blob: 34150c4d130855f1121545a6d625d890aad3e332 [file] [log] [blame] [edit]
//===- OpToFuncCallLowering.h - GPU ops lowering to custom calls *- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_CONVERSION_GPUCOMMON_OPTOFUNCCALLLOWERING_H_
#define MLIR_CONVERSION_GPUCOMMON_OPTOFUNCCALLLOWERING_H_
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Builders.h"
namespace mlir {
namespace {
/// Detection trait tor the `getFastmath` instance method.
template <typename T>
using has_get_fastmath_t = decltype(std::declval<T>().getFastmath());
} // namespace
/// Rewriting that replaces SourceOp with a CallOp to `f32Func` or `f64Func` or
/// `f32ApproxFunc` or `f16Func` or `i32Type` depending on the element type and
/// the fastMathFlag of that Op, if present. The function declaration is added
/// in case it was not added before.
///
/// If the input values are of bf16 type (or f16 type if f16Func is empty), the
/// value is first casted to f32, the function called and then the result casted
/// back.
///
/// Example with NVVM:
/// %exp_f32 = math.exp %arg_f32 : f32
///
/// will be transformed into
/// llvm.call @__nv_expf(%arg_f32) : (f32) -> f32
///
/// If the fastMathFlag attribute of SourceOp is `afn` or `fast`, this Op lowers
/// to the approximate calculation function.
///
/// Also example with NVVM:
/// %exp_f32 = math.exp %arg_f32 fastmath<afn> : f32
///
/// will be transformed into
/// llvm.call @__nv_fast_expf(%arg_f32) : (f32) -> f32
///
/// Final example with NVVM:
/// %pow_f32 = math.fpowi %arg_f32, %arg_i32
///
/// will be transformed into
/// llvm.call @__nv_powif(%arg_f32, %arg_i32) : (f32, i32) -> f32
template <typename SourceOp>
struct OpToFuncCallLowering : public ConvertOpToLLVMPattern<SourceOp> {
public:
explicit OpToFuncCallLowering(const LLVMTypeConverter &lowering,
StringRef f32Func, StringRef f64Func,
StringRef f32ApproxFunc, StringRef f16Func,
StringRef i32Func = "",
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(lowering, benefit), f32Func(f32Func),
f64Func(f64Func), f32ApproxFunc(f32ApproxFunc), f16Func(f16Func),
i32Func(i32Func) {}
LogicalResult
matchAndRewrite(SourceOp op, typename SourceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
using LLVM::LLVMFuncOp;
static_assert(
std::is_base_of<OpTrait::OneResult<SourceOp>, SourceOp>::value,
"expected single result op");
bool isResultBool = op->getResultTypes().front().isInteger(1);
if constexpr (!std::is_base_of<OpTrait::SameOperandsAndResultType<SourceOp>,
SourceOp>::value) {
assert(op->getNumOperands() > 0 &&
"expected op to take at least one operand");
assert((op->getResultTypes().front() == op->getOperand(0).getType() ||
isResultBool) &&
"expected op with same operand and result types");
}
if (!op->template getParentOfType<FunctionOpInterface>()) {
return rewriter.notifyMatchFailure(
op, "expected op to be within a function region");
}
SmallVector<Value, 1> castedOperands;
for (Value operand : adaptor.getOperands())
castedOperands.push_back(maybeCast(operand, rewriter));
Type castedOperandType = castedOperands.front().getType();
// At ABI level, booleans are treated as i32.
Type resultType =
isResultBool ? rewriter.getIntegerType(32) : castedOperandType;
Type funcType = getFunctionType(resultType, castedOperands);
StringRef funcName = getFunctionName(castedOperandType, op);
if (funcName.empty())
return failure();
LLVMFuncOp funcOp = appendOrGetFuncOp(funcName, funcType, op);
auto callOp =
rewriter.create<LLVM::CallOp>(op->getLoc(), funcOp, castedOperands);
if (resultType == adaptor.getOperands().front().getType()) {
rewriter.replaceOp(op, {callOp.getResult()});
return success();
}
// Boolean result are mapping to i32 at the ABI level with zero values being
// interpreted as false and non-zero values being interpreted as true. Since
// there is no guarantee of a specific value being used to indicate true,
// compare for inequality with zero (rather than truncate or shift).
if (isResultBool) {
Value zero = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), rewriter.getIntegerType(32),
rewriter.getI32IntegerAttr(0));
Value truncated = rewriter.create<LLVM::ICmpOp>(
op->getLoc(), LLVM::ICmpPredicate::ne, callOp.getResult(), zero);
rewriter.replaceOp(op, {truncated});
return success();
}
assert(callOp.getResult().getType().isF32() &&
"only f32 types are supposed to be truncated back");
Value truncated = rewriter.create<LLVM::FPTruncOp>(
op->getLoc(), adaptor.getOperands().front().getType(),
callOp.getResult());
rewriter.replaceOp(op, {truncated});
return success();
}
Value maybeCast(Value operand, PatternRewriter &rewriter) const {
Type type = operand.getType();
if (!isa<Float16Type, BFloat16Type>(type))
return operand;
// If there's an f16 function, no need to cast f16 values.
if (!f16Func.empty() && isa<Float16Type>(type))
return operand;
return rewriter.create<LLVM::FPExtOp>(
operand.getLoc(), Float32Type::get(rewriter.getContext()), operand);
}
Type getFunctionType(Type resultType, ValueRange operands) const {
SmallVector<Type> operandTypes(operands.getTypes());
return LLVM::LLVMFunctionType::get(resultType, operandTypes);
}
LLVM::LLVMFuncOp appendOrGetFuncOp(StringRef funcName, Type funcType,
Operation *op) const {
using LLVM::LLVMFuncOp;
auto funcAttr = StringAttr::get(op->getContext(), funcName);
auto funcOp =
SymbolTable::lookupNearestSymbolFrom<LLVMFuncOp>(op, funcAttr);
if (funcOp)
return funcOp;
auto parentFunc = op->getParentOfType<FunctionOpInterface>();
assert(parentFunc && "expected there to be a parent function");
OpBuilder b(parentFunc);
return b.create<LLVMFuncOp>(op->getLoc(), funcName, funcType);
}
StringRef getFunctionName(Type type, SourceOp op) const {
bool useApprox = false;
if constexpr (llvm::is_detected<has_get_fastmath_t, SourceOp>::value) {
arith::FastMathFlags flag = op.getFastmath();
useApprox = ((uint32_t)arith::FastMathFlags::afn & (uint32_t)flag) &&
!f32ApproxFunc.empty();
}
if (isa<Float16Type>(type))
return f16Func;
if (isa<Float32Type>(type)) {
if (useApprox)
return f32ApproxFunc;
return f32Func;
}
if (isa<Float64Type>(type))
return f64Func;
if (type.isInteger(32))
return i32Func;
return "";
}
const std::string f32Func;
const std::string f64Func;
const std::string f32ApproxFunc;
const std::string f16Func;
const std::string i32Func;
};
} // namespace mlir
#endif // MLIR_CONVERSION_GPUCOMMON_OPTOFUNCCALLLOWERING_H_