread->th.th_current_task = taskdata->td_parent; | 
|  | kmp_task_t *new_task = | 
|  | __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), | 
|  | sizeof(__taskloop_params_t), &__kmp_taskloop_task); | 
|  | // restore current task | 
|  | thread->th.th_current_task = current_task; | 
|  | __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; | 
|  | p->task = next_task; | 
|  | p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); | 
|  | p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); | 
|  | p->task_dup = task_dup; | 
|  | p->st = st; | 
|  | p->ub_glob = ub_glob; | 
|  | p->num_tasks = n_tsk1; | 
|  | p->grainsize = grainsize; | 
|  | p->extras = ext1; | 
|  | p->last_chunk = last_chunk1; | 
|  | p->tc = tc1; | 
|  | p->num_t_min = num_t_min; | 
|  | #if OMPT_SUPPORT | 
|  | p->codeptr_ra = codeptr_ra; | 
|  | #endif | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task); | 
|  | new_task_data->tdg = taskdata->tdg; | 
|  | new_task_data->is_taskgraph = 0; | 
|  | #endif | 
|  |  | 
|  | #if OMPT_SUPPORT | 
|  | // schedule new task with correct return address for OMPT events | 
|  | __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); | 
|  | #else | 
|  | __kmp_omp_task(gtid, new_task, true); // schedule new task | 
|  | #endif | 
|  |  | 
|  | // execute the 1st half of current subrange | 
|  | if (n_tsk0 > num_t_min) | 
|  | __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, | 
|  | ext0, last_chunk0, tc0, num_t_min, | 
|  | #if OMPT_SUPPORT | 
|  | codeptr_ra, | 
|  | #endif | 
|  | task_dup); | 
|  | else | 
|  | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, | 
|  | gr_size0, ext0, last_chunk0, tc0, | 
|  | #if OMPT_SUPPORT | 
|  | codeptr_ra, | 
|  | #endif | 
|  | task_dup); | 
|  |  | 
|  | KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); | 
|  | } | 
|  |  | 
|  | static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, | 
|  | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, | 
|  | int nogroup, int sched, kmp_uint64 grainsize, | 
|  | int modifier, void *task_dup) { | 
|  | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); | 
|  | KMP_DEBUG_ASSERT(task != NULL); | 
|  | if (nogroup == 0) { | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | OMPT_STORE_RETURN_ADDRESS(gtid); | 
|  | #endif | 
|  | __kmpc_taskgroup(loc, gtid); | 
|  | } | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | KMP_ATOMIC_DEC(&__kmp_tdg_task_id); | 
|  | #endif | 
|  | // ========================================================================= | 
|  | // calculate loop parameters | 
|  | kmp_taskloop_bounds_t task_bounds(task, lb, ub); | 
|  | kmp_uint64 tc; | 
|  | // compiler provides global bounds here | 
|  | kmp_uint64 lower = task_bounds.get_lb(); | 
|  | kmp_uint64 upper = task_bounds.get_ub(); | 
|  | kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag | 
|  | kmp_uint64 num_tasks = 0, extras = 0; | 
|  | kmp_int64 last_chunk = | 
|  | 0; // reduce grainsize of last task by last_chunk in strict mode | 
|  | kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskdata_t *current_task = thread->th.th_current_task; | 
|  |  | 
|  | KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " | 
|  | "grain %llu(%d, %d), dup %p\n", | 
|  | gtid, taskdata, lower, upper, st, grainsize, sched, modifier, | 
|  | task_dup)); | 
|  |  | 
|  | // compute trip count | 
|  | if (st == 1) { // most common case | 
|  | tc = upper - lower + 1; | 
|  | } else if (st < 0) { | 
|  | tc = (lower - upper) / (-st) + 1; | 
|  | } else { // st > 0 | 
|  | tc = (upper - lower) / st + 1; | 
|  | } | 
|  | if (tc == 0) { | 
|  | KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); | 
|  | // free the pattern task and exit | 
|  | __kmp_task_start(gtid, task, current_task); | 
|  | // do not execute anything for zero-trip loop | 
|  | __kmp_task_finish<false>(gtid, task, current_task); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); | 
|  | ompt_task_info_t *task_info = __ompt_get_task_info_object(0); | 
|  | if (ompt_enabled.ompt_callback_work) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_work)( | 
|  | ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), | 
|  | &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (num_tasks_min == 0) | 
|  | // TODO: can we choose better default heuristic? | 
|  | num_tasks_min = | 
|  | KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); | 
|  |  | 
|  | // compute num_tasks/grainsize based on the input provided | 
|  | switch (sched) { | 
|  | case 0: // no schedule clause specified, we can choose the default | 
|  | // let's try to schedule (team_size*10) tasks | 
|  | grainsize = thread->th.th_team_nproc * 10; | 
|  | KMP_FALLTHROUGH(); | 
|  | case 2: // num_tasks provided | 
|  | if (grainsize > tc) { | 
|  | num_tasks = tc; // too big num_tasks requested, adjust values | 
|  | grainsize = 1; | 
|  | extras = 0; | 
|  | } else { | 
|  | num_tasks = grainsize; | 
|  | grainsize = tc / num_tasks; | 
|  | extras = tc % num_tasks; | 
|  | } | 
|  | break; | 
|  | case 1: // grainsize provided | 
|  | if (grainsize > tc) { | 
|  | num_tasks = 1; | 
|  | grainsize = tc; // too big grainsize requested, adjust values | 
|  | extras = 0; | 
|  | } else { | 
|  | if (modifier) { | 
|  | num_tasks = (tc + grainsize - 1) / grainsize; | 
|  | last_chunk = tc - (num_tasks * grainsize); | 
|  | extras = 0; | 
|  | } else { | 
|  | num_tasks = tc / grainsize; | 
|  | // adjust grainsize for balanced distribution of iterations | 
|  | grainsize = tc / num_tasks; | 
|  | extras = tc % num_tasks; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | KMP_ASSERT2(0, "unknown scheduling of taskloop"); | 
|  | } | 
|  |  | 
|  | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + | 
|  | (last_chunk < 0 ? last_chunk : extras)); | 
|  | KMP_DEBUG_ASSERT(num_tasks > extras); | 
|  | KMP_DEBUG_ASSERT(num_tasks > 0); | 
|  | // ========================================================================= | 
|  |  | 
|  | // check if clause value first | 
|  | // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) | 
|  | if (if_val == 0) { // if(0) specified, mark task as serial | 
|  | taskdata->td_flags.task_serial = 1; | 
|  | taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied | 
|  | // always start serial tasks linearly | 
|  | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, | 
|  | grainsize, extras, last_chunk, tc, | 
|  | #if OMPT_SUPPORT | 
|  | OMPT_GET_RETURN_ADDRESS(0), | 
|  | #endif | 
|  | task_dup); | 
|  | // !taskdata->td_flags.native => currently force linear spawning of tasks | 
|  | // for GOMP_taskloop | 
|  | } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { | 
|  | KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" | 
|  | "(%lld), grain %llu, extras %llu, last_chunk %lld\n", | 
|  | gtid, tc, num_tasks, num_tasks_min, grainsize, extras, | 
|  | last_chunk)); | 
|  | __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, | 
|  | grainsize, extras, last_chunk, tc, num_tasks_min, | 
|  | #if OMPT_SUPPORT | 
|  | OMPT_GET_RETURN_ADDRESS(0), | 
|  | #endif | 
|  | task_dup); | 
|  | } else { | 
|  | KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" | 
|  | "(%lld), grain %llu, extras %llu, last_chunk %lld\n", | 
|  | gtid, tc, num_tasks, num_tasks_min, grainsize, extras, | 
|  | last_chunk)); | 
|  | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, | 
|  | grainsize, extras, last_chunk, tc, | 
|  | #if OMPT_SUPPORT | 
|  | OMPT_GET_RETURN_ADDRESS(0), | 
|  | #endif | 
|  | task_dup); | 
|  | } | 
|  |  | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | if (ompt_enabled.ompt_callback_work) { | 
|  | ompt_callbacks.ompt_callback(ompt_callback_work)( | 
|  | ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), | 
|  | &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (nogroup == 0) { | 
|  | #if OMPT_SUPPORT && OMPT_OPTIONAL | 
|  | OMPT_STORE_RETURN_ADDRESS(gtid); | 
|  | #endif | 
|  | __kmpc_end_taskgroup(loc, gtid); | 
|  | } | 
|  | KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param loc       Source location information | 
|  | @param gtid      Global thread ID | 
|  | @param task      Task structure | 
|  | @param if_val    Value of the if clause | 
|  | @param lb        Pointer to loop lower bound in task structure | 
|  | @param ub        Pointer to loop upper bound in task structure | 
|  | @param st        Loop stride | 
|  | @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise | 
|  | @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks | 
|  | @param grainsize Schedule value if specified | 
|  | @param task_dup  Tasks duplication routine | 
|  |  | 
|  | Execute the taskloop construct. | 
|  | */ | 
|  | void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, | 
|  | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, | 
|  | int sched, kmp_uint64 grainsize, void *task_dup) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); | 
|  | __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, | 
|  | 0, task_dup); | 
|  | KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param loc       Source location information | 
|  | @param gtid      Global thread ID | 
|  | @param task      Task structure | 
|  | @param if_val    Value of the if clause | 
|  | @param lb        Pointer to loop lower bound in task structure | 
|  | @param ub        Pointer to loop upper bound in task structure | 
|  | @param st        Loop stride | 
|  | @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise | 
|  | @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks | 
|  | @param grainsize Schedule value if specified | 
|  | @param modifier  Modifier 'strict' for sched, 1 if present, 0 otherwise | 
|  | @param task_dup  Tasks duplication routine | 
|  |  | 
|  | Execute the taskloop construct. | 
|  | */ | 
|  | void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, | 
|  | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, | 
|  | int nogroup, int sched, kmp_uint64 grainsize, | 
|  | int modifier, void *task_dup) { | 
|  | __kmp_assert_valid_gtid(gtid); | 
|  | KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); | 
|  | __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, | 
|  | modifier, task_dup); | 
|  | KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param gtid Global Thread ID of current thread | 
|  | @return Returns a pointer to the thread's current task async handle. If no task | 
|  | is present or gtid is invalid, returns NULL. | 
|  |  | 
|  | Acqurires a pointer to the target async handle from the current task. | 
|  | */ | 
|  | void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) { | 
|  | if (gtid == KMP_GTID_DNE) | 
|  | return NULL; | 
|  |  | 
|  | kmp_info_t *thread = __kmp_thread_from_gtid(gtid); | 
|  | kmp_taskdata_t *taskdata = thread->th.th_current_task; | 
|  |  | 
|  | if (!taskdata) | 
|  | return NULL; | 
|  |  | 
|  | return &taskdata->td_target_data.async_handle; | 
|  | } | 
|  |  | 
|  | /*! | 
|  | @ingroup TASKING | 
|  | @param gtid Global Thread ID of current thread | 
|  | @return Returns TRUE if the current task being executed of the given thread has | 
|  | a task team allocated to it. Otherwise, returns FALSE. | 
|  |  | 
|  | Checks if the current thread has a task team. | 
|  | */ | 
|  | bool __kmpc_omp_has_task_team(kmp_int32 gtid) { | 
|  | if (gtid == KMP_GTID_DNE) | 
|  | return FALSE; | 
|  |  | 
|  | kmp_info_t *thread = __kmp_thread_from_gtid(gtid); | 
|  | kmp_taskdata_t *taskdata = thread->th.th_current_task; | 
|  |  | 
|  | if (!taskdata) | 
|  | return FALSE; | 
|  |  | 
|  | return taskdata->td_task_team != NULL; | 
|  | } | 
|  |  | 
|  | #if OMPX_TASKGRAPH | 
|  | // __kmp_find_tdg: identify a TDG through its ID | 
|  | // gtid:   Global Thread ID | 
|  | // tdg_id: ID of the TDG | 
|  | // returns: If a TDG corresponding to this ID is found and not | 
|  | // its initial state, return the pointer to it, otherwise nullptr | 
|  | static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) { | 
|  | kmp_tdg_info_t *res = nullptr; | 
|  | if (__kmp_max_tdgs == 0) | 
|  | return res; | 
|  |  | 
|  | if (__kmp_global_tdgs == NULL) | 
|  | __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate( | 
|  | sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs); | 
|  |  | 
|  | if ((__kmp_global_tdgs[tdg_id]) && | 
|  | (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE)) | 
|  | res = __kmp_global_tdgs[tdg_id]; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | // __kmp_print_tdg_dot: prints the TDG to a dot file | 
|  | // tdg:    ID of the TDG | 
|  | void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg) { | 
|  | kmp_int32 tdg_id = tdg->tdg_id; | 
|  | KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid, tdg_id)); | 
|  |  | 
|  | char file_name[20]; | 
|  | sprintf(file_name, "tdg_%d.dot", tdg_id); | 
|  | kmp_safe_raii_file_t tdg_file(file_name, "w"); | 
|  |  | 
|  | kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); | 
|  | fprintf(tdg_file, | 
|  | "digraph TDG {\n" | 
|  | "   compound=true\n" | 
|  | "   subgraph cluster {\n" | 
|  | "      label=TDG_%d\n", | 
|  | tdg_id); | 
|  | for (kmp_int32 i = 0; i < num_tasks; i++) { | 
|  | fprintf(tdg_file, "      %d[style=bold]\n", i); | 
|  | } | 
|  | fprintf(tdg_file, "   }\n"); | 
|  | for (kmp_int32 i = 0; i < num_tasks; i++) { | 
|  | kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors; | 
|  | kmp_int32 *successors = tdg->record_map[i].successors; | 
|  | if (nsuccessors > 0) { | 
|  | for (kmp_int32 j = 0; j < nsuccessors; j++) | 
|  | fprintf(tdg_file, "   %d -> %d \n", i, successors[j]); | 
|  | } | 
|  | } | 
|  | fprintf(tdg_file, "}"); | 
|  | KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid, tdg_id)); | 
|  | } | 
|  |  | 
|  | // __kmp_start_record: launch the execution of a previous | 
|  | // recorded TDG | 
|  | // gtid:   Global Thread ID | 
|  | // tdg:    ID of the TDG | 
|  | void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) { | 
|  | KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY); | 
|  | KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid, | 
|  | tdg->tdg_id, tdg->num_roots)); | 
|  | kmp_node_info_t *this_record_map = tdg->record_map; | 
|  | kmp_int32 *this_root_tasks = tdg->root_tasks; | 
|  | kmp_int32 this_num_roots = tdg->num_roots; | 
|  | kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); | 
|  |  | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  | kmp_taskdata_t *parent_task = thread->th.th_current_task; | 
|  |  | 
|  | if (tdg->rec_taskred_data) { | 
|  | __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data); | 
|  | } | 
|  |  | 
|  | for (kmp_int32 j = 0; j < this_num_tasks; j++) { | 
|  | kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task); | 
|  |  | 
|  | td->td_parent = parent_task; | 
|  | this_record_map[j].parent_task = parent_task; | 
|  |  | 
|  | kmp_taskgroup_t *parent_taskgroup = | 
|  | this_record_map[j].parent_task->td_taskgroup; | 
|  |  | 
|  | KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter, | 
|  | this_record_map[j].npredecessors); | 
|  | KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks); | 
|  |  | 
|  | if (parent_taskgroup) { | 
|  | KMP_ATOMIC_INC(&parent_taskgroup->count); | 
|  | // The taskgroup is different so we must update it | 
|  | td->td_taskgroup = parent_taskgroup; | 
|  | } else if (td->td_taskgroup != nullptr) { | 
|  | // If the parent doesnt have a taskgroup, remove it from the task | 
|  | td->td_taskgroup = nullptr; | 
|  | } | 
|  | if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT) | 
|  | KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks); | 
|  | } | 
|  |  | 
|  | for (kmp_int32 j = 0; j < this_num_roots; ++j) { | 
|  | __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true); | 
|  | } | 
|  | KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid, | 
|  | tdg->tdg_id, tdg->num_roots)); | 
|  | } | 
|  |  | 
|  | // __kmp_start_record: set up a TDG structure and turn the | 
|  | // recording flag to true | 
|  | // gtid:        Global Thread ID of the encountering thread | 
|  | // input_flags: Flags associated with the TDG | 
|  | // tdg_id:      ID of the TDG to record | 
|  | static inline void __kmp_start_record(kmp_int32 gtid, | 
|  | kmp_taskgraph_flags_t *flags, | 
|  | kmp_int32 tdg_id) { | 
|  | kmp_tdg_info_t *tdg = | 
|  | (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t)); | 
|  | __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg; | 
|  | // Initializing the TDG structure | 
|  | tdg->tdg_id = tdg_id; | 
|  | tdg->map_size = INIT_MAPSIZE; | 
|  | tdg->num_roots = -1; | 
|  | tdg->root_tasks = nullptr; | 
|  | tdg->tdg_status = KMP_TDG_RECORDING; | 
|  | tdg->rec_num_taskred = 0; | 
|  | tdg->rec_taskred_data = nullptr; | 
|  | KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0); | 
|  |  | 
|  | // Initializing the list of nodes in this TDG | 
|  | kmp_node_info_t *this_record_map = | 
|  | (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t)); | 
|  | for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) { | 
|  | kmp_int32 *successorsList = | 
|  | (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32)); | 
|  | this_record_map[i].task = nullptr; | 
|  | this_record_map[i].successors = successorsList; | 
|  | this_record_map[i].nsuccessors = 0; | 
|  | this_record_map[i].npredecessors = 0; | 
|  | this_record_map[i].successors_size = __kmp_successors_size; | 
|  | KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0); | 
|  | } | 
|  |  | 
|  | __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map; | 
|  | } | 
|  |  | 
|  | // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark | 
|  | // the beginning of the record process of a task region | 
|  | // loc_ref:     Location of TDG, not used yet | 
|  | // gtid:        Global Thread ID of the encountering thread | 
|  | // input_flags: Flags associated with the TDG | 
|  | // tdg_id:      ID of the TDG to record, for now, incremental integer | 
|  | // returns:     1 if we record, otherwise, 0 | 
|  | kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_int32 input_flags, kmp_int32 tdg_id) { | 
|  |  | 
|  | kmp_int32 res; | 
|  | kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags; | 
|  | KA_TRACE(10, | 
|  | ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n", | 
|  | gtid, loc_ref, input_flags, tdg_id)); | 
|  |  | 
|  | if (__kmp_max_tdgs == 0) { | 
|  | KA_TRACE( | 
|  | 10, | 
|  | ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, " | 
|  | "__kmp_max_tdgs = 0\n", | 
|  | gtid, loc_ref, input_flags, tdg_id)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __kmpc_taskgroup(loc_ref, gtid); | 
|  | if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) { | 
|  | // TODO: use re_record flag | 
|  | __kmp_exec_tdg(gtid, tdg); | 
|  | res = 0; | 
|  | } else { | 
|  | __kmp_curr_tdg_idx = tdg_id; | 
|  | KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs); | 
|  | __kmp_start_record(gtid, flags, tdg_id); | 
|  | __kmp_num_tdg++; | 
|  | res = 1; | 
|  | } | 
|  | KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n", | 
|  | gtid, tdg_id, res ? "record" : "execute")); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | // __kmp_end_record: set up a TDG after recording it | 
|  | // gtid:   Global thread ID | 
|  | // tdg:    Pointer to the TDG | 
|  | void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) { | 
|  | // Store roots | 
|  | kmp_node_info_t *this_record_map = tdg->record_map; | 
|  | kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); | 
|  | kmp_int32 *this_root_tasks = | 
|  | (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32)); | 
|  | kmp_int32 this_map_size = tdg->map_size; | 
|  | kmp_int32 this_num_roots = 0; | 
|  | kmp_info_t *thread = __kmp_threads[gtid]; | 
|  |  | 
|  | for (kmp_int32 i = 0; i < this_num_tasks; i++) { | 
|  | if (this_record_map[i].npredecessors == 0) { | 
|  | this_root_tasks[this_num_roots++] = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update with roots info and mapsize | 
|  | tdg->map_size = this_map_size; | 
|  | tdg->num_roots = this_num_roots; | 
|  | tdg->root_tasks = this_root_tasks; | 
|  | KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING); | 
|  | tdg->tdg_status = KMP_TDG_READY; | 
|  |  | 
|  | if (thread->th.th_current_task->td_dephash) { | 
|  | __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash); | 
|  | thread->th.th_current_task->td_dephash = NULL; | 
|  | } | 
|  |  | 
|  | // Reset predecessor counter | 
|  | for (kmp_int32 i = 0; i < this_num_tasks; i++) { | 
|  | KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, | 
|  | this_record_map[i].npredecessors); | 
|  | } | 
|  | KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0); | 
|  |  | 
|  | if (__kmp_tdg_dot) | 
|  | __kmp_print_tdg_dot(tdg); | 
|  | } | 
|  |  | 
|  | // __kmpc_end_record_task: wrapper around __kmp_end_record to mark | 
|  | // the end of recording phase | 
|  | // | 
|  | // loc_ref:      Source location information | 
|  | // gtid:         Global thread ID | 
|  | // input_flags:  Flags attached to the graph | 
|  | // tdg_id:       ID of the TDG just finished recording | 
|  | void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid, | 
|  | kmp_int32 input_flags, kmp_int32 tdg_id) { | 
|  | kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id); | 
|  |  | 
|  | KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording" | 
|  | " tdg=%d with flags=%d\n", | 
|  | gtid, loc_ref, tdg_id, input_flags)); | 
|  | if (__kmp_max_tdgs) { | 
|  | // TODO: use input_flags->nowait | 
|  | __kmpc_end_taskgroup(loc_ref, gtid); | 
|  | if (__kmp_tdg_is_recording(tdg->tdg_status)) | 
|  | __kmp_end_record(gtid, tdg); | 
|  | } | 
|  | KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording" | 
|  | " tdg=%d, its status is now READY\n", | 
|  | gtid, loc_ref, tdg_id)); | 
|  | } | 
|  | #endif |