| //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/IR/SymbolTable.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/OpImplementation.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include <optional> |
| |
| using namespace mlir; |
| |
| /// Return true if the given operation is unknown and may potentially define a |
| /// symbol table. |
| static bool isPotentiallyUnknownSymbolTable(Operation *op) { |
| return op->getNumRegions() == 1 && !op->getDialect(); |
| } |
| |
| /// Returns the string name of the given symbol, or null if this is not a |
| /// symbol. |
| static StringAttr getNameIfSymbol(Operation *op) { |
| return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); |
| } |
| static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) { |
| return op->getAttrOfType<StringAttr>(symbolAttrNameId); |
| } |
| |
| /// Computes the nested symbol reference attribute for the symbol 'symbolName' |
| /// that are usable within the symbol table operations from 'symbol' as far up |
| /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. |
| /// Returns success if all references up to 'within' could be computed. |
| static LogicalResult |
| collectValidReferencesFor(Operation *symbol, StringAttr symbolName, |
| Operation *within, |
| SmallVectorImpl<SymbolRefAttr> &results) { |
| assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); |
| MLIRContext *ctx = symbol->getContext(); |
| |
| auto leafRef = FlatSymbolRefAttr::get(symbolName); |
| results.push_back(leafRef); |
| |
| // Early exit for when 'within' is the parent of 'symbol'. |
| Operation *symbolTableOp = symbol->getParentOp(); |
| if (within == symbolTableOp) |
| return success(); |
| |
| // Collect references until 'symbolTableOp' reaches 'within'. |
| SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); |
| StringAttr symbolNameId = |
| StringAttr::get(ctx, SymbolTable::getSymbolAttrName()); |
| do { |
| // Each parent of 'symbol' should define a symbol table. |
| if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) |
| return failure(); |
| // Each parent of 'symbol' should also be a symbol. |
| StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId); |
| if (!symbolTableName) |
| return failure(); |
| results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs)); |
| |
| symbolTableOp = symbolTableOp->getParentOp(); |
| if (symbolTableOp == within) |
| break; |
| nestedRefs.insert(nestedRefs.begin(), |
| FlatSymbolRefAttr::get(symbolTableName)); |
| } while (true); |
| return success(); |
| } |
| |
| /// Walk all of the operations within the given set of regions, without |
| /// traversing into any nested symbol tables. Stops walking if the result of the |
| /// callback is anything other than `WalkResult::advance`. |
| static std::optional<WalkResult> |
| walkSymbolTable(MutableArrayRef<Region> regions, |
| function_ref<std::optional<WalkResult>(Operation *)> callback) { |
| SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); |
| while (!worklist.empty()) { |
| for (Operation &op : worklist.pop_back_val()->getOps()) { |
| std::optional<WalkResult> result = callback(&op); |
| if (result != WalkResult::advance()) |
| return result; |
| |
| // If this op defines a new symbol table scope, we can't traverse. Any |
| // symbol references nested within 'op' are different semantically. |
| if (!op.hasTrait<OpTrait::SymbolTable>()) { |
| for (Region ®ion : op.getRegions()) |
| worklist.push_back(®ion); |
| } |
| } |
| } |
| return WalkResult::advance(); |
| } |
| |
| /// Walk all of the operations nested under, and including, the given operation, |
| /// without traversing into any nested symbol tables. Stops walking if the |
| /// result of the callback is anything other than `WalkResult::advance`. |
| static std::optional<WalkResult> |
| walkSymbolTable(Operation *op, |
| function_ref<std::optional<WalkResult>(Operation *)> callback) { |
| std::optional<WalkResult> result = callback(op); |
| if (result != WalkResult::advance() || op->hasTrait<OpTrait::SymbolTable>()) |
| return result; |
| return walkSymbolTable(op->getRegions(), callback); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable |
| //===----------------------------------------------------------------------===// |
| |
| /// Build a symbol table with the symbols within the given operation. |
| SymbolTable::SymbolTable(Operation *symbolTableOp) |
| : symbolTableOp(symbolTableOp) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && |
| "expected operation to have SymbolTable trait"); |
| assert(symbolTableOp->getNumRegions() == 1 && |
| "expected operation to have a single region"); |
| assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && |
| "expected operation to have a single block"); |
| |
| StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), |
| SymbolTable::getSymbolAttrName()); |
| for (auto &op : symbolTableOp->getRegion(0).front()) { |
| StringAttr name = getNameIfSymbol(&op, symbolNameId); |
| if (!name) |
| continue; |
| |
| auto inserted = symbolTable.insert({name, &op}); |
| (void)inserted; |
| assert(inserted.second && |
| "expected region to contain uniquely named symbol operations"); |
| } |
| } |
| |
| /// Look up a symbol with the specified name, returning null if no such name |
| /// exists. Names never include the @ on them. |
| Operation *SymbolTable::lookup(StringRef name) const { |
| return lookup(StringAttr::get(symbolTableOp->getContext(), name)); |
| } |
| Operation *SymbolTable::lookup(StringAttr name) const { |
| return symbolTable.lookup(name); |
| } |
| |
| void SymbolTable::remove(Operation *op) { |
| StringAttr name = getNameIfSymbol(op); |
| assert(name && "expected valid 'name' attribute"); |
| assert(op->getParentOp() == symbolTableOp && |
| "expected this operation to be inside of the operation with this " |
| "SymbolTable"); |
| |
| auto it = symbolTable.find(name); |
| if (it != symbolTable.end() && it->second == op) |
| symbolTable.erase(it); |
| } |
| |
| void SymbolTable::erase(Operation *symbol) { |
| remove(symbol); |
| symbol->erase(); |
| } |
| |
| // TODO: Consider if this should be renamed to something like insertOrUpdate |
| /// Insert a new symbol into the table and associated operation if not already |
| /// there and rename it as necessary to avoid collisions. Return the name of |
| /// the symbol after insertion as attribute. |
| StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { |
| // The symbol cannot be the child of another op and must be the child of the |
| // symbolTableOp after this. |
| // |
| // TODO: consider if SymbolTable's constructor should behave the same. |
| if (!symbol->getParentOp()) { |
| auto &body = symbolTableOp->getRegion(0).front(); |
| if (insertPt == Block::iterator()) { |
| insertPt = Block::iterator(body.end()); |
| } else { |
| assert((insertPt == body.end() || |
| insertPt->getParentOp() == symbolTableOp) && |
| "expected insertPt to be in the associated module operation"); |
| } |
| // Insert before the terminator, if any. |
| if (insertPt == Block::iterator(body.end()) && !body.empty() && |
| std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) |
| insertPt = std::prev(body.end()); |
| |
| body.getOperations().insert(insertPt, symbol); |
| } |
| assert(symbol->getParentOp() == symbolTableOp && |
| "symbol is already inserted in another op"); |
| |
| // Add this symbol to the symbol table, uniquing the name if a conflict is |
| // detected. |
| StringAttr name = getSymbolName(symbol); |
| if (symbolTable.insert({name, symbol}).second) |
| return name; |
| // If the symbol was already in the table, also return. |
| if (symbolTable.lookup(name) == symbol) |
| return name; |
| |
| MLIRContext *context = symbol->getContext(); |
| SmallString<128> nameBuffer = generateSymbolName<128>( |
| name.getValue(), |
| [&](StringRef candidate) { |
| return !symbolTable |
| .insert({StringAttr::get(context, candidate), symbol}) |
| .second; |
| }, |
| uniquingCounter); |
| setSymbolName(symbol, nameBuffer); |
| return getSymbolName(symbol); |
| } |
| |
| LogicalResult SymbolTable::rename(StringAttr from, StringAttr to) { |
| Operation *op = lookup(from); |
| return rename(op, to); |
| } |
| |
| LogicalResult SymbolTable::rename(Operation *op, StringAttr to) { |
| StringAttr from = getNameIfSymbol(op); |
| (void)from; |
| |
| assert(from && "expected valid 'name' attribute"); |
| assert(op->getParentOp() == symbolTableOp && |
| "expected this operation to be inside of the operation with this " |
| "SymbolTable"); |
| assert(lookup(from) == op && "current name does not resolve to op"); |
| assert(lookup(to) == nullptr && "new name already exists"); |
| |
| if (failed(SymbolTable::replaceAllSymbolUses(op, to, getOp()))) |
| return failure(); |
| |
| // Remove op with old name, change name, add with new name. The order is |
| // important here due to how `remove` and `insert` rely on the op name. |
| remove(op); |
| setSymbolName(op, to); |
| insert(op); |
| |
| assert(lookup(to) == op && "new name does not resolve to renamed op"); |
| assert(lookup(from) == nullptr && "old name still exists"); |
| |
| return success(); |
| } |
| |
| LogicalResult SymbolTable::rename(StringAttr from, StringRef to) { |
| auto toAttr = StringAttr::get(getOp()->getContext(), to); |
| return rename(from, toAttr); |
| } |
| |
| LogicalResult SymbolTable::rename(Operation *op, StringRef to) { |
| auto toAttr = StringAttr::get(getOp()->getContext(), to); |
| return rename(op, toAttr); |
| } |
| |
| FailureOr<StringAttr> |
| SymbolTable::renameToUnique(StringAttr oldName, |
| ArrayRef<SymbolTable *> others) { |
| |
| // Determine new name that is unique in all symbol tables. |
| StringAttr newName; |
| { |
| MLIRContext *context = oldName.getContext(); |
| SmallString<64> prefix = oldName.getValue(); |
| int uniqueId = 0; |
| prefix.push_back('_'); |
| while (true) { |
| newName = StringAttr::get(context, prefix + Twine(uniqueId++)); |
| auto lookupNewName = [&](SymbolTable *st) { return st->lookup(newName); }; |
| if (!lookupNewName(this) && llvm::none_of(others, lookupNewName)) { |
| break; |
| } |
| } |
| } |
| |
| // Apply renaming. |
| if (failed(rename(oldName, newName))) |
| return failure(); |
| return newName; |
| } |
| |
| FailureOr<StringAttr> |
| SymbolTable::renameToUnique(Operation *op, ArrayRef<SymbolTable *> others) { |
| StringAttr from = getNameIfSymbol(op); |
| assert(from && "expected valid 'name' attribute"); |
| return renameToUnique(from, others); |
| } |
| |
| /// Returns the name of the given symbol operation. |
| StringAttr SymbolTable::getSymbolName(Operation *symbol) { |
| StringAttr name = getNameIfSymbol(symbol); |
| assert(name && "expected valid symbol name"); |
| return name; |
| } |
| |
| /// Sets the name of the given symbol operation. |
| void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) { |
| symbol->setAttr(getSymbolAttrName(), name); |
| } |
| |
| /// Returns the visibility of the given symbol operation. |
| SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { |
| // If the attribute doesn't exist, assume public. |
| StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); |
| if (!vis) |
| return Visibility::Public; |
| |
| // Otherwise, switch on the string value. |
| return StringSwitch<Visibility>(vis.getValue()) |
| .Case("private", Visibility::Private) |
| .Case("nested", Visibility::Nested) |
| .Case("public", Visibility::Public); |
| } |
| /// Sets the visibility of the given symbol operation. |
| void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { |
| MLIRContext *ctx = symbol->getContext(); |
| |
| // If the visibility is public, just drop the attribute as this is the |
| // default. |
| if (vis == Visibility::Public) { |
| symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName())); |
| return; |
| } |
| |
| // Otherwise, update the attribute. |
| assert((vis == Visibility::Private || vis == Visibility::Nested) && |
| "unknown symbol visibility kind"); |
| |
| StringRef visName = vis == Visibility::Private ? "private" : "nested"; |
| symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); |
| } |
| |
| /// Returns the nearest symbol table from a given operation `from`. Returns |
| /// nullptr if no valid parent symbol table could be found. |
| Operation *SymbolTable::getNearestSymbolTable(Operation *from) { |
| assert(from && "expected valid operation"); |
| if (isPotentiallyUnknownSymbolTable(from)) |
| return nullptr; |
| |
| while (!from->hasTrait<OpTrait::SymbolTable>()) { |
| from = from->getParentOp(); |
| |
| // Check that this is a valid op and isn't an unknown symbol table. |
| if (!from || isPotentiallyUnknownSymbolTable(from)) |
| return nullptr; |
| } |
| return from; |
| } |
| |
| /// Walks all symbol table operations nested within, and including, `op`. For |
| /// each symbol table operation, the provided callback is invoked with the op |
| /// and a boolean signifying if the symbols within that symbol table can be |
| /// treated as if all uses are visible. `allSymUsesVisible` identifies whether |
| /// all of the symbol uses of symbols within `op` are visible. |
| void SymbolTable::walkSymbolTables( |
| Operation *op, bool allSymUsesVisible, |
| function_ref<void(Operation *, bool)> callback) { |
| bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); |
| if (isSymbolTable) { |
| SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); |
| allSymUsesVisible |= !symbol || symbol.isPrivate(); |
| } else { |
| // Otherwise if 'op' is not a symbol table, any nested symbols are |
| // guaranteed to be hidden. |
| allSymUsesVisible = true; |
| } |
| |
| for (Region ®ion : op->getRegions()) |
| for (Block &block : region) |
| for (Operation &nestedOp : block) |
| walkSymbolTables(&nestedOp, allSymUsesVisible, callback); |
| |
| // If 'op' had the symbol table trait, visit it after any nested symbol |
| // tables. |
| if (isSymbolTable) |
| callback(op, allSymUsesVisible); |
| } |
| |
| /// Returns the operation registered with the given symbol name with the |
| /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation |
| /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol |
| /// was found. |
| Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, |
| StringAttr symbol) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); |
| Region ®ion = symbolTableOp->getRegion(0); |
| if (region.empty()) |
| return nullptr; |
| |
| // Look for a symbol with the given name. |
| StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), |
| SymbolTable::getSymbolAttrName()); |
| for (auto &op : region.front()) |
| if (getNameIfSymbol(&op, symbolNameId) == symbol) |
| return &op; |
| return nullptr; |
| } |
| Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr symbol) { |
| SmallVector<Operation *, 4> resolvedSymbols; |
| if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) |
| return nullptr; |
| return resolvedSymbols.back(); |
| } |
| |
| /// Internal implementation of `lookupSymbolIn` that allows for specialized |
| /// implementations of the lookup function. |
| static LogicalResult lookupSymbolInImpl( |
| Operation *symbolTableOp, SymbolRefAttr symbol, |
| SmallVectorImpl<Operation *> &symbols, |
| function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); |
| |
| // Lookup the root reference for this symbol. |
| symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); |
| if (!symbolTableOp) |
| return failure(); |
| symbols.push_back(symbolTableOp); |
| |
| // If there are no nested references, just return the root symbol directly. |
| ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); |
| if (nestedRefs.empty()) |
| return success(); |
| |
| // Verify that the root is also a symbol table. |
| if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) |
| return failure(); |
| |
| // Otherwise, lookup each of the nested non-leaf references and ensure that |
| // each corresponds to a valid symbol table. |
| for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { |
| symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr()); |
| if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) |
| return failure(); |
| symbols.push_back(symbolTableOp); |
| } |
| symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); |
| return success(symbols.back()); |
| } |
| |
| LogicalResult |
| SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, |
| SmallVectorImpl<Operation *> &symbols) { |
| auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) { |
| return lookupSymbolIn(symbolTableOp, symbol); |
| }; |
| return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); |
| } |
| |
| /// Returns the operation registered with the given symbol name within the |
| /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns |
| /// nullptr if no valid symbol was found. |
| Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, |
| StringAttr symbol) { |
| Operation *symbolTableOp = getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, |
| SymbolRefAttr symbol) { |
| Operation *symbolTableOp = getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| |
| raw_ostream &mlir::operator<<(raw_ostream &os, |
| SymbolTable::Visibility visibility) { |
| switch (visibility) { |
| case SymbolTable::Visibility::Public: |
| return os << "public"; |
| case SymbolTable::Visibility::Private: |
| return os << "private"; |
| case SymbolTable::Visibility::Nested: |
| return os << "nested"; |
| } |
| llvm_unreachable("Unexpected visibility"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable Trait Types |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult detail::verifySymbolTable(Operation *op) { |
| if (op->getNumRegions() != 1) |
| return op->emitOpError() |
| << "Operations with a 'SymbolTable' must have exactly one region"; |
| if (!llvm::hasSingleElement(op->getRegion(0))) |
| return op->emitOpError() |
| << "Operations with a 'SymbolTable' must have exactly one block"; |
| |
| // Check that all symbols are uniquely named within child regions. |
| DenseMap<Attribute, Location> nameToOrigLoc; |
| for (auto &block : op->getRegion(0)) { |
| for (auto &op : block) { |
| // Check for a symbol name attribute. |
| auto nameAttr = |
| op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); |
| if (!nameAttr) |
| continue; |
| |
| // Try to insert this symbol into the table. |
| auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); |
| if (!it.second) |
| return op.emitError() |
| .append("redefinition of symbol named '", nameAttr.getValue(), "'") |
| .attachNote(it.first->second) |
| .append("see existing symbol definition here"); |
| } |
| } |
| |
| // Verify any nested symbol user operations. |
| SymbolTableCollection symbolTable; |
| auto verifySymbolUserFn = [&](Operation *op) -> std::optional<WalkResult> { |
| if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) |
| return WalkResult(user.verifySymbolUses(symbolTable)); |
| return WalkResult::advance(); |
| }; |
| |
| std::optional<WalkResult> result = |
| walkSymbolTable(op->getRegions(), verifySymbolUserFn); |
| return success(result && !result->wasInterrupted()); |
| } |
| |
| LogicalResult detail::verifySymbol(Operation *op) { |
| // Verify the name attribute. |
| if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) |
| return op->emitOpError() << "requires string attribute '" |
| << mlir::SymbolTable::getSymbolAttrName() << "'"; |
| |
| // Verify the visibility attribute. |
| if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { |
| StringAttr visStrAttr = llvm::dyn_cast<StringAttr>(vis); |
| if (!visStrAttr) |
| return op->emitOpError() << "requires visibility attribute '" |
| << mlir::SymbolTable::getVisibilityAttrName() |
| << "' to be a string attribute, but got " << vis; |
| |
| if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, |
| visStrAttr.getValue())) |
| return op->emitOpError() |
| << "visibility expected to be one of [\"public\", \"private\", " |
| "\"nested\"], but got " |
| << visStrAttr; |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Use Lists |
| //===----------------------------------------------------------------------===// |
| |
| /// Walk all of the symbol references within the given operation, invoking the |
| /// provided callback for each found use. The callbacks takes the use of the |
| /// symbol. |
| static WalkResult |
| walkSymbolRefs(Operation *op, |
| function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { |
| return op->getAttrDictionary().walk<WalkOrder::PreOrder>( |
| [&](SymbolRefAttr symbolRef) { |
| if (callback({op, symbolRef}).wasInterrupted()) |
| return WalkResult::interrupt(); |
| |
| // Don't walk nested references. |
| return WalkResult::skip(); |
| }); |
| } |
| |
| /// Walk all of the uses, for any symbol, that are nested within the given |
| /// regions, invoking the provided callback for each. This does not traverse |
| /// into any nested symbol tables. |
| static std::optional<WalkResult> |
| walkSymbolUses(MutableArrayRef<Region> regions, |
| function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { |
| return walkSymbolTable(regions, |
| [&](Operation *op) -> std::optional<WalkResult> { |
| // Check that this isn't a potentially unknown symbol |
| // table. |
| if (isPotentiallyUnknownSymbolTable(op)) |
| return std::nullopt; |
| |
| return walkSymbolRefs(op, callback); |
| }); |
| } |
| /// Walk all of the uses, for any symbol, that are nested within the given |
| /// operation 'from', invoking the provided callback for each. This does not |
| /// traverse into any nested symbol tables. |
| static std::optional<WalkResult> |
| walkSymbolUses(Operation *from, |
| function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { |
| // If this operation has regions, and it, as well as its dialect, isn't |
| // registered then conservatively fail. The operation may define a |
| // symbol table, so we can't opaquely know if we should traverse to find |
| // nested uses. |
| if (isPotentiallyUnknownSymbolTable(from)) |
| return std::nullopt; |
| |
| // Walk the uses on this operation. |
| if (walkSymbolRefs(from, callback).wasInterrupted()) |
| return WalkResult::interrupt(); |
| |
| // Only recurse if this operation is not a symbol table. A symbol table |
| // defines a new scope, so we can't walk the attributes from within the symbol |
| // table op. |
| if (!from->hasTrait<OpTrait::SymbolTable>()) |
| return walkSymbolUses(from->getRegions(), callback); |
| return WalkResult::advance(); |
| } |
| |
| namespace { |
| /// This class represents a single symbol scope. A symbol scope represents the |
| /// set of operations nested within a symbol table that may reference symbols |
| /// within that table. A symbol scope does not contain the symbol table |
| /// operation itself, just its contained operations. A scope ends at leaf |
| /// operations or another symbol table operation. |
| struct SymbolScope { |
| /// Walk the symbol uses within this scope, invoking the given callback. |
| /// This variant is used when the callback type matches that expected by |
| /// 'walkSymbolUses'. |
| template <typename CallbackT, |
| std::enable_if_t<!std::is_same< |
| typename llvm::function_traits<CallbackT>::result_t, |
| void>::value> * = nullptr> |
| std::optional<WalkResult> walk(CallbackT cback) { |
| if (Region *region = llvm::dyn_cast_if_present<Region *>(limit)) |
| return walkSymbolUses(*region, cback); |
| return walkSymbolUses(cast<Operation *>(limit), cback); |
| } |
| /// This variant is used when the callback type matches a stripped down type: |
| /// void(SymbolTable::SymbolUse use) |
| template <typename CallbackT, |
| std::enable_if_t<std::is_same< |
| typename llvm::function_traits<CallbackT>::result_t, |
| void>::value> * = nullptr> |
| std::optional<WalkResult> walk(CallbackT cback) { |
| return walk([=](SymbolTable::SymbolUse use) { |
| return cback(use), WalkResult::advance(); |
| }); |
| } |
| |
| /// Walk all of the operations nested under the current scope without |
| /// traversing into any nested symbol tables. |
| template <typename CallbackT> |
| std::optional<WalkResult> walkSymbolTable(CallbackT &&cback) { |
| if (Region *region = llvm::dyn_cast_if_present<Region *>(limit)) |
| return ::walkSymbolTable(*region, cback); |
| return ::walkSymbolTable(cast<Operation *>(limit), cback); |
| } |
| |
| /// The representation of the symbol within this scope. |
| SymbolRefAttr symbol; |
| |
| /// The IR unit representing this scope. |
| llvm::PointerUnion<Operation *, Region *> limit; |
| }; |
| } // namespace |
| |
| /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. |
| static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, |
| Operation *limit) { |
| StringAttr symName = SymbolTable::getSymbolName(symbol); |
| assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); |
| |
| // Compute the ancestors of 'limit'. |
| SetVector<Operation *, SmallVector<Operation *, 4>, |
| SmallPtrSet<Operation *, 4>> |
| limitAncestors; |
| Operation *limitAncestor = limit; |
| do { |
| // Check to see if 'symbol' is an ancestor of 'limit'. |
| if (limitAncestor == symbol) { |
| // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr |
| // doesn't support parent references. |
| if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == |
| symbol->getParentOp()) |
| return {{SymbolRefAttr::get(symName), limit}}; |
| return {}; |
| } |
| |
| limitAncestors.insert(limitAncestor); |
| } while ((limitAncestor = limitAncestor->getParentOp())); |
| |
| // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. |
| Operation *commonAncestor = symbol->getParentOp(); |
| do { |
| if (limitAncestors.count(commonAncestor)) |
| break; |
| } while ((commonAncestor = commonAncestor->getParentOp())); |
| assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); |
| |
| // Compute the set of valid nested references for 'symbol' as far up to the |
| // common ancestor as possible. |
| SmallVector<SymbolRefAttr, 2> references; |
| bool collectedAllReferences = succeeded( |
| collectValidReferencesFor(symbol, symName, commonAncestor, references)); |
| |
| // Handle the case where the common ancestor is 'limit'. |
| if (commonAncestor == limit) { |
| SmallVector<SymbolScope, 2> scopes; |
| |
| // Walk each of the ancestors of 'symbol', calling the compute function for |
| // each one. |
| Operation *limitIt = symbol->getParentOp(); |
| for (size_t i = 0, e = references.size(); i != e; |
| ++i, limitIt = limitIt->getParentOp()) { |
| assert(limitIt->hasTrait<OpTrait::SymbolTable>()); |
| scopes.push_back({references[i], &limitIt->getRegion(0)}); |
| } |
| return scopes; |
| } |
| |
| // Otherwise, we just need the symbol reference for 'symbol' that will be |
| // used within 'limit'. This is the last reference in the list we computed |
| // above if we were able to collect all references. |
| if (!collectedAllReferences) |
| return {}; |
| return {{references.back(), limit}}; |
| } |
| static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, |
| Region *limit) { |
| auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); |
| |
| // If we collected some scopes to walk, make sure to constrain the one for |
| // limit to the specific region requested. |
| if (!scopes.empty()) |
| scopes.back().limit = limit; |
| return scopes; |
| } |
| static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol, |
| Region *limit) { |
| return {{SymbolRefAttr::get(symbol), limit}}; |
| } |
| |
| static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol, |
| Operation *limit) { |
| SmallVector<SymbolScope, 1> scopes; |
| auto symbolRef = SymbolRefAttr::get(symbol); |
| for (auto ®ion : limit->getRegions()) |
| scopes.push_back({symbolRef, ®ion}); |
| return scopes; |
| } |
| |
| /// Returns true if the given reference 'SubRef' is a sub reference of the |
| /// reference 'ref', i.e. 'ref' is a further qualified reference. |
| static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { |
| if (ref == subRef) |
| return true; |
| |
| // If the references are not pointer equal, check to see if `subRef` is a |
| // prefix of `ref`. |
| if (llvm::isa<FlatSymbolRefAttr>(ref) || |
| ref.getRootReference() != subRef.getRootReference()) |
| return false; |
| |
| auto refLeafs = ref.getNestedReferences(); |
| auto subRefLeafs = subRef.getNestedReferences(); |
| return subRefLeafs.size() < refLeafs.size() && |
| subRefLeafs == refLeafs.take_front(subRefLeafs.size()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::getSymbolUses |
| //===----------------------------------------------------------------------===// |
| |
| /// The implementation of SymbolTable::getSymbolUses below. |
| template <typename FromT> |
| static std::optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { |
| std::vector<SymbolTable::SymbolUse> uses; |
| auto walkFn = [&](SymbolTable::SymbolUse symbolUse) { |
| uses.push_back(symbolUse); |
| return WalkResult::advance(); |
| }; |
| auto result = walkSymbolUses(from, walkFn); |
| return result ? std::optional<SymbolTable::UseRange>(std::move(uses)) |
| : std::nullopt; |
| } |
| |
| /// Get an iterator range for all of the uses, for any symbol, that are nested |
| /// within the given operation 'from'. This does not traverse into any nested |
| /// symbol tables, and will also only return uses on 'from' if it does not |
| /// also define a symbol table. This is because we treat the region as the |
| /// boundary of the symbol table, and not the op itself. This function returns |
| /// std::nullopt if there are any unknown operations that may potentially be |
| /// symbol tables. |
| auto SymbolTable::getSymbolUses(Operation *from) -> std::optional<UseRange> { |
| return getSymbolUsesImpl(from); |
| } |
| auto SymbolTable::getSymbolUses(Region *from) -> std::optional<UseRange> { |
| return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::getSymbolUses |
| //===----------------------------------------------------------------------===// |
| |
| /// The implementation of SymbolTable::getSymbolUses below. |
| template <typename SymbolT, typename IRUnitT> |
| static std::optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, |
| IRUnitT *limit) { |
| std::vector<SymbolTable::SymbolUse> uses; |
| for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { |
| if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { |
| if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) |
| uses.push_back(symbolUse); |
| })) |
| return std::nullopt; |
| } |
| return SymbolTable::UseRange(std::move(uses)); |
| } |
| |
| /// Get all of the uses of the given symbol that are nested within the given |
| /// operation 'from', invoking the provided callback for each. This does not |
| /// traverse into any nested symbol tables. This function returns std::nullopt |
| /// if there are any unknown operations that may potentially be symbol tables. |
| auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from) |
| -> std::optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) |
| -> std::optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from) |
| -> std::optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) |
| -> std::optional<UseRange> { |
| return getSymbolUsesImpl(symbol, from); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::symbolKnownUseEmpty |
| //===----------------------------------------------------------------------===// |
| |
| /// The implementation of SymbolTable::symbolKnownUseEmpty below. |
| template <typename SymbolT, typename IRUnitT> |
| static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { |
| for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { |
| // Walk all of the symbol uses looking for a reference to 'symbol'. |
| if (scope.walk([&](SymbolTable::SymbolUse symbolUse) { |
| return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) |
| ? WalkResult::interrupt() |
| : WalkResult::advance(); |
| }) != WalkResult::advance()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Return if the given symbol is known to have no uses that are nested within |
| /// the given operation 'from'. This does not traverse into any nested symbol |
| /// tables. This function will also return false if there are any unknown |
| /// operations that may potentially be symbol tables. |
| bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { |
| return symbolKnownUseEmptyImpl(symbol, from); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable::replaceAllSymbolUses |
| //===----------------------------------------------------------------------===// |
| |
| /// Generates a new symbol reference attribute with a new leaf reference. |
| static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, |
| FlatSymbolRefAttr newLeafAttr) { |
| if (llvm::isa<FlatSymbolRefAttr>(oldAttr)) |
| return newLeafAttr; |
| auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); |
| nestedRefs.back() = newLeafAttr; |
| return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs); |
| } |
| |
| /// The implementation of SymbolTable::replaceAllSymbolUses below. |
| template <typename SymbolT, typename IRUnitT> |
| static LogicalResult |
| replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) { |
| // Generate a new attribute to replace the given attribute. |
| FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol); |
| for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { |
| SymbolRefAttr oldAttr = scope.symbol; |
| SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); |
| AttrTypeReplacer replacer; |
| replacer.addReplacement( |
| [&](SymbolRefAttr attr) -> std::pair<Attribute, WalkResult> { |
| // Regardless of the match, don't walk nested SymbolRefAttrs, we don't |
| // want to accidentally replace an inner reference. |
| if (attr == oldAttr) |
| return {newAttr, WalkResult::skip()}; |
| // Handle prefix matches. |
| if (isReferencePrefixOf(oldAttr, attr)) { |
| auto oldNestedRefs = oldAttr.getNestedReferences(); |
| auto nestedRefs = attr.getNestedReferences(); |
| if (oldNestedRefs.empty()) |
| return {SymbolRefAttr::get(newSymbol, nestedRefs), |
| WalkResult::skip()}; |
| |
| auto newNestedRefs = llvm::to_vector<4>(nestedRefs); |
| newNestedRefs[oldNestedRefs.size() - 1] = newLeafAttr; |
| return {SymbolRefAttr::get(attr.getRootReference(), newNestedRefs), |
| WalkResult::skip()}; |
| } |
| return {attr, WalkResult::skip()}; |
| }); |
| |
| auto walkFn = [&](Operation *op) -> std::optional<WalkResult> { |
| replacer.replaceElementsIn(op); |
| return WalkResult::advance(); |
| }; |
| if (!scope.walkSymbolTable(walkFn)) |
| return failure(); |
| } |
| return success(); |
| } |
| |
| /// Attempt to replace all uses of the given symbol 'oldSymbol' with the |
| /// provided symbol 'newSymbol' that are nested within the given operation |
| /// 'from'. This does not traverse into any nested symbol tables. If there are |
| /// any unknown operations that may potentially be symbol tables, no uses are |
| /// replaced and failure is returned. |
| LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, |
| StringAttr newSymbol, |
| Operation *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, |
| StringAttr newSymbol, |
| Operation *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, |
| StringAttr newSymbol, |
| Region *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, |
| StringAttr newSymbol, |
| Region *from) { |
| return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTableCollection |
| //===----------------------------------------------------------------------===// |
| |
| Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| StringAttr symbol) { |
| return getSymbolTable(symbolTableOp).lookup(symbol); |
| } |
| Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr name) { |
| SmallVector<Operation *, 4> symbols; |
| if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) |
| return nullptr; |
| return symbols.back(); |
| } |
| /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by |
| /// a given SymbolRefAttr. Returns failure if any of the nested references could |
| /// not be resolved. |
| LogicalResult |
| SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr name, |
| SmallVectorImpl<Operation *> &symbols) { |
| auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { |
| return lookupSymbolIn(symbolTableOp, symbol); |
| }; |
| return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); |
| } |
| |
| /// Returns the operation registered with the given symbol name within the |
| /// closest parent operation of, or including, 'from' with the |
| /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was |
| /// found. |
| Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, |
| StringAttr symbol) { |
| Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| Operation * |
| SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, |
| SymbolRefAttr symbol) { |
| Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); |
| return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; |
| } |
| |
| /// Lookup, or create, a symbol table for an operation. |
| SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { |
| auto it = symbolTables.try_emplace(op, nullptr); |
| if (it.second) |
| it.first->second = std::make_unique<SymbolTable>(op); |
| return *it.first->second; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LockedSymbolTableCollection |
| //===----------------------------------------------------------------------===// |
| |
| Operation *LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| StringAttr symbol) { |
| return getSymbolTable(symbolTableOp).lookup(symbol); |
| } |
| |
| Operation * |
| LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| FlatSymbolRefAttr symbol) { |
| return lookupSymbolIn(symbolTableOp, symbol.getAttr()); |
| } |
| |
| Operation *LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, |
| SymbolRefAttr name) { |
| SmallVector<Operation *> symbols; |
| if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) |
| return nullptr; |
| return symbols.back(); |
| } |
| |
| LogicalResult LockedSymbolTableCollection::lookupSymbolIn( |
| Operation *symbolTableOp, SymbolRefAttr name, |
| SmallVectorImpl<Operation *> &symbols) { |
| auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { |
| return lookupSymbolIn(symbolTableOp, symbol); |
| }; |
| return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); |
| } |
| |
| SymbolTable & |
| LockedSymbolTableCollection::getSymbolTable(Operation *symbolTableOp) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); |
| // Try to find an existing symbol table. |
| { |
| llvm::sys::SmartScopedReader<true> lock(mutex); |
| auto it = collection.symbolTables.find(symbolTableOp); |
| if (it != collection.symbolTables.end()) |
| return *it->second; |
| } |
| // Create a symbol table for the operation. Perform construction outside of |
| // the critical section. |
| auto symbolTable = std::make_unique<SymbolTable>(symbolTableOp); |
| // Insert the constructed symbol table. |
| llvm::sys::SmartScopedWriter<true> lock(mutex); |
| return *collection.symbolTables |
| .insert({symbolTableOp, std::move(symbolTable)}) |
| .first->second; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolUserMap |
| //===----------------------------------------------------------------------===// |
| |
| SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, |
| Operation *symbolTableOp) |
| : symbolTable(symbolTable) { |
| // Walk each of the symbol tables looking for discardable callgraph nodes. |
| SmallVector<Operation *> symbols; |
| auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { |
| for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { |
| auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); |
| assert(symbolUses && "expected uses to be valid"); |
| |
| for (const SymbolTable::SymbolUse &use : *symbolUses) { |
| symbols.clear(); |
| (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), |
| symbols); |
| for (Operation *symbolOp : symbols) |
| symbolToUsers[symbolOp].insert(use.getUser()); |
| } |
| } |
| }; |
| // We just set `allSymUsesVisible` to false here because it isn't necessary |
| // for building the user map. |
| SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, |
| walkFn); |
| } |
| |
| void SymbolUserMap::replaceAllUsesWith(Operation *symbol, |
| StringAttr newSymbolName) { |
| auto it = symbolToUsers.find(symbol); |
| if (it == symbolToUsers.end()) |
| return; |
| |
| // Replace the uses within the users of `symbol`. |
| for (Operation *user : it->second) |
| (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); |
| |
| // Move the current users of `symbol` to the new symbol if it is in the |
| // symbol table. |
| Operation *newSymbol = |
| symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); |
| if (newSymbol != symbol) { |
| // Transfer over the users to the new symbol. The reference to the old one |
| // is fetched again as the iterator is invalidated during the insertion. |
| auto newIt = symbolToUsers.try_emplace(newSymbol, SetVector<Operation *>{}); |
| auto oldIt = symbolToUsers.find(symbol); |
| assert(oldIt != symbolToUsers.end() && "missing old users list"); |
| if (newIt.second) |
| newIt.first->second = std::move(oldIt->second); |
| else |
| newIt.first->second.set_union(oldIt->second); |
| symbolToUsers.erase(oldIt); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visibility parsing implementation. |
| //===----------------------------------------------------------------------===// |
| |
| ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, |
| NamedAttrList &attrs) { |
| StringRef visibility; |
| if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) |
| return failure(); |
| |
| StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); |
| attrs.push_back(parser.getBuilder().getNamedAttr( |
| SymbolTable::getVisibilityAttrName(), visibilityAttr)); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Interfaces |
| //===----------------------------------------------------------------------===// |
| |
| /// Include the generated symbol interfaces. |
| #include "mlir/IR/SymbolInterfaces.cpp.inc" |