|  | //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonISelLowering.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/IR/IntrinsicsHexagon.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen", | 
|  | cl::Hidden, cl::init(16), | 
|  | cl::desc("Lower threshold (in bytes) for widening to HVX vectors")); | 
|  |  | 
|  | static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 }; | 
|  | static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 }; | 
|  | static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 }; | 
|  | static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; | 
|  |  | 
|  | static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) { | 
|  | // For a float scalar type, return (exp-bits, exp-bias, fraction-bits) | 
|  | MVT ElemTy = Ty.getScalarType(); | 
|  | switch (ElemTy.SimpleTy) { | 
|  | case MVT::f16: | 
|  | return std::make_tuple(5, 15, 10); | 
|  | case MVT::f32: | 
|  | return std::make_tuple(8, 127, 23); | 
|  | case MVT::f64: | 
|  | return std::make_tuple(11, 1023, 52); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str()); | 
|  | } | 
|  |  | 
|  | void | 
|  | HexagonTargetLowering::initializeHVXLowering() { | 
|  | if (Subtarget.useHVX64BOps()) { | 
|  | addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass); | 
|  | addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass); | 
|  | addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass); | 
|  | // These "short" boolean vector types should be legal because | 
|  | // they will appear as results of vector compares. If they were | 
|  | // not legal, type legalization would try to make them legal | 
|  | // and that would require using operations that do not use or | 
|  | // produce such types. That, in turn, would imply using custom | 
|  | // nodes, which would be unoptimizable by the DAG combiner. | 
|  | // The idea is to rely on target-independent operations as much | 
|  | // as possible. | 
|  | addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass); | 
|  | addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); | 
|  | addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); | 
|  | } else if (Subtarget.useHVX128BOps()) { | 
|  | addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass); | 
|  | addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass); | 
|  | addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass); | 
|  | addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); | 
|  | addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); | 
|  | addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass); | 
|  | if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { | 
|  | addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass); | 
|  | addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass); | 
|  | addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set up operation actions. | 
|  |  | 
|  | bool Use64b = Subtarget.useHVX64BOps(); | 
|  | ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128; | 
|  | ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128; | 
|  | MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8; | 
|  | MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32; | 
|  | MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; | 
|  |  | 
|  | auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { | 
|  | setOperationAction(Opc, FromTy, Promote); | 
|  | AddPromotedToType(Opc, FromTy, ToTy); | 
|  | }; | 
|  |  | 
|  | // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32). | 
|  | // Note: v16i1 -> i16 is handled in type legalization instead of op | 
|  | // legalization. | 
|  | setOperationAction(ISD::BITCAST,              MVT::i16, Custom); | 
|  | setOperationAction(ISD::BITCAST,              MVT::i32, Custom); | 
|  | setOperationAction(ISD::BITCAST,              MVT::i64, Custom); | 
|  | setOperationAction(ISD::BITCAST,            MVT::v16i1, Custom); | 
|  | setOperationAction(ISD::BITCAST,           MVT::v128i1, Custom); | 
|  | setOperationAction(ISD::BITCAST,             MVT::i128, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,          ByteV, Legal); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,          ByteW, Legal); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | if (Subtarget.useHVX128BOps()) | 
|  | setOperationAction(ISD::BITCAST, MVT::v32i1, Custom); | 
|  | if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() && | 
|  | Subtarget.useHVXFloatingPoint()) { | 
|  |  | 
|  | static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 }; | 
|  | static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 }; | 
|  |  | 
|  | for (MVT T : FloatV) { | 
|  | setOperationAction(ISD::FADD,              T, Legal); | 
|  | setOperationAction(ISD::FSUB,              T, Legal); | 
|  | setOperationAction(ISD::FMUL,              T, Legal); | 
|  | setOperationAction(ISD::FMINIMUMNUM, T, Legal); | 
|  | setOperationAction(ISD::FMAXIMUMNUM, T, Legal); | 
|  |  | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,  T, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SPLAT_VECTOR,      T, Legal); | 
|  | setOperationAction(ISD::SPLAT_VECTOR,      T, Legal); | 
|  |  | 
|  | setOperationAction(ISD::MLOAD,             T, Custom); | 
|  | setOperationAction(ISD::MSTORE,            T, Custom); | 
|  | // Custom-lower BUILD_VECTOR. The standard (target-independent) | 
|  | // handling of it would convert it to a load, which is not always | 
|  | // the optimal choice. | 
|  | setOperationAction(ISD::BUILD_VECTOR,      T, Custom); | 
|  | } | 
|  |  | 
|  |  | 
|  | // BUILD_VECTOR with f16 operands cannot be promoted without | 
|  | // promoting the result, so lower the node to vsplat or constant pool | 
|  | setOperationAction(ISD::BUILD_VECTOR,      MVT::f16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom); | 
|  | setOperationAction(ISD::SPLAT_VECTOR,      MVT::f16, Custom); | 
|  |  | 
|  | // Vector shuffle is always promoted to ByteV and a bitcast to f16 is | 
|  | // generated. | 
|  | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW); | 
|  | setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f16, ByteV); | 
|  | setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f32, ByteW); | 
|  | setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v32f32, ByteV); | 
|  |  | 
|  | for (MVT P : FloatW) { | 
|  | setOperationAction(ISD::LOAD,           P, Custom); | 
|  | setOperationAction(ISD::STORE,          P, Custom); | 
|  | setOperationAction(ISD::FADD,           P, Custom); | 
|  | setOperationAction(ISD::FSUB,           P, Custom); | 
|  | setOperationAction(ISD::FMUL,           P, Custom); | 
|  | setOperationAction(ISD::FMINIMUMNUM, P, Custom); | 
|  | setOperationAction(ISD::FMAXIMUMNUM, P, Custom); | 
|  | setOperationAction(ISD::SETCC,          P, Custom); | 
|  | setOperationAction(ISD::VSELECT,        P, Custom); | 
|  |  | 
|  | // Custom-lower BUILD_VECTOR. The standard (target-independent) | 
|  | // handling of it would convert it to a load, which is not always | 
|  | // the optimal choice. | 
|  | setOperationAction(ISD::BUILD_VECTOR,   P, Custom); | 
|  | // Make concat-vectors custom to handle concats of more than 2 vectors. | 
|  | setOperationAction(ISD::CONCAT_VECTORS, P, Custom); | 
|  |  | 
|  | setOperationAction(ISD::MLOAD,          P, Custom); | 
|  | setOperationAction(ISD::MSTORE,         P, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget.useHVXQFloatOps()) { | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom); | 
|  | setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal); | 
|  | } else if (Subtarget.useHVXIEEEFPOps()) { | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal); | 
|  | setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (MVT T : LegalV) { | 
|  | setIndexedLoadAction(ISD::POST_INC,  T, Legal); | 
|  | setIndexedStoreAction(ISD::POST_INC, T, Legal); | 
|  |  | 
|  | setOperationAction(ISD::ABS,            T, Legal); | 
|  | setOperationAction(ISD::AND,            T, Legal); | 
|  | setOperationAction(ISD::OR,             T, Legal); | 
|  | setOperationAction(ISD::XOR,            T, Legal); | 
|  | setOperationAction(ISD::ADD,            T, Legal); | 
|  | setOperationAction(ISD::SUB,            T, Legal); | 
|  | setOperationAction(ISD::MUL,            T, Legal); | 
|  | setOperationAction(ISD::CTPOP,          T, Legal); | 
|  | setOperationAction(ISD::CTLZ,           T, Legal); | 
|  | setOperationAction(ISD::SELECT,         T, Legal); | 
|  | setOperationAction(ISD::SPLAT_VECTOR,   T, Legal); | 
|  | setOperationAction(ISD::UADDSAT, T, Legal); | 
|  | setOperationAction(ISD::SADDSAT, T, Legal); | 
|  | if (T != ByteV) { | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); | 
|  | setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); | 
|  | setOperationAction(ISD::BSWAP,                    T, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::SMIN,           T, Legal); | 
|  | setOperationAction(ISD::SMAX,           T, Legal); | 
|  | if (T.getScalarType() != MVT::i32) { | 
|  | setOperationAction(ISD::UMIN,         T, Legal); | 
|  | setOperationAction(ISD::UMAX,         T, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::CTTZ,               T, Custom); | 
|  | setOperationAction(ISD::LOAD,               T, Custom); | 
|  | setOperationAction(ISD::MLOAD,              T, Custom); | 
|  | setOperationAction(ISD::MSTORE,             T, Custom); | 
|  | if (T.getScalarType() != MVT::i32) { | 
|  | setOperationAction(ISD::MULHS,              T, Legal); | 
|  | setOperationAction(ISD::MULHU,              T, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::BUILD_VECTOR,       T, Custom); | 
|  | // Make concat-vectors custom to handle concats of more than 2 vectors. | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     T, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,         T, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,        T, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,        T, Custom); | 
|  | setOperationAction(ISD::FSHL,               T, Custom); | 
|  | setOperationAction(ISD::FSHR,               T, Custom); | 
|  | if (T != ByteV) { | 
|  | setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); | 
|  | // HVX only has shifts of words and halfwords. | 
|  | setOperationAction(ISD::SRA,                     T, Custom); | 
|  | setOperationAction(ISD::SHL,                     T, Custom); | 
|  | setOperationAction(ISD::SRL,                     T, Custom); | 
|  |  | 
|  | // Promote all shuffles to operate on vectors of bytes. | 
|  | setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); | 
|  | } | 
|  |  | 
|  | if (Subtarget.useHVXFloatingPoint()) { | 
|  | // Same action for both QFloat and IEEE. | 
|  | setOperationAction(ISD::SINT_TO_FP, T, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, T, Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT, T, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, T, Custom); | 
|  | } | 
|  |  | 
|  | setCondCodeAction(ISD::SETNE,  T, Expand); | 
|  | setCondCodeAction(ISD::SETLE,  T, Expand); | 
|  | setCondCodeAction(ISD::SETGE,  T, Expand); | 
|  | setCondCodeAction(ISD::SETLT,  T, Expand); | 
|  | setCondCodeAction(ISD::SETULE, T, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, T, Expand); | 
|  | setCondCodeAction(ISD::SETULT, T, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT T : LegalW) { | 
|  | // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- | 
|  | // independent) handling of it would convert it to a load, which is | 
|  | // not always the optimal choice. | 
|  | setOperationAction(ISD::BUILD_VECTOR,   T, Custom); | 
|  | // Make concat-vectors custom to handle concats of more than 2 vectors. | 
|  | setOperationAction(ISD::CONCAT_VECTORS, T, Custom); | 
|  |  | 
|  | // Custom-lower these operations for pairs. Expand them into a concat | 
|  | // of the corresponding operations on individual vectors. | 
|  | setOperationAction(ISD::ANY_EXTEND,               T, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,              T, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,              T, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); | 
|  | setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); | 
|  | setOperationAction(ISD::SPLAT_VECTOR,             T, Custom); | 
|  |  | 
|  | setOperationAction(ISD::LOAD,     T, Custom); | 
|  | setOperationAction(ISD::STORE,    T, Custom); | 
|  | setOperationAction(ISD::MLOAD,    T, Custom); | 
|  | setOperationAction(ISD::MSTORE,   T, Custom); | 
|  | setOperationAction(ISD::ABS,      T, Custom); | 
|  | setOperationAction(ISD::CTLZ,     T, Custom); | 
|  | setOperationAction(ISD::CTTZ,     T, Custom); | 
|  | setOperationAction(ISD::CTPOP,    T, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ADD,      T, Legal); | 
|  | setOperationAction(ISD::UADDSAT, T, Legal); | 
|  | setOperationAction(ISD::SADDSAT, T, Legal); | 
|  | setOperationAction(ISD::SUB,      T, Legal); | 
|  | setOperationAction(ISD::MUL,      T, Custom); | 
|  | setOperationAction(ISD::MULHS,    T, Custom); | 
|  | setOperationAction(ISD::MULHU,    T, Custom); | 
|  | setOperationAction(ISD::AND,      T, Custom); | 
|  | setOperationAction(ISD::OR,       T, Custom); | 
|  | setOperationAction(ISD::XOR,      T, Custom); | 
|  | setOperationAction(ISD::SETCC,    T, Custom); | 
|  | setOperationAction(ISD::VSELECT,  T, Custom); | 
|  | if (T != ByteW) { | 
|  | setOperationAction(ISD::SRA,      T, Custom); | 
|  | setOperationAction(ISD::SHL,      T, Custom); | 
|  | setOperationAction(ISD::SRL,      T, Custom); | 
|  |  | 
|  | // Promote all shuffles to operate on vectors of bytes. | 
|  | setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); | 
|  | } | 
|  | setOperationAction(ISD::FSHL,     T, Custom); | 
|  | setOperationAction(ISD::FSHR,     T, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SMIN,     T, Custom); | 
|  | setOperationAction(ISD::SMAX,     T, Custom); | 
|  | if (T.getScalarType() != MVT::i32) { | 
|  | setOperationAction(ISD::UMIN,     T, Custom); | 
|  | setOperationAction(ISD::UMAX,     T, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget.useHVXFloatingPoint()) { | 
|  | // Same action for both QFloat and IEEE. | 
|  | setOperationAction(ISD::SINT_TO_FP, T, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP, T, Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT, T, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT, T, Custom); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Legalize all of these to HexagonISD::[SU]MUL_LOHI. | 
|  | setOperationAction(ISD::MULHS,      WordV, Custom); // -> _LOHI | 
|  | setOperationAction(ISD::MULHU,      WordV, Custom); // -> _LOHI | 
|  | setOperationAction(ISD::SMUL_LOHI,  WordV, Custom); | 
|  | setOperationAction(ISD::UMUL_LOHI,  WordV, Custom); | 
|  |  | 
|  | setCondCodeAction(ISD::SETNE,  MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETLE,  MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETGE,  MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETLT,  MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand); | 
|  | setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand); | 
|  |  | 
|  | setCondCodeAction(ISD::SETNE,  MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETLE,  MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETGE,  MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETLT,  MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand); | 
|  | setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand); | 
|  |  | 
|  | // Boolean vectors. | 
|  |  | 
|  | for (MVT T : LegalW) { | 
|  | // Boolean types for vector pairs will overlap with the boolean | 
|  | // types for single vectors, e.g. | 
|  | //   v64i8  -> v64i1 (single) | 
|  | //   v64i16 -> v64i1 (pair) | 
|  | // Set these actions first, and allow the single actions to overwrite | 
|  | // any duplicates. | 
|  | MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); | 
|  | setOperationAction(ISD::SETCC,              BoolW, Custom); | 
|  | setOperationAction(ISD::AND,                BoolW, Custom); | 
|  | setOperationAction(ISD::OR,                 BoolW, Custom); | 
|  | setOperationAction(ISD::XOR,                BoolW, Custom); | 
|  | // Masked load/store takes a mask that may need splitting. | 
|  | setOperationAction(ISD::MLOAD,              BoolW, Custom); | 
|  | setOperationAction(ISD::MSTORE,             BoolW, Custom); | 
|  | } | 
|  |  | 
|  | for (MVT T : LegalV) { | 
|  | MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom); | 
|  | setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom); | 
|  | setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom); | 
|  | setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom); | 
|  | setOperationAction(ISD::SELECT,             BoolV, Custom); | 
|  | setOperationAction(ISD::AND,                BoolV, Legal); | 
|  | setOperationAction(ISD::OR,                 BoolV, Legal); | 
|  | setOperationAction(ISD::XOR,                BoolV, Legal); | 
|  | } | 
|  |  | 
|  | if (Use64b) { | 
|  | for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); | 
|  | } else { | 
|  | for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); | 
|  | } | 
|  |  | 
|  | // Handle store widening for short vectors. | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | for (MVT ElemTy : Subtarget.getHVXElementTypes()) { | 
|  | if (ElemTy == MVT::i1) | 
|  | continue; | 
|  | int ElemWidth = ElemTy.getFixedSizeInBits(); | 
|  | int MaxElems = (8*HwLen) / ElemWidth; | 
|  | for (int N = 2; N < MaxElems; N *= 2) { | 
|  | MVT VecTy = MVT::getVectorVT(ElemTy, N); | 
|  | auto Action = getPreferredVectorAction(VecTy); | 
|  | if (Action == TargetLoweringBase::TypeWidenVector) { | 
|  | setOperationAction(ISD::LOAD,         VecTy, Custom); | 
|  | setOperationAction(ISD::STORE,        VecTy, Custom); | 
|  | setOperationAction(ISD::SETCC,        VecTy, Custom); | 
|  | setOperationAction(ISD::TRUNCATE,     VecTy, Custom); | 
|  | setOperationAction(ISD::ANY_EXTEND,   VecTy, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND,  VecTy, Custom); | 
|  | setOperationAction(ISD::ZERO_EXTEND,  VecTy, Custom); | 
|  | if (Subtarget.useHVXFloatingPoint()) { | 
|  | setOperationAction(ISD::FP_TO_SINT,   VecTy, Custom); | 
|  | setOperationAction(ISD::FP_TO_UINT,   VecTy, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP,   VecTy, Custom); | 
|  | setOperationAction(ISD::UINT_TO_FP,   VecTy, Custom); | 
|  | } | 
|  |  | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, N); | 
|  | if (!isTypeLegal(BoolTy)) | 
|  | setOperationAction(ISD::SETCC, BoolTy, Custom); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT}); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const { | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | unsigned VecLen = VecTy.getVectorNumElements(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  |  | 
|  | // Split vectors of i1 that exceed byte vector length. | 
|  | if (ElemTy == MVT::i1 && VecLen > HwLen) | 
|  | return TargetLoweringBase::TypeSplitVector; | 
|  |  | 
|  | ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); | 
|  | // For shorter vectors of i1, widen them if any of the corresponding | 
|  | // vectors of integers needs to be widened. | 
|  | if (ElemTy == MVT::i1) { | 
|  | for (MVT T : Tys) { | 
|  | assert(T != MVT::i1); | 
|  | auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen)); | 
|  | if (A != ~0u) | 
|  | return A; | 
|  | } | 
|  | return ~0u; | 
|  | } | 
|  |  | 
|  | // If the size of VecTy is at least half of the vector length, | 
|  | // widen the vector. Note: the threshold was not selected in | 
|  | // any scientific way. | 
|  | if (llvm::is_contained(Tys, ElemTy)) { | 
|  | unsigned VecWidth = VecTy.getSizeInBits(); | 
|  | unsigned HwWidth = 8*HwLen; | 
|  | if (VecWidth > 2*HwWidth) | 
|  | return TargetLoweringBase::TypeSplitVector; | 
|  |  | 
|  | bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0; | 
|  | if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth) | 
|  | return TargetLoweringBase::TypeWidenVector; | 
|  | if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) | 
|  | return TargetLoweringBase::TypeWidenVector; | 
|  | } | 
|  |  | 
|  | // Defer to default. | 
|  | return ~0u; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | switch (Opc) { | 
|  | case HexagonISD::SMUL_LOHI: | 
|  | case HexagonISD::UMUL_LOHI: | 
|  | case HexagonISD::USMUL_LOHI: | 
|  | return TargetLoweringBase::Custom; | 
|  | } | 
|  | return TargetLoweringBase::Legal; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, | 
|  | const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | SmallVector<SDValue,4> IntOps; | 
|  | IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); | 
|  | append_range(IntOps, Ops); | 
|  | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); | 
|  | } | 
|  |  | 
|  | MVT | 
|  | HexagonTargetLowering::typeJoin(const TypePair &Tys) const { | 
|  | assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); | 
|  |  | 
|  | MVT ElemTy = Tys.first.getVectorElementType(); | 
|  | return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + | 
|  | Tys.second.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::TypePair | 
|  | HexagonTargetLowering::typeSplit(MVT VecTy) const { | 
|  | assert(VecTy.isVector()); | 
|  | unsigned NumElem = VecTy.getVectorNumElements(); | 
|  | assert((NumElem % 2) == 0 && "Expecting even-sized vector type"); | 
|  | MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); | 
|  | return { HalfTy, HalfTy }; | 
|  | } | 
|  |  | 
|  | MVT | 
|  | HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); | 
|  | return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | MVT | 
|  | HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); | 
|  | return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, | 
|  | SelectionDAG &DAG) const { | 
|  | if (ty(Vec).getVectorElementType() == ElemTy) | 
|  | return Vec; | 
|  | MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); | 
|  | return DAG.getBitcast(CastTy, Vec); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), | 
|  | Ops.first, Ops.second); | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::VectorPair | 
|  | HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | TypePair Tys = typeSplit(ty(Vec)); | 
|  | if (Vec.getOpcode() == HexagonISD::QCAT) | 
|  | return VectorPair(Vec.getOperand(0), Vec.getOperand(1)); | 
|  | return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { | 
|  | return Subtarget.isHVXVectorType(Ty) && | 
|  | Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::isHvxPairTy(MVT Ty) const { | 
|  | return Subtarget.isHVXVectorType(Ty) && | 
|  | Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::isHvxBoolTy(MVT Ty) const { | 
|  | return Subtarget.isHVXVectorType(Ty, true) && | 
|  | Ty.getVectorElementType() == MVT::i1; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::allowsHvxMemoryAccess( | 
|  | MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { | 
|  | // Bool vectors are excluded by default, but make it explicit to | 
|  | // emphasize that bool vectors cannot be loaded or stored. | 
|  | // Also, disallow double vector stores (to prevent unnecessary | 
|  | // store widening in DAG combiner). | 
|  | if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength()) | 
|  | return false; | 
|  | if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false)) | 
|  | return false; | 
|  | if (Fast) | 
|  | *Fast = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses( | 
|  | MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { | 
|  | if (!Subtarget.isHVXVectorType(VecTy)) | 
|  | return false; | 
|  | // XXX Should this be false?  vmemu are a bit slower than vmem. | 
|  | if (Fast) | 
|  | *Fast = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection( | 
|  | MachineInstr &MI, SDNode *Node) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); | 
|  | MachineBasicBlock &MB = *MI.getParent(); | 
|  | MachineFunction &MF = *MB.getParent(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | auto At = MI.getIterator(); | 
|  |  | 
|  | switch (Opc) { | 
|  | case Hexagon::PS_vsplatib: | 
|  | if (Subtarget.useHVXV62Ops()) { | 
|  | // SplatV = A2_tfrsi #imm | 
|  | // OutV = V6_lvsplatb SplatV | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
|  | .add(MI.getOperand(1)); | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) | 
|  | .addReg(SplatV); | 
|  | } else { | 
|  | // SplatV = A2_tfrsi #imm:#imm:#imm:#imm | 
|  | // OutV = V6_lvsplatw SplatV | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | const MachineOperand &InpOp = MI.getOperand(1); | 
|  | assert(InpOp.isImm()); | 
|  | uint32_t V = InpOp.getImm() & 0xFF; | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
|  | .addImm(V << 24 | V << 16 | V << 8 | V); | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | 
|  | } | 
|  | MB.erase(At); | 
|  | break; | 
|  | case Hexagon::PS_vsplatrb: | 
|  | if (Subtarget.useHVXV62Ops()) { | 
|  | // OutV = V6_lvsplatb Inp | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) | 
|  | .add(MI.getOperand(1)); | 
|  | } else { | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | const MachineOperand &InpOp = MI.getOperand(1); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV) | 
|  | .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV) | 
|  | .addReg(SplatV); | 
|  | } | 
|  | MB.erase(At); | 
|  | break; | 
|  | case Hexagon::PS_vsplatih: | 
|  | if (Subtarget.useHVXV62Ops()) { | 
|  | // SplatV = A2_tfrsi #imm | 
|  | // OutV = V6_lvsplath SplatV | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
|  | .add(MI.getOperand(1)); | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) | 
|  | .addReg(SplatV); | 
|  | } else { | 
|  | // SplatV = A2_tfrsi #imm:#imm | 
|  | // OutV = V6_lvsplatw SplatV | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | const MachineOperand &InpOp = MI.getOperand(1); | 
|  | assert(InpOp.isImm()); | 
|  | uint32_t V = InpOp.getImm() & 0xFFFF; | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
|  | .addImm(V << 16 | V); | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | 
|  | } | 
|  | MB.erase(At); | 
|  | break; | 
|  | case Hexagon::PS_vsplatrh: | 
|  | if (Subtarget.useHVXV62Ops()) { | 
|  | // OutV = V6_lvsplath Inp | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) | 
|  | .add(MI.getOperand(1)); | 
|  | } else { | 
|  | // SplatV = A2_combine_ll Inp, Inp | 
|  | // OutV = V6_lvsplatw SplatV | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | const MachineOperand &InpOp = MI.getOperand(1); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV) | 
|  | .addReg(InpOp.getReg(), 0, InpOp.getSubReg()) | 
|  | .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); | 
|  | Register OutV = MI.getOperand(0).getReg(); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | 
|  | } | 
|  | MB.erase(At); | 
|  | break; | 
|  | case Hexagon::PS_vsplatiw: | 
|  | case Hexagon::PS_vsplatrw: | 
|  | if (Opc == Hexagon::PS_vsplatiw) { | 
|  | // SplatV = A2_tfrsi #imm | 
|  | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | 
|  | .add(MI.getOperand(1)); | 
|  | MI.getOperand(1).ChangeToRegister(SplatV, false); | 
|  | } | 
|  | // OutV = V6_lvsplatw SplatV/Inp | 
|  | MI.setDesc(TII.get(Hexagon::V6_lvsplatw)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, | 
|  | SelectionDAG &DAG) const { | 
|  | if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) | 
|  | ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); | 
|  |  | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | if (ElemWidth == 8) | 
|  | return ElemIdx; | 
|  |  | 
|  | unsigned L = Log2_32(ElemWidth/8); | 
|  | const SDLoc &dl(ElemIdx); | 
|  | return DAG.getNode(ISD::SHL, dl, MVT::i32, | 
|  | {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | assert(ElemWidth >= 8 && ElemWidth <= 32); | 
|  | if (ElemWidth == 32) | 
|  | return Idx; | 
|  |  | 
|  | if (ty(Idx) != MVT::i32) | 
|  | Idx = DAG.getBitcast(MVT::i32, Idx); | 
|  | const SDLoc &dl(Idx); | 
|  | SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); | 
|  | SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); | 
|  | return SubIdx; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, | 
|  | SDValue Op1, ArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT OpTy = ty(Op0); | 
|  | assert(OpTy == ty(Op1)); | 
|  |  | 
|  | MVT ElemTy = OpTy.getVectorElementType(); | 
|  | if (ElemTy == MVT::i8) | 
|  | return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); | 
|  | assert(ElemTy.getSizeInBits() >= 8); | 
|  |  | 
|  | MVT ResTy = tyVector(OpTy, MVT::i8); | 
|  | unsigned ElemSize = ElemTy.getSizeInBits() / 8; | 
|  |  | 
|  | SmallVector<int,128> ByteMask; | 
|  | for (int M : Mask) { | 
|  | if (M < 0) { | 
|  | for (unsigned I = 0; I != ElemSize; ++I) | 
|  | ByteMask.push_back(-1); | 
|  | } else { | 
|  | int NewM = M*ElemSize; | 
|  | for (unsigned I = 0; I != ElemSize; ++I) | 
|  | ByteMask.push_back(NewM+I); | 
|  | } | 
|  | } | 
|  | assert(ResTy.getVectorNumElements() == ByteMask.size()); | 
|  | return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), | 
|  | opCastElem(Op1, MVT::i8, DAG), ByteMask); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, | 
|  | const SDLoc &dl, MVT VecTy, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned VecLen = Values.size(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  |  | 
|  | unsigned ElemSize = ElemWidth / 8; | 
|  | assert(ElemSize*VecLen == HwLen); | 
|  | SmallVector<SDValue,32> Words; | 
|  |  | 
|  | if (VecTy.getVectorElementType() != MVT::i32 && | 
|  | !(Subtarget.useHVXFloatingPoint() && | 
|  | VecTy.getVectorElementType() == MVT::f32)) { | 
|  | assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size"); | 
|  | unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; | 
|  | MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); | 
|  | for (unsigned i = 0; i != VecLen; i += OpsPerWord) { | 
|  | SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); | 
|  | Words.push_back(DAG.getBitcast(MVT::i32, W)); | 
|  | } | 
|  | } else { | 
|  | for (SDValue V : Values) | 
|  | Words.push_back(DAG.getBitcast(MVT::i32, V)); | 
|  | } | 
|  | auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) { | 
|  | unsigned NumValues = Values.size(); | 
|  | assert(NumValues > 0); | 
|  | bool IsUndef = true; | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | if (Values[i].isUndef()) | 
|  | continue; | 
|  | IsUndef = false; | 
|  | if (!SplatV.getNode()) | 
|  | SplatV = Values[i]; | 
|  | else if (SplatV != Values[i]) | 
|  | return false; | 
|  | } | 
|  | if (IsUndef) | 
|  | SplatV = Values[0]; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | unsigned NumWords = Words.size(); | 
|  | SDValue SplatV; | 
|  | bool IsSplat = isSplat(Words, SplatV); | 
|  | if (IsSplat && isUndef(SplatV)) | 
|  | return DAG.getUNDEF(VecTy); | 
|  | if (IsSplat) { | 
|  | assert(SplatV.getNode()); | 
|  | if (isNullConstant(SplatV)) | 
|  | return getZero(dl, VecTy, DAG); | 
|  | MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); | 
|  | SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV); | 
|  | return DAG.getBitcast(VecTy, S); | 
|  | } | 
|  |  | 
|  | // Delay recognizing constant vectors until here, so that we can generate | 
|  | // a vsplat. | 
|  | SmallVector<ConstantInt*, 128> Consts(VecLen); | 
|  | bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); | 
|  | if (AllConst) { | 
|  | ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), | 
|  | (Constant**)Consts.end()); | 
|  | Constant *CV = ConstantVector::get(Tmp); | 
|  | Align Alignment(HwLen); | 
|  | SDValue CP = | 
|  | LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG); | 
|  | return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(MF), Alignment); | 
|  | } | 
|  |  | 
|  | // A special case is a situation where the vector is built entirely from | 
|  | // elements extracted from another vector. This could be done via a shuffle | 
|  | // more efficiently, but typically, the size of the source vector will not | 
|  | // match the size of the vector being built (which precludes the use of a | 
|  | // shuffle directly). | 
|  | // This only handles a single source vector, and the vector being built | 
|  | // should be of a sub-vector type of the source vector type. | 
|  | auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec, | 
|  | SmallVectorImpl<int> &SrcIdx) { | 
|  | SDValue Vec; | 
|  | for (SDValue V : Values) { | 
|  | if (isUndef(V)) { | 
|  | SrcIdx.push_back(-1); | 
|  | continue; | 
|  | } | 
|  | if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return false; | 
|  | // All extracts should come from the same vector. | 
|  | SDValue T = V.getOperand(0); | 
|  | if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) | 
|  | return false; | 
|  | Vec = T; | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1)); | 
|  | if (C == nullptr) | 
|  | return false; | 
|  | int I = C->getSExtValue(); | 
|  | assert(I >= 0 && "Negative element index"); | 
|  | SrcIdx.push_back(I); | 
|  | } | 
|  | SrcVec = Vec; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SmallVector<int,128> ExtIdx; | 
|  | SDValue ExtVec; | 
|  | if (IsBuildFromExtracts(ExtVec, ExtIdx)) { | 
|  | MVT ExtTy = ty(ExtVec); | 
|  | unsigned ExtLen = ExtTy.getVectorNumElements(); | 
|  | if (ExtLen == VecLen || ExtLen == 2*VecLen) { | 
|  | // Construct a new shuffle mask that will produce a vector with the same | 
|  | // number of elements as the input vector, and such that the vector we | 
|  | // want will be the initial subvector of it. | 
|  | SmallVector<int,128> Mask; | 
|  | BitVector Used(ExtLen); | 
|  |  | 
|  | for (int M : ExtIdx) { | 
|  | Mask.push_back(M); | 
|  | if (M >= 0) | 
|  | Used.set(M); | 
|  | } | 
|  | // Fill the rest of the mask with the unused elements of ExtVec in hopes | 
|  | // that it will result in a permutation of ExtVec's elements. It's still | 
|  | // fine if it doesn't (e.g. if undefs are present, or elements are | 
|  | // repeated), but permutations can always be done efficiently via vdelta | 
|  | // and vrdelta. | 
|  | for (unsigned I = 0; I != ExtLen; ++I) { | 
|  | if (Mask.size() == ExtLen) | 
|  | break; | 
|  | if (!Used.test(I)) | 
|  | Mask.push_back(I); | 
|  | } | 
|  |  | 
|  | SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec, | 
|  | DAG.getUNDEF(ExtTy), Mask); | 
|  | return ExtLen == VecLen ? S : LoHalf(S, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find most common element to initialize vector with. This is to avoid | 
|  | // unnecessary vinsert/valign for cases where the same value is present | 
|  | // many times. Creates a histogram of the vector's elements to find the | 
|  | // most common element n. | 
|  | assert(4*Words.size() == Subtarget.getVectorLength()); | 
|  | int VecHist[32]; | 
|  | int n = 0; | 
|  | for (unsigned i = 0; i != NumWords; ++i) { | 
|  | VecHist[i] = 0; | 
|  | if (Words[i].isUndef()) | 
|  | continue; | 
|  | for (unsigned j = i; j != NumWords; ++j) | 
|  | if (Words[i] == Words[j]) | 
|  | VecHist[i]++; | 
|  |  | 
|  | if (VecHist[i] > VecHist[n]) | 
|  | n = i; | 
|  | } | 
|  |  | 
|  | SDValue HalfV = getZero(dl, VecTy, DAG); | 
|  | if (VecHist[n] > 1) { | 
|  | SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]); | 
|  | HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy, | 
|  | {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)}); | 
|  | } | 
|  | SDValue HalfV0 = HalfV; | 
|  | SDValue HalfV1 = HalfV; | 
|  |  | 
|  | // Construct two halves in parallel, then or them together. Rn and Rm count | 
|  | // number of rotations needed before the next element. One last rotation is | 
|  | // performed post-loop to position the last element. | 
|  | int Rn = 0, Rm = 0; | 
|  | SDValue Sn, Sm; | 
|  | SDValue N = HalfV0; | 
|  | SDValue M = HalfV1; | 
|  | for (unsigned i = 0; i != NumWords/2; ++i) { | 
|  | // Rotate by element count since last insertion. | 
|  | if (Words[i] != Words[n] || VecHist[n] <= 1) { | 
|  | Sn = DAG.getConstant(Rn, dl, MVT::i32); | 
|  | HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); | 
|  | N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, | 
|  | {HalfV0, Words[i]}); | 
|  | Rn = 0; | 
|  | } | 
|  | if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) { | 
|  | Sm = DAG.getConstant(Rm, dl, MVT::i32); | 
|  | HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); | 
|  | M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, | 
|  | {HalfV1, Words[i+NumWords/2]}); | 
|  | Rm = 0; | 
|  | } | 
|  | Rn += 4; | 
|  | Rm += 4; | 
|  | } | 
|  | // Perform last rotation. | 
|  | Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32); | 
|  | Sm = DAG.getConstant(Rm, dl, MVT::i32); | 
|  | HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); | 
|  | HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); | 
|  |  | 
|  | SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0); | 
|  | SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1); | 
|  |  | 
|  | SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1}); | 
|  |  | 
|  | SDValue OutV = | 
|  | DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV); | 
|  | return OutV; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, | 
|  | unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { | 
|  | MVT PredTy = ty(PredV); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  |  | 
|  | if (Subtarget.isHVXVectorType(PredTy, true)) { | 
|  | // Move the vector predicate SubV to a vector register, and scale it | 
|  | // down to match the representation (bytes per type element) that VecV | 
|  | // uses. The scaling down will pick every 2nd or 4th (every Scale-th | 
|  | // in general) element and put them at the front of the resulting | 
|  | // vector. This subvector will then be inserted into the Q2V of VecV. | 
|  | // To avoid having an operation that generates an illegal type (short | 
|  | // vector), generate a full size vector. | 
|  | // | 
|  | SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); | 
|  | SmallVector<int,128> Mask(HwLen); | 
|  | // Scale = BitBytes(PredV) / Given BitBytes. | 
|  | unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); | 
|  | unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; | 
|  |  | 
|  | for (unsigned i = 0; i != HwLen; ++i) { | 
|  | unsigned Num = i % Scale; | 
|  | unsigned Off = i / Scale; | 
|  | Mask[BlockLen*Num + Off] = i; | 
|  | } | 
|  | SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); | 
|  | if (!ZeroFill) | 
|  | return S; | 
|  | // Fill the bytes beyond BlockLen with 0s. | 
|  | // V6_pred_scalar2 cannot fill the entire predicate, so it only works | 
|  | // when BlockLen < HwLen. | 
|  | assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
|  | SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
|  | {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); | 
|  | SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); | 
|  | return DAG.getNode(ISD::AND, dl, ByteTy, S, M); | 
|  | } | 
|  |  | 
|  | // Make sure that this is a valid scalar predicate. | 
|  | assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); | 
|  |  | 
|  | unsigned Bytes = 8 / PredTy.getVectorNumElements(); | 
|  | SmallVector<SDValue,4> Words[2]; | 
|  | unsigned IdxW = 0; | 
|  |  | 
|  | SDValue W0 = isUndef(PredV) | 
|  | ? DAG.getUNDEF(MVT::i64) | 
|  | : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); | 
|  | Words[IdxW].push_back(HiHalf(W0, DAG)); | 
|  | Words[IdxW].push_back(LoHalf(W0, DAG)); | 
|  |  | 
|  | while (Bytes < BitBytes) { | 
|  | IdxW ^= 1; | 
|  | Words[IdxW].clear(); | 
|  |  | 
|  | if (Bytes < 4) { | 
|  | for (const SDValue &W : Words[IdxW ^ 1]) { | 
|  | SDValue T = expandPredicate(W, dl, DAG); | 
|  | Words[IdxW].push_back(HiHalf(T, DAG)); | 
|  | Words[IdxW].push_back(LoHalf(T, DAG)); | 
|  | } | 
|  | } else { | 
|  | for (const SDValue &W : Words[IdxW ^ 1]) { | 
|  | Words[IdxW].push_back(W); | 
|  | Words[IdxW].push_back(W); | 
|  | } | 
|  | } | 
|  | Bytes *= 2; | 
|  | } | 
|  |  | 
|  | assert(Bytes == BitBytes); | 
|  |  | 
|  | SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); | 
|  | SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); | 
|  | for (const SDValue &W : Words[IdxW]) { | 
|  | Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); | 
|  | Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); | 
|  | } | 
|  |  | 
|  | return Vec; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, | 
|  | const SDLoc &dl, MVT VecTy, | 
|  | SelectionDAG &DAG) const { | 
|  | // Construct a vector V of bytes, such that a comparison V >u 0 would | 
|  | // produce the required vector predicate. | 
|  | unsigned VecLen = Values.size(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | assert(VecLen <= HwLen || VecLen == 8*HwLen); | 
|  | SmallVector<SDValue,128> Bytes; | 
|  | bool AllT = true, AllF = true; | 
|  |  | 
|  | auto IsTrue = [] (SDValue V) { | 
|  | if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) | 
|  | return !N->isZero(); | 
|  | return false; | 
|  | }; | 
|  | auto IsFalse = [] (SDValue V) { | 
|  | if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) | 
|  | return N->isZero(); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (VecLen <= HwLen) { | 
|  | // In the hardware, each bit of a vector predicate corresponds to a byte | 
|  | // of a vector register. Calculate how many bytes does a bit of VecTy | 
|  | // correspond to. | 
|  | assert(HwLen % VecLen == 0); | 
|  | unsigned BitBytes = HwLen / VecLen; | 
|  | for (SDValue V : Values) { | 
|  | AllT &= IsTrue(V); | 
|  | AllF &= IsFalse(V); | 
|  |  | 
|  | SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) | 
|  | : DAG.getUNDEF(MVT::i8); | 
|  | for (unsigned B = 0; B != BitBytes; ++B) | 
|  | Bytes.push_back(Ext); | 
|  | } | 
|  | } else { | 
|  | // There are as many i1 values, as there are bits in a vector register. | 
|  | // Divide the values into groups of 8 and check that each group consists | 
|  | // of the same value (ignoring undefs). | 
|  | for (unsigned I = 0; I != VecLen; I += 8) { | 
|  | unsigned B = 0; | 
|  | // Find the first non-undef value in this group. | 
|  | for (; B != 8; ++B) { | 
|  | if (!Values[I+B].isUndef()) | 
|  | break; | 
|  | } | 
|  | SDValue F = Values[I+B]; | 
|  | AllT &= IsTrue(F); | 
|  | AllF &= IsFalse(F); | 
|  |  | 
|  | SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) | 
|  | : DAG.getUNDEF(MVT::i8); | 
|  | Bytes.push_back(Ext); | 
|  | // Verify that the rest of values in the group are the same as the | 
|  | // first. | 
|  | for (; B != 8; ++B) | 
|  | assert(Values[I+B].isUndef() || Values[I+B] == F); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllT) | 
|  | return DAG.getNode(HexagonISD::QTRUE, dl, VecTy); | 
|  | if (AllF) | 
|  | return DAG.getNode(HexagonISD::QFALSE, dl, VecTy); | 
|  |  | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, | 
|  | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
|  | MVT ElemTy = ty(VecV).getVectorElementType(); | 
|  |  | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | assert(ElemWidth >= 8 && ElemWidth <= 32); | 
|  | (void)ElemWidth; | 
|  |  | 
|  | SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); | 
|  | SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, | 
|  | {VecV, ByteIdx}); | 
|  | if (ElemTy == MVT::i32) | 
|  | return ExWord; | 
|  |  | 
|  | // Have an extracted word, need to extract the smaller element out of it. | 
|  | // 1. Extract the bits of (the original) IdxV that correspond to the index | 
|  | //    of the desired element in the 32-bit word. | 
|  | SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); | 
|  | // 2. Extract the element from the word. | 
|  | SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); | 
|  | return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, | 
|  | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
|  | // Implement other return types if necessary. | 
|  | assert(ResTy == MVT::i1); | 
|  |  | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
|  |  | 
|  | unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); | 
|  | SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); | 
|  | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); | 
|  |  | 
|  | SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); | 
|  | SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); | 
|  | return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, | 
|  | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | MVT ElemTy = ty(VecV).getVectorElementType(); | 
|  |  | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | assert(ElemWidth >= 8 && ElemWidth <= 32); | 
|  | (void)ElemWidth; | 
|  |  | 
|  | auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, | 
|  | SDValue ByteIdxV) { | 
|  | MVT VecTy = ty(VecV); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | SDValue MaskV = | 
|  | DAG.getNode(ISD::AND, dl, MVT::i32, | 
|  | {ByteIdxV, DAG.getSignedConstant(-4, dl, MVT::i32)}); | 
|  | SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); | 
|  | SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); | 
|  | SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
|  | {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); | 
|  | SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); | 
|  | return TorV; | 
|  | }; | 
|  |  | 
|  | SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); | 
|  | if (ElemTy == MVT::i32) | 
|  | return InsertWord(VecV, ValV, ByteIdx); | 
|  |  | 
|  | // If this is not inserting a 32-bit word, convert it into such a thing. | 
|  | // 1. Extract the existing word from the target vector. | 
|  | SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, | 
|  | {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); | 
|  | SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, | 
|  | dl, MVT::i32, DAG); | 
|  |  | 
|  | // 2. Treating the extracted word as a 32-bit vector, insert the given | 
|  | //    value into it. | 
|  | SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); | 
|  | MVT SubVecTy = tyVector(ty(Ext), ElemTy); | 
|  | SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), | 
|  | ValV, SubIdx, dl, ElemTy, DAG); | 
|  |  | 
|  | // 3. Insert the 32-bit word back into the original vector. | 
|  | return InsertWord(VecV, Ins, ByteIdx); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, | 
|  | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
|  |  | 
|  | unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); | 
|  | SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); | 
|  | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); | 
|  | ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); | 
|  |  | 
|  | SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV, | 
|  | SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(VecV); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | unsigned Idx = IdxV.getNode()->getAsZExtVal(); | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  |  | 
|  | // If the source vector is a vector pair, get the single vector containing | 
|  | // the subvector of interest. The subvector will never overlap two single | 
|  | // vectors. | 
|  | if (isHvxPairTy(VecTy)) { | 
|  | unsigned SubIdx = Hexagon::vsub_lo; | 
|  | if (Idx * ElemWidth >= 8 * HwLen) { | 
|  | SubIdx = Hexagon::vsub_hi; | 
|  | Idx -= VecTy.getVectorNumElements() / 2; | 
|  | } | 
|  |  | 
|  | VecTy = typeSplit(VecTy).first; | 
|  | VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV); | 
|  | if (VecTy == ResTy) | 
|  | return VecV; | 
|  | } | 
|  |  | 
|  | // The only meaningful subvectors of a single HVX vector are those that | 
|  | // fit in a scalar register. | 
|  | assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); | 
|  |  | 
|  | MVT WordTy = tyVector(VecTy, MVT::i32); | 
|  | SDValue WordVec = DAG.getBitcast(WordTy, VecV); | 
|  | unsigned WordIdx = (Idx*ElemWidth) / 32; | 
|  |  | 
|  | SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); | 
|  | SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); | 
|  | if (ResTy.getSizeInBits() == 32) | 
|  | return DAG.getBitcast(ResTy, W0); | 
|  |  | 
|  | SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); | 
|  | SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); | 
|  | SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG); | 
|  | return DAG.getBitcast(ResTy, WW); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, | 
|  | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(VecV); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
|  | // IdxV is required to be a constant. | 
|  | unsigned Idx = IdxV.getNode()->getAsZExtVal(); | 
|  |  | 
|  | unsigned ResLen = ResTy.getVectorNumElements(); | 
|  | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); | 
|  | unsigned Offset = Idx * BitBytes; | 
|  | SDValue Undef = DAG.getUNDEF(ByteTy); | 
|  | SmallVector<int,128> Mask; | 
|  |  | 
|  | if (Subtarget.isHVXVectorType(ResTy, true)) { | 
|  | // Converting between two vector predicates. Since the result is shorter | 
|  | // than the source, it will correspond to a vector predicate with the | 
|  | // relevant bits replicated. The replication count is the ratio of the | 
|  | // source and target vector lengths. | 
|  | unsigned Rep = VecTy.getVectorNumElements() / ResLen; | 
|  | assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); | 
|  | for (unsigned i = 0; i != HwLen/Rep; ++i) { | 
|  | for (unsigned j = 0; j != Rep; ++j) | 
|  | Mask.push_back(i + Offset); | 
|  | } | 
|  | SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); | 
|  | } | 
|  |  | 
|  | // Converting between a vector predicate and a scalar predicate. In the | 
|  | // vector predicate, a group of BitBytes bits will correspond to a single | 
|  | // i1 element of the source vector type. Those bits will all have the same | 
|  | // value. The same will be true for ByteVec, where each byte corresponds | 
|  | // to a bit in the vector predicate. | 
|  | // The algorithm is to traverse the ByteVec, going over the i1 values from | 
|  | // the source vector, and generate the corresponding representation in an | 
|  | // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the | 
|  | // elements so that the interesting 8 bytes will be in the low end of the | 
|  | // vector. | 
|  | unsigned Rep = 8 / ResLen; | 
|  | // Make sure the output fill the entire vector register, so repeat the | 
|  | // 8-byte groups as many times as necessary. | 
|  | for (unsigned r = 0; r != HwLen/ResLen; ++r) { | 
|  | // This will generate the indexes of the 8 interesting bytes. | 
|  | for (unsigned i = 0; i != ResLen; ++i) { | 
|  | for (unsigned j = 0; j != Rep; ++j) | 
|  | Mask.push_back(Offset + i*BitBytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Zero = getZero(dl, MVT::i32, DAG); | 
|  | SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); | 
|  | // Combine the two low words from ShuffV into a v8i8, and byte-compare | 
|  | // them against 0. | 
|  | SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); | 
|  | SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, | 
|  | {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); | 
|  | SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG); | 
|  | return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy, | 
|  | {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, | 
|  | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(VecV); | 
|  | MVT SubTy = ty(SubV); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  |  | 
|  | bool IsPair = isHvxPairTy(VecTy); | 
|  | MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); | 
|  | // The two single vectors that VecV consists of, if it's a pair. | 
|  | SDValue V0, V1; | 
|  | SDValue SingleV = VecV; | 
|  | SDValue PickHi; | 
|  |  | 
|  | if (IsPair) { | 
|  | V0 = LoHalf(VecV, DAG); | 
|  | V1 = HiHalf(VecV, DAG); | 
|  |  | 
|  | SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), | 
|  | dl, MVT::i32); | 
|  | PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); | 
|  | if (isHvxSingleTy(SubTy)) { | 
|  | if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) { | 
|  | unsigned Idx = CN->getZExtValue(); | 
|  | assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); | 
|  | unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; | 
|  | return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); | 
|  | } | 
|  | // If IdxV is not a constant, generate the two variants: with the | 
|  | // SubV as the high and as the low subregister, and select the right | 
|  | // pair based on the IdxV. | 
|  | SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); | 
|  | SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); | 
|  | return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); | 
|  | } | 
|  | // The subvector being inserted must be entirely contained in one of | 
|  | // the vectors V0 or V1. Set SingleV to the correct one, and update | 
|  | // IdxV to be the index relative to the beginning of that vector. | 
|  | SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); | 
|  | IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); | 
|  | SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); | 
|  | } | 
|  |  | 
|  | // The only meaningful subvectors of a single HVX vector are those that | 
|  | // fit in a scalar register. | 
|  | assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); | 
|  | // Convert IdxV to be index in bytes. | 
|  | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); | 
|  | if (!IdxN || !IdxN->isZero()) { | 
|  | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
|  | DAG.getConstant(ElemWidth/8, dl, MVT::i32)); | 
|  | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); | 
|  | } | 
|  | // When inserting a single word, the rotation back to the original position | 
|  | // would be by HwLen-Idx, but if two words are inserted, it will need to be | 
|  | // by (HwLen-4)-Idx. | 
|  | unsigned RolBase = HwLen; | 
|  | if (SubTy.getSizeInBits() == 32) { | 
|  | SDValue V = DAG.getBitcast(MVT::i32, SubV); | 
|  | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, V); | 
|  | } else { | 
|  | SDValue V = DAG.getBitcast(MVT::i64, SubV); | 
|  | SDValue R0 = LoHalf(V, DAG); | 
|  | SDValue R1 = HiHalf(V, DAG); | 
|  | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); | 
|  | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, | 
|  | DAG.getConstant(4, dl, MVT::i32)); | 
|  | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); | 
|  | RolBase = HwLen-4; | 
|  | } | 
|  | // If the vector wasn't ror'ed, don't ror it back. | 
|  | if (RolBase != 4 || !IdxN || !IdxN->isZero()) { | 
|  | SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
|  | DAG.getConstant(RolBase, dl, MVT::i32), IdxV); | 
|  | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); | 
|  | } | 
|  |  | 
|  | if (IsPair) { | 
|  | SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); | 
|  | SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); | 
|  | return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); | 
|  | } | 
|  | return SingleV; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, | 
|  | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(VecV); | 
|  | MVT SubTy = ty(SubV); | 
|  | assert(Subtarget.isHVXVectorType(VecTy, true)); | 
|  | // VecV is an HVX vector predicate. SubV may be either an HVX vector | 
|  | // predicate as well, or it can be a scalar predicate. | 
|  |  | 
|  | unsigned VecLen = VecTy.getVectorNumElements(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | assert(HwLen % VecLen == 0 && "Unexpected vector type"); | 
|  |  | 
|  | unsigned Scale = VecLen / SubTy.getVectorNumElements(); | 
|  | unsigned BitBytes = HwLen / VecLen; | 
|  | unsigned BlockLen = HwLen / Scale; | 
|  |  | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | 
|  | SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); | 
|  | SDValue ByteIdx; | 
|  |  | 
|  | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); | 
|  | if (!IdxN || !IdxN->isZero()) { | 
|  | ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | 
|  | DAG.getConstant(BitBytes, dl, MVT::i32)); | 
|  | ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); | 
|  | } | 
|  |  | 
|  | // ByteVec is the target vector VecV rotated in such a way that the | 
|  | // subvector should be inserted at index 0. Generate a predicate mask | 
|  | // and use vmux to do the insertion. | 
|  | assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
|  | SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
|  | {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); | 
|  | ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); | 
|  | // Rotate ByteVec back, and convert to a vector predicate. | 
|  | if (!IdxN || !IdxN->isZero()) { | 
|  | SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); | 
|  | SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); | 
|  | ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); | 
|  | } | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, | 
|  | MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { | 
|  | // Sign- and any-extending of a vector predicate to a vector register is | 
|  | // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and | 
|  | // a vector of 1s (where the 1s are of type matching the vector type). | 
|  | assert(Subtarget.isHVXVectorType(ResTy)); | 
|  | if (!ZeroExt) | 
|  | return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); | 
|  |  | 
|  | assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); | 
|  | SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
|  | DAG.getConstant(1, dl, MVT::i32)); | 
|  | SDValue False = getZero(dl, ResTy, DAG); | 
|  | return DAG.getSelect(dl, ResTy, VecV, True, False); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl, | 
|  | MVT ResTy, SelectionDAG &DAG) const { | 
|  | // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1] | 
|  | // (i.e. the entire predicate register) to bits [0..HwLen-1] of a | 
|  | // vector register. The remaining bits of the vector register are | 
|  | // unspecified. | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | MVT PredTy = ty(VecQ); | 
|  | unsigned PredLen = PredTy.getVectorNumElements(); | 
|  | assert(HwLen % PredLen == 0); | 
|  | MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen); | 
|  |  | 
|  | Type *Int8Ty = Type::getInt8Ty(*DAG.getContext()); | 
|  | SmallVector<Constant*, 128> Tmp; | 
|  | // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,... | 
|  | // These are bytes with the LSB rotated left with respect to their index. | 
|  | for (unsigned i = 0; i != HwLen/8; ++i) { | 
|  | for (unsigned j = 0; j != 8; ++j) | 
|  | Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j)); | 
|  | } | 
|  | Constant *CV = ConstantVector::get(Tmp); | 
|  | Align Alignment(HwLen); | 
|  | SDValue CP = | 
|  | LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG); | 
|  | SDValue Bytes = | 
|  | DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP, | 
|  | MachinePointerInfo::getConstantPool(MF), Alignment); | 
|  |  | 
|  | // Select the bytes that correspond to true bits in the vector predicate. | 
|  | SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes), | 
|  | getZero(dl, VecTy, DAG)); | 
|  | // Calculate the OR of all bytes in each group of 8. That will compress | 
|  | // all the individual bits into a single byte. | 
|  | // First, OR groups of 4, via vrmpy with 0x01010101. | 
|  | SDValue All1 = | 
|  | DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32)); | 
|  | SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG); | 
|  | // Then rotate the accumulated vector by 4 bytes, and do the final OR. | 
|  | SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy, | 
|  | {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG); | 
|  | SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot}); | 
|  |  | 
|  | // Pick every 8th byte and coalesce them at the beginning of the output. | 
|  | // For symmetry, coalesce every 1+8th byte after that, then every 2+8th | 
|  | // byte and so on. | 
|  | SmallVector<int,128> Mask; | 
|  | for (unsigned i = 0; i != HwLen; ++i) | 
|  | Mask.push_back((8*i) % HwLen + i/(HwLen/8)); | 
|  | SDValue Collect = | 
|  | DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask); | 
|  | return DAG.getBitcast(ResTy, Collect); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, | 
|  | const SDLoc &dl, SelectionDAG &DAG) const { | 
|  | // Take a vector and resize the element type to match the given type. | 
|  | MVT InpTy = ty(VecV); | 
|  | if (InpTy == ResTy) | 
|  | return VecV; | 
|  |  | 
|  | unsigned InpWidth = InpTy.getSizeInBits(); | 
|  | unsigned ResWidth = ResTy.getSizeInBits(); | 
|  |  | 
|  | if (InpTy.isFloatingPoint()) { | 
|  | return InpWidth < ResWidth | 
|  | ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV) | 
|  | : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV, | 
|  | DAG.getTargetConstant(0, dl, MVT::i32)); | 
|  | } | 
|  |  | 
|  | assert(InpTy.isInteger()); | 
|  |  | 
|  | if (InpWidth < ResWidth) { | 
|  | unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | 
|  | return DAG.getNode(ExtOpc, dl, ResTy, VecV); | 
|  | } else { | 
|  | unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT; | 
|  | return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0); | 
|  |  | 
|  | const SDLoc &dl(Vec); | 
|  | unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements(); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy, | 
|  | {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)}); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | const SDLoc &dl(Op); | 
|  | MVT VecTy = ty(Op); | 
|  |  | 
|  | unsigned Size = Op.getNumOperands(); | 
|  | SmallVector<SDValue,128> Ops; | 
|  | for (unsigned i = 0; i != Size; ++i) | 
|  | Ops.push_back(Op.getOperand(i)); | 
|  |  | 
|  | if (VecTy.getVectorElementType() == MVT::i1) | 
|  | return buildHvxVectorPred(Ops, dl, VecTy, DAG); | 
|  |  | 
|  | // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is | 
|  | // not a legal type, just bitcast the node to use i16 | 
|  | // types and bitcast the result back to f16 | 
|  | if (VecTy.getVectorElementType() == MVT::f16) { | 
|  | SmallVector<SDValue,64> NewOps; | 
|  | for (unsigned i = 0; i != Size; i++) | 
|  | NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i])); | 
|  |  | 
|  | SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | tyVector(VecTy, MVT::i16), NewOps); | 
|  | return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); | 
|  | } | 
|  |  | 
|  | // First, split the BUILD_VECTOR for vector pairs. We could generate | 
|  | // some pairs directly (via splat), but splats should be generated | 
|  | // by the combiner prior to getting here. | 
|  | if (VecTy.getSizeInBits() == 16 * Subtarget.getVectorLength()) { | 
|  | ArrayRef<SDValue> A(Ops); | 
|  | MVT SingleTy = typeSplit(VecTy).first; | 
|  | SDValue V0 = buildHvxVectorReg(A.take_front(Size / 2), dl, SingleTy, DAG); | 
|  | SDValue V1 = buildHvxVectorReg(A.drop_front(Size / 2), dl, SingleTy, DAG); | 
|  | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); | 
|  | } | 
|  |  | 
|  | return buildHvxVectorReg(Ops, dl, VecTy, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | const SDLoc &dl(Op); | 
|  | MVT VecTy = ty(Op); | 
|  | MVT ArgTy = ty(Op.getOperand(0)); | 
|  |  | 
|  | if (ArgTy == MVT::f16) { | 
|  | MVT SplatTy =  MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements()); | 
|  | SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0)); | 
|  | SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16); | 
|  | SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32); | 
|  | return DAG.getBitcast(VecTy, Splat); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | // Vector concatenation of two integer (non-bool) vectors does not need | 
|  | // special lowering. Custom-lower concats of bool vectors and expand | 
|  | // concats of more than 2 vectors. | 
|  | MVT VecTy = ty(Op); | 
|  | const SDLoc &dl(Op); | 
|  | unsigned NumOp = Op.getNumOperands(); | 
|  | if (VecTy.getVectorElementType() != MVT::i1) { | 
|  | if (NumOp == 2) | 
|  | return Op; | 
|  | // Expand the other cases into a build-vector. | 
|  | SmallVector<SDValue,8> Elems; | 
|  | for (SDValue V : Op.getNode()->ops()) | 
|  | DAG.ExtractVectorElements(V, Elems); | 
|  | // A vector of i16 will be broken up into a build_vector of i16's. | 
|  | // This is a problem, since at the time of operation legalization, | 
|  | // all operations are expected to be type-legalized, and i16 is not | 
|  | // a legal type. If any of the extracted elements is not of a valid | 
|  | // type, sign-extend it to a valid one. | 
|  | for (SDValue &V : Elems) { | 
|  | MVT Ty = ty(V); | 
|  | if (!isTypeLegal(Ty)) { | 
|  | MVT NTy = typeLegalize(Ty, DAG); | 
|  | if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
|  | V = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy, | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy, | 
|  | V.getOperand(0), V.getOperand(1)), | 
|  | DAG.getValueType(Ty)); | 
|  | continue; | 
|  | } | 
|  | // A few less complicated cases. | 
|  | switch (V.getOpcode()) { | 
|  | case ISD::Constant: | 
|  | V = DAG.getSExtOrTrunc(V, dl, NTy); | 
|  | break; | 
|  | case ISD::UNDEF: | 
|  | V = DAG.getUNDEF(NTy); | 
|  | break; | 
|  | case ISD::TRUNCATE: | 
|  | V = V.getOperand(0); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected vector element"); | 
|  | } | 
|  | } | 
|  | } | 
|  | return DAG.getBuildVector(VecTy, dl, Elems); | 
|  | } | 
|  |  | 
|  | assert(VecTy.getVectorElementType() == MVT::i1); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); | 
|  |  | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  |  | 
|  | // If the operands are HVX types (i.e. not scalar predicates), then | 
|  | // defer the concatenation, and create QCAT instead. | 
|  | if (Subtarget.isHVXVectorType(ty(Op0), true)) { | 
|  | if (NumOp == 2) | 
|  | return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1)); | 
|  |  | 
|  | ArrayRef<SDUse> U(Op.getNode()->ops()); | 
|  | SmallVector<SDValue, 4> SV(U); | 
|  | ArrayRef<SDValue> Ops(SV); | 
|  |  | 
|  | MVT HalfTy = typeSplit(VecTy).first; | 
|  | SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, | 
|  | Ops.take_front(NumOp/2)); | 
|  | SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, | 
|  | Ops.take_back(NumOp/2)); | 
|  | return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1); | 
|  | } | 
|  |  | 
|  | // Count how many bytes (in a vector register) each bit in VecTy | 
|  | // corresponds to. | 
|  | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue,8> Prefixes; | 
|  | for (SDValue V : Op.getNode()->op_values()) { | 
|  | SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); | 
|  | Prefixes.push_back(P); | 
|  | } | 
|  |  | 
|  | unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue S = DAG.getConstant(HwLen - InpLen*BitBytes, dl, MVT::i32); | 
|  | SDValue Res = getZero(dl, ByteTy, DAG); | 
|  | for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { | 
|  | Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); | 
|  | Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); | 
|  | } | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | // Change the type of the extracted element to i32. | 
|  | SDValue VecV = Op.getOperand(0); | 
|  | MVT ElemTy = ty(VecV).getVectorElementType(); | 
|  | const SDLoc &dl(Op); | 
|  | SDValue IdxV = Op.getOperand(1); | 
|  | if (ElemTy == MVT::i1) | 
|  | return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); | 
|  |  | 
|  | return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | const SDLoc &dl(Op); | 
|  | MVT VecTy = ty(Op); | 
|  | SDValue VecV = Op.getOperand(0); | 
|  | SDValue ValV = Op.getOperand(1); | 
|  | SDValue IdxV = Op.getOperand(2); | 
|  | MVT ElemTy = ty(VecV).getVectorElementType(); | 
|  | if (ElemTy == MVT::i1) | 
|  | return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); | 
|  |  | 
|  | if (ElemTy == MVT::f16) { | 
|  | SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | 
|  | tyVector(VecTy, MVT::i16), | 
|  | DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV), | 
|  | DAG.getBitcast(MVT::i16, ValV), IdxV); | 
|  | return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); | 
|  | } | 
|  |  | 
|  | return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | SDValue SrcV = Op.getOperand(0); | 
|  | MVT SrcTy = ty(SrcV); | 
|  | MVT DstTy = ty(Op); | 
|  | SDValue IdxV = Op.getOperand(1); | 
|  | unsigned Idx = IdxV.getNode()->getAsZExtVal(); | 
|  | assert(Idx % DstTy.getVectorNumElements() == 0); | 
|  | (void)Idx; | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | MVT ElemTy = SrcTy.getVectorElementType(); | 
|  | if (ElemTy == MVT::i1) | 
|  | return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); | 
|  |  | 
|  | return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | // Idx does not need to be a constant. | 
|  | SDValue VecV = Op.getOperand(0); | 
|  | SDValue ValV = Op.getOperand(1); | 
|  | SDValue IdxV = Op.getOperand(2); | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | MVT VecTy = ty(VecV); | 
|  | MVT ElemTy = VecTy.getVectorElementType(); | 
|  | if (ElemTy == MVT::i1) | 
|  | return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); | 
|  |  | 
|  | return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Lower any-extends of boolean vectors to sign-extends, since they | 
|  | // translate directly to Q2V. Zero-extending could also be done equally | 
|  | // fast, but Q2V is used/recognized in more places. | 
|  | // For all other vectors, use zero-extend. | 
|  | MVT ResTy = ty(Op); | 
|  | SDValue InpV = Op.getOperand(0); | 
|  | MVT ElemTy = ty(InpV).getVectorElementType(); | 
|  | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | 
|  | return LowerHvxSignExt(Op, DAG); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { | 
|  | MVT ResTy = ty(Op); | 
|  | SDValue InpV = Op.getOperand(0); | 
|  | MVT ElemTy = ty(InpV).getVectorElementType(); | 
|  | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | 
|  | return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { | 
|  | MVT ResTy = ty(Op); | 
|  | SDValue InpV = Op.getOperand(0); | 
|  | MVT ElemTy = ty(InpV).getVectorElementType(); | 
|  | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | 
|  | return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): | 
|  | // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) | 
|  | const SDLoc &dl(Op); | 
|  | MVT ResTy = ty(Op); | 
|  | SDValue InpV = Op.getOperand(0); | 
|  | assert(ResTy == ty(InpV)); | 
|  |  | 
|  | // Calculate the vectors of 1 and bitwidth(x). | 
|  | MVT ElemTy = ty(InpV).getVectorElementType(); | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  |  | 
|  | SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
|  | DAG.getConstant(1, dl, MVT::i32)); | 
|  | SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
|  | DAG.getConstant(ElemWidth, dl, MVT::i32)); | 
|  | SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | 
|  | DAG.getAllOnesConstant(dl, MVT::i32)); | 
|  |  | 
|  | // Do not use DAG.getNOT, because that would create BUILD_VECTOR with | 
|  | // a BITCAST. Here we can skip the BITCAST (so we don't have to handle | 
|  | // it separately in custom combine or selection). | 
|  | SDValue A = DAG.getNode(ISD::AND, dl, ResTy, | 
|  | {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}), | 
|  | DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})}); | 
|  | return DAG.getNode(ISD::SUB, dl, ResTy, | 
|  | {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)}); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | MVT ResTy = ty(Op); | 
|  | assert(ResTy.getVectorElementType() == MVT::i32); | 
|  |  | 
|  | SDValue Vs = Op.getOperand(0); | 
|  | SDValue Vt = Op.getOperand(1); | 
|  |  | 
|  | SDVTList ResTys = DAG.getVTList(ResTy, ResTy); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI. | 
|  | if (Opc == ISD::MULHU) | 
|  | return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); | 
|  | if (Opc == ISD::MULHS) | 
|  | return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | Op.dump(&DAG); | 
|  | #endif | 
|  | llvm_unreachable("Unexpected mulh operation"); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | SDValue Vu = Op.getOperand(0); | 
|  | SDValue Vv = Op.getOperand(1); | 
|  |  | 
|  | // If the HI part is not used, convert it to a regular MUL. | 
|  | if (auto HiVal = Op.getValue(1); HiVal.use_empty()) { | 
|  | // Need to preserve the types and the number of values. | 
|  | SDValue Hi = DAG.getUNDEF(ty(HiVal)); | 
|  | SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv}); | 
|  | return DAG.getMergeValues({Lo, Hi}, dl); | 
|  | } | 
|  |  | 
|  | bool SignedVu = Opc == HexagonISD::SMUL_LOHI; | 
|  | bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI; | 
|  |  | 
|  | // Legal on HVX v62+, but lower it here because patterns can't handle multi- | 
|  | // valued nodes. | 
|  | if (Subtarget.useHVXV62Ops()) | 
|  | return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG); | 
|  |  | 
|  | if (Opc == HexagonISD::SMUL_LOHI) { | 
|  | // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI, | 
|  | // for other signedness LOHI is cheaper. | 
|  | if (auto LoVal = Op.getValue(0); LoVal.use_empty()) { | 
|  | SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG); | 
|  | SDValue Lo = DAG.getUNDEF(ty(LoVal)); | 
|  | return DAG.getMergeValues({Lo, Hi}, dl); | 
|  | } | 
|  | } | 
|  |  | 
|  | return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Val = Op.getOperand(0); | 
|  | MVT ResTy = ty(Op); | 
|  | MVT ValTy = ty(Val); | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) { | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); | 
|  | SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG); | 
|  | unsigned BitWidth = ResTy.getSizeInBits(); | 
|  |  | 
|  | if (BitWidth < 64) { | 
|  | SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32), | 
|  | dl, MVT::i32, DAG); | 
|  | if (BitWidth == 32) | 
|  | return W0; | 
|  | assert(BitWidth < 32u); | 
|  | return DAG.getZExtOrTrunc(W0, dl, ResTy); | 
|  | } | 
|  |  | 
|  | // The result is >= 64 bits. The only options are 64 or 128. | 
|  | assert(BitWidth == 64 || BitWidth == 128); | 
|  | SmallVector<SDValue,4> Words; | 
|  | for (unsigned i = 0; i != BitWidth/32; ++i) { | 
|  | SDValue W = extractHvxElementReg( | 
|  | VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG); | 
|  | Words.push_back(W); | 
|  | } | 
|  | SmallVector<SDValue,2> Combines; | 
|  | assert(Words.size() % 2 == 0); | 
|  | for (unsigned i = 0, e = Words.size(); i < e; i += 2) { | 
|  | SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG); | 
|  | Combines.push_back(C); | 
|  | } | 
|  |  | 
|  | if (BitWidth == 64) | 
|  | return Combines[0]; | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines); | 
|  | } | 
|  |  | 
|  | // Handle bitcast from i32, v2i16, and v4i8 to v32i1. | 
|  | // Splat the input into a 32-element i32 vector, then AND each element | 
|  | // with a unique bitmask to isolate individual bits. | 
|  | if (ResTy == MVT::v32i1 && | 
|  | (ValTy == MVT::i32 || ValTy == MVT::v2i16 || ValTy == MVT::v4i8) && | 
|  | Subtarget.useHVX128BOps()) { | 
|  | SDValue Val32 = Val; | 
|  | if (ValTy == MVT::v2i16 || ValTy == MVT::v4i8) | 
|  | Val32 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Val); | 
|  |  | 
|  | MVT VecTy = MVT::getVectorVT(MVT::i32, 32); | 
|  | SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Val32); | 
|  | SmallVector<SDValue, 32> Mask; | 
|  | for (unsigned i = 0; i < 32; ++i) | 
|  | Mask.push_back(DAG.getConstant(1ull << i, dl, MVT::i32)); | 
|  |  | 
|  | SDValue MaskVec = DAG.getBuildVector(VecTy, dl, Mask); | 
|  | SDValue Anded = DAG.getNode(ISD::AND, dl, VecTy, Splat, MaskVec); | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, Anded); | 
|  | } | 
|  |  | 
|  | if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) { | 
|  | // Handle bitcast from i128 -> v128i1 and i64 -> v64i1. | 
|  | unsigned BitWidth = ValTy.getSizeInBits(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | assert(BitWidth == HwLen); | 
|  |  | 
|  | MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8); | 
|  | SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val); | 
|  | // Splat each byte of Val 8 times. | 
|  | // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8] | 
|  | // where b0, b1,..., b15 are least to most significant bytes of I. | 
|  | SmallVector<SDValue, 128> Bytes; | 
|  | // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,... | 
|  | // These are bytes with the LSB rotated left with respect to their index. | 
|  | SmallVector<SDValue, 128> Tmp; | 
|  | for (unsigned I = 0; I != HwLen / 8; ++I) { | 
|  | SDValue Idx = DAG.getConstant(I, dl, MVT::i32); | 
|  | SDValue Byte = | 
|  | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx); | 
|  | for (unsigned J = 0; J != 8; ++J) { | 
|  | Bytes.push_back(Byte); | 
|  | Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp); | 
|  | SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG); | 
|  |  | 
|  | // Each Byte in the I2V will be set iff corresponding bit is set in Val. | 
|  | I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec}); | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V); | 
|  | } | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Sign- and zero-extends are legal. | 
|  | assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); | 
|  | return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op), | 
|  | Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const { | 
|  | MVT ResTy = ty(Op); | 
|  | if (ResTy.getVectorElementType() != MVT::i1) | 
|  | return Op; | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | unsigned VecLen = ResTy.getVectorNumElements(); | 
|  | assert(HwLen % VecLen == 0); | 
|  | unsigned ElemSize = HwLen / VecLen; | 
|  |  | 
|  | MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen); | 
|  | SDValue S = | 
|  | DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0), | 
|  | DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)), | 
|  | DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2))); | 
|  | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (SDValue S = getVectorShiftByInt(Op, DAG)) | 
|  | return S; | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert(Opc == ISD::FSHL || Opc == ISD::FSHR); | 
|  |  | 
|  | // Make sure the shift amount is within the range of the bitwidth | 
|  | // of the element type. | 
|  | SDValue A = Op.getOperand(0); | 
|  | SDValue B = Op.getOperand(1); | 
|  | SDValue S = Op.getOperand(2); | 
|  |  | 
|  | MVT InpTy = ty(A); | 
|  | MVT ElemTy = InpTy.getVectorElementType(); | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | unsigned ElemWidth = ElemTy.getSizeInBits(); | 
|  | bool IsLeft = Opc == ISD::FSHL; | 
|  |  | 
|  | // The expansion into regular shifts produces worse code for i8 and for | 
|  | // right shift of i32 on v65+. | 
|  | bool UseShifts = ElemTy != MVT::i8; | 
|  | if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32) | 
|  | UseShifts = false; | 
|  |  | 
|  | if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) { | 
|  | // If this is a funnel shift by a scalar, lower it into regular shifts. | 
|  | SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32); | 
|  | SDValue ModS = | 
|  | DAG.getNode(ISD::AND, dl, MVT::i32, | 
|  | {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask}); | 
|  | SDValue NegS = | 
|  | DAG.getNode(ISD::SUB, dl, MVT::i32, | 
|  | {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS}); | 
|  | SDValue IsZero = | 
|  | DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ); | 
|  | // FSHL A, B  =>  A <<  | B >>n | 
|  | // FSHR A, B  =>  A <<n | B >> | 
|  | SDValue Part1 = | 
|  | DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS}); | 
|  | SDValue Part2 = | 
|  | DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS}); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2}); | 
|  | // If the shift amount was 0, pick A or B, depending on the direction. | 
|  | // The opposite shift will also be by 0, so the "Or" will be incorrect. | 
|  | return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or}); | 
|  | } | 
|  |  | 
|  | SDValue Mask = DAG.getSplatBuildVector( | 
|  | InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy)); | 
|  |  | 
|  | unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR; | 
|  | return DAG.getNode(MOpc, dl, ty(Op), | 
|  | {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})}); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | unsigned IntNo = Op.getConstantOperandVal(0); | 
|  | SmallVector<SDValue> Ops(Op->ops()); | 
|  |  | 
|  | auto Swap = [&](SDValue P) { | 
|  | return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl); | 
|  | }; | 
|  |  | 
|  | switch (IntNo) { | 
|  | case Intrinsic::hexagon_V6_pred_typecast: | 
|  | case Intrinsic::hexagon_V6_pred_typecast_128B: { | 
|  | MVT ResTy = ty(Op), InpTy = ty(Ops[1]); | 
|  | if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) { | 
|  | if (ResTy == InpTy) | 
|  | return Ops[1]; | 
|  | return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::hexagon_V6_vmpyss_parts: | 
|  | case Intrinsic::hexagon_V6_vmpyss_parts_128B: | 
|  | return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(), | 
|  | {Ops[1], Ops[2]})); | 
|  | case Intrinsic::hexagon_V6_vmpyuu_parts: | 
|  | case Intrinsic::hexagon_V6_vmpyuu_parts_128B: | 
|  | return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(), | 
|  | {Ops[1], Ops[2]})); | 
|  | case Intrinsic::hexagon_V6_vmpyus_parts: | 
|  | case Intrinsic::hexagon_V6_vmpyus_parts_128B: { | 
|  | return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(), | 
|  | {Ops[1], Ops[2]})); | 
|  | } | 
|  | } // switch | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode()); | 
|  | SDValue Mask = MaskN->getMask(); | 
|  | SDValue Chain = MaskN->getChain(); | 
|  | SDValue Base = MaskN->getBasePtr(); | 
|  | auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen); | 
|  |  | 
|  | unsigned Opc = Op->getOpcode(); | 
|  | assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE); | 
|  |  | 
|  | if (Opc == ISD::MLOAD) { | 
|  | MVT ValTy = ty(Op); | 
|  | SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp); | 
|  | SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru(); | 
|  | if (isUndef(Thru)) | 
|  | return Load; | 
|  | SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru); | 
|  | return DAG.getMergeValues({VSel, Load.getValue(1)}, dl); | 
|  | } | 
|  |  | 
|  | // MSTORE | 
|  | // HVX only has aligned masked stores. | 
|  |  | 
|  | // TODO: Fold negations of the mask into the store. | 
|  | unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai; | 
|  | SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue(); | 
|  | SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base)); | 
|  |  | 
|  | if (MaskN->getAlign().value() % HwLen == 0) { | 
|  | SDValue Store = getInstr(StoreOpc, dl, MVT::Other, | 
|  | {Mask, Base, Offset0, Value, Chain}, DAG); | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp}); | 
|  | return Store; | 
|  | } | 
|  |  | 
|  | // Unaligned case. | 
|  | auto StoreAlign = [&](SDValue V, SDValue A) { | 
|  | SDValue Z = getZero(dl, ty(V), DAG); | 
|  | // TODO: use funnel shifts? | 
|  | // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the | 
|  | // upper half. | 
|  | SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG); | 
|  | SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG); | 
|  | return std::make_pair(LoV, HiV); | 
|  | }; | 
|  |  | 
|  | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
|  | SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask); | 
|  | VectorPair Tmp = StoreAlign(MaskV, Base); | 
|  | VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first), | 
|  | DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)}; | 
|  | VectorPair ValueU = StoreAlign(Value, Base); | 
|  |  | 
|  | SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32); | 
|  | SDValue StoreLo = | 
|  | getInstr(StoreOpc, dl, MVT::Other, | 
|  | {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG); | 
|  | SDValue StoreHi = | 
|  | getInstr(StoreOpc, dl, MVT::Other, | 
|  | {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG); | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp}); | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp}); | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi}); | 
|  | } | 
|  |  | 
|  | SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | // This conversion only applies to QFloat. IEEE extension from f16 to f32 | 
|  | // is legal (done via a pattern). | 
|  | assert(Subtarget.useHVXQFloatOps()); | 
|  |  | 
|  | assert(Op->getOpcode() == ISD::FP_EXTEND); | 
|  |  | 
|  | MVT VecTy = ty(Op); | 
|  | MVT ArgTy = ty(Op.getOperand(0)); | 
|  | const SDLoc &dl(Op); | 
|  | assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16); | 
|  |  | 
|  | SDValue F16Vec = Op.getOperand(0); | 
|  |  | 
|  | APFloat FloatVal = APFloat(1.0f); | 
|  | bool Ignored; | 
|  | FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); | 
|  | SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy); | 
|  | SDValue VmpyVec = | 
|  | getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG); | 
|  |  | 
|  | MVT HalfTy = typeSplit(VecTy).first; | 
|  | VectorPair Pair = opSplit(VmpyVec, dl, DAG); | 
|  | SDValue LoVec = | 
|  | getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG); | 
|  | SDValue HiVec = | 
|  | getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG); | 
|  |  | 
|  | SDValue ShuffVec = | 
|  | getInstr(Hexagon::V6_vshuffvdd, dl, VecTy, | 
|  | {HiVec, LoVec, DAG.getSignedConstant(-4, dl, MVT::i32)}, DAG); | 
|  |  | 
|  | return ShuffVec; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Catch invalid conversion ops (just in case). | 
|  | assert(Op.getOpcode() == ISD::FP_TO_SINT || | 
|  | Op.getOpcode() == ISD::FP_TO_UINT); | 
|  |  | 
|  | MVT ResTy = ty(Op); | 
|  | MVT FpTy = ty(Op.getOperand(0)).getVectorElementType(); | 
|  | MVT IntTy = ResTy.getVectorElementType(); | 
|  |  | 
|  | if (Subtarget.useHVXIEEEFPOps()) { | 
|  | // There are only conversions from f16. | 
|  | if (FpTy == MVT::f16) { | 
|  | // Other int types aren't legal in HVX, so we shouldn't see them here. | 
|  | assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); | 
|  | // Conversions to i8 and i16 are legal. | 
|  | if (IntTy == MVT::i8 || IntTy == MVT::i16) | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) | 
|  | return EqualizeFpIntConversion(Op, DAG); | 
|  |  | 
|  | return ExpandHvxFpToInt(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { | 
|  | // Catch invalid conversion ops (just in case). | 
|  | assert(Op.getOpcode() == ISD::SINT_TO_FP || | 
|  | Op.getOpcode() == ISD::UINT_TO_FP); | 
|  |  | 
|  | MVT ResTy = ty(Op); | 
|  | MVT IntTy = ty(Op.getOperand(0)).getVectorElementType(); | 
|  | MVT FpTy = ResTy.getVectorElementType(); | 
|  |  | 
|  | if (Subtarget.useHVXIEEEFPOps()) { | 
|  | // There are only conversions to f16. | 
|  | if (FpTy == MVT::f16) { | 
|  | // Other int types aren't legal in HVX, so we shouldn't see them here. | 
|  | assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); | 
|  | // i8, i16 -> f16 is legal. | 
|  | if (IntTy == MVT::i8 || IntTy == MVT::i16) | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) | 
|  | return EqualizeFpIntConversion(Op, DAG); | 
|  |  | 
|  | return ExpandHvxIntToFp(Op, DAG); | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::TypePair | 
|  | HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const { | 
|  | // Compare the widths of elements of the two types, and extend the narrower | 
|  | // type to match the with of the wider type. For vector types, apply this | 
|  | // to the element type. | 
|  | assert(Ty0.isVector() == Ty1.isVector()); | 
|  |  | 
|  | MVT ElemTy0 = Ty0.getScalarType(); | 
|  | MVT ElemTy1 = Ty1.getScalarType(); | 
|  |  | 
|  | unsigned Width0 = ElemTy0.getSizeInBits(); | 
|  | unsigned Width1 = ElemTy1.getSizeInBits(); | 
|  | unsigned MaxWidth = std::max(Width0, Width1); | 
|  |  | 
|  | auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) { | 
|  | if (ScalarTy.isInteger()) | 
|  | return MVT::getIntegerVT(Width); | 
|  | assert(ScalarTy.isFloatingPoint()); | 
|  | return MVT::getFloatingPointVT(Width); | 
|  | }; | 
|  |  | 
|  | MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth); | 
|  | MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth); | 
|  |  | 
|  | if (!Ty0.isVector()) { | 
|  | // Both types are scalars. | 
|  | return {WideETy0, WideETy1}; | 
|  | } | 
|  |  | 
|  | // Vector types. | 
|  | unsigned NumElem = Ty0.getVectorNumElements(); | 
|  | assert(NumElem == Ty1.getVectorNumElements()); | 
|  |  | 
|  | return {MVT::getVectorVT(WideETy0, NumElem), | 
|  | MVT::getVectorVT(WideETy1, NumElem)}; | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::TypePair | 
|  | HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const { | 
|  | // Compare the numbers of elements of two vector types, and widen the | 
|  | // narrower one to match the number of elements in the wider one. | 
|  | assert(Ty0.isVector() && Ty1.isVector()); | 
|  |  | 
|  | unsigned Len0 = Ty0.getVectorNumElements(); | 
|  | unsigned Len1 = Ty1.getVectorNumElements(); | 
|  | if (Len0 == Len1) | 
|  | return {Ty0, Ty1}; | 
|  |  | 
|  | unsigned MaxLen = std::max(Len0, Len1); | 
|  | return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen), | 
|  | MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)}; | 
|  | } | 
|  |  | 
|  | MVT | 
|  | HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const { | 
|  | EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty); | 
|  | assert(LegalTy.isSimple()); | 
|  | return LegalTy.getSimpleVT(); | 
|  | } | 
|  |  | 
|  | MVT | 
|  | HexagonTargetLowering::typeWidenToHvx(MVT Ty) const { | 
|  | unsigned HwWidth = 8 * Subtarget.getVectorLength(); | 
|  | assert(Ty.getSizeInBits() <= HwWidth); | 
|  | if (Ty.getSizeInBits() == HwWidth) | 
|  | return Ty; | 
|  |  | 
|  | MVT ElemTy = Ty.getScalarType(); | 
|  | return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::VectorPair | 
|  | HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B, | 
|  | const SDLoc &dl, bool Signed, SelectionDAG &DAG) const { | 
|  | // Compute A+B, return {A+B, O}, where O = vector predicate indicating | 
|  | // whether an overflow has occurred. | 
|  | MVT ResTy = ty(A); | 
|  | assert(ResTy == ty(B)); | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements()); | 
|  |  | 
|  | if (!Signed) { | 
|  | // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't | 
|  | // save any instructions. | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); | 
|  | SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT); | 
|  | return {Add, Ovf}; | 
|  | } | 
|  |  | 
|  | // Signed overflow has happened, if: | 
|  | // (A, B have the same sign) and (A+B has a different sign from either) | 
|  | // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); | 
|  | SDValue NotA = | 
|  | DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getAllOnesConstant(dl, ResTy)}); | 
|  | SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B}); | 
|  | SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B}); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1}); | 
|  | SDValue MSB = | 
|  | DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT); | 
|  | return {Add, MSB}; | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::VectorPair | 
|  | HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt, | 
|  | bool Signed, SelectionDAG &DAG) const { | 
|  | // Shift Val right by Amt bits, round the result to the nearest integer, | 
|  | // tie-break by rounding halves to even integer. | 
|  |  | 
|  | const SDLoc &dl(Val); | 
|  | MVT ValTy = ty(Val); | 
|  |  | 
|  | // This should also work for signed integers. | 
|  | // | 
|  | //   uint tmp0 = inp + ((1 << (Amt-1)) - 1); | 
|  | //   bool ovf = (inp > tmp0); | 
|  | //   uint rup = inp & (1 << (Amt+1)); | 
|  | // | 
|  | //   uint tmp1 = inp >> (Amt-1);    // tmp1 == tmp2 iff | 
|  | //   uint tmp2 = tmp0 >> (Amt-1);   // the Amt-1 lower bits were all 0 | 
|  | //   uint tmp3 = tmp2 + rup; | 
|  | //   uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1; | 
|  | unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits(); | 
|  | MVT ElemTy = MVT::getIntegerVT(ElemWidth); | 
|  | MVT IntTy = tyVector(ValTy, ElemTy); | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements()); | 
|  | unsigned ShRight = Signed ? ISD::SRA : ISD::SRL; | 
|  |  | 
|  | SDValue Inp = DAG.getBitcast(IntTy, Val); | 
|  | SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy); | 
|  |  | 
|  | SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1}); | 
|  | SDValue Zero = getZero(dl, IntTy, DAG); | 
|  | SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE); | 
|  | SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy); | 
|  | auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG); | 
|  |  | 
|  | SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy); | 
|  | SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1); | 
|  | SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1); | 
|  | SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup); | 
|  |  | 
|  | SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ); | 
|  | SDValue One = DAG.getConstant(1, dl, IntTy); | 
|  | SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One}); | 
|  | SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One}); | 
|  | SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4}); | 
|  | return {Mux, Ovf}; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(A); | 
|  | MVT PairTy = typeJoin({VecTy, VecTy}); | 
|  | assert(VecTy.getVectorElementType() == MVT::i32); | 
|  |  | 
|  | SDValue S16 = DAG.getConstant(16, dl, MVT::i32); | 
|  |  | 
|  | // mulhs(A,B) = | 
|  | //   = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32 | 
|  | //   = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16 | 
|  | //      + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32 | 
|  | //   = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32 | 
|  | // The low half of Lo(A)*Lo(B) will be discarded (it's not added to | 
|  | // anything, so it cannot produce any carry over to higher bits), | 
|  | // so everything in [] can be shifted by 16 without loss of precision. | 
|  | //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16 | 
|  | //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16 | 
|  | // The final additions need to make sure to properly maintain any carry- | 
|  | // out bits. | 
|  | // | 
|  | //                Hi(B) Lo(B) | 
|  | //                Hi(A) Lo(A) | 
|  | //               -------------- | 
|  | //                Lo(B)*Lo(A)  | T0 = V6_vmpyewuh(B,A) does this, | 
|  | //         Hi(B)*Lo(A)         |      + dropping the low 16 bits | 
|  | //         Hi(A)*Lo(B)   | T2 | 
|  | //  Hi(B)*Hi(A) | 
|  |  | 
|  | SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG); | 
|  | // T1 = get Hi(A) into low halves. | 
|  | SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG); | 
|  | // P0 = interleaved T1.h*B.uh (full precision product) | 
|  | SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG); | 
|  | // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B) | 
|  | SDValue T2 = LoHalf(P0, DAG); | 
|  | // We need to add T0+T2, recording the carry-out, which will be 1<<16 | 
|  | // added to the final sum. | 
|  | // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves | 
|  | SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG); | 
|  | // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves | 
|  | SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG); | 
|  | // T3 = full-precision(T0+T2) >> 16 | 
|  | // The low halves are added-unsigned, the high ones are added-signed. | 
|  | SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, | 
|  | {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG); | 
|  | SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG); | 
|  | // P3 = interleaved Hi(B)*Hi(A) (full precision), | 
|  | // which is now Lo(T1)*Lo(T4), so we want to keep the even product. | 
|  | SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG); | 
|  | SDValue T5 = LoHalf(P3, DAG); | 
|  | // Add: | 
|  | SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5}); | 
|  | return T6; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, | 
|  | bool SignedB, const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(A); | 
|  | MVT PairTy = typeJoin({VecTy, VecTy}); | 
|  | assert(VecTy.getVectorElementType() == MVT::i32); | 
|  |  | 
|  | SDValue S16 = DAG.getConstant(16, dl, MVT::i32); | 
|  |  | 
|  | if (SignedA && !SignedB) { | 
|  | // Make A:unsigned, B:signed. | 
|  | std::swap(A, B); | 
|  | std::swap(SignedA, SignedB); | 
|  | } | 
|  |  | 
|  | // Do halfword-wise multiplications for unsigned*unsigned product, then | 
|  | // add corrections for signed and unsigned*signed. | 
|  |  | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | // P0:lo = (uu) products of low halves of A and B, | 
|  | // P0:hi = (uu) products of high halves. | 
|  | SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG); | 
|  |  | 
|  | // Swap low/high halves in B | 
|  | SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, | 
|  | {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); | 
|  | SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG); | 
|  | // P1 = products of even/odd halfwords. | 
|  | // P1:lo = (uu) products of even(A.uh) * odd(B.uh) | 
|  | // P1:hi = (uu) products of odd(A.uh) * even(B.uh) | 
|  | SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG); | 
|  |  | 
|  | // P2:lo = low halves of P1:lo + P1:hi, | 
|  | // P2:hi = high halves of P1:lo + P1:hi. | 
|  | SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, | 
|  | {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG); | 
|  | // Still need to add the high halves of P0:lo to P2:lo | 
|  | SDValue T2 = | 
|  | getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG); | 
|  | SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2}); | 
|  |  | 
|  | // The high halves of T3 will contribute to the HI part of LOHI. | 
|  | SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, | 
|  | {HiHalf(P2, DAG), T3, S16}, DAG); | 
|  |  | 
|  | // The low halves of P2 need to be added to high halves of the LO part. | 
|  | Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy, | 
|  | {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4}); | 
|  |  | 
|  | if (SignedA) { | 
|  | assert(SignedB && "Signed A and unsigned B should have been inverted"); | 
|  |  | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
|  | SDValue Zero = getZero(dl, VecTy, DAG); | 
|  | SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | 
|  | SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | 
|  | SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero}); | 
|  | SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG); | 
|  | Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG); | 
|  | } else if (SignedB) { | 
|  | // Same correction as for mulhus: | 
|  | // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0) | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
|  | SDValue Zero = getZero(dl, VecTy, DAG); | 
|  | SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | 
|  | Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG); | 
|  | } else { | 
|  | assert(!SignedA && !SignedB); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues({Lo, Hi}, dl); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA, | 
|  | SDValue B, bool SignedB, | 
|  | const SDLoc &dl, | 
|  | SelectionDAG &DAG) const { | 
|  | MVT VecTy = ty(A); | 
|  | MVT PairTy = typeJoin({VecTy, VecTy}); | 
|  | assert(VecTy.getVectorElementType() == MVT::i32); | 
|  |  | 
|  | if (SignedA && !SignedB) { | 
|  | // Make A:unsigned, B:signed. | 
|  | std::swap(A, B); | 
|  | std::swap(SignedA, SignedB); | 
|  | } | 
|  |  | 
|  | // Do S*S first, then make corrections for U*S or U*U if needed. | 
|  | SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG); | 
|  | SDValue P1 = | 
|  | getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG); | 
|  | SDValue Lo = LoHalf(P1, DAG); | 
|  | SDValue Hi = HiHalf(P1, DAG); | 
|  |  | 
|  | if (!SignedB) { | 
|  | assert(!SignedA && "Signed A and unsigned B should have been inverted"); | 
|  | SDValue Zero = getZero(dl, VecTy, DAG); | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
|  |  | 
|  | // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0). | 
|  | // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)), | 
|  | //          (V6_vaddw (HiHalf (Muls64O $A, $B)), | 
|  | //                    (V6_vaddwq (V6_vgtw (V6_vd0), $B), | 
|  | //                               (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B), | 
|  | //                               $A))>; | 
|  | SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | 
|  | SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | 
|  | SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG); | 
|  | SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG); | 
|  | Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG); | 
|  | } else if (!SignedA) { | 
|  | SDValue Zero = getZero(dl, VecTy, DAG); | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | 
|  |  | 
|  | // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0). | 
|  | // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)), | 
|  | //          (V6_vaddwq (V6_vgtw (V6_vd0), $A), | 
|  | //                     (HiHalf (Muls64O $A, $B)), | 
|  | //                     $B)>; | 
|  | SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | 
|  | Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues({Lo, Hi}, dl); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | // Rewrite conversion between integer and floating-point in such a way that | 
|  | // the integer type is extended/narrowed to match the bitwidth of the | 
|  | // floating-point type, combined with additional integer-integer extensions | 
|  | // or narrowings to match the original input/result types. | 
|  | // E.g.  f32 -> i8  ==>  f32 -> i32 -> i8 | 
|  | // | 
|  | // The input/result types are not required to be legal, but if they are | 
|  | // legal, this function should not introduce illegal types. | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || | 
|  | Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); | 
|  |  | 
|  | SDValue Inp = Op.getOperand(0); | 
|  | MVT InpTy = ty(Inp); | 
|  | MVT ResTy = ty(Op); | 
|  |  | 
|  | if (InpTy == ResTy) | 
|  | return Op; | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP; | 
|  |  | 
|  | auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy); | 
|  | SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG); | 
|  | SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp); | 
|  | SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT); | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | MVT InpTy = ty(Op0); | 
|  | MVT ResTy = ty(Op); | 
|  | assert(InpTy.changeTypeToInteger() == ResTy); | 
|  |  | 
|  | // int32_t conv_f32_to_i32(uint32_t inp) { | 
|  | //   // s | exp8 | frac23 | 
|  | // | 
|  | //   int neg = (int32_t)inp < 0; | 
|  | // | 
|  | //   // "expm1" is the actual exponent minus 1: instead of "bias", subtract | 
|  | //   // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will | 
|  | //   // produce a large positive "expm1", which will result in max u/int. | 
|  | //   // In all IEEE formats, bias is the largest positive number that can be | 
|  | //   // represented in bias-width bits (i.e. 011..1). | 
|  | //   int32_t expm1 = (inp << 1) - 0x80000000; | 
|  | //   expm1 >>= 24; | 
|  | // | 
|  | //   // Always insert the "implicit 1". Subnormal numbers will become 0 | 
|  | //   // regardless. | 
|  | //   uint32_t frac = (inp << 8) | 0x80000000; | 
|  | // | 
|  | //   // "frac" is the fraction part represented as Q1.31. If it was | 
|  | //   // interpreted as uint32_t, it would be the fraction part multiplied | 
|  | //   // by 2^31. | 
|  | // | 
|  | //   // Calculate the amount of right shift, since shifting further to the | 
|  | //   // left would lose significant bits. Limit it to 32, because we want | 
|  | //   // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift | 
|  | //   // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift | 
|  | //   // left by 31). "rsh" can be negative. | 
|  | //   int32_t rsh = min(31 - (expm1 + 1), 32); | 
|  | // | 
|  | //   frac >>= rsh;   // rsh == 32 will produce 0 | 
|  | // | 
|  | //   // Everything up to this point is the same for conversion to signed | 
|  | //   // unsigned integer. | 
|  | // | 
|  | //   if (neg)                 // Only for signed int | 
|  | //     frac = -frac;          // | 
|  | //   if (rsh <= 0 && neg)     //   bound = neg ? 0x80000000 : 0x7fffffff | 
|  | //     frac = 0x80000000;     //   frac = rsh <= 0 ? bound : frac | 
|  | //   if (rsh <= 0 && !neg)    // | 
|  | //     frac = 0x7fffffff;     // | 
|  | // | 
|  | //   if (neg)                 // Only for unsigned int | 
|  | //     frac = 0;              // | 
|  | //   if (rsh < 0 && !neg)     //   frac = rsh < 0 ? 0x7fffffff : frac; | 
|  | //     frac = 0x7fffffff;     //   frac = neg ? 0 : frac; | 
|  | // | 
|  | //   return frac; | 
|  | // } | 
|  |  | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount()); | 
|  |  | 
|  | // Zero = V6_vd0(); | 
|  | // Neg = V6_vgtw(Zero, Inp); | 
|  | // One = V6_lvsplatw(1); | 
|  | // M80 = V6_lvsplatw(0x80000000); | 
|  | // Exp00 = V6_vaslwv(Inp, One); | 
|  | // Exp01 = V6_vsubw(Exp00, M80); | 
|  | // ExpM1 = V6_vasrw(Exp01, 24); | 
|  | // Frc00 = V6_vaslw(Inp, 8); | 
|  | // Frc01 = V6_vor(Frc00, M80); | 
|  | // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1); | 
|  | // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32)); | 
|  | // Frc02 = V6_vlsrwv(Frc01, Rsh01); | 
|  |  | 
|  | // if signed int: | 
|  | // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff)) | 
|  | // Pos = V6_vgtw(Rsh01, Zero); | 
|  | // Frc13 = V6_vsubw(Zero, Frc02); | 
|  | // Frc14 = V6_vmux(Neg, Frc13, Frc02); | 
|  | // Int = V6_vmux(Pos, Frc14, Bnd); | 
|  | // | 
|  | // if unsigned int: | 
|  | // Rsn = V6_vgtw(Zero, Rsh01) | 
|  | // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02) | 
|  | // Int = V6_vmux(Neg, Zero, Frc23) | 
|  |  | 
|  | auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy); | 
|  | unsigned ElemWidth = 1 + ExpWidth + FracWidth; | 
|  | assert((1ull << (ExpWidth - 1)) == (1 + ExpBias)); | 
|  |  | 
|  | SDValue Inp = DAG.getBitcast(ResTy, Op0); | 
|  | SDValue Zero = getZero(dl, ResTy, DAG); | 
|  | SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT); | 
|  | SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy); | 
|  | SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy); | 
|  | SDValue One = DAG.getConstant(1, dl, ResTy); | 
|  | SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One}); | 
|  | SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80}); | 
|  | SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy); | 
|  | SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE}); | 
|  |  | 
|  | SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy); | 
|  | SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW}); | 
|  | SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80}); | 
|  |  | 
|  | SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy); | 
|  | SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1}); | 
|  | SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy); | 
|  | SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW}); | 
|  | SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01}); | 
|  |  | 
|  | SDValue Int; | 
|  |  | 
|  | if (Opc == ISD::FP_TO_SINT) { | 
|  | SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F}); | 
|  | SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT); | 
|  | SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02}); | 
|  | SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02}); | 
|  | Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd}); | 
|  | } else { | 
|  | assert(Opc == ISD::FP_TO_UINT); | 
|  | SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT); | 
|  | SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02); | 
|  | Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23); | 
|  | } | 
|  |  | 
|  | return Int; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | MVT InpTy = ty(Op0); | 
|  | MVT ResTy = ty(Op); | 
|  | assert(ResTy.changeTypeToInteger() == InpTy); | 
|  |  | 
|  | // uint32_t vnoc1_rnd(int32_t w) { | 
|  | //   int32_t iszero = w == 0; | 
|  | //   int32_t isneg = w < 0; | 
|  | //   uint32_t u = __builtin_HEXAGON_A2_abs(w); | 
|  | // | 
|  | //   uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1; | 
|  | //   uint32_t frac0 = (uint64_t)u << norm_left; | 
|  | // | 
|  | //   // Rounding: | 
|  | //   uint32_t frac1 = frac0 + ((1 << 8) - 1); | 
|  | //   uint32_t renorm = (frac0 > frac1); | 
|  | //   uint32_t rup = (int)(frac0 << 22) < 0; | 
|  | // | 
|  | //   uint32_t frac2 = frac0 >> 8; | 
|  | //   uint32_t frac3 = frac1 >> 8; | 
|  | //   uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1; | 
|  | // | 
|  | //   int32_t exp = 32 - norm_left + renorm + 127; | 
|  | //   exp <<= 23; | 
|  | // | 
|  | //   uint32_t sign = 0x80000000 * isneg; | 
|  | //   uint32_t f = sign | exp | frac; | 
|  | //   return iszero ? 0 : f; | 
|  | // } | 
|  |  | 
|  | MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount()); | 
|  | bool Signed = Opc == ISD::SINT_TO_FP; | 
|  |  | 
|  | auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy); | 
|  | unsigned ElemWidth = 1 + ExpWidth + FracWidth; | 
|  |  | 
|  | SDValue Zero = getZero(dl, InpTy, DAG); | 
|  | SDValue One = DAG.getConstant(1, dl, InpTy); | 
|  | SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ); | 
|  | SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0; | 
|  | SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs); | 
|  | SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One}); | 
|  | SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft}); | 
|  |  | 
|  | auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG); | 
|  | if (Signed) { | 
|  | SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT); | 
|  | SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy); | 
|  | SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero}); | 
|  | Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac}); | 
|  | } | 
|  |  | 
|  | SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy); | 
|  | SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy); | 
|  | SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0}); | 
|  | SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft}); | 
|  | SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy, | 
|  | {Exp2, DAG.getConstant(FracWidth, dl, InpTy)}); | 
|  | SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3}); | 
|  | SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0}); | 
|  | SDValue Flt = DAG.getBitcast(ResTy, Flt1); | 
|  |  | 
|  | return Flt; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | unsigned TLOpc; | 
|  | switch (Opc) { | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | TLOpc = HexagonISD::TL_EXTEND; | 
|  | break; | 
|  | case ISD::TRUNCATE: | 
|  | TLOpc = HexagonISD::TL_TRUNCATE; | 
|  | break; | 
|  | #ifndef NDEBUG | 
|  | Op.dump(&DAG); | 
|  | #endif | 
|  | llvm_unreachable("Unexpected operator"); | 
|  | } | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0), | 
|  | DAG.getUNDEF(MVT::i128), // illegal type | 
|  | DAG.getConstant(Opc, dl, MVT::i32)); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(Op.getOpcode() == HexagonISD::TL_EXTEND || | 
|  | Op.getOpcode() == HexagonISD::TL_TRUNCATE); | 
|  | unsigned Opc = Op.getConstantOperandVal(2); | 
|  | return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0)); | 
|  | } | 
|  |  | 
|  | HexagonTargetLowering::VectorPair | 
|  | HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const { | 
|  | assert(!Op.isMachineOpcode()); | 
|  | SmallVector<SDValue, 2> OpsL, OpsH; | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | auto SplitVTNode = [&DAG, this](const VTSDNode *N) { | 
|  | MVT Ty = typeSplit(N->getVT().getSimpleVT()).first; | 
|  | SDValue TV = DAG.getValueType(Ty); | 
|  | return std::make_pair(TV, TV); | 
|  | }; | 
|  |  | 
|  | for (SDValue A : Op.getNode()->ops()) { | 
|  | auto [Lo, Hi] = | 
|  | ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A); | 
|  | // Special case for type operand. | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case HexagonISD::SSAT: | 
|  | case HexagonISD::USAT: | 
|  | if (const auto *N = dyn_cast<const VTSDNode>(A.getNode())) | 
|  | std::tie(Lo, Hi) = SplitVTNode(N); | 
|  | break; | 
|  | } | 
|  | OpsL.push_back(Lo); | 
|  | OpsH.push_back(Hi); | 
|  | } | 
|  |  | 
|  | MVT ResTy = ty(Op); | 
|  | MVT HalfTy = typeSplit(ResTy).first; | 
|  | SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL); | 
|  | SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH); | 
|  | return {L, H}; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { | 
|  | auto *MemN = cast<MemSDNode>(Op.getNode()); | 
|  |  | 
|  | MVT MemTy = MemN->getMemoryVT().getSimpleVT(); | 
|  | if (!isHvxPairTy(MemTy)) | 
|  | return Op; | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | MVT SingleTy = typeSplit(MemTy).first; | 
|  | SDValue Chain = MemN->getChain(); | 
|  | SDValue Base0 = MemN->getBasePtr(); | 
|  | SDValue Base1 = | 
|  | DAG.getMemBasePlusOffset(Base0, TypeSize::getFixed(HwLen), dl); | 
|  | unsigned MemOpc = MemN->getOpcode(); | 
|  |  | 
|  | MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; | 
|  | if (MachineMemOperand *MMO = MemN->getMemOperand()) { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE) | 
|  | ? (uint64_t)MemoryLocation::UnknownSize | 
|  | : HwLen; | 
|  | MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize); | 
|  | MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize); | 
|  | } | 
|  |  | 
|  | if (MemOpc == ISD::LOAD) { | 
|  | assert(cast<LoadSDNode>(Op)->isUnindexed()); | 
|  | SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0); | 
|  | SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1); | 
|  | return DAG.getMergeValues( | 
|  | { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1), | 
|  | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | Load0.getValue(1), Load1.getValue(1)) }, dl); | 
|  | } | 
|  | if (MemOpc == ISD::STORE) { | 
|  | assert(cast<StoreSDNode>(Op)->isUnindexed()); | 
|  | VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG); | 
|  | SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0); | 
|  | SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1); | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1); | 
|  | } | 
|  |  | 
|  | assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE); | 
|  |  | 
|  | auto MaskN = cast<MaskedLoadStoreSDNode>(Op); | 
|  | assert(MaskN->isUnindexed()); | 
|  | VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG); | 
|  | SDValue Offset = DAG.getUNDEF(MVT::i32); | 
|  |  | 
|  | if (MemOpc == ISD::MLOAD) { | 
|  | VectorPair Thru = | 
|  | opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG); | 
|  | SDValue MLoad0 = | 
|  | DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first, | 
|  | Thru.first, SingleTy, MOp0, ISD::UNINDEXED, | 
|  | ISD::NON_EXTLOAD, false); | 
|  | SDValue MLoad1 = | 
|  | DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second, | 
|  | Thru.second, SingleTy, MOp1, ISD::UNINDEXED, | 
|  | ISD::NON_EXTLOAD, false); | 
|  | return DAG.getMergeValues( | 
|  | { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1), | 
|  | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
|  | MLoad0.getValue(1), MLoad1.getValue(1)) }, dl); | 
|  | } | 
|  | if (MemOpc == ISD::MSTORE) { | 
|  | VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG); | 
|  | SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset, | 
|  | Masks.first, SingleTy, MOp0, | 
|  | ISD::UNINDEXED, false, false); | 
|  | SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset, | 
|  | Masks.second, SingleTy, MOp1, | 
|  | ISD::UNINDEXED, false, false); | 
|  | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1); | 
|  | } | 
|  |  | 
|  | std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG); | 
|  | llvm_unreachable(Name.c_str()); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | auto *LoadN = cast<LoadSDNode>(Op.getNode()); | 
|  | assert(LoadN->isUnindexed() && "Not widening indexed loads yet"); | 
|  | assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && | 
|  | "Not widening loads of i1 yet"); | 
|  |  | 
|  | SDValue Chain = LoadN->getChain(); | 
|  | SDValue Base = LoadN->getBasePtr(); | 
|  | SDValue Offset = DAG.getUNDEF(MVT::i32); | 
|  |  | 
|  | MVT ResTy = ty(Op); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | unsigned ResLen = ResTy.getStoreSize(); | 
|  | assert(ResLen < HwLen && "vsetq(v1) prerequisite"); | 
|  |  | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
|  | SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
|  | {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG); | 
|  |  | 
|  | MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen); | 
|  |  | 
|  | SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask, | 
|  | DAG.getUNDEF(LoadTy), LoadTy, MemOp, | 
|  | ISD::UNINDEXED, ISD::NON_EXTLOAD, false); | 
|  | SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG); | 
|  | return DAG.getMergeValues({Value, Load.getValue(1)}, dl); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | auto *StoreN = cast<StoreSDNode>(Op.getNode()); | 
|  | assert(StoreN->isUnindexed() && "Not widening indexed stores yet"); | 
|  | assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && | 
|  | "Not widening stores of i1 yet"); | 
|  |  | 
|  | SDValue Chain = StoreN->getChain(); | 
|  | SDValue Base = StoreN->getBasePtr(); | 
|  | SDValue Offset = DAG.getUNDEF(MVT::i32); | 
|  |  | 
|  | SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG); | 
|  | MVT ValueTy = ty(Value); | 
|  | unsigned ValueLen = ValueTy.getVectorNumElements(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  | assert(isPowerOf2_32(ValueLen)); | 
|  |  | 
|  | for (unsigned Len = ValueLen; Len < HwLen; ) { | 
|  | Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG); | 
|  | Len = ty(Value).getVectorNumElements(); // This is Len *= 2 | 
|  | } | 
|  | assert(ty(Value).getVectorNumElements() == HwLen);  // Paranoia | 
|  |  | 
|  | assert(ValueLen < HwLen && "vsetq(v1) prerequisite"); | 
|  | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | 
|  | SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | 
|  | {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen); | 
|  | return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value), | 
|  | MemOp, ISD::UNINDEXED, false, false); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const { | 
|  | const SDLoc &dl(Op); | 
|  | SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); | 
|  | MVT ElemTy = ty(Op0).getVectorElementType(); | 
|  | unsigned HwLen = Subtarget.getVectorLength(); | 
|  |  | 
|  | unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits(); | 
|  | assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen); | 
|  | MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen); | 
|  | if (!Subtarget.isHVXVectorType(WideOpTy, true)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG); | 
|  | SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG); | 
|  | EVT ResTy = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy); | 
|  | SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy, | 
|  | {WideOp0, WideOp1, Op.getOperand(2)}); | 
|  |  | 
|  | EVT RetTy = typeLegalize(ty(Op), DAG); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy, | 
|  | {SetCC, getZero(dl, MVT::i32, DAG)}); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | bool IsPairOp = isHvxPairTy(ty(Op)) || | 
|  | llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) { | 
|  | return isHvxPairTy(ty(V)); | 
|  | }); | 
|  |  | 
|  | if (IsPairOp) { | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::MLOAD: | 
|  | case ISD::MSTORE: | 
|  | return SplitHvxMemOp(Op, DAG); | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits()) | 
|  | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
|  | break; | 
|  | case ISD::ABS: | 
|  | case ISD::CTPOP: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTTZ: | 
|  | case ISD::MUL: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FMINIMUMNUM: | 
|  | case ISD::FMAXIMUMNUM: | 
|  | case ISD::MULHS: | 
|  | case ISD::MULHU: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SRA: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR: | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::SETCC: | 
|  | case ISD::VSELECT: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::SPLAT_VECTOR: | 
|  | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | // In general, sign- and zero-extends can't be split and still | 
|  | // be legal. The only exception is extending bool vectors. | 
|  | if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1) | 
|  | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG); | 
|  | case ISD::SPLAT_VECTOR:            return LowerHvxSplatVector(Op, DAG); | 
|  | case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG); | 
|  | case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG); | 
|  | case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG); | 
|  | case ISD::BITCAST:                 return LowerHvxBitcast(Op, DAG); | 
|  | case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG); | 
|  | case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG); | 
|  | case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG); | 
|  | case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG); | 
|  | case ISD::SELECT:                  return LowerHvxSelect(Op, DAG); | 
|  | case ISD::SRA: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL:                     return LowerHvxShift(Op, DAG); | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR:                    return LowerHvxFunnelShift(Op, DAG); | 
|  | case ISD::MULHS: | 
|  | case ISD::MULHU:                   return LowerHvxMulh(Op, DAG); | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI:               return LowerHvxMulLoHi(Op, DAG); | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); | 
|  | case ISD::SETCC: | 
|  | case ISD::INTRINSIC_VOID:          return Op; | 
|  | case ISD::INTRINSIC_WO_CHAIN:      return LowerHvxIntrinsic(Op, DAG); | 
|  | case ISD::MLOAD: | 
|  | case ISD::MSTORE:                  return LowerHvxMaskedOp(Op, DAG); | 
|  | // Unaligned loads will be handled by the default lowering. | 
|  | case ISD::LOAD:                    return SDValue(); | 
|  | case ISD::FP_EXTEND:               return LowerHvxFpExtend(Op, DAG); | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT:              return LowerHvxFpToInt(Op, DAG); | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP:              return LowerHvxIntToFp(Op, DAG); | 
|  |  | 
|  | // Special nodes: | 
|  | case HexagonISD::SMUL_LOHI: | 
|  | case HexagonISD::UMUL_LOHI: | 
|  | case HexagonISD::USMUL_LOHI:       return LowerHvxMulLoHi(Op, DAG); | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | Op.dumpr(&DAG); | 
|  | #endif | 
|  | llvm_unreachable("Unhandled HVX operation"); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) | 
|  | const { | 
|  | // Rewrite the extension/truncation/saturation op into steps where each | 
|  | // step changes the type widths by a factor of 2. | 
|  | // E.g.  i8 -> i16 remains unchanged, but i8 -> i32  ==>  i8 -> i16 -> i32. | 
|  | // | 
|  | // Some of the vector types in Op may not be legal. | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | switch (Opc) { | 
|  | case HexagonISD::SSAT: | 
|  | case HexagonISD::USAT: | 
|  | case HexagonISD::TL_EXTEND: | 
|  | case HexagonISD::TL_TRUNCATE: | 
|  | break; | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | llvm_unreachable("ISD:: ops will be auto-folded"); | 
|  | break; | 
|  | #ifndef NDEBUG | 
|  | Op.dump(&DAG); | 
|  | #endif | 
|  | llvm_unreachable("Unexpected operation"); | 
|  | } | 
|  |  | 
|  | SDValue Inp = Op.getOperand(0); | 
|  | MVT InpTy = ty(Inp); | 
|  | MVT ResTy = ty(Op); | 
|  |  | 
|  | unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits(); | 
|  | unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits(); | 
|  | assert(InpWidth != ResWidth); | 
|  |  | 
|  | if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth) | 
|  | return Op; | 
|  |  | 
|  | const SDLoc &dl(Op); | 
|  | unsigned NumElems = InpTy.getVectorNumElements(); | 
|  | assert(NumElems == ResTy.getVectorNumElements()); | 
|  |  | 
|  | auto repeatOp = [&](unsigned NewWidth, SDValue Arg) { | 
|  | MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems); | 
|  | switch (Opc) { | 
|  | case HexagonISD::SSAT: | 
|  | case HexagonISD::USAT: | 
|  | return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)}); | 
|  | case HexagonISD::TL_EXTEND: | 
|  | case HexagonISD::TL_TRUNCATE: | 
|  | return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)}); | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | SDValue S = Inp; | 
|  | if (InpWidth < ResWidth) { | 
|  | assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)); | 
|  | while (InpWidth * 2 <= ResWidth) | 
|  | S = repeatOp(InpWidth *= 2, S); | 
|  | } else { | 
|  | // InpWidth > ResWidth | 
|  | assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)); | 
|  | while (InpWidth / 2 >= ResWidth) | 
|  | S = repeatOp(InpWidth /= 2, S); | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue Inp0 = Op.getOperand(0); | 
|  | MVT InpTy = ty(Inp0); | 
|  | MVT ResTy = ty(Op); | 
|  | unsigned InpWidth = InpTy.getSizeInBits(); | 
|  | unsigned ResWidth = ResTy.getSizeInBits(); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) { | 
|  | // First, make sure that the narrower type is widened to HVX. | 
|  | // This may cause the result to be wider than what the legalizer | 
|  | // expects, so insert EXTRACT_SUBVECTOR to bring it back to the | 
|  | // desired type. | 
|  | auto [WInpTy, WResTy] = | 
|  | InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy) | 
|  | : typeWidenToWider(InpTy, typeWidenToHvx(ResTy)); | 
|  | SDValue W = appendUndef(Inp0, WInpTy, DAG); | 
|  | SDValue S; | 
|  | if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) { | 
|  | S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1), | 
|  | Op.getOperand(2)); | 
|  | } else { | 
|  | S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy)); | 
|  | } | 
|  | SDValue T = ExpandHvxResizeIntoSteps(S, DAG); | 
|  | return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG); | 
|  | } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) { | 
|  | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | 
|  | } else { | 
|  | assert(isTypeLegal(InpTy) && isTypeLegal(ResTy)); | 
|  | return RemoveTLWrapper(Op, DAG); | 
|  | } | 
|  | llvm_unreachable("Unexpected situation"); | 
|  | } | 
|  |  | 
|  | void | 
|  | HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | 
|  | unsigned Opc = N->getOpcode(); | 
|  | SDValue Op(N, 0); | 
|  | SDValue Inp0;   // Optional first argument. | 
|  | if (N->getNumOperands() > 0) | 
|  | Inp0 = Op.getOperand(0); | 
|  |  | 
|  | switch (Opc) { | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | if (Subtarget.isHVXElementType(ty(Op)) && | 
|  | Subtarget.isHVXElementType(ty(Inp0))) { | 
|  | Results.push_back(CreateTLWrapper(Op, DAG)); | 
|  | } | 
|  | break; | 
|  | case ISD::SETCC: | 
|  | if (shouldWidenToHvx(ty(Inp0), DAG)) { | 
|  | if (SDValue T = WidenHvxSetCC(Op, DAG)) | 
|  | Results.push_back(T); | 
|  | } | 
|  | break; | 
|  | case ISD::STORE: { | 
|  | if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) { | 
|  | SDValue Store = WidenHvxStore(Op, DAG); | 
|  | Results.push_back(Store); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::MLOAD: | 
|  | if (isHvxPairTy(ty(Op))) { | 
|  | SDValue S = SplitHvxMemOp(Op, DAG); | 
|  | assert(S->getOpcode() == ISD::MERGE_VALUES); | 
|  | Results.push_back(S.getOperand(0)); | 
|  | Results.push_back(S.getOperand(1)); | 
|  | } | 
|  | break; | 
|  | case ISD::MSTORE: | 
|  | if (isHvxPairTy(ty(Op->getOperand(1)))) {    // Stored value | 
|  | SDValue S = SplitHvxMemOp(Op, DAG); | 
|  | Results.push_back(S); | 
|  | } | 
|  | break; | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { | 
|  | SDValue T = EqualizeFpIntConversion(Op, DAG); | 
|  | Results.push_back(T); | 
|  | } | 
|  | break; | 
|  | case HexagonISD::SSAT: | 
|  | case HexagonISD::USAT: | 
|  | case HexagonISD::TL_EXTEND: | 
|  | case HexagonISD::TL_TRUNCATE: | 
|  | Results.push_back(LegalizeHvxResize(Op, DAG)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | 
|  | unsigned Opc = N->getOpcode(); | 
|  | SDValue Op(N, 0); | 
|  | SDValue Inp0;   // Optional first argument. | 
|  | if (N->getNumOperands() > 0) | 
|  | Inp0 = Op.getOperand(0); | 
|  |  | 
|  | switch (Opc) { | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | if (Subtarget.isHVXElementType(ty(Op)) && | 
|  | Subtarget.isHVXElementType(ty(Inp0))) { | 
|  | Results.push_back(CreateTLWrapper(Op, DAG)); | 
|  | } | 
|  | break; | 
|  | case ISD::SETCC: | 
|  | if (shouldWidenToHvx(ty(Op), DAG)) { | 
|  | if (SDValue T = WidenHvxSetCC(Op, DAG)) | 
|  | Results.push_back(T); | 
|  | } | 
|  | break; | 
|  | case ISD::LOAD: { | 
|  | if (shouldWidenToHvx(ty(Op), DAG)) { | 
|  | SDValue Load = WidenHvxLoad(Op, DAG); | 
|  | assert(Load->getOpcode() == ISD::MERGE_VALUES); | 
|  | Results.push_back(Load.getOperand(0)); | 
|  | Results.push_back(Load.getOperand(1)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: | 
|  | if (isHvxBoolTy(ty(Inp0))) { | 
|  | SDValue C = LowerHvxBitcast(Op, DAG); | 
|  | Results.push_back(C); | 
|  | } | 
|  | break; | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { | 
|  | SDValue T = EqualizeFpIntConversion(Op, DAG); | 
|  | Results.push_back(T); | 
|  | } | 
|  | break; | 
|  | case HexagonISD::SSAT: | 
|  | case HexagonISD::USAT: | 
|  | case HexagonISD::TL_EXTEND: | 
|  | case HexagonISD::TL_TRUNCATE: | 
|  | Results.push_back(LegalizeHvxResize(Op, DAG)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB | 
|  | // to extract-subvector (shuffle V, pick even, pick odd) | 
|  |  | 
|  | assert(Op.getOpcode() == ISD::TRUNCATE); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | const SDLoc &dl(Op); | 
|  |  | 
|  | if (Op.getOperand(0).getOpcode() == ISD::BITCAST) | 
|  | return SDValue(); | 
|  | SDValue Cast = Op.getOperand(0); | 
|  | SDValue Src = Cast.getOperand(0); | 
|  |  | 
|  | EVT TruncTy = Op.getValueType(); | 
|  | EVT CastTy = Cast.getValueType(); | 
|  | EVT SrcTy = Src.getValueType(); | 
|  | if (SrcTy.isSimple()) | 
|  | return SDValue(); | 
|  | if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType()) | 
|  | return SDValue(); | 
|  | unsigned SrcLen = SrcTy.getVectorNumElements(); | 
|  | unsigned CastLen = CastTy.getVectorNumElements(); | 
|  | if (2 * CastLen != SrcLen) | 
|  | return SDValue(); | 
|  |  | 
|  | SmallVector<int, 128> Mask(SrcLen); | 
|  | for (int i = 0; i != static_cast<int>(CastLen); ++i) { | 
|  | Mask[i] = 2 * i; | 
|  | Mask[i + CastLen] = 2 * i + 1; | 
|  | } | 
|  | SDValue Deal = | 
|  | DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask); | 
|  | return opSplit(Deal, dl, DAG).first; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::combineConcatVectorsBeforeLegal( | 
|  | SDValue Op, DAGCombinerInfo &DCI) const { | 
|  | // Fold | 
|  | //   concat (shuffle x, y, m1), (shuffle x, y, m2) | 
|  | // into | 
|  | //   shuffle (concat x, y), undef, m3 | 
|  | if (Op.getNumOperands() != 2) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | const SDLoc &dl(Op); | 
|  | SDValue V0 = Op.getOperand(0); | 
|  | SDValue V1 = Op.getOperand(1); | 
|  |  | 
|  | if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return SDValue(); | 
|  | if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) | 
|  | return SDValue(); | 
|  |  | 
|  | SetVector<SDValue> Order; | 
|  | Order.insert(V0.getOperand(0)); | 
|  | Order.insert(V0.getOperand(1)); | 
|  | Order.insert(V1.getOperand(0)); | 
|  | Order.insert(V1.getOperand(1)); | 
|  |  | 
|  | if (Order.size() > 2) | 
|  | return SDValue(); | 
|  |  | 
|  | // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the | 
|  | // result must be the same. | 
|  | EVT InpTy = V0.getValueType(); | 
|  | assert(InpTy.isVector()); | 
|  | unsigned InpLen = InpTy.getVectorNumElements(); | 
|  |  | 
|  | SmallVector<int, 128> LongMask; | 
|  | auto AppendToMask = [&](SDValue Shuffle) { | 
|  | auto *SV = cast<ShuffleVectorSDNode>(Shuffle.getNode()); | 
|  | ArrayRef<int> Mask = SV->getMask(); | 
|  | SDValue X = Shuffle.getOperand(0); | 
|  | SDValue Y = Shuffle.getOperand(1); | 
|  | for (int M : Mask) { | 
|  | if (M == -1) { | 
|  | LongMask.push_back(M); | 
|  | continue; | 
|  | } | 
|  | SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y; | 
|  | if (static_cast<unsigned>(M) >= InpLen) | 
|  | M -= InpLen; | 
|  |  | 
|  | int OutOffset = Order[0] == Src ? 0 : InpLen; | 
|  | LongMask.push_back(M + OutOffset); | 
|  | } | 
|  | }; | 
|  |  | 
|  | AppendToMask(V0); | 
|  | AppendToMask(V1); | 
|  |  | 
|  | SDValue C0 = Order.front(); | 
|  | SDValue C1 = Order.back();  // Can be same as front | 
|  | EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext()); | 
|  |  | 
|  | SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1}); | 
|  | return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) | 
|  | const { | 
|  | const SDLoc &dl(N); | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Op(N, 0); | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops(N->ops()); | 
|  |  | 
|  | if (Opc == ISD::TRUNCATE) | 
|  | return combineTruncateBeforeLegal(Op, DCI); | 
|  | if (Opc == ISD::CONCAT_VECTORS) | 
|  | return combineConcatVectorsBeforeLegal(Op, DCI); | 
|  |  | 
|  | if (DCI.isBeforeLegalizeOps()) | 
|  | return SDValue(); | 
|  |  | 
|  | switch (Opc) { | 
|  | case ISD::VSELECT: { | 
|  | // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) | 
|  | SDValue Cond = Ops[0]; | 
|  | if (Cond->getOpcode() == ISD::XOR) { | 
|  | SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); | 
|  | if (C1->getOpcode() == HexagonISD::QTRUE) | 
|  | return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case HexagonISD::V2Q: | 
|  | if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) { | 
|  | if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0))) | 
|  | return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op)) | 
|  | : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op)); | 
|  | } | 
|  | break; | 
|  | case HexagonISD::Q2V: | 
|  | if (Ops[0].getOpcode() == HexagonISD::QTRUE) | 
|  | return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op), | 
|  | DAG.getAllOnesConstant(dl, MVT::i32)); | 
|  | if (Ops[0].getOpcode() == HexagonISD::QFALSE) | 
|  | return getZero(dl, ty(Op), DAG); | 
|  | break; | 
|  | case HexagonISD::VINSERTW0: | 
|  | if (isUndef(Ops[1])) | 
|  | return Ops[0]; | 
|  | break; | 
|  | case HexagonISD::VROR: { | 
|  | if (Ops[0].getOpcode() == HexagonISD::VROR) { | 
|  | SDValue Vec = Ops[0].getOperand(0); | 
|  | SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1); | 
|  | SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1}); | 
|  | return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot}); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const { | 
|  | if (Subtarget.isHVXVectorType(Ty, true)) | 
|  | return false; | 
|  | auto Action = getPreferredHvxVectorAction(Ty); | 
|  | if (Action == TargetLoweringBase::TypeSplitVector) | 
|  | return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const { | 
|  | if (Subtarget.isHVXVectorType(Ty, true)) | 
|  | return false; | 
|  | auto Action = getPreferredHvxVectorAction(Ty); | 
|  | if (Action == TargetLoweringBase::TypeWidenVector) | 
|  | return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const { | 
|  | if (!Subtarget.useHVXOps()) | 
|  | return false; | 
|  | // If the type of any result, or any operand type are HVX vector types, | 
|  | // this is an HVX operation. | 
|  | auto IsHvxTy = [this](EVT Ty) { | 
|  | return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true); | 
|  | }; | 
|  | auto IsHvxOp = [this](SDValue Op) { | 
|  | return Op.getValueType().isSimple() && | 
|  | Subtarget.isHVXVectorType(ty(Op), true); | 
|  | }; | 
|  | if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp)) | 
|  | return true; | 
|  |  | 
|  | // Check if this could be an HVX operation after type widening. | 
|  | auto IsWidenedToHvx = [this, &DAG](SDValue Op) { | 
|  | if (!Op.getValueType().isSimple()) | 
|  | return false; | 
|  | MVT ValTy = ty(Op); | 
|  | return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG); | 
|  | }; | 
|  |  | 
|  | for (int i = 0, e = N->getNumValues(); i != e; ++i) { | 
|  | if (IsWidenedToHvx(SDValue(N, i))) | 
|  | return true; | 
|  | } | 
|  | return llvm::any_of(N->ops(), IsWidenedToHvx); | 
|  | } |