| //===- AliasAnalysis.cpp - Alias Analysis for FIR ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Optimizer/Analysis/AliasAnalysis.h" |
| #include "flang/Optimizer/Dialect/FIROps.h" |
| #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| #include "flang/Optimizer/Dialect/FIRType.h" |
| #include "flang/Optimizer/Dialect/FortranVariableInterface.h" |
| #include "flang/Optimizer/HLFIR/HLFIROps.h" |
| #include "flang/Optimizer/Support/InternalNames.h" |
| #include "mlir/Analysis/AliasAnalysis.h" |
| #include "mlir/Dialect/OpenMP/OpenMPDialect.h" |
| #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/Value.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace mlir; |
| |
| #define DEBUG_TYPE "fir-alias-analysis" |
| |
| //===----------------------------------------------------------------------===// |
| // AliasAnalysis: alias |
| //===----------------------------------------------------------------------===// |
| |
| static fir::AliasAnalysis::Source::Attributes |
| getAttrsFromVariable(fir::FortranVariableOpInterface var) { |
| fir::AliasAnalysis::Source::Attributes attrs; |
| if (var.isTarget()) |
| attrs.set(fir::AliasAnalysis::Attribute::Target); |
| if (var.isPointer()) |
| attrs.set(fir::AliasAnalysis::Attribute::Pointer); |
| if (var.isIntentIn()) |
| attrs.set(fir::AliasAnalysis::Attribute::IntentIn); |
| |
| return attrs; |
| } |
| |
| static bool hasGlobalOpTargetAttr(mlir::Value v, fir::AddrOfOp op) { |
| auto globalOpName = |
| mlir::OperationName(fir::GlobalOp::getOperationName(), op->getContext()); |
| return fir::valueHasFirAttribute( |
| v, fir::GlobalOp::getTargetAttrName(globalOpName)); |
| } |
| |
| static bool isEvaluateInMemoryBlockArg(mlir::Value v) { |
| if (auto evalInMem = llvm::dyn_cast_or_null<hlfir::EvaluateInMemoryOp>( |
| v.getParentRegion()->getParentOp())) |
| return evalInMem.getMemory() == v; |
| return false; |
| } |
| |
| template <typename OMPTypeOp, typename DeclTypeOp> |
| static bool isPrivateArg(omp::BlockArgOpenMPOpInterface &argIface, |
| OMPTypeOp &op, DeclTypeOp &declOp) { |
| if (!op.getPrivateSyms().has_value()) |
| return false; |
| for (auto [opSym, blockArg] : |
| llvm::zip_equal(*op.getPrivateSyms(), argIface.getPrivateBlockArgs())) { |
| if (blockArg == declOp.getMemref()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| namespace fir { |
| |
| void AliasAnalysis::Source::print(llvm::raw_ostream &os) const { |
| if (auto v = llvm::dyn_cast<mlir::Value>(origin.u)) |
| os << v; |
| else if (auto gbl = llvm::dyn_cast<mlir::SymbolRefAttr>(origin.u)) |
| os << gbl; |
| os << " SourceKind: " << EnumToString(kind); |
| os << " Type: " << valueType << " "; |
| if (origin.isData) { |
| os << " following data "; |
| } else { |
| os << " following box reference "; |
| } |
| attributes.Dump(os, EnumToString); |
| } |
| |
| bool AliasAnalysis::isRecordWithPointerComponent(mlir::Type ty) { |
| auto eleTy = fir::dyn_cast_ptrEleTy(ty); |
| if (!eleTy) |
| return false; |
| // TO DO: Look for pointer components |
| return mlir::isa<fir::RecordType>(eleTy); |
| } |
| |
| bool AliasAnalysis::isPointerReference(mlir::Type ty) { |
| auto eleTy = fir::dyn_cast_ptrEleTy(ty); |
| if (!eleTy) |
| return false; |
| |
| return fir::isPointerType(eleTy) || mlir::isa<fir::PointerType>(eleTy); |
| } |
| |
| bool AliasAnalysis::Source::isTargetOrPointer() const { |
| return attributes.test(Attribute::Pointer) || |
| attributes.test(Attribute::Target); |
| } |
| |
| bool AliasAnalysis::Source::isDummyArgument() const { |
| if (auto v = origin.u.dyn_cast<mlir::Value>()) { |
| return fir::isDummyArgument(v); |
| } |
| return false; |
| } |
| |
| bool AliasAnalysis::Source::isData() const { return origin.isData; } |
| bool AliasAnalysis::Source::isBoxData() const { |
| return mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(valueType)) && |
| origin.isData; |
| } |
| |
| bool AliasAnalysis::Source::isFortranUserVariable() const { |
| if (!origin.instantiationPoint) |
| return false; |
| return llvm::TypeSwitch<mlir::Operation *, bool>(origin.instantiationPoint) |
| .template Case<fir::DeclareOp, hlfir::DeclareOp>([&](auto declOp) { |
| return fir::NameUniquer::deconstruct(declOp.getUniqName()).first == |
| fir::NameUniquer::NameKind::VARIABLE; |
| }) |
| .Default([&](auto op) { return false; }); |
| } |
| |
| bool AliasAnalysis::Source::mayBeDummyArgOrHostAssoc() const { |
| return kind != SourceKind::Allocate && kind != SourceKind::Global; |
| } |
| |
| bool AliasAnalysis::Source::mayBePtrDummyArgOrHostAssoc() const { |
| // Must alias like dummy arg (or HostAssoc). |
| if (!mayBeDummyArgOrHostAssoc()) |
| return false; |
| // Must be address of the dummy arg not of a dummy arg component. |
| if (isRecordWithPointerComponent(valueType)) |
| return false; |
| // Must be address *of* (not *in*) a pointer. |
| return attributes.test(Attribute::Pointer) && !isData(); |
| } |
| |
| bool AliasAnalysis::Source::mayBeActualArg() const { |
| return kind != SourceKind::Allocate; |
| } |
| |
| bool AliasAnalysis::Source::mayBeActualArgWithPtr( |
| const mlir::Value *val) const { |
| // Must not be local. |
| if (!mayBeActualArg()) |
| return false; |
| // Can be address *of* (not *in*) a pointer. |
| if (attributes.test(Attribute::Pointer) && !isData()) |
| return true; |
| // Can be address of a composite with a pointer component. |
| if (isRecordWithPointerComponent(val->getType())) |
| return true; |
| return false; |
| } |
| |
| AliasResult AliasAnalysis::alias(mlir::Value lhs, mlir::Value rhs) { |
| // A wrapper around alias(Source lhsSrc, Source rhsSrc, mlir::Value lhs, |
| // mlir::Value rhs) This allows a user to provide Source that may be obtained |
| // through other dialects |
| auto lhsSrc = getSource(lhs); |
| auto rhsSrc = getSource(rhs); |
| return alias(lhsSrc, rhsSrc, lhs, rhs); |
| } |
| |
| AliasResult AliasAnalysis::alias(Source lhsSrc, Source rhsSrc, mlir::Value lhs, |
| mlir::Value rhs) { |
| // TODO: alias() has to be aware of the function scopes. |
| // After MLIR inlining, the current implementation may |
| // not recognize non-aliasing entities. |
| bool approximateSource = lhsSrc.approximateSource || rhsSrc.approximateSource; |
| LLVM_DEBUG(llvm::dbgs() << "\nAliasAnalysis::alias\n"; |
| llvm::dbgs() << " lhs: " << lhs << "\n"; |
| llvm::dbgs() << " lhsSrc: " << lhsSrc << "\n"; |
| llvm::dbgs() << " rhs: " << rhs << "\n"; |
| llvm::dbgs() << " rhsSrc: " << rhsSrc << "\n";); |
| |
| // Indirect case currently not handled. Conservatively assume |
| // it aliases with everything |
| if (lhsSrc.kind >= SourceKind::Indirect || |
| rhsSrc.kind >= SourceKind::Indirect) { |
| LLVM_DEBUG(llvm::dbgs() << " aliasing because of indirect access\n"); |
| return AliasResult::MayAlias; |
| } |
| |
| if (lhsSrc.kind == rhsSrc.kind) { |
| // If the kinds and origins are the same, then lhs and rhs must alias unless |
| // either source is approximate. Approximate sources are for parts of the |
| // origin, but we don't have info here on which parts and whether they |
| // overlap, so we normally return MayAlias in that case. |
| if (lhsSrc.origin == rhsSrc.origin) { |
| LLVM_DEBUG(llvm::dbgs() |
| << " aliasing because same source kind and origin\n"); |
| if (approximateSource) |
| return AliasResult::MayAlias; |
| return AliasResult::MustAlias; |
| } |
| // If one value is the address of a composite, and if the other value is the |
| // address of a pointer/allocatable component of that composite, their |
| // origins compare unequal because the latter has !isData(). As for the |
| // address of any component vs. the address of the composite, a store to one |
| // can affect a load from the other, so the result should be MayAlias. To |
| // catch this case, we conservatively return MayAlias when one value is the |
| // address of a composite, the other value is non-data, and they have the |
| // same origin value. |
| // |
| // TODO: That logic does not check that the latter is actually a component |
| // of the former, so it can return MayAlias when unnecessary. For example, |
| // they might both be addresses of components of a larger composite. |
| // |
| // FIXME: Actually, we should generalize from isRecordWithPointerComponent |
| // to any composite because a component with !isData() is not always a |
| // pointer. However, Source::isRecordWithPointerComponent currently doesn't |
| // actually check for pointer components, so it's fine for now. |
| if (lhsSrc.origin.u == rhsSrc.origin.u && |
| ((isRecordWithPointerComponent(lhs.getType()) && !rhsSrc.isData()) || |
| (isRecordWithPointerComponent(rhs.getType()) && !lhsSrc.isData()))) { |
| LLVM_DEBUG(llvm::dbgs() |
| << " aliasing between composite and non-data component with " |
| << "same source kind and origin value\n"); |
| return AliasResult::MayAlias; |
| } |
| |
| // Two host associated accesses may overlap due to an equivalence. |
| if (lhsSrc.kind == SourceKind::HostAssoc) { |
| LLVM_DEBUG(llvm::dbgs() << " aliasing because of host association\n"); |
| return AliasResult::MayAlias; |
| } |
| } |
| |
| Source *src1, *src2; |
| mlir::Value *val1, *val2; |
| if (lhsSrc.kind < rhsSrc.kind) { |
| src1 = &lhsSrc; |
| src2 = &rhsSrc; |
| val1 = &lhs; |
| val2 = &rhs; |
| } else { |
| src1 = &rhsSrc; |
| src2 = &lhsSrc; |
| val1 = &rhs; |
| val2 = &lhs; |
| } |
| |
| if (src1->kind == SourceKind::Argument && |
| src2->kind == SourceKind::HostAssoc) { |
| // Treat the host entity as TARGET for the purpose of disambiguating |
| // it with a dummy access. It is required for this particular case: |
| // subroutine test |
| // integer :: x(10) |
| // call inner(x) |
| // contains |
| // subroutine inner(y) |
| // integer, target :: y(:) |
| // x(1) = y(1) |
| // end subroutine inner |
| // end subroutine test |
| // |
| // F18 15.5.2.13 (4) (b) allows 'x' and 'y' to address the same object. |
| // 'y' has an explicit TARGET attribute, but 'x' has neither TARGET |
| // nor POINTER. |
| src2->attributes.set(Attribute::Target); |
| } |
| |
| // Two TARGET/POINTERs may alias. The logic here focuses on data. Handling |
| // of non-data is included below. |
| if (src1->isTargetOrPointer() && src2->isTargetOrPointer() && |
| src1->isData() && src2->isData()) { |
| LLVM_DEBUG(llvm::dbgs() << " aliasing because of target or pointer\n"); |
| return AliasResult::MayAlias; |
| } |
| |
| // Aliasing for dummy arg with target attribute. |
| // |
| // The address of a dummy arg (or HostAssoc) may alias the address of a |
| // non-local (global or another dummy arg) when both have target attributes. |
| // If either is a composite, addresses of components may alias as well. |
| // |
| // The previous "if" calling isTargetOrPointer casts a very wide net and so |
| // reports MayAlias for many such cases that would otherwise be reported here. |
| // It specifically skips such cases where one or both values have !isData() |
| // (e.g., address *of* pointer/allocatable component vs. address of |
| // composite), so this "if" catches those cases. |
| if (src1->attributes.test(Attribute::Target) && |
| src2->attributes.test(Attribute::Target) && |
| ((src1->mayBeDummyArgOrHostAssoc() && src2->mayBeActualArg()) || |
| (src2->mayBeDummyArgOrHostAssoc() && src1->mayBeActualArg()))) { |
| LLVM_DEBUG(llvm::dbgs() |
| << " aliasing between targets where one is a dummy arg\n"); |
| return AliasResult::MayAlias; |
| } |
| |
| // Aliasing for dummy arg that is a pointer. |
| // |
| // The address of a pointer dummy arg (but not a pointer component of a dummy |
| // arg) may alias the address of either (1) a non-local pointer or (2) thus a |
| // non-local composite with a pointer component. A non-local might be a |
| // global or another dummy arg. The following is an example of the global |
| // composite case: |
| // |
| // module m |
| // type t |
| // real, pointer :: p |
| // end type |
| // type(t) :: a |
| // type(t) :: b |
| // contains |
| // subroutine test(p) |
| // real, pointer :: p |
| // p = 42 |
| // a = b |
| // print *, p |
| // end subroutine |
| // end module |
| // program main |
| // use m |
| // real, target :: x1 = 1 |
| // real, target :: x2 = 2 |
| // a%p => x1 |
| // b%p => x2 |
| // call test(a%p) |
| // end |
| // |
| // The dummy argument p is an alias for a%p, even for the purposes of pointer |
| // association during the assignment a = b. Thus, the program should print 2. |
| // |
| // The same is true when p is HostAssoc. For example, we might replace the |
| // test subroutine above with: |
| // |
| // subroutine test(p) |
| // real, pointer :: p |
| // call internal() |
| // contains |
| // subroutine internal() |
| // p = 42 |
| // a = b |
| // print *, p |
| // end subroutine |
| // end subroutine |
| if ((src1->mayBePtrDummyArgOrHostAssoc() && |
| src2->mayBeActualArgWithPtr(val2)) || |
| (src2->mayBePtrDummyArgOrHostAssoc() && |
| src1->mayBeActualArgWithPtr(val1))) { |
| LLVM_DEBUG(llvm::dbgs() |
| << " aliasing between pointer dummy arg and either pointer or " |
| << "composite with pointer component\n"); |
| return AliasResult::MayAlias; |
| } |
| |
| return AliasResult::NoAlias; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AliasAnalysis: getModRef |
| //===----------------------------------------------------------------------===// |
| |
| static bool isSavedLocal(const fir::AliasAnalysis::Source &src) { |
| if (auto symRef = llvm::dyn_cast<mlir::SymbolRefAttr>(src.origin.u)) { |
| auto [nameKind, deconstruct] = |
| fir::NameUniquer::deconstruct(symRef.getLeafReference().getValue()); |
| return nameKind == fir::NameUniquer::NameKind::VARIABLE && |
| !deconstruct.procs.empty(); |
| } |
| return false; |
| } |
| |
| static bool isCallToFortranUserProcedure(fir::CallOp call) { |
| // TODO: indirect calls are excluded by these checks. Maybe some attribute is |
| // needed to flag user calls in this case. |
| if (fir::hasBindcAttr(call)) |
| return true; |
| if (std::optional<mlir::SymbolRefAttr> callee = call.getCallee()) |
| return fir::NameUniquer::deconstruct(callee->getLeafReference().getValue()) |
| .first == fir::NameUniquer::NameKind::PROCEDURE; |
| return false; |
| } |
| |
| static ModRefResult getCallModRef(fir::CallOp call, mlir::Value var) { |
| // TODO: limit to Fortran functions?? |
| // 1. Detect variables that can be accessed indirectly. |
| fir::AliasAnalysis aliasAnalysis; |
| fir::AliasAnalysis::Source varSrc = aliasAnalysis.getSource(var); |
| // If the variable is not a user variable, we cannot safely assume that |
| // Fortran semantics apply (e.g., a bare alloca/allocmem result may very well |
| // be placed in an allocatable/pointer descriptor and escape). |
| |
| // All the logic below is based on Fortran semantics and only holds if this |
| // is a call to a procedure from the Fortran source and this is a variable |
| // from the Fortran source. Compiler generated temporaries or functions may |
| // not adhere to this semantic. |
| // TODO: add some opt-in or op-out mechanism for compiler generated temps. |
| // An example of something currently problematic is the allocmem generated for |
| // ALLOCATE of allocatable target. It currently does not have the target |
| // attribute, which would lead this analysis to believe it cannot escape. |
| if (!varSrc.isFortranUserVariable() || !isCallToFortranUserProcedure(call)) |
| return ModRefResult::getModAndRef(); |
| // Pointer and target may have been captured. |
| if (varSrc.isTargetOrPointer()) |
| return ModRefResult::getModAndRef(); |
| // Host associated variables may be addressed indirectly via an internal |
| // function call, whether the call is in the parent or an internal procedure. |
| // Note that the host associated/internal procedure may be referenced |
| // indirectly inside calls to non internal procedure. This is because internal |
| // procedures may be captured or passed. As this is tricky to analyze, always |
| // consider such variables may be accessed in any calls. |
| if (varSrc.kind == fir::AliasAnalysis::SourceKind::HostAssoc || |
| varSrc.isCapturedInInternalProcedure) |
| return ModRefResult::getModAndRef(); |
| // At that stage, it has been ruled out that local (including the saved ones) |
| // and dummy cannot be indirectly accessed in the call. |
| if (varSrc.kind != fir::AliasAnalysis::SourceKind::Allocate && |
| !varSrc.isDummyArgument()) { |
| if (varSrc.kind != fir::AliasAnalysis::SourceKind::Global || |
| !isSavedLocal(varSrc)) |
| return ModRefResult::getModAndRef(); |
| } |
| // 2. Check if the variable is passed via the arguments. |
| for (auto arg : call.getArgs()) { |
| if (fir::conformsWithPassByRef(arg.getType()) && |
| !aliasAnalysis.alias(arg, var).isNo()) { |
| // TODO: intent(in) would allow returning Ref here. This can be obtained |
| // in the func.func attributes for direct calls, but the module lookup is |
| // linear with the number of MLIR symbols, which would introduce a pseudo |
| // quadratic behavior num_calls * num_func. |
| return ModRefResult::getModAndRef(); |
| } |
| } |
| // The call cannot access the variable. |
| return ModRefResult::getNoModRef(); |
| } |
| |
| /// This is mostly inspired by MLIR::LocalAliasAnalysis with 2 notable |
| /// differences 1) Regions are not handled here but will be handled by a data |
| /// flow analysis to come 2) Allocate and Free effects are considered |
| /// modifying |
| ModRefResult AliasAnalysis::getModRef(Operation *op, Value location) { |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) { |
| if (auto call = llvm::dyn_cast<fir::CallOp>(op)) |
| return getCallModRef(call, location); |
| return ModRefResult::getModAndRef(); |
| } |
| |
| // Build a ModRefResult by merging the behavior of the effects of this |
| // operation. |
| SmallVector<MemoryEffects::EffectInstance> effects; |
| interface.getEffects(effects); |
| |
| ModRefResult result = ModRefResult::getNoModRef(); |
| for (const MemoryEffects::EffectInstance &effect : effects) { |
| |
| // Check for an alias between the effect and our memory location. |
| AliasResult aliasResult = AliasResult::MayAlias; |
| if (Value effectValue = effect.getValue()) |
| aliasResult = alias(effectValue, location); |
| |
| // If we don't alias, ignore this effect. |
| if (aliasResult.isNo()) |
| continue; |
| |
| // Merge in the corresponding mod or ref for this effect. |
| if (isa<MemoryEffects::Read>(effect.getEffect())) |
| result = result.merge(ModRefResult::getRef()); |
| else |
| result = result.merge(ModRefResult::getMod()); |
| |
| if (result.isModAndRef()) |
| break; |
| } |
| return result; |
| } |
| |
| ModRefResult AliasAnalysis::getModRef(mlir::Region ®ion, |
| mlir::Value location) { |
| ModRefResult result = ModRefResult::getNoModRef(); |
| for (mlir::Operation &op : region.getOps()) { |
| if (op.hasTrait<mlir::OpTrait::HasRecursiveMemoryEffects>()) { |
| for (mlir::Region &subRegion : op.getRegions()) { |
| result = result.merge(getModRef(subRegion, location)); |
| // Fast return is already mod and ref. |
| if (result.isModAndRef()) |
| return result; |
| } |
| // In MLIR, RecursiveMemoryEffects can be combined with |
| // MemoryEffectOpInterface to describe extra effects on top of the |
| // effects of the nested operations. However, the presence of |
| // RecursiveMemoryEffects and the absence of MemoryEffectOpInterface |
| // implies the operation has no other memory effects than the one of its |
| // nested operations. |
| if (!mlir::isa<mlir::MemoryEffectOpInterface>(op)) |
| continue; |
| } |
| result = result.merge(getModRef(&op, location)); |
| if (result.isModAndRef()) |
| return result; |
| } |
| return result; |
| } |
| |
| AliasAnalysis::Source AliasAnalysis::getSource(mlir::Value v, |
| bool getLastInstantiationPoint) { |
| auto *defOp = v.getDefiningOp(); |
| SourceKind type{SourceKind::Unknown}; |
| mlir::Type ty; |
| bool breakFromLoop{false}; |
| bool approximateSource{false}; |
| bool isCapturedInInternalProcedure{false}; |
| bool followBoxData{mlir::isa<fir::BaseBoxType>(v.getType())}; |
| bool isBoxRef{fir::isa_ref_type(v.getType()) && |
| mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(v.getType()))}; |
| bool followingData = !isBoxRef; |
| mlir::SymbolRefAttr global; |
| Source::Attributes attributes; |
| mlir::Operation *instantiationPoint{nullptr}; |
| while (defOp && !breakFromLoop) { |
| ty = defOp->getResultTypes()[0]; |
| llvm::TypeSwitch<Operation *>(defOp) |
| .Case<hlfir::AsExprOp>([&](auto op) { |
| v = op.getVar(); |
| defOp = v.getDefiningOp(); |
| }) |
| .Case<fir::AllocaOp, fir::AllocMemOp>([&](auto op) { |
| // Unique memory allocation. |
| type = SourceKind::Allocate; |
| breakFromLoop = true; |
| }) |
| .Case<fir::ConvertOp>([&](auto op) { |
| // Skip ConvertOp's and track further through the operand. |
| v = op->getOperand(0); |
| defOp = v.getDefiningOp(); |
| }) |
| .Case<fir::BoxAddrOp>([&](auto op) { |
| v = op->getOperand(0); |
| defOp = v.getDefiningOp(); |
| if (mlir::isa<fir::BaseBoxType>(v.getType())) |
| followBoxData = true; |
| }) |
| .Case<fir::ArrayCoorOp, fir::CoordinateOp>([&](auto op) { |
| if (isPointerReference(ty)) |
| attributes.set(Attribute::Pointer); |
| v = op->getOperand(0); |
| defOp = v.getDefiningOp(); |
| if (mlir::isa<fir::BaseBoxType>(v.getType())) |
| followBoxData = true; |
| approximateSource = true; |
| }) |
| .Case<fir::EmboxOp, fir::ReboxOp>([&](auto op) { |
| if (followBoxData) { |
| v = op->getOperand(0); |
| defOp = v.getDefiningOp(); |
| } else |
| breakFromLoop = true; |
| }) |
| .Case<fir::LoadOp>([&](auto op) { |
| // If load is inside target and it points to mapped item, |
| // continue tracking. |
| Operation *loadMemrefOp = op.getMemref().getDefiningOp(); |
| bool isDeclareOp = |
| llvm::isa_and_present<fir::DeclareOp>(loadMemrefOp) || |
| llvm::isa_and_present<hlfir::DeclareOp>(loadMemrefOp); |
| if (isDeclareOp && |
| llvm::isa<omp::TargetOp>(loadMemrefOp->getParentOp())) { |
| v = op.getMemref(); |
| defOp = v.getDefiningOp(); |
| return; |
| } |
| |
| // If we are loading a box reference, but following the data, |
| // we gather the attributes of the box to populate the source |
| // and stop tracking. |
| if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty); |
| boxTy && followingData) { |
| |
| if (mlir::isa<fir::PointerType>(boxTy.getEleTy())) |
| attributes.set(Attribute::Pointer); |
| |
| auto boxSrc = getSource(op.getMemref()); |
| attributes |= boxSrc.attributes; |
| approximateSource |= boxSrc.approximateSource; |
| isCapturedInInternalProcedure |= |
| boxSrc.isCapturedInInternalProcedure; |
| |
| global = llvm::dyn_cast<mlir::SymbolRefAttr>(boxSrc.origin.u); |
| if (global) { |
| type = SourceKind::Global; |
| } else { |
| auto def = llvm::cast<mlir::Value>(boxSrc.origin.u); |
| // TODO: Add support to fir.allocmem |
| if (auto allocOp = def.template getDefiningOp<fir::AllocaOp>()) { |
| v = def; |
| defOp = v.getDefiningOp(); |
| type = SourceKind::Allocate; |
| } else if (isDummyArgument(def)) { |
| defOp = nullptr; |
| v = def; |
| } else { |
| type = SourceKind::Indirect; |
| } |
| } |
| breakFromLoop = true; |
| return; |
| } |
| // No further tracking for addresses loaded from memory for now. |
| type = SourceKind::Indirect; |
| breakFromLoop = true; |
| }) |
| .Case<fir::AddrOfOp>([&](auto op) { |
| // Address of a global scope object. |
| ty = v.getType(); |
| type = SourceKind::Global; |
| |
| if (hasGlobalOpTargetAttr(v, op)) |
| attributes.set(Attribute::Target); |
| |
| // TODO: Take followBoxData into account when setting the pointer |
| // attribute |
| if (isPointerReference(ty)) |
| attributes.set(Attribute::Pointer); |
| global = llvm::cast<fir::AddrOfOp>(op).getSymbol(); |
| breakFromLoop = true; |
| }) |
| .Case<hlfir::DeclareOp, fir::DeclareOp>([&](auto op) { |
| bool isPrivateItem = false; |
| if (omp::BlockArgOpenMPOpInterface argIface = |
| dyn_cast<omp::BlockArgOpenMPOpInterface>(op->getParentOp())) { |
| Value ompValArg; |
| llvm::TypeSwitch<Operation *>(op->getParentOp()) |
| .template Case<omp::TargetOp>([&](auto targetOp) { |
| // If declare operation is inside omp target region, |
| // continue alias analysis outside the target region |
| for (auto [opArg, blockArg] : llvm::zip_equal( |
| targetOp.getMapVars(), argIface.getMapBlockArgs())) { |
| if (blockArg == op.getMemref()) { |
| omp::MapInfoOp mapInfo = |
| llvm::cast<omp::MapInfoOp>(opArg.getDefiningOp()); |
| ompValArg = mapInfo.getVarPtr(); |
| return; |
| } |
| } |
| // If given operation does not reflect mapping item, |
| // check private clause |
| isPrivateItem = isPrivateArg(argIface, targetOp, op); |
| }) |
| .template Case<omp::DistributeOp, omp::ParallelOp, |
| omp::SectionsOp, omp::SimdOp, omp::SingleOp, |
| omp::TaskloopOp, omp::TaskOp, omp::WsloopOp>( |
| [&](auto privateOp) { |
| isPrivateItem = isPrivateArg(argIface, privateOp, op); |
| }); |
| if (ompValArg) { |
| v = ompValArg; |
| defOp = ompValArg.getDefiningOp(); |
| return; |
| } |
| } |
| auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp); |
| // While going through a declare operation collect |
| // the variable attributes from it. Right now, some |
| // of the attributes are duplicated, e.g. a TARGET dummy |
| // argument has the target attribute both on its declare |
| // operation and on the entry block argument. |
| // In case of host associated use, the declare operation |
| // is the only carrier of the variable attributes, |
| // so we have to collect them here. |
| attributes |= getAttrsFromVariable(varIf); |
| isCapturedInInternalProcedure |= |
| varIf.isCapturedInInternalProcedure(); |
| if (varIf.isHostAssoc()) { |
| // Do not track past such DeclareOp, because it does not |
| // currently provide any useful information. The host associated |
| // access will end up dereferencing the host association tuple, |
| // so we may as well stop right now. |
| v = defOp->getResult(0); |
| // TODO: if the host associated variable is a dummy argument |
| // of the host, I think, we can treat it as SourceKind::Argument |
| // for the purpose of alias analysis inside the internal procedure. |
| type = SourceKind::HostAssoc; |
| breakFromLoop = true; |
| return; |
| } |
| if (getLastInstantiationPoint) { |
| // Fetch only the innermost instantiation point. |
| if (!instantiationPoint) |
| instantiationPoint = op; |
| |
| if (op.getDummyScope()) { |
| // Do not track past DeclareOp that has the dummy_scope |
| // operand. This DeclareOp is known to represent |
| // a dummy argument for some runtime instantiation |
| // of a procedure. |
| type = SourceKind::Argument; |
| breakFromLoop = true; |
| return; |
| } |
| } else { |
| instantiationPoint = op; |
| } |
| if (isPrivateItem) { |
| type = SourceKind::Allocate; |
| breakFromLoop = true; |
| return; |
| } |
| // TODO: Look for the fortran attributes present on the operation |
| // Track further through the operand |
| v = op.getMemref(); |
| defOp = v.getDefiningOp(); |
| }) |
| .Case<hlfir::DesignateOp>([&](auto op) { |
| auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp); |
| attributes |= getAttrsFromVariable(varIf); |
| // Track further through the memory indexed into |
| // => if the source arrays/structures don't alias then nor do the |
| // results of hlfir.designate |
| v = op.getMemref(); |
| defOp = v.getDefiningOp(); |
| // TODO: there will be some cases which provably don't alias if one |
| // takes into account the component or indices, which are currently |
| // ignored here - leading to false positives |
| // because of this limitation, we need to make sure we never return |
| // MustAlias after going through a designate operation |
| approximateSource = true; |
| if (mlir::isa<fir::BaseBoxType>(v.getType())) |
| followBoxData = true; |
| }) |
| .Default([&](auto op) { |
| defOp = nullptr; |
| breakFromLoop = true; |
| }); |
| } |
| if (!defOp && type == SourceKind::Unknown) { |
| // Check if the memory source is coming through a dummy argument. |
| if (isDummyArgument(v)) { |
| type = SourceKind::Argument; |
| ty = v.getType(); |
| if (fir::valueHasFirAttribute(v, fir::getTargetAttrName())) |
| attributes.set(Attribute::Target); |
| |
| if (isPointerReference(ty)) |
| attributes.set(Attribute::Pointer); |
| } else if (isEvaluateInMemoryBlockArg(v)) { |
| // hlfir.eval_in_mem block operands is allocated by the operation. |
| type = SourceKind::Allocate; |
| ty = v.getType(); |
| } |
| } |
| |
| if (type == SourceKind::Global) { |
| return {{global, instantiationPoint, followingData}, |
| type, |
| ty, |
| attributes, |
| approximateSource, |
| isCapturedInInternalProcedure}; |
| } |
| return {{v, instantiationPoint, followingData}, |
| type, |
| ty, |
| attributes, |
| approximateSource, |
| isCapturedInInternalProcedure}; |
| } |
| |
| } // namespace fir |