| //===-- Double-precision atan function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/atan.h" |
| #include "atan_utils.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/double_double.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/nearest_integer.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| // To compute atan(x), we divided it into the following cases: |
| // * |x| < 2^-26: |
| // Since |x| > atan(|x|) > |x| - |x|^3/3, and |x|^3/3 < ulp(x)/2, we simply |
| // return atan(x) = x - sign(x) * epsilon. |
| // * 2^-26 <= |x| < 1: |
| // We perform range reduction mod 2^-6 = 1/64 as follow: |
| // Let k = 2^(-6) * round(|x| * 2^6), then |
| // atan(x) = sign(x) * atan(|x|) |
| // = sign(x) * (atan(k) + atan((|x| - k) / (1 + |x|*k)). |
| // We store atan(k) in a look up table, and perform intermediate steps in |
| // double-double. |
| // * 1 < |x| < 2^53: |
| // First we perform the transformation y = 1/|x|: |
| // atan(x) = sign(x) * (pi/2 - atan(1/|x|)) |
| // = sign(x) * (pi/2 - atan(y)). |
| // Then we compute atan(y) using range reduction mod 2^-6 = 1/64 as the |
| // previous case: |
| // Let k = 2^(-6) * round(y * 2^6), then |
| // atan(y) = atan(k) + atan((y - k) / (1 + y*k)) |
| // = atan(k) + atan((1/|x| - k) / (1 + k/|x|) |
| // = atan(k) + atan((1 - k*|x|) / (|x| + k)). |
| // * |x| >= 2^53: |
| // Using the reciprocal transformation: |
| // atan(x) = sign(x) * (pi/2 - atan(1/|x|)). |
| // We have that: |
| // atan(1/|x|) <= 1/|x| <= 2^-53, |
| // which is smaller than ulp(pi/2) / 2. |
| // So we can return: |
| // atan(x) = sign(x) * (pi/2 - epsilon) |
| |
| LLVM_LIBC_FUNCTION(double, atan, (double x)) { |
| using FPBits = fputil::FPBits<double>; |
| |
| constexpr double IS_NEG[2] = {1.0, -1.0}; |
| constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54, |
| 0x1.921fb54442d18p0}; |
| constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54, |
| -0x1.921fb54442d18p0}; |
| |
| FPBits xbits(x); |
| bool x_sign = xbits.is_neg(); |
| xbits = xbits.abs(); |
| uint64_t x_abs = xbits.uintval(); |
| int x_exp = |
| static_cast<int>(x_abs >> FPBits::FRACTION_LEN) - FPBits::EXP_BIAS; |
| |
| // |x| < 1. |
| if (x_exp < 0) { |
| if (LIBC_UNLIKELY(x_exp < -26)) { |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| return x; |
| #else |
| if (x == 0.0) |
| return x; |
| // |x| < 2^-26 |
| return fputil::multiply_add(-0x1.0p-54, x, x); |
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| double x_d = xbits.get_val(); |
| // k = 2^-6 * round(2^6 * |x|) |
| double k = fputil::nearest_integer(0x1.0p6 * x_d); |
| unsigned idx = static_cast<unsigned>(k); |
| k *= 0x1.0p-6; |
| |
| // numerator = |x| - k |
| DoubleDouble num, den; |
| num.lo = 0.0; |
| num.hi = x_d - k; |
| |
| // denominator = 1 - k * |x| |
| den.hi = fputil::multiply_add(x_d, k, 1.0); |
| DoubleDouble prod = fputil::exact_mult(x_d, k); |
| // Using Dekker's 2SUM algorithm to compute the lower part. |
| den.lo = ((1.0 - den.hi) + prod.hi) + prod.lo; |
| |
| // x_r = (|x| - k) / (1 + k * |x|) |
| DoubleDouble x_r = fputil::div(num, den); |
| |
| // Approximating atan(x_r) using Taylor polynomial. |
| DoubleDouble p = atan_eval(x_r); |
| |
| // atan(x) = sign(x) * (atan(k) + atan(x_r)) |
| // = sign(x) * (atan(k) + atan( (|x| - k) / (1 + k * |x|) )) |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| return IS_NEG[x_sign] * (ATAN_I[idx].hi + (p.hi + (p.lo + ATAN_I[idx].lo))); |
| #else |
| |
| DoubleDouble c0 = fputil::exact_add(ATAN_I[idx].hi, p.hi); |
| double c1 = c0.lo + (ATAN_I[idx].lo + p.lo); |
| double r = IS_NEG[x_sign] * (c0.hi + c1); |
| |
| return r; |
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| // |x| >= 2^53 or x is NaN. |
| if (LIBC_UNLIKELY(x_exp >= 53)) { |
| // x is nan |
| if (xbits.is_nan()) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| return x; |
| } |
| // |x| >= 2^53 |
| // atan(x) ~ sign(x) * pi/2. |
| if (x_exp >= 53) |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| return IS_NEG[x_sign] * PI_OVER_2.hi; |
| #else |
| return fputil::multiply_add(IS_NEG[x_sign], PI_OVER_2.hi, |
| IS_NEG[x_sign] * PI_OVER_2.lo); |
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| double x_d = xbits.get_val(); |
| double y = 1.0 / x_d; |
| |
| // k = 2^-6 * round(2^6 / |x|) |
| double k = fputil::nearest_integer(0x1.0p6 * y); |
| unsigned idx = static_cast<unsigned>(k); |
| k *= 0x1.0p-6; |
| |
| // denominator = |x| + k |
| DoubleDouble den = fputil::exact_add(x_d, k); |
| // numerator = 1 - k * |x| |
| DoubleDouble num; |
| num.hi = fputil::multiply_add(-x_d, k, 1.0); |
| DoubleDouble prod = fputil::exact_mult(x_d, k); |
| // Using Dekker's 2SUM algorithm to compute the lower part. |
| num.lo = ((1.0 - num.hi) - prod.hi) - prod.lo; |
| |
| // x_r = (1/|x| - k) / (1 - k/|x|) |
| // = (1 - k * |x|) / (|x| - k) |
| DoubleDouble x_r = fputil::div(num, den); |
| |
| // Approximating atan(x_r) using Taylor polynomial. |
| DoubleDouble p = atan_eval(x_r); |
| |
| // atan(x) = sign(x) * (pi/2 - atan(1/|x|)) |
| // = sign(x) * (pi/2 - atan(k) - atan(x_r)) |
| // = (-sign(x)) * (-pi/2 + atan(k) + atan((1 - k*|x|)/(|x| - k))) |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| double lo_part = p.lo + ATAN_I[idx].lo + MPI_OVER_2.lo; |
| return IS_NEG[!x_sign] * (MPI_OVER_2.hi + ATAN_I[idx].hi + (p.hi + lo_part)); |
| #else |
| DoubleDouble c0 = fputil::exact_add(MPI_OVER_2.hi, ATAN_I[idx].hi); |
| DoubleDouble c1 = fputil::exact_add(c0.hi, p.hi); |
| double c2 = c1.lo + (c0.lo + p.lo) + (ATAN_I[idx].lo + MPI_OVER_2.lo); |
| |
| double r = IS_NEG[!x_sign] * (c1.hi + c2); |
| |
| return r; |
| #endif |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |