| //===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file describes the RISC-V instructions from the standard 'Zfh' | 
 | // half-precision floating-point extension, version 1.0. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // RISC-V specific DAG Nodes. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | def SDT_RISCVFMV_H_X | 
 |     : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, XLenVT>]>; | 
 | def SDT_RISCVFMV_X_EXTH | 
 |     : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>; | 
 |  | 
 | // FPR<->GPR transfer operations when the FPR is smaller than XLEN, needed as | 
 | // XLEN is the only legal integer width. | 
 | // | 
 | // FMV_H_X matches the semantics of the FMV.H.X. | 
 | // FMV_X_ANYEXTH is similar to FMV.X.H but has an any-extended result. | 
 | // FMV_X_SIGNEXTH is similar to FMV.X.H and has a sign-extended result. | 
 | // | 
 | // This is a more convenient semantic for producing dagcombines that remove | 
 | // unnecessary GPR->FPR->GPR moves. | 
 | def riscv_fmv_h_x | 
 |     : RVSDNode<"FMV_H_X", SDT_RISCVFMV_H_X>; | 
 | def riscv_fmv_x_anyexth | 
 |     : RVSDNode<"FMV_X_ANYEXTH", SDT_RISCVFMV_X_EXTH>; | 
 | def riscv_fmv_x_signexth | 
 |     : RVSDNode<"FMV_X_SIGNEXTH", SDT_RISCVFMV_X_EXTH>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Operand and SDNode transformation definitions. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Zhinxmin and Zhinx | 
 |  | 
 | def GPRAsFPR16 : AsmOperandClass { | 
 |   let Name = "GPRAsFPR16"; | 
 |   let ParserMethod = "parseGPRAsFPR"; | 
 |   let RenderMethod = "addRegOperands"; | 
 | } | 
 |  | 
 | def FPR16INX : RegisterOperand<GPRF16> { | 
 |   let ParserMatchClass = GPRAsFPR16; | 
 | } | 
 |  | 
 | def ZfhExt     : ExtInfo<"", "", [HasStdExtZfh], | 
 |                          f16, FPR16, FPR32, ?, FPR16>; | 
 | def ZfhminExt  : ExtInfo<"", "", [HasStdExtZfhmin], | 
 |                          f16, FPR16, FPR32, ?, FPR16>; | 
 | def ZfhDExt    : ExtInfo<"", "", [HasStdExtZfh, HasStdExtD], | 
 |                          ?, ?, FPR32, FPR64, FPR16>; | 
 | def ZfhminDExt : ExtInfo<"", "", [HasStdExtZfhmin, HasStdExtD], | 
 |                          ?, ?, FPR32, FPR64, FPR16>; | 
 |  | 
 | def ZhinxExt            : ExtInfo<"_INX", "Zfinx", | 
 |                                   [HasStdExtZhinx], | 
 |                                   f16, FPR16INX, FPR32INX, ?, FPR16INX>; | 
 | def ZhinxminExt         : ExtInfo<"_INX", "Zfinx", | 
 |                                   [HasStdExtZhinxmin], | 
 |                                   f16, FPR16INX, FPR32INX, ?, FPR16INX>; | 
 | def ZhinxZdinxExt       : ExtInfo<"_INX", "Zfinx", | 
 |                                   [HasStdExtZhinx, HasStdExtZdinx, IsRV64], | 
 |                                   ?, ?, FPR32INX, FPR64INX, FPR16INX>; | 
 | def ZhinxminZdinxExt    : ExtInfo<"_INX", "Zfinx", | 
 |                                   [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64], | 
 |                                   ?, ?, FPR32INX, FPR64INX, FPR16INX>; | 
 | def ZhinxZdinx32Ext     : ExtInfo<"_IN32X", "ZdinxGPRPairRV32", | 
 |                                   [HasStdExtZhinx, HasStdExtZdinx, IsRV32], | 
 |                                   ?, ?, FPR32INX, FPR64IN32X, FPR16INX>; | 
 | def ZhinxminZdinx32Ext  : ExtInfo<"_IN32X", "ZdinxGPRPairRV32", | 
 |                                   [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32], | 
 |                                   ?, ?, FPR32INX, FPR64IN32X, FPR16INX>; | 
 |  | 
 | defvar ZfhExts = [ZfhExt, ZhinxExt]; | 
 | defvar ZfhminExts = [ZfhminExt, ZhinxminExt]; | 
 | defvar ZfhDExts = [ZfhDExt, ZhinxZdinxExt, ZhinxZdinx32Ext]; | 
 | defvar ZfhminDExts = [ZfhminDExt, ZhinxminZdinxExt, ZhinxminZdinx32Ext]; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let Predicates = [HasHalfFPLoadStoreMove] in { | 
 | def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>; | 
 |  | 
 | // Operands for stores are in the order srcreg, base, offset rather than | 
 | // reflecting the order these fields are specified in the instruction | 
 | // encoding. | 
 | def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>; | 
 | } // Predicates = [HasHalfFPLoadStoreMove] | 
 |  | 
 | let Predicates = [HasStdExtZhinxmin], isCodeGenOnly = 1 in { | 
 | def LH_INX : Load_ri<0b001, "lh", GPRF16>, Sched<[WriteLDH, ReadMemBase]>; | 
 | def SH_INX : Store_rri<0b001, "sh", GPRF16>, | 
 |              Sched<[WriteSTH, ReadStoreData, ReadMemBase]>; | 
 |  | 
 | // ADDI with GPRF16 register class to use for copy. This should not be used as | 
 | // general ADDI, so the immediate should always be zero. | 
 | let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveReg = 1, | 
 |     hasSideEffects = 0, mayLoad = 0, mayStore = 0 in | 
 | def PseudoMV_FPR16INX : Pseudo<(outs GPRF16:$rd), (ins GPRF16:$rs), []>, | 
 |                         Sched<[WriteIALU, ReadIALU]>; | 
 | } | 
 |  | 
 | foreach Ext = ZfhExts in { | 
 |   let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16Addend] in { | 
 |     defm FMADD_H  : FPFMA_rrr_frm_m<OPC_MADD,  0b10, "fmadd.h",  Ext>; | 
 |     defm FMSUB_H  : FPFMA_rrr_frm_m<OPC_MSUB,  0b10, "fmsub.h",  Ext>; | 
 |     defm FNMSUB_H : FPFMA_rrr_frm_m<OPC_NMSUB, 0b10, "fnmsub.h", Ext>; | 
 |     defm FNMADD_H : FPFMA_rrr_frm_m<OPC_NMADD, 0b10, "fnmadd.h", Ext>; | 
 |   } | 
 |  | 
 |   let SchedRW = [WriteFAdd16, ReadFAdd16, ReadFAdd16] in { | 
 |     defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", Ext, Commutable=1>; | 
 |     defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", Ext>; | 
 |   } | 
 |   let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in | 
 |   defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", Ext, Commutable=1>; | 
 |  | 
 |   let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in | 
 |   defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", Ext>; | 
 |  | 
 |   defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, Ext, Ext.PrimaryTy, | 
 |                                    Ext.PrimaryTy, "fsqrt.h">, | 
 |                  Sched<[WriteFSqrt16, ReadFSqrt16]>; | 
 |  | 
 |   let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16], | 
 |       mayRaiseFPException = 0 in { | 
 |     defm FSGNJ_H  : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h",  Ext>; | 
 |     defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", Ext>; | 
 |     defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", Ext>; | 
 |   } | 
 |  | 
 |   let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in { | 
 |     defm FMIN_H   : FPALU_rr_m<0b0010110, 0b000, "fmin.h", Ext, Commutable=1>; | 
 |     defm FMAX_H   : FPALU_rr_m<0b0010110, 0b001, "fmax.h", Ext, Commutable=1>; | 
 |   } | 
 |  | 
 |   let IsSignExtendingOpW = 1 in | 
 |   defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, Ext, GPR, Ext.PrimaryTy, | 
 |                                     "fcvt.w.h">, | 
 |                   Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>; | 
 |  | 
 |   let IsSignExtendingOpW = 1 in | 
 |   defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, Ext, GPR, Ext.PrimaryTy, | 
 |                                      "fcvt.wu.h">, | 
 |                    Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>; | 
 |  | 
 |   defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, Ext, Ext.PrimaryTy, GPR, | 
 |                                     "fcvt.h.w">, | 
 |                   Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>; | 
 |  | 
 |   defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, Ext, Ext.PrimaryTy, GPR, | 
 |                                      "fcvt.h.wu">, | 
 |                    Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>; | 
 | } // foreach Ext = ZfhExts | 
 |  | 
 | foreach Ext = ZfhminExts in { | 
 |   defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, Ext, Ext.PrimaryTy, | 
 |                                     Ext.F32Ty, "fcvt.h.s">, | 
 |                   Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>; | 
 |  | 
 |   defm FCVT_S_H : FPUnaryOp_r_frmlegacy_m<0b0100000, 0b00010,Ext, Ext.F32Ty, | 
 |                                           Ext.PrimaryTy, "fcvt.s.h">, | 
 |                  Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>; | 
 | } // foreach Ext = ZfhminExts | 
 |  | 
 | let Predicates = [HasHalfFPLoadStoreMove] in { | 
 | let mayRaiseFPException = 0, IsSignExtendingOpW = 1 in | 
 | def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">, | 
 |               Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>; | 
 |  | 
 | let mayRaiseFPException = 0 in | 
 | def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">, | 
 |               Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>; | 
 | } // Predicates = [HasHalfFPLoadStoreMove] | 
 |  | 
 | foreach Ext = ZfhExts in { | 
 |   let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in { | 
 |     defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", Ext, Commutable=1>; | 
 |     defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", Ext>; | 
 |     defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", Ext>; | 
 |   } | 
 |  | 
 |   let mayRaiseFPException = 0 in | 
 |   defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy, | 
 |                                 "fclass.h">, | 
 |                   Sched<[WriteFClass16, ReadFClass16]>; | 
 |  | 
 |   defm FCVT_L_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00010, Ext, GPR, Ext.PrimaryTy, | 
 |                                      "fcvt.l.h", [IsRV64]>, | 
 |                    Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>; | 
 |  | 
 |   defm FCVT_LU_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00011, Ext, GPR, Ext.PrimaryTy, | 
 |                                       "fcvt.lu.h", [IsRV64]>, | 
 |                     Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>; | 
 |  | 
 |   defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, Ext, Ext.PrimaryTy, GPR, | 
 |                                     "fcvt.h.l", [IsRV64]>, | 
 |                   Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>; | 
 |  | 
 |   defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, Ext, Ext.PrimaryTy, GPR, | 
 |                                      "fcvt.h.lu", [IsRV64]>, | 
 |                    Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>; | 
 | } // foreach Ext = ZfhExts | 
 |  | 
 | foreach Ext = ZfhminDExts in { | 
 |   defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, Ext, Ext.F16Ty, | 
 |                                    Ext.F64Ty, "fcvt.h.d">, | 
 |                   Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>; | 
 |  | 
 |   defm FCVT_D_H : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00010, Ext, Ext.F64Ty, | 
 |                                           Ext.F16Ty, "fcvt.d.h">, | 
 |                   Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>; | 
 | } // foreach Ext = ZfhminDExts | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let Predicates = [HasHalfFPLoadStoreMove] in { | 
 | def : InstAlias<"flh $rd, (${rs1})",  (FLH FPR16:$rd,  GPR:$rs1, 0), 0>; | 
 | def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>; | 
 | } // Predicates = [HasStdExtZfhmin] | 
 |  | 
 | let Predicates = [HasStdExtZfh] in { | 
 | def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H  FPR16:$rd, FPR16:$rs, FPR16:$rs)>; | 
 | def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; | 
 | def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; | 
 |  | 
 | // fgt.h/fge.h are recognised by the GNU assembler but the canonical | 
 | // flt.h/fle.h forms will always be printed. Therefore, set a zero weight. | 
 | def : InstAlias<"fgt.h $rd, $rs, $rt", | 
 |                 (FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>; | 
 | def : InstAlias<"fge.h $rd, $rs, $rt", | 
 |                 (FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>; | 
 |  | 
 | let usesCustomInserter = 1 in { | 
 | def PseudoQuietFLE_H : PseudoQuietFCMP<FPR16>; | 
 | def PseudoQuietFLT_H : PseudoQuietFCMP<FPR16>; | 
 | } | 
 | } // Predicates = [HasStdExtZfh] | 
 |  | 
 | let Predicates = [HasHalfFPLoadStoreMove] in { | 
 | def PseudoFLH  : PseudoFloatLoad<"flh", FPR16>; | 
 | def PseudoFSH  : PseudoStore<"fsh", FPR16>; | 
 | } // Predicates = [HasStdExtZfhmin] | 
 |  | 
 | let Predicates = [HasStdExtZhinx] in { | 
 | def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H_INX  FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>; | 
 | def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>; | 
 | def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>; | 
 |  | 
 | def : InstAlias<"fgt.h $rd, $rs, $rt", | 
 |                 (FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>; | 
 | def : InstAlias<"fge.h $rd, $rs, $rt", | 
 |                 (FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>; | 
 |  | 
 | let usesCustomInserter = 1 in { | 
 | def PseudoQuietFLE_H_INX : PseudoQuietFCMP<FPR16INX>; | 
 | def PseudoQuietFLT_H_INX : PseudoQuietFCMP<FPR16INX>; | 
 | } | 
 | } // Predicates = [HasStdExtZhinxmin] | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Pseudo-instructions and codegen patterns | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 |  | 
 | /// Float conversion operations | 
 |  | 
 | // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so | 
 | // are defined later. | 
 |  | 
 | /// Float arithmetic operations | 
 |  | 
 | foreach Ext = ZfhExts in { | 
 |   defm : PatFprFprDynFrm_m<any_fadd, FADD_H, Ext>; | 
 |   defm : PatFprFprDynFrm_m<any_fsub, FSUB_H, Ext>; | 
 |   defm : PatFprFprDynFrm_m<any_fmul, FMUL_H, Ext>; | 
 |   defm : PatFprFprDynFrm_m<any_fdiv, FDIV_H, Ext>; | 
 | } | 
 |  | 
 | let Predicates = [HasStdExtZfh] in { | 
 | def : Pat<(f16 (any_fsqrt FPR16:$rs1)), (FSQRT_H FPR16:$rs1, FRM_DYN)>; | 
 |  | 
 | def : Pat<(f16 (fneg FPR16:$rs1)), (FSGNJN_H $rs1, $rs1)>; | 
 | def : Pat<(f16 (fabs FPR16:$rs1)), (FSGNJX_H $rs1, $rs1)>; | 
 |  | 
 | def : Pat<(riscv_fclass (f16 FPR16:$rs1)), (FCLASS_H $rs1)>; | 
 |  | 
 | def : PatFprFpr<fcopysign, FSGNJ_H, FPR16, f16>; | 
 | def : PatFprFpr<riscv_fsgnjx, FSGNJX_H, FPR16, f16>; | 
 | def : Pat<(f16 (fcopysign FPR16:$rs1, (f16 (fneg FPR16:$rs2)))), | 
 |           (FSGNJN_H FPR16:$rs1, FPR16:$rs2)>; | 
 | def : Pat<(f16 (fcopysign FPR16:$rs1, FPR32:$rs2)), | 
 |           (FSGNJ_H $rs1, (f16 (FCVT_H_S $rs2, FRM_DYN)))>; | 
 |  | 
 | // fmadd: rs1 * rs2 + rs3 | 
 | def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3)), | 
 |           (FMADD_H $rs1, $rs2, $rs3, FRM_DYN)>; | 
 |  | 
 | // fmsub: rs1 * rs2 - rs3 | 
 | def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3))), | 
 |           (FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; | 
 |  | 
 | // fnmsub: -rs1 * rs2 + rs3 | 
 | def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3)), | 
 |           (FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; | 
 |  | 
 | // fnmadd: -rs1 * rs2 - rs3 | 
 | def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3))), | 
 |           (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; | 
 |  | 
 | // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) | 
 | def : Pat<(f16 (fneg (any_fma_nsz FPR16:$rs1, FPR16:$rs2, FPR16:$rs3))), | 
 |           (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; | 
 | } // Predicates = [HasStdExtZfh] | 
 |  | 
 | let Predicates = [HasStdExtZhinx] in { | 
 |  | 
 | /// Float conversion operations | 
 |  | 
 | // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so | 
 | // are defined later. | 
 |  | 
 | /// Float arithmetic operations | 
 |  | 
 | def : Pat<(any_fsqrt FPR16INX:$rs1), (FSQRT_H_INX FPR16INX:$rs1, FRM_DYN)>; | 
 |  | 
 | def : Pat<(fneg FPR16INX:$rs1), (FSGNJN_H_INX $rs1, $rs1)>; | 
 | def : Pat<(fabs FPR16INX:$rs1), (FSGNJX_H_INX $rs1, $rs1)>; | 
 |  | 
 | def : Pat<(riscv_fclass FPR16INX:$rs1), (FCLASS_H_INX $rs1)>; | 
 |  | 
 | def : PatFprFpr<fcopysign, FSGNJ_H_INX, FPR16INX, f16>; | 
 | def : PatFprFpr<riscv_fsgnjx, FSGNJX_H_INX, FPR16INX, f16>; | 
 | def : Pat<(fcopysign FPR16INX:$rs1, (fneg FPR16INX:$rs2)), | 
 |           (FSGNJN_H_INX FPR16INX:$rs1, FPR16INX:$rs2)>; | 
 | def : Pat<(fcopysign FPR16INX:$rs1, FPR32INX:$rs2), | 
 |           (FSGNJ_H_INX $rs1, (FCVT_H_S_INX $rs2, FRM_DYN))>; | 
 |  | 
 | // fmadd: rs1 * rs2 + rs3 | 
 | def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3), | 
 |           (FMADD_H_INX $rs1, $rs2, $rs3, FRM_DYN)>; | 
 |  | 
 | // fmsub: rs1 * rs2 - rs3 | 
 | def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, (fneg FPR16INX:$rs3)), | 
 |           (FMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; | 
 |  | 
 | // fnmsub: -rs1 * rs2 + rs3 | 
 | def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, FPR16INX:$rs3), | 
 |           (FNMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; | 
 |  | 
 | // fnmadd: -rs1 * rs2 - rs3 | 
 | def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, (fneg FPR16INX:$rs3)), | 
 |           (FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; | 
 |  | 
 | // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) | 
 | def : Pat<(fneg (any_fma_nsz FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3)), | 
 |           (FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; | 
 | } // Predicates = [HasStdExtZhinx] | 
 |  | 
 | // The ratified 20191213 ISA spec defines fmin and fmax in a way that matches | 
 | // LLVM's fminnum and fmaxnum | 
 | // <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>. | 
 | foreach Ext = ZfhExts in { | 
 |   defm : PatFprFpr_m<fminnum, FMIN_H, Ext>; | 
 |   defm : PatFprFpr_m<fmaxnum, FMAX_H, Ext>; | 
 |   defm : PatFprFpr_m<fminimumnum, FMIN_H, Ext>; | 
 |   defm : PatFprFpr_m<fmaximumnum, FMAX_H, Ext>; | 
 |   defm : PatFprFpr_m<riscv_fmin, FMIN_H, Ext>; | 
 |   defm : PatFprFpr_m<riscv_fmax, FMAX_H, Ext>; | 
 |   def : Pat<(f16 (fcanonicalize FPR16:$rs1)), (FMIN_H $rs1, $rs1)>; | 
 | } | 
 |  | 
 | /// Setcc | 
 | // FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for | 
 | // strict versions of those. | 
 |  | 
 | // Match non-signaling FEQ_D | 
 | foreach Ext = ZfhExts in { | 
 |   defm : PatSetCC_m<any_fsetcc,    SETEQ,  FEQ_H,            Ext>; | 
 |   defm : PatSetCC_m<any_fsetcc,    SETOEQ, FEQ_H,            Ext>; | 
 |   defm : PatSetCC_m<strict_fsetcc, SETLT,  PseudoQuietFLT_H, Ext>; | 
 |   defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_H, Ext>; | 
 |   defm : PatSetCC_m<strict_fsetcc, SETLE,  PseudoQuietFLE_H, Ext>; | 
 |   defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_H, Ext>; | 
 | } | 
 |  | 
 | let Predicates = [HasStdExtZfh] in { | 
 | // Match signaling FEQ_H | 
 | def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETEQ)), | 
 |           (AND (XLenVT (FLE_H $rs1, $rs2)), | 
 |                (XLenVT (FLE_H $rs2, $rs1)))>; | 
 | def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETOEQ)), | 
 |           (AND (XLenVT (FLE_H $rs1, $rs2)), | 
 |                (XLenVT (FLE_H $rs2, $rs1)))>; | 
 | // If both operands are the same, use a single FLE. | 
 | def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETEQ)), | 
 |           (FLE_H $rs1, $rs1)>; | 
 | def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETOEQ)), | 
 |           (FLE_H $rs1, $rs1)>; | 
 | } // Predicates = [HasStdExtZfh] | 
 |  | 
 | let Predicates = [HasStdExtZhinx] in { | 
 | // Match signaling FEQ_H | 
 | def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETEQ)), | 
 |           (AND (XLenVT (FLE_H_INX $rs1, $rs2)), | 
 |                (XLenVT (FLE_H_INX $rs2, $rs1)))>; | 
 | def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETOEQ)), | 
 |           (AND (XLenVT (FLE_H_INX $rs1, $rs2)), | 
 |                (XLenVT (FLE_H_INX $rs2, $rs1)))>; | 
 | // If both operands are the same, use a single FLE. | 
 | def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETEQ)), | 
 |           (FLE_H_INX $rs1, $rs1)>; | 
 | def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETOEQ)), | 
 |           (FLE_H_INX $rs1, $rs1)>; | 
 | } // Predicates = [HasStdExtZhinx] | 
 |  | 
 | foreach Ext = ZfhExts in { | 
 |   defm : PatSetCC_m<any_fsetccs, SETLT,  FLT_H, Ext>; | 
 |   defm : PatSetCC_m<any_fsetccs, SETOLT, FLT_H, Ext>; | 
 |   defm : PatSetCC_m<any_fsetccs, SETLE,  FLE_H, Ext>; | 
 |   defm : PatSetCC_m<any_fsetccs, SETOLE, FLE_H, Ext>; | 
 | } | 
 |  | 
 | let Predicates = [HasStdExtZfh] in { | 
 | def PseudoFROUND_H : PseudoFROUND<FPR16, f16>; | 
 | } // Predicates = [HasStdExtZfh] | 
 |  | 
 | let Predicates = [HasStdExtZhinx] in { | 
 | def PseudoFROUND_H_INX : PseudoFROUND<FPR16INX, f16>; | 
 | } // Predicates = [HasStdExtZhinx] | 
 |  | 
 | let Predicates = [HasStdExtZfhmin] in { | 
 | defm Select_FPR16 : SelectCC_GPR_rrirr<FPR16, f16>; | 
 |  | 
 | /// Loads | 
 | def : LdPat<load, FLH, f16>; | 
 |  | 
 | /// Stores | 
 | def : StPat<store, FSH, FPR16, f16>; | 
 | } // Predicates = [HasStdExtZfhmin] | 
 |  | 
 | let Predicates = [HasStdExtZhinxmin] in { | 
 | defm Select_FPR16INX : SelectCC_GPR_rrirr<FPR16INX, f16>; | 
 |  | 
 | /// Loads | 
 | def : LdPat<load, LH_INX, f16>; | 
 |  | 
 | /// Stores | 
 | def : StPat<store, SH_INX, GPRF16, f16>; | 
 | } // Predicates = [HasStdExtZhinxmin] | 
 |  | 
 | let Predicates = [HasStdExtZfhmin] in { | 
 | /// Float conversion operations | 
 |  | 
 | // f32 -> f16, f16 -> f32 | 
 | def : Pat<(f16 (any_fpround FPR32:$rs1)), (FCVT_H_S FPR32:$rs1, FRM_DYN)>; | 
 | def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_S_H FPR16:$rs1, FRM_RNE)>; | 
 |  | 
 | // Moves (no conversion) | 
 | def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (FMV_H_X GPR:$src)>; | 
 | def : Pat<(riscv_fmv_x_anyexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>; | 
 | def : Pat<(riscv_fmv_x_signexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>; | 
 |  | 
 | def : Pat<(fcopysign FPR32:$rs1, (f16 FPR16:$rs2)), (FSGNJ_S $rs1, (FCVT_S_H $rs2, FRM_RNE))>; | 
 | } // Predicates = [HasStdExtZfhmin] | 
 |  | 
 | let Predicates = [HasStdExtZhinxmin] in { | 
 | /// Float conversion operations | 
 |  | 
 | // f32 -> f16, f16 -> f32 | 
 | def : Pat<(any_fpround FPR32INX:$rs1), (FCVT_H_S_INX FPR32INX:$rs1, FRM_DYN)>; | 
 | def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_S_H_INX FPR16INX:$rs1, FRM_RNE)>; | 
 |  | 
 | // Moves (no conversion) | 
 | def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (EXTRACT_SUBREG GPR:$src, sub_16)>; | 
 | def : Pat<(riscv_fmv_x_anyexth FPR16INX:$src), (INSERT_SUBREG (XLenVT (IMPLICIT_DEF)), FPR16INX:$src, sub_16)>; | 
 |  | 
 | def : Pat<(fcopysign FPR32INX:$rs1, FPR16INX:$rs2), (FSGNJ_S_INX $rs1, (FCVT_S_H_INX $rs2, FRM_RNE))>; | 
 | } // Predicates = [HasStdExtZhinxmin] | 
 |  | 
 | let Predicates = [HasStdExtZfh, IsRV32] in { | 
 | // half->[u]int. Round-to-zero must be used. | 
 | def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, 0b001)>; | 
 | def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_H $rs1, 0b001)>; | 
 |  | 
 | // Saturating half->[u]int32. | 
 | def : Pat<(i32 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>; | 
 | def : Pat<(i32 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>; | 
 |  | 
 | // half->int32 with current rounding mode. | 
 | def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_DYN)>; | 
 |  | 
 | // half->int32 rounded to nearest with ties rounded away from zero. | 
 | def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_RMM)>; | 
 |  | 
 | // [u]int->half. Match GCC and default to using dynamic rounding mode. | 
 | def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_W $rs1, FRM_DYN)>; | 
 | def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_WU $rs1, FRM_DYN)>; | 
 | } // Predicates = [HasStdExtZfh] | 
 |  | 
 | let Predicates = [HasStdExtZhinx, IsRV32] in { | 
 | // half->[u]int. Round-to-zero must be used. | 
 | def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, 0b001)>; | 
 | def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_H_INX $rs1, 0b001)>; | 
 |  | 
 | // Saturating float->[u]int32. | 
 | def : Pat<(i32 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_W_H_INX $rs1, timm:$frm)>; | 
 | def : Pat<(i32 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_WU_H_INX $rs1, timm:$frm)>; | 
 |  | 
 | // half->int32 with current rounding mode. | 
 | def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_DYN)>; | 
 |  | 
 | // half->int32 rounded to nearest with ties rounded away from zero. | 
 | def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_RMM)>; | 
 |  | 
 | // [u]int->half. Match GCC and default to using dynamic rounding mode. | 
 | def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W_INX $rs1, FRM_DYN)>; | 
 | def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU_INX $rs1, FRM_DYN)>; | 
 | } // Predicates = [HasStdExtZhinx, IsRV32] | 
 |  | 
 | let Predicates = [HasStdExtZfh, IsRV64] in { | 
 | // Use target specific isd nodes to help us remember the result is sign | 
 | // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be | 
 | // duplicated if it has another user that didn't need the sign_extend. | 
 | def : Pat<(riscv_any_fcvt_w_rv64 (f16 FPR16:$rs1), timm:$frm),  (FCVT_W_H $rs1, timm:$frm)>; | 
 | def : Pat<(riscv_any_fcvt_wu_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>; | 
 |  | 
 | // half->[u]int64. Round-to-zero must be used. | 
 | def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, 0b001)>; | 
 | def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_H $rs1, 0b001)>; | 
 |  | 
 | // Saturating half->[u]int64. | 
 | def : Pat<(i64 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>; | 
 | def : Pat<(i64 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>; | 
 |  | 
 | // half->int64 with current rounding mode. | 
 | def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>; | 
 | def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>; | 
 |  | 
 | // half->int64 rounded to nearest with ties rounded away from zero. | 
 | def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>; | 
 | def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>; | 
 |  | 
 | // [u]int->fp. Match GCC and default to using dynamic rounding mode. | 
 | def : Pat<(f16 (any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1))))), (FCVT_H_W $rs1, FRM_DYN)>; | 
 | def : Pat<(f16 (any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1))))), (FCVT_H_WU $rs1, FRM_DYN)>; | 
 | def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_L $rs1, FRM_DYN)>; | 
 | def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_LU $rs1, FRM_DYN)>; | 
 | } // Predicates = [HasStdExtZfh, IsRV64] | 
 |  | 
 | let Predicates = [HasStdExtZhinx, IsRV64] in { | 
 | // Use target specific isd nodes to help us remember the result is sign | 
 | // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be | 
 | // duplicated if it has another user that didn't need the sign_extend. | 
 | def : Pat<(riscv_any_fcvt_w_rv64 FPR16INX:$rs1, timm:$frm),  (FCVT_W_H_INX $rs1, timm:$frm)>; | 
 | def : Pat<(riscv_any_fcvt_wu_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_WU_H_INX $rs1, timm:$frm)>; | 
 |  | 
 | // half->[u]int64. Round-to-zero must be used. | 
 | def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, 0b001)>; | 
 | def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_H_INX $rs1, 0b001)>; | 
 |  | 
 | // Saturating float->[u]int64. | 
 | def : Pat<(i64 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_L_H_INX $rs1, timm:$frm)>; | 
 | def : Pat<(i64 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_LU_H_INX $rs1, timm:$frm)>; | 
 |  | 
 | // half->int64 with current rounding mode. | 
 | def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>; | 
 | def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>; | 
 |  | 
 | // half->int64 rounded to nearest with ties rounded away from zero. | 
 | def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>; | 
 | def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>; | 
 |  | 
 | // [u]int->fp. Match GCC and default to using dynamic rounding mode. | 
 | def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W_INX $rs1, FRM_DYN)>; | 
 | def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU_INX $rs1, FRM_DYN)>; | 
 | def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L_INX $rs1, FRM_DYN)>; | 
 | def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU_INX $rs1, FRM_DYN)>; | 
 | } // Predicates = [HasStdExtZhinx, IsRV64] | 
 |  | 
 | let Predicates = [HasStdExtZfhmin, HasStdExtD] in { | 
 | /// Float conversion operations | 
 | // f64 -> f16, f16 -> f64 | 
 | def : Pat<(f16 (any_fpround FPR64:$rs1)), (FCVT_H_D FPR64:$rs1, FRM_DYN)>; | 
 | def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_D_H FPR16:$rs1, FRM_RNE)>; | 
 |  | 
 | /// Float arithmetic operations | 
 | def : Pat<(f16 (fcopysign FPR16:$rs1, FPR64:$rs2)), | 
 |           (FSGNJ_H $rs1, (f16 (FCVT_H_D $rs2, FRM_DYN)))>; | 
 | def : Pat<(fcopysign FPR64:$rs1, (f16 FPR16:$rs2)), (FSGNJ_D $rs1, (FCVT_D_H $rs2, FRM_RNE))>; | 
 | } // Predicates = [HasStdExtZfhmin, HasStdExtD] | 
 |  | 
 | let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] in { | 
 | /// Float conversion operations | 
 | // f64 -> f16, f16 -> f64 | 
 | def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_H_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>; | 
 | def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_IN32X FPR16INX:$rs1, FRM_RNE)>; | 
 |  | 
 | /// Float arithmetic operations | 
 | def : Pat<(fcopysign FPR16INX:$rs1, FPR64IN32X:$rs2), | 
 |           (FSGNJ_H_INX $rs1, (FCVT_H_D_IN32X $rs2, 0b111))>; | 
 | def : Pat<(fcopysign FPR64IN32X:$rs1, FPR16INX:$rs2), (FSGNJ_D_IN32X $rs1, (FCVT_D_H_IN32X $rs2, FRM_RNE))>; | 
 | } // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] | 
 |  | 
 | let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] in { | 
 | /// Float conversion operations | 
 | // f64 -> f16, f16 -> f64 | 
 | def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_H_D_INX FPR64INX:$rs1, FRM_DYN)>; | 
 | def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_INX FPR16INX:$rs1, FRM_RNE)>; | 
 |  | 
 | /// Float arithmetic operations | 
 | def : Pat<(fcopysign FPR16INX:$rs1, FPR64INX:$rs2), | 
 |           (FSGNJ_H_INX $rs1, (FCVT_H_D_INX $rs2, 0b111))>; | 
 | def : Pat<(fcopysign FPR64INX:$rs1, FPR16INX:$rs2), (FSGNJ_D_INX $rs1, (f64 (FCVT_D_H_INX $rs2, FRM_RNE)))>; | 
 | } // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] |