blob: d27c523425feb29573bad1b0fd4f4d3b05b7b631 [file] [log] [blame] [edit]
//===-- SILowerSGPRSPills.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Handle SGPR spills. This pass takes the place of PrologEpilogInserter for all
// SGPR spills, so must insert CSR SGPR spills as well as expand them.
//
// This pass must never create new SGPR virtual registers.
//
// FIXME: Must stop RegScavenger spills in later passes.
//
//===----------------------------------------------------------------------===//
#include "SILowerSGPRSpills.h"
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
using namespace llvm;
#define DEBUG_TYPE "si-lower-sgpr-spills"
using MBBVector = SmallVector<MachineBasicBlock *, 4>;
namespace {
static cl::opt<unsigned> MaxNumVGPRsForWwmAllocation(
"amdgpu-num-vgprs-for-wwm-alloc",
cl::desc("Max num VGPRs for whole-wave register allocation."),
cl::ReallyHidden, cl::init(10));
class SILowerSGPRSpills {
private:
const SIRegisterInfo *TRI = nullptr;
const SIInstrInfo *TII = nullptr;
LiveIntervals *LIS = nullptr;
SlotIndexes *Indexes = nullptr;
MachineDominatorTree *MDT = nullptr;
// Save and Restore blocks of the current function. Typically there is a
// single save block, unless Windows EH funclets are involved.
MBBVector SaveBlocks;
MBBVector RestoreBlocks;
public:
SILowerSGPRSpills(LiveIntervals *LIS, SlotIndexes *Indexes,
MachineDominatorTree *MDT)
: LIS(LIS), Indexes(Indexes), MDT(MDT) {}
bool run(MachineFunction &MF);
void calculateSaveRestoreBlocks(MachineFunction &MF);
bool spillCalleeSavedRegs(MachineFunction &MF,
SmallVectorImpl<int> &CalleeSavedFIs);
void updateLaneVGPRDomInstr(
int FI, MachineBasicBlock *MBB, MachineBasicBlock::iterator InsertPt,
DenseMap<Register, MachineBasicBlock::iterator> &LaneVGPRDomInstr);
void determineRegsForWWMAllocation(MachineFunction &MF, BitVector &RegMask);
};
class SILowerSGPRSpillsLegacy : public MachineFunctionPass {
public:
static char ID;
SILowerSGPRSpillsLegacy() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getClearedProperties() const override {
// SILowerSGPRSpills introduces new Virtual VGPRs for spilling SGPRs.
return MachineFunctionProperties()
.set(MachineFunctionProperties::Property::IsSSA)
.set(MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
char SILowerSGPRSpillsLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(SILowerSGPRSpillsLegacy, DEBUG_TYPE,
"SI lower SGPR spill instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
INITIALIZE_PASS_END(SILowerSGPRSpillsLegacy, DEBUG_TYPE,
"SI lower SGPR spill instructions", false, false)
char &llvm::SILowerSGPRSpillsLegacyID = SILowerSGPRSpillsLegacy::ID;
/// Insert spill code for the callee-saved registers used in the function.
static void insertCSRSaves(MachineBasicBlock &SaveBlock,
ArrayRef<CalleeSavedInfo> CSI, SlotIndexes *Indexes,
LiveIntervals *LIS) {
MachineFunction &MF = *SaveBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *RI = ST.getRegisterInfo();
MachineBasicBlock::iterator I = SaveBlock.begin();
if (!TFI->spillCalleeSavedRegisters(SaveBlock, I, CSI, TRI)) {
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (const CalleeSavedInfo &CS : CSI) {
// Insert the spill to the stack frame.
MCRegister Reg = CS.getReg();
MachineInstrSpan MIS(I, &SaveBlock);
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(
Reg, Reg == RI->getReturnAddressReg(MF) ? MVT::i64 : MVT::i32);
// If this value was already livein, we probably have a direct use of the
// incoming register value, so don't kill at the spill point. This happens
// since we pass some special inputs (workgroup IDs) in the callee saved
// range.
const bool IsLiveIn = MRI.isLiveIn(Reg);
TII.storeRegToStackSlot(SaveBlock, I, Reg, !IsLiveIn, CS.getFrameIdx(),
RC, TRI, Register());
if (Indexes) {
assert(std::distance(MIS.begin(), I) == 1);
MachineInstr &Inst = *std::prev(I);
Indexes->insertMachineInstrInMaps(Inst);
}
if (LIS)
LIS->removeAllRegUnitsForPhysReg(Reg);
}
}
}
/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRRestores(MachineBasicBlock &RestoreBlock,
MutableArrayRef<CalleeSavedInfo> CSI,
SlotIndexes *Indexes, LiveIntervals *LIS) {
MachineFunction &MF = *RestoreBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *RI = ST.getRegisterInfo();
// Restore all registers immediately before the return and any
// terminators that precede it.
MachineBasicBlock::iterator I = RestoreBlock.getFirstTerminator();
// FIXME: Just emit the readlane/writelane directly
if (!TFI->restoreCalleeSavedRegisters(RestoreBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CI : reverse(CSI)) {
Register Reg = CI.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(
Reg, Reg == RI->getReturnAddressReg(MF) ? MVT::i64 : MVT::i32);
TII.loadRegFromStackSlot(RestoreBlock, I, Reg, CI.getFrameIdx(), RC, TRI,
Register());
assert(I != RestoreBlock.begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
if (Indexes) {
MachineInstr &Inst = *std::prev(I);
Indexes->insertMachineInstrInMaps(Inst);
}
if (LIS)
LIS->removeAllRegUnitsForPhysReg(Reg);
}
}
}
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void SILowerSGPRSpills::calculateSaveRestoreBlocks(MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// Even when we do not change any CSR, we still want to insert the
// prologue and epilogue of the function.
// So set the save points for those.
// Use the points found by shrink-wrapping, if any.
if (MFI.getSavePoint()) {
SaveBlocks.push_back(MFI.getSavePoint());
assert(MFI.getRestorePoint() && "Both restore and save must be set");
MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
// If RestoreBlock does not have any successor and is not a return block
// then the end point is unreachable and we do not need to insert any
// epilogue.
if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
RestoreBlocks.push_back(RestoreBlock);
return;
}
// Save refs to entry and return blocks.
SaveBlocks.push_back(&MF.front());
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHFuncletEntry())
SaveBlocks.push_back(&MBB);
if (MBB.isReturnBlock())
RestoreBlocks.push_back(&MBB);
}
}
// TODO: To support shrink wrapping, this would need to copy
// PrologEpilogInserter's updateLiveness.
static void updateLiveness(MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI) {
MachineBasicBlock &EntryBB = MF.front();
for (const CalleeSavedInfo &CSIReg : CSI)
EntryBB.addLiveIn(CSIReg.getReg());
EntryBB.sortUniqueLiveIns();
}
bool SILowerSGPRSpills::spillCalleeSavedRegs(
MachineFunction &MF, SmallVectorImpl<int> &CalleeSavedFIs) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const Function &F = MF.getFunction();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIFrameLowering *TFI = ST.getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
RegScavenger *RS = nullptr;
// Determine which of the registers in the callee save list should be saved.
BitVector SavedRegs;
TFI->determineCalleeSavesSGPR(MF, SavedRegs, RS);
// Add the code to save and restore the callee saved registers.
if (!F.hasFnAttribute(Attribute::Naked)) {
// FIXME: This is a lie. The CalleeSavedInfo is incomplete, but this is
// necessary for verifier liveness checks.
MFI.setCalleeSavedInfoValid(true);
std::vector<CalleeSavedInfo> CSI;
const MCPhysReg *CSRegs = MRI.getCalleeSavedRegs();
for (unsigned I = 0; CSRegs[I]; ++I) {
MCRegister Reg = CSRegs[I];
if (SavedRegs.test(Reg)) {
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(Reg, MVT::i32);
int JunkFI = MFI.CreateStackObject(TRI->getSpillSize(*RC),
TRI->getSpillAlign(*RC), true);
CSI.emplace_back(Reg, JunkFI);
CalleeSavedFIs.push_back(JunkFI);
}
}
if (!CSI.empty()) {
for (MachineBasicBlock *SaveBlock : SaveBlocks)
insertCSRSaves(*SaveBlock, CSI, Indexes, LIS);
// Add live ins to save blocks.
assert(SaveBlocks.size() == 1 && "shrink wrapping not fully implemented");
updateLiveness(MF, CSI);
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
insertCSRRestores(*RestoreBlock, CSI, Indexes, LIS);
return true;
}
}
return false;
}
void SILowerSGPRSpills::updateLaneVGPRDomInstr(
int FI, MachineBasicBlock *MBB, MachineBasicBlock::iterator InsertPt,
DenseMap<Register, MachineBasicBlock::iterator> &LaneVGPRDomInstr) {
// For the Def of a virtual LaneVPGR to dominate all its uses, we should
// insert an IMPLICIT_DEF before the dominating spill. Switching to a
// depth first order doesn't really help since the machine function can be in
// the unstructured control flow post-SSA. For each virtual register, hence
// finding the common dominator to get either the dominating spill or a block
// dominating all spills.
SIMachineFunctionInfo *FuncInfo =
MBB->getParent()->getInfo<SIMachineFunctionInfo>();
ArrayRef<SIRegisterInfo::SpilledReg> VGPRSpills =
FuncInfo->getSGPRSpillToVirtualVGPRLanes(FI);
Register PrevLaneVGPR;
for (auto &Spill : VGPRSpills) {
if (PrevLaneVGPR == Spill.VGPR)
continue;
PrevLaneVGPR = Spill.VGPR;
auto I = LaneVGPRDomInstr.find(Spill.VGPR);
if (Spill.Lane == 0 && I == LaneVGPRDomInstr.end()) {
// Initially add the spill instruction itself for Insertion point.
LaneVGPRDomInstr[Spill.VGPR] = InsertPt;
} else {
assert(I != LaneVGPRDomInstr.end());
auto PrevInsertPt = I->second;
MachineBasicBlock *DomMBB = PrevInsertPt->getParent();
if (DomMBB == MBB) {
// The insertion point earlier selected in a predecessor block whose
// spills are currently being lowered. The earlier InsertPt would be
// the one just before the block terminator and it should be changed
// if we insert any new spill in it.
if (MDT->dominates(&*InsertPt, &*PrevInsertPt))
I->second = InsertPt;
continue;
}
// Find the common dominator block between PrevInsertPt and the
// current spill.
DomMBB = MDT->findNearestCommonDominator(DomMBB, MBB);
if (DomMBB == MBB)
I->second = InsertPt;
else if (DomMBB != PrevInsertPt->getParent())
I->second = &(*DomMBB->getFirstTerminator());
}
}
}
void SILowerSGPRSpills::determineRegsForWWMAllocation(MachineFunction &MF,
BitVector &RegMask) {
// Determine an optimal number of VGPRs for WWM allocation. The complement
// list will be available for allocating other VGPR virtual registers.
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = MF.getRegInfo();
BitVector ReservedRegs = TRI->getReservedRegs(MF);
BitVector NonWwmAllocMask(TRI->getNumRegs());
// FIXME: MaxNumVGPRsForWwmAllocation might need to be adjusted in the future
// to have a balanced allocation between WWM values and per-thread vector
// register operands.
unsigned NumRegs = MaxNumVGPRsForWwmAllocation;
NumRegs =
std::min(static_cast<unsigned>(MFI->getSGPRSpillVGPRs().size()), NumRegs);
auto [MaxNumVGPRs, MaxNumAGPRs] = TRI->getMaxNumVectorRegs(MF);
// Try to use the highest available registers for now. Later after
// vgpr-regalloc, they can be shifted to the lowest range.
unsigned I = 0;
for (unsigned Reg = AMDGPU::VGPR0 + MaxNumVGPRs - 1;
(I < NumRegs) && (Reg >= AMDGPU::VGPR0); --Reg) {
if (!ReservedRegs.test(Reg) &&
!MRI.isPhysRegUsed(Reg, /*SkipRegMaskTest=*/true)) {
TRI->markSuperRegs(RegMask, Reg);
++I;
}
}
if (I != NumRegs) {
// Reserve an arbitrary register and report the error.
TRI->markSuperRegs(RegMask, AMDGPU::VGPR0);
MF.getFunction().getContext().emitError(
"can't find enough VGPRs for wwm-regalloc");
}
}
bool SILowerSGPRSpillsLegacy::runOnMachineFunction(MachineFunction &MF) {
auto *LISWrapper = getAnalysisIfAvailable<LiveIntervalsWrapperPass>();
LiveIntervals *LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr;
auto *SIWrapper = getAnalysisIfAvailable<SlotIndexesWrapperPass>();
SlotIndexes *Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr;
MachineDominatorTree *MDT =
&getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
return SILowerSGPRSpills(LIS, Indexes, MDT).run(MF);
}
bool SILowerSGPRSpills::run(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
assert(SaveBlocks.empty() && RestoreBlocks.empty());
// First, expose any CSR SGPR spills. This is mostly the same as what PEI
// does, but somewhat simpler.
calculateSaveRestoreBlocks(MF);
SmallVector<int> CalleeSavedFIs;
bool HasCSRs = spillCalleeSavedRegs(MF, CalleeSavedFIs);
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
if (!MFI.hasStackObjects() && !HasCSRs) {
SaveBlocks.clear();
RestoreBlocks.clear();
return false;
}
bool MadeChange = false;
bool SpilledToVirtVGPRLanes = false;
// TODO: CSR VGPRs will never be spilled to AGPRs. These can probably be
// handled as SpilledToReg in regular PrologEpilogInserter.
const bool HasSGPRSpillToVGPR = TRI->spillSGPRToVGPR() &&
(HasCSRs || FuncInfo->hasSpilledSGPRs());
if (HasSGPRSpillToVGPR) {
// Process all SGPR spills before frame offsets are finalized. Ideally SGPRs
// are spilled to VGPRs, in which case we can eliminate the stack usage.
//
// This operates under the assumption that only other SGPR spills are users
// of the frame index.
// To track the spill frame indices handled in this pass.
BitVector SpillFIs(MFI.getObjectIndexEnd(), false);
// To track the IMPLICIT_DEF insertion point for the lane vgprs.
DenseMap<Register, MachineBasicBlock::iterator> LaneVGPRDomInstr;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) {
if (!TII->isSGPRSpill(MI))
continue;
if (MI.getOperand(0).isUndef()) {
if (Indexes)
Indexes->removeMachineInstrFromMaps(MI);
MI.eraseFromParent();
continue;
}
int FI = TII->getNamedOperand(MI, AMDGPU::OpName::addr)->getIndex();
assert(MFI.getStackID(FI) == TargetStackID::SGPRSpill);
bool IsCalleeSaveSGPRSpill = llvm::is_contained(CalleeSavedFIs, FI);
if (IsCalleeSaveSGPRSpill) {
// Spill callee-saved SGPRs into physical VGPR lanes.
// TODO: This is to ensure the CFIs are static for efficient frame
// unwinding in the debugger. Spilling them into virtual VGPR lanes
// involve regalloc to allocate the physical VGPRs and that might
// cause intermediate spill/split of such liveranges for successful
// allocation. This would result in broken CFI encoding unless the
// regalloc aware CFI generation to insert new CFIs along with the
// intermediate spills is implemented. There is no such support
// currently exist in the LLVM compiler.
if (FuncInfo->allocateSGPRSpillToVGPRLane(
MF, FI, /*SpillToPhysVGPRLane=*/true)) {
bool Spilled = TRI->eliminateSGPRToVGPRSpillFrameIndex(
MI, FI, nullptr, Indexes, LIS, true);
if (!Spilled)
llvm_unreachable(
"failed to spill SGPR to physical VGPR lane when allocated");
}
} else {
MachineInstrSpan MIS(&MI, &MBB);
if (FuncInfo->allocateSGPRSpillToVGPRLane(MF, FI)) {
bool Spilled = TRI->eliminateSGPRToVGPRSpillFrameIndex(
MI, FI, nullptr, Indexes, LIS);
if (!Spilled)
llvm_unreachable(
"failed to spill SGPR to virtual VGPR lane when allocated");
SpillFIs.set(FI);
updateLaneVGPRDomInstr(FI, &MBB, MIS.begin(), LaneVGPRDomInstr);
SpilledToVirtVGPRLanes = true;
}
}
}
}
for (auto Reg : FuncInfo->getSGPRSpillVGPRs()) {
auto InsertPt = LaneVGPRDomInstr[Reg];
// Insert the IMPLICIT_DEF at the identified points.
MachineBasicBlock &Block = *InsertPt->getParent();
DebugLoc DL = Block.findDebugLoc(InsertPt);
auto MIB =
BuildMI(Block, *InsertPt, DL, TII->get(AMDGPU::IMPLICIT_DEF), Reg);
// Add WWM flag to the virtual register.
FuncInfo->setFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG);
// Set SGPR_SPILL asm printer flag
MIB->setAsmPrinterFlag(AMDGPU::SGPR_SPILL);
if (LIS) {
LIS->InsertMachineInstrInMaps(*MIB);
LIS->createAndComputeVirtRegInterval(Reg);
}
}
// Determine the registers for WWM allocation and also compute the register
// mask for non-wwm VGPR allocation.
if (FuncInfo->getSGPRSpillVGPRs().size()) {
BitVector WwmRegMask(TRI->getNumRegs());
determineRegsForWWMAllocation(MF, WwmRegMask);
BitVector NonWwmRegMask(WwmRegMask);
NonWwmRegMask.flip().clearBitsNotInMask(TRI->getAllVGPRRegMask());
// The complement set will be the registers for non-wwm (per-thread) vgpr
// allocation.
FuncInfo->updateNonWWMRegMask(NonWwmRegMask);
}
for (MachineBasicBlock &MBB : MF) {
// FIXME: The dead frame indices are replaced with a null register from
// the debug value instructions. We should instead, update it with the
// correct register value. But not sure the register value alone is
// adequate to lower the DIExpression. It should be worked out later.
for (MachineInstr &MI : MBB) {
if (MI.isDebugValue()) {
uint32_t StackOperandIdx = MI.isDebugValueList() ? 2 : 0;
if (MI.getOperand(StackOperandIdx).isFI() &&
!MFI.isFixedObjectIndex(
MI.getOperand(StackOperandIdx).getIndex()) &&
SpillFIs[MI.getOperand(StackOperandIdx).getIndex()]) {
MI.getOperand(StackOperandIdx)
.ChangeToRegister(Register(), false /*isDef*/);
}
}
}
}
// All those frame indices which are dead by now should be removed from the
// function frame. Otherwise, there is a side effect such as re-mapping of
// free frame index ids by the later pass(es) like "stack slot coloring"
// which in turn could mess-up with the book keeping of "frame index to VGPR
// lane".
FuncInfo->removeDeadFrameIndices(MFI, /*ResetSGPRSpillStackIDs*/ false);
MadeChange = true;
}
if (SpilledToVirtVGPRLanes) {
const TargetRegisterClass *RC = TRI->getWaveMaskRegClass();
// Shift back the reserved SGPR for EXEC copy into the lowest range.
// This SGPR is reserved to handle the whole-wave spill/copy operations
// that might get inserted during vgpr regalloc.
Register UnusedLowSGPR = TRI->findUnusedRegister(MRI, RC, MF);
if (UnusedLowSGPR && TRI->getHWRegIndex(UnusedLowSGPR) <
TRI->getHWRegIndex(FuncInfo->getSGPRForEXECCopy()))
FuncInfo->setSGPRForEXECCopy(UnusedLowSGPR);
} else {
// No SGPR spills to virtual VGPR lanes and hence there won't be any WWM
// spills/copies. Reset the SGPR reserved for EXEC copy.
FuncInfo->setSGPRForEXECCopy(AMDGPU::NoRegister);
}
SaveBlocks.clear();
RestoreBlocks.clear();
return MadeChange;
}
PreservedAnalyses
SILowerSGPRSpillsPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
MFPropsModifier _(*this, MF);
auto *LIS = MFAM.getCachedResult<LiveIntervalsAnalysis>(MF);
auto *Indexes = MFAM.getCachedResult<SlotIndexesAnalysis>(MF);
MachineDominatorTree *MDT = &MFAM.getResult<MachineDominatorTreeAnalysis>(MF);
SILowerSGPRSpills(LIS, Indexes, MDT).run(MF);
return PreservedAnalyses::all();
}