| //===-- Double-precision acos function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/acos.h" |
| #include "asin_utils.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/double_double.h" |
| #include "src/__support/FPUtil/dyadic_float.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/sqrt.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| using DoubleDouble = fputil::DoubleDouble; |
| using Float128 = fputil::DyadicFloat<128>; |
| |
| LLVM_LIBC_FUNCTION(double, acos, (double x)) { |
| using FPBits = fputil::FPBits<double>; |
| |
| FPBits xbits(x); |
| int x_exp = xbits.get_biased_exponent(); |
| |
| // |x| < 0.5. |
| if (x_exp < FPBits::EXP_BIAS - 1) { |
| // |x| < 2^-55. |
| if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 55)) { |
| // When |x| < 2^-55, acos(x) = pi/2 |
| #if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) |
| return PI_OVER_TWO.hi; |
| #else |
| // Force the evaluation and prevent constant propagation so that it |
| // is rounded correctly for FE_UPWARD rounding mode. |
| return (xbits.abs().get_val() + 0x1.0p-160) + PI_OVER_TWO.hi; |
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| // acos(x) = pi/2 - asin(x) |
| // = pi/2 - x * P(x^2) |
| double p = asin_eval(x * x); |
| return PI_OVER_TWO.hi + fputil::multiply_add(-x, p, PI_OVER_TWO.lo); |
| #else |
| unsigned idx; |
| DoubleDouble x_sq = fputil::exact_mult(x, x); |
| double err = xbits.abs().get_val() * 0x1.0p-51; |
| // Polynomial approximation: |
| // p ~ asin(x)/x |
| DoubleDouble p = asin_eval(x_sq, idx, err); |
| // asin(x) ~ x * p |
| DoubleDouble r0 = fputil::exact_mult(x, p.hi); |
| // acos(x) = pi/2 - asin(x) |
| // ~ pi/2 - x * p |
| // = pi/2 - x * (p.hi + p.lo) |
| double r_hi = fputil::multiply_add(-x, p.hi, PI_OVER_TWO.hi); |
| // Use Dekker's 2SUM algorithm to compute the lower part. |
| double r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo; |
| r_lo = fputil::multiply_add(-x, p.lo, r_lo + PI_OVER_TWO.lo); |
| |
| // Ziv's accuracy test. |
| |
| double r_upper = r_hi + (r_lo + err); |
| double r_lower = r_hi + (r_lo - err); |
| |
| if (LIBC_LIKELY(r_upper == r_lower)) |
| return r_upper; |
| |
| // Ziv's accuracy test failed, perform 128-bit calculation. |
| |
| // Recalculate mod 1/64. |
| idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6)); |
| |
| // Get x^2 - idx/64 exactly. When FMA is available, double-double |
| // multiplication will be correct for all rounding modes. Otherwise we use |
| // Float128 directly. |
| Float128 x_f128(x); |
| |
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| // u = x^2 - idx/64 |
| Float128 u_hi( |
| fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi)); |
| Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo)); |
| #else |
| Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128); |
| Float128 u = fputil::quick_add( |
| x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6))); |
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| |
| Float128 p_f128 = asin_eval(u, idx); |
| // Flip the sign of x_f128 to perform subtraction. |
| x_f128.sign = x_f128.sign.negate(); |
| Float128 r = |
| fputil::quick_add(PI_OVER_TWO_F128, fputil::quick_mul(x_f128, p_f128)); |
| |
| return static_cast<double>(r); |
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| // |x| >= 0.5 |
| |
| double x_abs = xbits.abs().get_val(); |
| |
| // Maintaining the sign: |
| constexpr double SIGN[2] = {1.0, -1.0}; |
| double x_sign = SIGN[xbits.is_neg()]; |
| // |x| >= 1 |
| if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) { |
| // x = +-1, asin(x) = +- pi/2 |
| if (x_abs == 1.0) { |
| // x = 1, acos(x) = 0, |
| // x = -1, acos(x) = pi |
| return x == 1.0 ? 0.0 : fputil::multiply_add(-x_sign, PI.hi, PI.lo); |
| } |
| // |x| > 1, return NaN. |
| if (xbits.is_quiet_nan()) |
| return x; |
| |
| // Set domain error for non-NaN input. |
| if (!xbits.is_nan()) |
| fputil::set_errno_if_required(EDOM); |
| |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| // When |x| >= 0.5, we perform range reduction as follow: |
| // |
| // When 0.5 <= x < 1, let: |
| // y = acos(x) |
| // We will use the double angle formula: |
| // cos(2y) = 1 - 2 sin^2(y) |
| // and the complement angle identity: |
| // x = cos(y) = 1 - 2 sin^2 (y/2) |
| // So: |
| // sin(y/2) = sqrt( (1 - x)/2 ) |
| // And hence: |
| // y/2 = asin( sqrt( (1 - x)/2 ) ) |
| // Equivalently: |
| // acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) ) |
| // Let u = (1 - x)/2, then: |
| // acos(x) = 2 * asin( sqrt(u) ) |
| // Moreover, since 0.5 <= x < 1: |
| // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, |
| // And hence we can reuse the same polynomial approximation of asin(x) when |
| // |x| <= 0.5: |
| // acos(x) ~ 2 * sqrt(u) * P(u). |
| // |
| // When -1 < x <= -0.5, we reduce to the previous case using the formula: |
| // acos(x) = pi - acos(-x) |
| // = pi - 2 * asin ( sqrt( (1 + x)/2 ) ) |
| // ~ pi - 2 * sqrt(u) * P(u), |
| // where u = (1 - |x|)/2. |
| |
| // u = (1 - |x|)/2 |
| double u = fputil::multiply_add(x_abs, -0.5, 0.5); |
| // v_hi + v_lo ~ sqrt(u). |
| // Let: |
| // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) |
| // Then: |
| // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) |
| // ~ v_hi + h / (2 * v_hi) |
| // So we can use: |
| // v_lo = h / (2 * v_hi). |
| double v_hi = fputil::sqrt<double>(u); |
| |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| constexpr DoubleDouble CONST_TERM[2] = {{0.0, 0.0}, PI}; |
| DoubleDouble const_term = CONST_TERM[xbits.is_neg()]; |
| |
| double p = asin_eval(u); |
| double scale = x_sign * 2.0 * v_hi; |
| double r = const_term.hi + fputil::multiply_add(scale, p, const_term.lo); |
| return r; |
| #else |
| |
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| double h = fputil::multiply_add(v_hi, -v_hi, u); |
| #else |
| DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi); |
| double h = (u - v_hi_sq.hi) - v_hi_sq.lo; |
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| |
| // Scale v_lo and v_hi by 2 from the formula: |
| // vh = v_hi * 2 |
| // vl = 2*v_lo = h / v_hi. |
| double vh = v_hi * 2.0; |
| double vl = h / v_hi; |
| |
| // Polynomial approximation: |
| // p ~ asin(sqrt(u))/sqrt(u) |
| unsigned idx; |
| double err = vh * 0x1.0p-51; |
| |
| DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err); |
| |
| // Perform computations in double-double arithmetic: |
| // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) |
| DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p); |
| |
| double r_hi, r_lo; |
| if (xbits.is_pos()) { |
| r_hi = r0.hi; |
| r_lo = r0.lo; |
| } else { |
| DoubleDouble r = fputil::exact_add(PI.hi, -r0.hi); |
| r_hi = r.hi; |
| r_lo = (PI.lo - r0.lo) + r.lo; |
| } |
| |
| // Ziv's accuracy test. |
| |
| double r_upper = r_hi + (r_lo + err); |
| double r_lower = r_hi + (r_lo - err); |
| |
| if (LIBC_LIKELY(r_upper == r_lower)) |
| return r_upper; |
| |
| // Ziv's accuracy test failed, we redo the computations in Float128. |
| // Recalculate mod 1/64. |
| idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6)); |
| |
| // After the first step of Newton-Raphson approximating v = sqrt(u), we have |
| // that: |
| // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) |
| // v_lo = h / (2 * v_hi) |
| // With error: |
| // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) |
| // = -h^2 / (2*v * (sqrt(u) + v)^2). |
| // Since: |
| // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, |
| // we can add another correction term to (v_hi + v_lo) that is: |
| // v_ll = -h^2 / (2*v_hi * 4u) |
| // = -v_lo * (h / 4u) |
| // = -vl * (h / 8u), |
| // making the errors: |
| // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) |
| // well beyond 128-bit precision needed. |
| |
| // Get the rounding error of vl = 2 * v_lo ~ h / vh |
| // Get full product of vh * vl |
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi; |
| #else |
| DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl); |
| double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; |
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| // vll = 2*v_ll = -vl * (h / (4u)). |
| double t = h * (-0.25) / u; |
| double vll = fputil::multiply_add(vl, t, vl_lo); |
| // m_v = -(v_hi + v_lo + v_ll). |
| Float128 m_v = fputil::quick_add( |
| Float128(vh), fputil::quick_add(Float128(vl), Float128(vll))); |
| m_v.sign = xbits.sign(); |
| |
| // Perform computations in Float128: |
| // acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1, |
| // = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5. |
| Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u)); |
| |
| Float128 p_f128 = asin_eval(y_f128, idx); |
| Float128 r_f128 = fputil::quick_mul(m_v, p_f128); |
| |
| if (xbits.is_neg()) |
| r_f128 = fputil::quick_add(PI_F128, r_f128); |
| |
| return static_cast<double>(r_f128); |
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |