blob: cbca60536a3fd665ef8122e16a0628ea94c5d82a [file] [log] [blame] [edit]
//===-- Double-precision atan function ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/atan.h"
#include "atan_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
namespace LIBC_NAMESPACE_DECL {
// To compute atan(x), we divided it into the following cases:
// * |x| < 2^-26:
// Since |x| > atan(|x|) > |x| - |x|^3/3, and |x|^3/3 < ulp(x)/2, we simply
// return atan(x) = x - sign(x) * epsilon.
// * 2^-26 <= |x| < 1:
// We perform range reduction mod 2^-6 = 1/64 as follow:
// Let k = 2^(-6) * round(|x| * 2^6), then
// atan(x) = sign(x) * atan(|x|)
// = sign(x) * (atan(k) + atan((|x| - k) / (1 + |x|*k)).
// We store atan(k) in a look up table, and perform intermediate steps in
// double-double.
// * 1 < |x| < 2^53:
// First we perform the transformation y = 1/|x|:
// atan(x) = sign(x) * (pi/2 - atan(1/|x|))
// = sign(x) * (pi/2 - atan(y)).
// Then we compute atan(y) using range reduction mod 2^-6 = 1/64 as the
// previous case:
// Let k = 2^(-6) * round(y * 2^6), then
// atan(y) = atan(k) + atan((y - k) / (1 + y*k))
// = atan(k) + atan((1/|x| - k) / (1 + k/|x|)
// = atan(k) + atan((1 - k*|x|) / (|x| + k)).
// * |x| >= 2^53:
// Using the reciprocal transformation:
// atan(x) = sign(x) * (pi/2 - atan(1/|x|)).
// We have that:
// atan(1/|x|) <= 1/|x| <= 2^-53,
// which is smaller than ulp(pi/2) / 2.
// So we can return:
// atan(x) = sign(x) * (pi/2 - epsilon)
LLVM_LIBC_FUNCTION(double, atan, (double x)) {
using FPBits = fputil::FPBits<double>;
constexpr double IS_NEG[2] = {1.0, -1.0};
constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
0x1.921fb54442d18p0};
constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
-0x1.921fb54442d18p0};
FPBits xbits(x);
bool x_sign = xbits.is_neg();
xbits = xbits.abs();
uint64_t x_abs = xbits.uintval();
int x_exp =
static_cast<int>(x_abs >> FPBits::FRACTION_LEN) - FPBits::EXP_BIAS;
// |x| < 1.
if (x_exp < 0) {
if (LIBC_UNLIKELY(x_exp < -26)) {
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
return x;
#else
if (x == 0.0)
return x;
// |x| < 2^-26
return fputil::multiply_add(-0x1.0p-54, x, x);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
double x_d = xbits.get_val();
// k = 2^-6 * round(2^6 * |x|)
double k = fputil::nearest_integer(0x1.0p6 * x_d);
unsigned idx = static_cast<unsigned>(k);
k *= 0x1.0p-6;
// numerator = |x| - k
DoubleDouble num, den;
num.lo = 0.0;
num.hi = x_d - k;
// denominator = 1 - k * |x|
den.hi = fputil::multiply_add(x_d, k, 1.0);
DoubleDouble prod = fputil::exact_mult(x_d, k);
// Using Dekker's 2SUM algorithm to compute the lower part.
den.lo = ((1.0 - den.hi) + prod.hi) + prod.lo;
// x_r = (|x| - k) / (1 + k * |x|)
DoubleDouble x_r = fputil::div(num, den);
// Approximating atan(x_r) using Taylor polynomial.
DoubleDouble p = atan_eval(x_r);
// atan(x) = sign(x) * (atan(k) + atan(x_r))
// = sign(x) * (atan(k) + atan( (|x| - k) / (1 + k * |x|) ))
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
return IS_NEG[x_sign] * (ATAN_I[idx].hi + (p.hi + (p.lo + ATAN_I[idx].lo)));
#else
DoubleDouble c0 = fputil::exact_add(ATAN_I[idx].hi, p.hi);
double c1 = c0.lo + (ATAN_I[idx].lo + p.lo);
double r = IS_NEG[x_sign] * (c0.hi + c1);
return r;
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
// |x| >= 2^53 or x is NaN.
if (LIBC_UNLIKELY(x_exp >= 53)) {
// x is nan
if (xbits.is_nan()) {
if (xbits.is_signaling_nan()) {
fputil::raise_except_if_required(FE_INVALID);
return FPBits::quiet_nan().get_val();
}
return x;
}
// |x| >= 2^53
// atan(x) ~ sign(x) * pi/2.
if (x_exp >= 53)
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
return IS_NEG[x_sign] * PI_OVER_2.hi;
#else
return fputil::multiply_add(IS_NEG[x_sign], PI_OVER_2.hi,
IS_NEG[x_sign] * PI_OVER_2.lo);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
double x_d = xbits.get_val();
double y = 1.0 / x_d;
// k = 2^-6 * round(2^6 / |x|)
double k = fputil::nearest_integer(0x1.0p6 * y);
unsigned idx = static_cast<unsigned>(k);
k *= 0x1.0p-6;
// denominator = |x| + k
DoubleDouble den = fputil::exact_add(x_d, k);
// numerator = 1 - k * |x|
DoubleDouble num;
num.hi = fputil::multiply_add(-x_d, k, 1.0);
DoubleDouble prod = fputil::exact_mult(x_d, k);
// Using Dekker's 2SUM algorithm to compute the lower part.
num.lo = ((1.0 - num.hi) - prod.hi) - prod.lo;
// x_r = (1/|x| - k) / (1 - k/|x|)
// = (1 - k * |x|) / (|x| - k)
DoubleDouble x_r = fputil::div(num, den);
// Approximating atan(x_r) using Taylor polynomial.
DoubleDouble p = atan_eval(x_r);
// atan(x) = sign(x) * (pi/2 - atan(1/|x|))
// = sign(x) * (pi/2 - atan(k) - atan(x_r))
// = (-sign(x)) * (-pi/2 + atan(k) + atan((1 - k*|x|)/(|x| - k)))
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
double lo_part = p.lo + ATAN_I[idx].lo + MPI_OVER_2.lo;
return IS_NEG[!x_sign] * (MPI_OVER_2.hi + ATAN_I[idx].hi + (p.hi + lo_part));
#else
DoubleDouble c0 = fputil::exact_add(MPI_OVER_2.hi, ATAN_I[idx].hi);
DoubleDouble c1 = fputil::exact_add(c0.hi, p.hi);
double c2 = c1.lo + (c0.lo + p.lo) + (ATAN_I[idx].lo + MPI_OVER_2.lo);
double r = IS_NEG[!x_sign] * (c1.hi + c2);
return r;
#endif
}
} // namespace LIBC_NAMESPACE_DECL