blob: a41943880807c59091dc16c6025dc8d4e2dfc279 [file] [log] [blame] [edit]
//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions
//
//===----------------------------------------------------------------------===//
#include "NVPTXUtilities.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Mutex.h"
#include <cstring>
#include <map>
#include <mutex>
#include <optional>
#include <string>
#include <vector>
namespace llvm {
namespace {
typedef std::map<std::string, std::vector<unsigned>> key_val_pair_t;
typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
struct AnnotationCache {
sys::Mutex Lock;
std::map<const Module *, global_val_annot_t> Cache;
};
AnnotationCache &getAnnotationCache() {
static AnnotationCache AC;
return AC;
}
} // anonymous namespace
void clearAnnotationCache(const Module *Mod) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
AC.Cache.erase(Mod);
}
static void readIntVecFromMDNode(const MDNode *MetadataNode,
std::vector<unsigned> &Vec) {
for (unsigned i = 0, e = MetadataNode->getNumOperands(); i != e; ++i) {
ConstantInt *Val =
mdconst::extract<ConstantInt>(MetadataNode->getOperand(i));
Vec.push_back(Val->getZExtValue());
}
}
static void cacheAnnotationFromMD(const MDNode *MetadataNode,
key_val_pair_t &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
assert(MetadataNode && "Invalid mdnode for annotation");
assert((MetadataNode->getNumOperands() % 2) == 1 &&
"Invalid number of operands");
// start index = 1, to skip the global variable key
// increment = 2, to skip the value for each property-value pairs
for (unsigned i = 1, e = MetadataNode->getNumOperands(); i != e; i += 2) {
// property
const MDString *prop = dyn_cast<MDString>(MetadataNode->getOperand(i));
assert(prop && "Annotation property not a string");
std::string Key = prop->getString().str();
// value
if (ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(
MetadataNode->getOperand(i + 1))) {
retval[Key].push_back(Val->getZExtValue());
} else if (MDNode *VecMd =
dyn_cast<MDNode>(MetadataNode->getOperand(i + 1))) {
// note: only "grid_constant" annotations support vector MDNodes.
// assert: there can only exist one unique key value pair of
// the form (string key, MDNode node). Operands of such a node
// shall always be unsigned ints.
auto [It, Inserted] = retval.try_emplace(Key);
if (Inserted) {
readIntVecFromMDNode(VecMd, It->second);
continue;
}
} else {
llvm_unreachable("Value operand not a constant int or an mdnode");
}
}
}
static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
NamedMDNode *NMD = m->getNamedMetadata("nvvm.annotations");
if (!NMD)
return;
key_val_pair_t tmp;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
GlobalValue *entity =
mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
if (entity != gv)
continue;
// accumulate annotations for entity in tmp
cacheAnnotationFromMD(elem, tmp);
}
if (tmp.empty()) // no annotations for this gv
return;
AC.Cache[m][gv] = std::move(tmp);
}
static std::optional<unsigned> findOneNVVMAnnotation(const GlobalValue *gv,
const std::string &prop) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
if (AC.Cache.find(m) == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (AC.Cache[m].find(gv) == AC.Cache[m].end())
cacheAnnotationFromMD(m, gv);
if (AC.Cache[m][gv].find(prop) == AC.Cache[m][gv].end())
return std::nullopt;
return AC.Cache[m][gv][prop][0];
}
static bool findAllNVVMAnnotation(const GlobalValue *gv,
const std::string &prop,
std::vector<unsigned> &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
if (AC.Cache.find(m) == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (AC.Cache[m].find(gv) == AC.Cache[m].end())
cacheAnnotationFromMD(m, gv);
if (AC.Cache[m][gv].find(prop) == AC.Cache[m][gv].end())
return false;
retval = AC.Cache[m][gv][prop];
return true;
}
static bool globalHasNVVMAnnotation(const Value &V, const std::string &Prop) {
if (const auto *GV = dyn_cast<GlobalValue>(&V))
if (const auto Annot = findOneNVVMAnnotation(GV, Prop)) {
assert((*Annot == 1) && "Unexpected annotation on a symbol");
return true;
}
return false;
}
static bool argHasNVVMAnnotation(const Value &Val,
const std::string &Annotation,
const bool StartArgIndexAtOne = false) {
if (const Argument *Arg = dyn_cast<Argument>(&Val)) {
const Function *Func = Arg->getParent();
std::vector<unsigned> Annot;
if (findAllNVVMAnnotation(Func, Annotation, Annot)) {
const unsigned BaseOffset = StartArgIndexAtOne ? 1 : 0;
if (is_contained(Annot, BaseOffset + Arg->getArgNo())) {
return true;
}
}
}
return false;
}
bool isParamGridConstant(const Value &V) {
if (const Argument *Arg = dyn_cast<Argument>(&V)) {
// "grid_constant" counts argument indices starting from 1
if (Arg->hasByValAttr() &&
argHasNVVMAnnotation(*Arg, "grid_constant",
/*StartArgIndexAtOne*/ true)) {
assert(isKernelFunction(*Arg->getParent()) &&
"only kernel arguments can be grid_constant");
return true;
}
}
return false;
}
bool isTexture(const Value &V) { return globalHasNVVMAnnotation(V, "texture"); }
bool isSurface(const Value &V) { return globalHasNVVMAnnotation(V, "surface"); }
bool isSampler(const Value &V) {
const char *AnnotationName = "sampler";
return globalHasNVVMAnnotation(V, AnnotationName) ||
argHasNVVMAnnotation(V, AnnotationName);
}
bool isImageReadOnly(const Value &V) {
return argHasNVVMAnnotation(V, "rdoimage");
}
bool isImageWriteOnly(const Value &V) {
return argHasNVVMAnnotation(V, "wroimage");
}
bool isImageReadWrite(const Value &V) {
return argHasNVVMAnnotation(V, "rdwrimage");
}
bool isImage(const Value &V) {
return isImageReadOnly(V) || isImageWriteOnly(V) || isImageReadWrite(V);
}
bool isManaged(const Value &V) { return globalHasNVVMAnnotation(V, "managed"); }
StringRef getTextureName(const Value &V) {
assert(V.hasName() && "Found texture variable with no name");
return V.getName();
}
StringRef getSurfaceName(const Value &V) {
assert(V.hasName() && "Found surface variable with no name");
return V.getName();
}
StringRef getSamplerName(const Value &V) {
assert(V.hasName() && "Found sampler variable with no name");
return V.getName();
}
std::optional<unsigned> getMaxNTIDx(const Function &F) {
return findOneNVVMAnnotation(&F, "maxntidx");
}
std::optional<unsigned> getMaxNTIDy(const Function &F) {
return findOneNVVMAnnotation(&F, "maxntidy");
}
std::optional<unsigned> getMaxNTIDz(const Function &F) {
return findOneNVVMAnnotation(&F, "maxntidz");
}
std::optional<unsigned> getMaxNTID(const Function &F) {
// Note: The semantics here are a bit strange. The PTX ISA states the
// following (11.4.2. Performance-Tuning Directives: .maxntid):
//
// Note that this directive guarantees that the total number of threads does
// not exceed the maximum, but does not guarantee that the limit in any
// particular dimension is not exceeded.
std::optional<unsigned> MaxNTIDx = getMaxNTIDx(F);
std::optional<unsigned> MaxNTIDy = getMaxNTIDy(F);
std::optional<unsigned> MaxNTIDz = getMaxNTIDz(F);
if (MaxNTIDx || MaxNTIDy || MaxNTIDz)
return MaxNTIDx.value_or(1) * MaxNTIDy.value_or(1) * MaxNTIDz.value_or(1);
return std::nullopt;
}
std::optional<unsigned> getClusterDimx(const Function &F) {
return findOneNVVMAnnotation(&F, "cluster_dim_x");
}
std::optional<unsigned> getClusterDimy(const Function &F) {
return findOneNVVMAnnotation(&F, "cluster_dim_y");
}
std::optional<unsigned> getClusterDimz(const Function &F) {
return findOneNVVMAnnotation(&F, "cluster_dim_z");
}
std::optional<unsigned> getMaxClusterRank(const Function &F) {
return findOneNVVMAnnotation(&F, "maxclusterrank");
}
std::optional<unsigned> getReqNTIDx(const Function &F) {
return findOneNVVMAnnotation(&F, "reqntidx");
}
std::optional<unsigned> getReqNTIDy(const Function &F) {
return findOneNVVMAnnotation(&F, "reqntidy");
}
std::optional<unsigned> getReqNTIDz(const Function &F) {
return findOneNVVMAnnotation(&F, "reqntidz");
}
std::optional<unsigned> getReqNTID(const Function &F) {
// Note: The semantics here are a bit strange. See getMaxNTID.
std::optional<unsigned> ReqNTIDx = getReqNTIDx(F);
std::optional<unsigned> ReqNTIDy = getReqNTIDy(F);
std::optional<unsigned> ReqNTIDz = getReqNTIDz(F);
if (ReqNTIDx || ReqNTIDy || ReqNTIDz)
return ReqNTIDx.value_or(1) * ReqNTIDy.value_or(1) * ReqNTIDz.value_or(1);
return std::nullopt;
}
std::optional<unsigned> getMinCTASm(const Function &F) {
return findOneNVVMAnnotation(&F, "minctasm");
}
std::optional<unsigned> getMaxNReg(const Function &F) {
return findOneNVVMAnnotation(&F, "maxnreg");
}
MaybeAlign getAlign(const Function &F, unsigned Index) {
// First check the alignstack metadata
if (MaybeAlign StackAlign =
F.getAttributes().getAttributes(Index).getStackAlignment())
return StackAlign;
// check the legacy nvvm metadata only for the return value since llvm does
// not support stackalign attribute for this.
if (Index == 0) {
std::vector<unsigned> Vs;
if (findAllNVVMAnnotation(&F, "align", Vs))
for (unsigned V : Vs)
if ((V >> 16) == Index)
return Align(V & 0xFFFF);
}
return std::nullopt;
}
MaybeAlign getAlign(const CallInst &I, unsigned Index) {
// First check the alignstack metadata
if (MaybeAlign StackAlign =
I.getAttributes().getAttributes(Index).getStackAlignment())
return StackAlign;
// If that is missing, check the legacy nvvm metadata
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned V = CI->getZExtValue();
if ((V >> 16) == Index)
return Align(V & 0xFFFF);
if ((V >> 16) > Index)
return std::nullopt;
}
}
}
return std::nullopt;
}
Function *getMaybeBitcastedCallee(const CallBase *CB) {
return dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
}
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM) {
const auto &ST =
*static_cast<const NVPTXTargetMachine &>(TM).getSubtargetImpl();
if (!ST.hasNoReturn())
return false;
assert((isa<Function>(V) || isa<CallInst>(V)) &&
"Expect either a call instruction or a function");
if (const CallInst *CallI = dyn_cast<CallInst>(V))
return CallI->doesNotReturn() &&
CallI->getFunctionType()->getReturnType()->isVoidTy();
const Function *F = cast<Function>(V);
return F->doesNotReturn() &&
F->getFunctionType()->getReturnType()->isVoidTy() &&
!isKernelFunction(*F);
}
bool Isv2x16VT(EVT VT) {
return (VT == MVT::v2f16 || VT == MVT::v2bf16 || VT == MVT::v2i16);
}
} // namespace llvm