blob: 2f4b109e8e9e99b18a0d6df5c1494373c97c532c [file] [log] [blame] [edit]
//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to NVPTX assembly language.
//
//===----------------------------------------------------------------------===//
#include "NVPTXAsmPrinter.h"
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "MCTargetDesc/NVPTXInstPrinter.h"
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "MCTargetDesc/NVPTXTargetStreamer.h"
#include "NVPTX.h"
#include "NVPTXMCExpr.h"
#include "NVPTXMachineFunctionInfo.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXSubtarget.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "TargetInfo/NVPTXTargetInfo.h"
#include "cl_common_defines.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGenTypes/MachineValueType.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/NativeFormatting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEPOTNAME "__local_depot"
/// discoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// depends.
static void
discoverDependentGlobals(const Value *V,
DenseSet<const GlobalVariable *> &Globals) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
Globals.insert(GV);
return;
}
if (const User *U = dyn_cast<User>(V))
for (const auto &O : U->operands())
discoverDependentGlobals(O, Globals);
}
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
/// instances to be emitted, but only after any dependents have been added
/// first.s
static void
VisitGlobalVariableForEmission(const GlobalVariable *GV,
SmallVectorImpl<const GlobalVariable *> &Order,
DenseSet<const GlobalVariable *> &Visited,
DenseSet<const GlobalVariable *> &Visiting) {
// Have we already visited this one?
if (Visited.count(GV))
return;
// Do we have a circular dependency?
if (!Visiting.insert(GV).second)
report_fatal_error("Circular dependency found in global variable set");
// Make sure we visit all dependents first
DenseSet<const GlobalVariable *> Others;
for (const auto &O : GV->operands())
discoverDependentGlobals(O, Others);
for (const GlobalVariable *GV : Others)
VisitGlobalVariableForEmission(GV, Order, Visited, Visiting);
// Now we can visit ourself
Order.push_back(GV);
Visited.insert(GV);
Visiting.erase(GV);
}
void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) {
NVPTX_MC::verifyInstructionPredicates(MI->getOpcode(),
getSubtargetInfo().getFeatureBits());
MCInst Inst;
lowerToMCInst(MI, Inst);
EmitToStreamer(*OutStreamer, Inst);
}
void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
OutMI.setOpcode(MI->getOpcode());
// Special: Do not mangle symbol operand of CALL_PROTOTYPE
if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
const MachineOperand &MO = MI->getOperand(0);
OutMI.addOperand(GetSymbolRef(
OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
return;
}
for (const auto MO : MI->operands())
OutMI.addOperand(lowerOperand(MO));
}
MCOperand NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO) {
switch (MO.getType()) {
default:
llvm_unreachable("unknown operand type");
case MachineOperand::MO_Register:
return MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
case MachineOperand::MO_Immediate:
return MCOperand::createImm(MO.getImm());
case MachineOperand::MO_MachineBasicBlock:
return MCOperand::createExpr(
MCSymbolRefExpr::create(MO.getMBB()->getSymbol(), OutContext));
case MachineOperand::MO_ExternalSymbol:
return GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
case MachineOperand::MO_GlobalAddress:
return GetSymbolRef(getSymbol(MO.getGlobal()));
case MachineOperand::MO_FPImmediate: {
const ConstantFP *Cnt = MO.getFPImm();
const APFloat &Val = Cnt->getValueAPF();
switch (Cnt->getType()->getTypeID()) {
default:
report_fatal_error("Unsupported FP type");
break;
case Type::HalfTyID:
return MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
case Type::BFloatTyID:
return MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantBFPHalf(Val, OutContext));
case Type::FloatTyID:
return MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
case Type::DoubleTyID:
return MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
}
break;
}
}
}
unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
if (Register::isVirtualRegister(Reg)) {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
unsigned RegNum = RegMap[Reg];
// Encode the register class in the upper 4 bits
// Must be kept in sync with NVPTXInstPrinter::printRegName
unsigned Ret = 0;
if (RC == &NVPTX::Int1RegsRegClass) {
Ret = (1 << 28);
} else if (RC == &NVPTX::Int16RegsRegClass) {
Ret = (2 << 28);
} else if (RC == &NVPTX::Int32RegsRegClass) {
Ret = (3 << 28);
} else if (RC == &NVPTX::Int64RegsRegClass) {
Ret = (4 << 28);
} else if (RC == &NVPTX::Float32RegsRegClass) {
Ret = (5 << 28);
} else if (RC == &NVPTX::Float64RegsRegClass) {
Ret = (6 << 28);
} else if (RC == &NVPTX::Int128RegsRegClass) {
Ret = (7 << 28);
} else {
report_fatal_error("Bad register class");
}
// Insert the vreg number
Ret |= (RegNum & 0x0FFFFFFF);
return Ret;
} else {
// Some special-use registers are actually physical registers.
// Encode this as the register class ID of 0 and the real register ID.
return Reg & 0x0FFFFFFF;
}
}
MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
const MCExpr *Expr;
Expr = MCSymbolRefExpr::create(Symbol, OutContext);
return MCOperand::createExpr(Expr);
}
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
Type *Ty = F->getReturnType();
if (Ty->getTypeID() == Type::VoidTyID)
return;
O << " (";
auto PrintScalarRetVal = [&](unsigned Size) {
O << ".param .b" << promoteScalarArgumentSize(Size) << " func_retval0";
};
if (shouldPassAsArray(Ty)) {
const unsigned TotalSize = DL.getTypeAllocSize(Ty);
const Align RetAlignment = TLI->getFunctionArgumentAlignment(
F, Ty, AttributeList::ReturnIndex, DL);
O << ".param .align " << RetAlignment.value() << " .b8 func_retval0["
<< TotalSize << "]";
} else if (Ty->isFloatingPointTy()) {
PrintScalarRetVal(Ty->getPrimitiveSizeInBits());
} else if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
PrintScalarRetVal(ITy->getBitWidth());
} else if (isa<PointerType>(Ty)) {
PrintScalarRetVal(TLI->getPointerTy(DL).getSizeInBits());
} else
llvm_unreachable("Unknown return type");
O << ") ";
}
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
raw_ostream &O) {
const Function &F = MF.getFunction();
printReturnValStr(&F, O);
}
// Return true if MBB is the header of a loop marked with
// llvm.loop.unroll.disable or llvm.loop.unroll.count=1.
bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
const MachineBasicBlock &MBB) const {
MachineLoopInfo &LI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
// We insert .pragma "nounroll" only to the loop header.
if (!LI.isLoopHeader(&MBB))
return false;
// llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
// we iterate through each back edge of the loop with header MBB, and check
// whether its metadata contains llvm.loop.unroll.disable.
for (const MachineBasicBlock *PMBB : MBB.predecessors()) {
if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
// Edges from other loops to MBB are not back edges.
continue;
}
if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
if (MDNode *LoopID =
PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
return true;
if (MDNode *UnrollCountMD =
GetUnrollMetadata(LoopID, "llvm.loop.unroll.count")) {
if (mdconst::extract<ConstantInt>(UnrollCountMD->getOperand(1))
->isOne())
return true;
}
}
}
}
return false;
}
void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
AsmPrinter::emitBasicBlockStart(MBB);
if (isLoopHeaderOfNoUnroll(MBB))
OutStreamer->emitRawText(StringRef("\t.pragma \"nounroll\";\n"));
}
void NVPTXAsmPrinter::emitFunctionEntryLabel() {
SmallString<128> Str;
raw_svector_ostream O(Str);
if (!GlobalsEmitted) {
emitGlobals(*MF->getFunction().getParent());
GlobalsEmitted = true;
}
// Set up
MRI = &MF->getRegInfo();
F = &MF->getFunction();
emitLinkageDirective(F, O);
if (isKernelFunction(*F))
O << ".entry ";
else {
O << ".func ";
printReturnValStr(*MF, O);
}
CurrentFnSym->print(O, MAI);
emitFunctionParamList(F, O);
O << "\n";
if (isKernelFunction(*F))
emitKernelFunctionDirectives(*F, O);
if (shouldEmitPTXNoReturn(F, TM))
O << ".noreturn";
OutStreamer->emitRawText(O.str());
VRegMapping.clear();
// Emit open brace for function body.
OutStreamer->emitRawText(StringRef("{\n"));
setAndEmitFunctionVirtualRegisters(*MF);
encodeDebugInfoRegisterNumbers(*MF);
// Emit initial .loc debug directive for correct relocation symbol data.
if (const DISubprogram *SP = MF->getFunction().getSubprogram()) {
assert(SP->getUnit());
if (!SP->getUnit()->isDebugDirectivesOnly())
emitInitialRawDwarfLocDirective(*MF);
}
}
bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) {
bool Result = AsmPrinter::runOnMachineFunction(F);
// Emit closing brace for the body of function F.
// The closing brace must be emitted here because we need to emit additional
// debug labels/data after the last basic block.
// We need to emit the closing brace here because we don't have function that
// finished emission of the function body.
OutStreamer->emitRawText(StringRef("}\n"));
return Result;
}
void NVPTXAsmPrinter::emitFunctionBodyStart() {
SmallString<128> Str;
raw_svector_ostream O(Str);
emitDemotedVars(&MF->getFunction(), O);
OutStreamer->emitRawText(O.str());
}
void NVPTXAsmPrinter::emitFunctionBodyEnd() {
VRegMapping.clear();
}
const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const {
SmallString<128> Str;
raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber();
return OutContext.getOrCreateSymbol(Str);
}
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
Register RegNo = MI->getOperand(0).getReg();
if (RegNo.isVirtual()) {
OutStreamer->AddComment(Twine("implicit-def: ") +
getVirtualRegisterName(RegNo));
} else {
const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
OutStreamer->AddComment(Twine("implicit-def: ") +
STI.getRegisterInfo()->getName(RegNo));
}
OutStreamer->addBlankLine();
}
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
raw_ostream &O) const {
// If the NVVM IR has some of reqntid* specified, then output
// the reqntid directive, and set the unspecified ones to 1.
// If none of Reqntid* is specified, don't output reqntid directive.
const auto ReqNTID = getReqNTID(F);
if (!ReqNTID.empty())
O << formatv(".reqntid {0:$[, ]}\n",
make_range(ReqNTID.begin(), ReqNTID.end()));
const auto MaxNTID = getMaxNTID(F);
if (!MaxNTID.empty())
O << formatv(".maxntid {0:$[, ]}\n",
make_range(MaxNTID.begin(), MaxNTID.end()));
if (const auto Mincta = getMinCTASm(F))
O << ".minnctapersm " << *Mincta << "\n";
if (const auto Maxnreg = getMaxNReg(F))
O << ".maxnreg " << *Maxnreg << "\n";
// .maxclusterrank directive requires SM_90 or higher, make sure that we
// filter it out for lower SM versions, as it causes a hard ptxas crash.
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const auto *STI = static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
if (STI->getSmVersion() >= 90) {
const auto ClusterDim = getClusterDim(F);
if (!ClusterDim.empty()) {
O << ".explicitcluster\n";
if (ClusterDim[0] != 0) {
assert(llvm::all_of(ClusterDim, [](unsigned D) { return D != 0; }) &&
"cluster_dim_x != 0 implies cluster_dim_y and cluster_dim_z "
"should be non-zero as well");
O << formatv(".reqnctapercluster {0:$[, ]}\n",
make_range(ClusterDim.begin(), ClusterDim.end()));
} else {
assert(llvm::all_of(ClusterDim, [](unsigned D) { return D == 0; }) &&
"cluster_dim_x == 0 implies cluster_dim_y and cluster_dim_z "
"should be 0 as well");
}
}
if (const auto Maxclusterrank = getMaxClusterRank(F))
O << ".maxclusterrank " << *Maxclusterrank << "\n";
}
}
std::string NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
std::string Name;
raw_string_ostream NameStr(Name);
VRegRCMap::const_iterator I = VRegMapping.find(RC);
assert(I != VRegMapping.end() && "Bad register class");
const DenseMap<unsigned, unsigned> &RegMap = I->second;
VRegMap::const_iterator VI = RegMap.find(Reg);
assert(VI != RegMap.end() && "Bad virtual register");
unsigned MappedVR = VI->second;
NameStr << getNVPTXRegClassStr(RC) << MappedVR;
return Name;
}
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
raw_ostream &O) {
O << getVirtualRegisterName(vr);
}
void NVPTXAsmPrinter::emitAliasDeclaration(const GlobalAlias *GA,
raw_ostream &O) {
const Function *F = dyn_cast_or_null<Function>(GA->getAliaseeObject());
if (!F || isKernelFunction(*F) || F->isDeclaration())
report_fatal_error(
"NVPTX aliasee must be a non-kernel function definition");
if (GA->hasLinkOnceLinkage() || GA->hasWeakLinkage() ||
GA->hasAvailableExternallyLinkage() || GA->hasCommonLinkage())
report_fatal_error("NVPTX aliasee must not be '.weak'");
emitDeclarationWithName(F, getSymbol(GA), O);
}
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
emitDeclarationWithName(F, getSymbol(F), O);
}
void NVPTXAsmPrinter::emitDeclarationWithName(const Function *F, MCSymbol *S,
raw_ostream &O) {
emitLinkageDirective(F, O);
if (isKernelFunction(*F))
O << ".entry ";
else
O << ".func ";
printReturnValStr(F, O);
S->print(O, MAI);
O << "\n";
emitFunctionParamList(F, O);
O << "\n";
if (shouldEmitPTXNoReturn(F, TM))
O << ".noreturn";
O << ";\n";
}
static bool usedInGlobalVarDef(const Constant *C) {
if (!C)
return false;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
return GV->getName() != "llvm.used";
for (const User *U : C->users())
if (const Constant *C = dyn_cast<Constant>(U))
if (usedInGlobalVarDef(C))
return true;
return false;
}
static bool usedInOneFunc(const User *U, Function const *&OneFunc) {
if (const GlobalVariable *OtherGV = dyn_cast<GlobalVariable>(U))
if (OtherGV->getName() == "llvm.used")
return true;
if (const Instruction *I = dyn_cast<Instruction>(U)) {
if (const Function *CurFunc = I->getFunction()) {
if (OneFunc && (CurFunc != OneFunc))
return false;
OneFunc = CurFunc;
return true;
}
return false;
}
for (const User *UU : U->users())
if (!usedInOneFunc(UU, OneFunc))
return false;
return true;
}
/* Find out if a global variable can be demoted to local scope.
* Currently, this is valid for CUDA shared variables, which have local
* scope and global lifetime. So the conditions to check are :
* 1. Is the global variable in shared address space?
* 2. Does it have local linkage?
* 3. Is the global variable referenced only in one function?
*/
static bool canDemoteGlobalVar(const GlobalVariable *GV, Function const *&f) {
if (!GV->hasLocalLinkage())
return false;
if (GV->getAddressSpace() != ADDRESS_SPACE_SHARED)
return false;
const Function *oneFunc = nullptr;
bool flag = usedInOneFunc(GV, oneFunc);
if (!flag)
return false;
if (!oneFunc)
return false;
f = oneFunc;
return true;
}
static bool useFuncSeen(const Constant *C,
const SmallPtrSetImpl<const Function *> &SeenSet) {
for (const User *U : C->users()) {
if (const Constant *cu = dyn_cast<Constant>(U)) {
if (useFuncSeen(cu, SeenSet))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
if (const Function *Caller = I->getFunction())
if (SeenSet.contains(Caller))
return true;
}
}
return false;
}
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
SmallPtrSet<const Function *, 32> SeenSet;
for (const Function &F : M) {
if (F.getAttributes().hasFnAttr("nvptx-libcall-callee")) {
emitDeclaration(&F, O);
continue;
}
if (F.isDeclaration()) {
if (F.use_empty())
continue;
if (F.getIntrinsicID())
continue;
emitDeclaration(&F, O);
continue;
}
for (const User *U : F.users()) {
if (const Constant *C = dyn_cast<Constant>(U)) {
if (usedInGlobalVarDef(C)) {
// The use is in the initialization of a global variable
// that is a function pointer, so print a declaration
// for the original function
emitDeclaration(&F, O);
break;
}
// Emit a declaration of this function if the function that
// uses this constant expr has already been seen.
if (useFuncSeen(C, SeenSet)) {
emitDeclaration(&F, O);
break;
}
}
if (!isa<Instruction>(U))
continue;
const Function *Caller = cast<Instruction>(U)->getFunction();
if (!Caller)
continue;
// If a caller has already been seen, then the caller is
// appearing in the module before the callee. so print out
// a declaration for the callee.
if (SeenSet.contains(Caller)) {
emitDeclaration(&F, O);
break;
}
}
SeenSet.insert(&F);
}
for (const GlobalAlias &GA : M.aliases())
emitAliasDeclaration(&GA, O);
}
void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) {
// Construct a default subtarget off of the TargetMachine defaults. The
// rest of NVPTX isn't friendly to change subtargets per function and
// so the default TargetMachine will have all of the options.
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const auto* STI = static_cast<const NVPTXSubtarget*>(NTM.getSubtargetImpl());
SmallString<128> Str1;
raw_svector_ostream OS1(Str1);
// Emit header before any dwarf directives are emitted below.
emitHeader(M, OS1, *STI);
OutStreamer->emitRawText(OS1.str());
}
bool NVPTXAsmPrinter::doInitialization(Module &M) {
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const NVPTXSubtarget &STI =
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
if (M.alias_size() && (STI.getPTXVersion() < 63 || STI.getSmVersion() < 30))
report_fatal_error(".alias requires PTX version >= 6.3 and sm_30");
// We need to call the parent's one explicitly.
bool Result = AsmPrinter::doInitialization(M);
GlobalsEmitted = false;
return Result;
}
void NVPTXAsmPrinter::emitGlobals(const Module &M) {
SmallString<128> Str2;
raw_svector_ostream OS2(Str2);
emitDeclarations(M, OS2);
// As ptxas does not support forward references of globals, we need to first
// sort the list of module-level globals in def-use order. We visit each
// global variable in order, and ensure that we emit it *after* its dependent
// globals. We use a little extra memory maintaining both a set and a list to
// have fast searches while maintaining a strict ordering.
SmallVector<const GlobalVariable *, 8> Globals;
DenseSet<const GlobalVariable *> GVVisited;
DenseSet<const GlobalVariable *> GVVisiting;
// Visit each global variable, in order
for (const GlobalVariable &I : M.globals())
VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
assert(GVVisited.size() == M.global_size() && "Missed a global variable");
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const NVPTXSubtarget &STI =
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
// Print out module-level global variables in proper order
for (const GlobalVariable *GV : Globals)
printModuleLevelGV(GV, OS2, /*ProcessDemoted=*/false, STI);
OS2 << '\n';
OutStreamer->emitRawText(OS2.str());
}
void NVPTXAsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
MCSymbol *Name = getSymbol(&GA);
OS << ".alias " << Name->getName() << ", " << GA.getAliaseeObject()->getName()
<< ";\n";
OutStreamer->emitRawText(OS.str());
}
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
const NVPTXSubtarget &STI) {
const unsigned PTXVersion = STI.getPTXVersion();
O << "//\n"
"// Generated by LLVM NVPTX Back-End\n"
"//\n"
"\n"
<< ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n"
<< ".target " << STI.getTargetName();
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
if (NTM.getDrvInterface() == NVPTX::NVCL)
O << ", texmode_independent";
bool HasFullDebugInfo = false;
for (DICompileUnit *CU : M.debug_compile_units()) {
switch(CU->getEmissionKind()) {
case DICompileUnit::NoDebug:
case DICompileUnit::DebugDirectivesOnly:
break;
case DICompileUnit::LineTablesOnly:
case DICompileUnit::FullDebug:
HasFullDebugInfo = true;
break;
}
if (HasFullDebugInfo)
break;
}
if (HasFullDebugInfo)
O << ", debug";
O << "\n"
<< ".address_size " << (NTM.is64Bit() ? "64" : "32") << "\n"
<< "\n";
}
bool NVPTXAsmPrinter::doFinalization(Module &M) {
// If we did not emit any functions, then the global declarations have not
// yet been emitted.
if (!GlobalsEmitted) {
emitGlobals(M);
GlobalsEmitted = true;
}
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
clearAnnotationCache(&M);
auto *TS =
static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer());
// Close the last emitted section
if (hasDebugInfo()) {
TS->closeLastSection();
// Emit empty .debug_macinfo section for better support of the empty files.
OutStreamer->emitRawText("\t.section\t.debug_macinfo\t{\t}");
}
// Output last DWARF .file directives, if any.
TS->outputDwarfFileDirectives();
return ret;
}
// This function emits appropriate linkage directives for
// functions and global variables.
//
// extern function declaration -> .extern
// extern function definition -> .visible
// external global variable with init -> .visible
// external without init -> .extern
// appending -> not allowed, assert.
// for any linkage other than
// internal, private, linker_private,
// linker_private_weak, linker_private_weak_def_auto,
// we emit -> .weak.
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
raw_ostream &O) {
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
if (V->hasExternalLinkage()) {
if (const auto *GVar = dyn_cast<GlobalVariable>(V))
O << (GVar->hasInitializer() ? ".visible " : ".extern ");
else if (V->isDeclaration())
O << ".extern ";
else
O << ".visible ";
} else if (V->hasAppendingLinkage()) {
report_fatal_error("Symbol '" + (V->hasName() ? V->getName() : "") +
"' has unsupported appending linkage type");
} else if (!V->hasInternalLinkage() && !V->hasPrivateLinkage()) {
O << ".weak ";
}
}
}
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
raw_ostream &O, bool ProcessDemoted,
const NVPTXSubtarget &STI) {
// Skip meta data
if (GVar->hasSection())
if (GVar->getSection() == "llvm.metadata")
return;
// Skip LLVM intrinsic global variables
if (GVar->getName().starts_with("llvm.") ||
GVar->getName().starts_with("nvvm."))
return;
const DataLayout &DL = getDataLayout();
// GlobalVariables are always constant pointers themselves.
Type *ETy = GVar->getValueType();
if (GVar->hasExternalLinkage()) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
} else if (STI.getPTXVersion() >= 50 && GVar->hasCommonLinkage() &&
GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) {
O << ".common ";
} else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
GVar->hasAvailableExternallyLinkage() ||
GVar->hasCommonLinkage()) {
O << ".weak ";
}
if (isTexture(*GVar)) {
O << ".global .texref " << getTextureName(*GVar) << ";\n";
return;
}
if (isSurface(*GVar)) {
O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
return;
}
if (GVar->isDeclaration()) {
// (extern) declarations, no definition or initializer
// Currently the only known declaration is for an automatic __local
// (.shared) promoted to global.
emitPTXGlobalVariable(GVar, O, STI);
O << ";\n";
return;
}
if (isSampler(*GVar)) {
O << ".global .samplerref " << getSamplerName(*GVar);
const Constant *Initializer = nullptr;
if (GVar->hasInitializer())
Initializer = GVar->getInitializer();
const ConstantInt *CI = nullptr;
if (Initializer)
CI = dyn_cast<ConstantInt>(Initializer);
if (CI) {
unsigned sample = CI->getZExtValue();
O << " = { ";
for (int i = 0,
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
i < 3; i++) {
O << "addr_mode_" << i << " = ";
switch (addr) {
case 0:
O << "wrap";
break;
case 1:
O << "clamp_to_border";
break;
case 2:
O << "clamp_to_edge";
break;
case 3:
O << "wrap";
break;
case 4:
O << "mirror";
break;
}
O << ", ";
}
O << "filter_mode = ";
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
case 0:
O << "nearest";
break;
case 1:
O << "linear";
break;
case 2:
llvm_unreachable("Anisotropic filtering is not supported");
default:
O << "nearest";
break;
}
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
O << ", force_unnormalized_coords = 1";
}
O << " }";
}
O << ";\n";
return;
}
if (GVar->hasPrivateLinkage()) {
if (GVar->getName().starts_with("unrollpragma"))
return;
// FIXME - need better way (e.g. Metadata) to avoid generating this global
if (GVar->getName().starts_with("filename"))
return;
if (GVar->use_empty())
return;
}
const Function *DemotedFunc = nullptr;
if (!ProcessDemoted && canDemoteGlobalVar(GVar, DemotedFunc)) {
O << "// " << GVar->getName() << " has been demoted\n";
localDecls[DemotedFunc].push_back(GVar);
return;
}
O << ".";
emitPTXAddressSpace(GVar->getAddressSpace(), O);
if (isManaged(*GVar)) {
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30)
report_fatal_error(
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
O << " .attribute(.managed)";
}
O << " .align "
<< GVar->getAlign().value_or(DL.getPrefTypeAlign(ETy)).value();
if (ETy->isPointerTy() || ((ETy->isIntegerTy() || ETy->isFloatingPointTy()) &&
ETy->getScalarSizeInBits() <= 64)) {
O << " .";
// Special case: ABI requires that we use .u8 for predicates
if (ETy->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(ETy, false);
O << " ";
getSymbol(GVar)->print(O, MAI);
// Ptx allows variable initilization only for constant and global state
// spaces.
if (GVar->hasInitializer()) {
if ((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
(GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) {
const Constant *Initializer = GVar->getInitializer();
// 'undef' is treated as there is no value specified.
if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
O << " = ";
printScalarConstant(Initializer, O);
}
} else {
// The frontend adds zero-initializer to device and constant variables
// that don't have an initial value, and UndefValue to shared
// variables, so skip warning for this case.
if (!GVar->getInitializer()->isNullValue() &&
!isa<UndefValue>(GVar->getInitializer())) {
report_fatal_error("initial value of '" + GVar->getName() +
"' is not allowed in addrspace(" +
Twine(GVar->getAddressSpace()) + ")");
}
}
}
} else {
// Although PTX has direct support for struct type and array type and
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
// targets that support these high level field accesses. Structs, arrays
// and vectors are lowered into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::IntegerTyID: // Integers larger than 64 bits
case Type::FP128TyID:
case Type::StructTyID:
case Type::ArrayTyID:
case Type::FixedVectorTyID: {
const uint64_t ElementSize = DL.getTypeStoreSize(ETy);
// Ptx allows variable initilization only for constant and
// global state spaces.
if (((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
(GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
GVar->hasInitializer()) {
const Constant *Initializer = GVar->getInitializer();
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
AggBuffer aggBuffer(ElementSize, *this);
bufferAggregateConstant(Initializer, &aggBuffer);
if (aggBuffer.numSymbols()) {
const unsigned int ptrSize = MAI->getCodePointerSize();
if (ElementSize % ptrSize ||
!aggBuffer.allSymbolsAligned(ptrSize)) {
// Print in bytes and use the mask() operator for pointers.
if (!STI.hasMaskOperator())
report_fatal_error(
"initialized packed aggregate with pointers '" +
GVar->getName() +
"' requires at least PTX ISA version 7.1");
O << " .u8 ";
getSymbol(GVar)->print(O, MAI);
O << "[" << ElementSize << "] = {";
aggBuffer.printBytes(O);
O << "}";
} else {
O << " .u" << ptrSize * 8 << " ";
getSymbol(GVar)->print(O, MAI);
O << "[" << ElementSize / ptrSize << "] = {";
aggBuffer.printWords(O);
O << "}";
}
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
O << "[" << ElementSize << "] = {";
aggBuffer.printBytes(O);
O << "}";
}
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
if (ElementSize)
O << "[" << ElementSize << "]";
}
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
if (ElementSize)
O << "[" << ElementSize << "]";
}
break;
}
default:
llvm_unreachable("type not supported yet");
}
}
O << ";\n";
}
void NVPTXAsmPrinter::AggBuffer::printSymbol(unsigned nSym, raw_ostream &os) {
const Value *v = Symbols[nSym];
const Value *v0 = SymbolsBeforeStripping[nSym];
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
MCSymbol *Name = AP.getSymbol(GVar);
PointerType *PTy = dyn_cast<PointerType>(v0->getType());
// Is v0 a generic pointer?
bool isGenericPointer = PTy && PTy->getAddressSpace() == 0;
if (EmitGeneric && isGenericPointer && !isa<Function>(v)) {
os << "generic(";
Name->print(os, AP.MAI);
os << ")";
} else {
Name->print(os, AP.MAI);
}
} else if (const ConstantExpr *CExpr = dyn_cast<ConstantExpr>(v0)) {
const MCExpr *Expr = AP.lowerConstantForGV(CExpr, false);
AP.printMCExpr(*Expr, os);
} else
llvm_unreachable("symbol type unknown");
}
void NVPTXAsmPrinter::AggBuffer::printBytes(raw_ostream &os) {
unsigned int ptrSize = AP.MAI->getCodePointerSize();
// Do not emit trailing zero initializers. They will be zero-initialized by
// ptxas. This saves on both space requirements for the generated PTX and on
// memory use by ptxas. (See:
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#global-state-space)
unsigned int InitializerCount = size;
// TODO: symbols make this harder, but it would still be good to trim trailing
// 0s for aggs with symbols as well.
if (numSymbols() == 0)
while (InitializerCount >= 1 && !buffer[InitializerCount - 1])
InitializerCount--;
symbolPosInBuffer.push_back(InitializerCount);
unsigned int nSym = 0;
unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
for (unsigned int pos = 0; pos < InitializerCount;) {
if (pos)
os << ", ";
if (pos != nextSymbolPos) {
os << (unsigned int)buffer[pos];
++pos;
continue;
}
// Generate a per-byte mask() operator for the symbol, which looks like:
// .global .u8 addr[] = {0xFF(foo), 0xFF00(foo), 0xFF0000(foo), ...};
// See https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#initializers
std::string symText;
llvm::raw_string_ostream oss(symText);
printSymbol(nSym, oss);
for (unsigned i = 0; i < ptrSize; ++i) {
if (i)
os << ", ";
llvm::write_hex(os, 0xFFULL << i * 8, HexPrintStyle::PrefixUpper);
os << "(" << symText << ")";
}
pos += ptrSize;
nextSymbolPos = symbolPosInBuffer[++nSym];
assert(nextSymbolPos >= pos);
}
}
void NVPTXAsmPrinter::AggBuffer::printWords(raw_ostream &os) {
unsigned int ptrSize = AP.MAI->getCodePointerSize();
symbolPosInBuffer.push_back(size);
unsigned int nSym = 0;
unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
assert(nextSymbolPos % ptrSize == 0);
for (unsigned int pos = 0; pos < size; pos += ptrSize) {
if (pos)
os << ", ";
if (pos == nextSymbolPos) {
printSymbol(nSym, os);
nextSymbolPos = symbolPosInBuffer[++nSym];
assert(nextSymbolPos % ptrSize == 0);
assert(nextSymbolPos >= pos + ptrSize);
} else if (ptrSize == 4)
os << support::endian::read32le(&buffer[pos]);
else
os << support::endian::read64le(&buffer[pos]);
}
}
void NVPTXAsmPrinter::emitDemotedVars(const Function *F, raw_ostream &O) {
auto It = localDecls.find(F);
if (It == localDecls.end())
return;
ArrayRef<const GlobalVariable *> GVars = It->second;
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const NVPTXSubtarget &STI =
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
for (const GlobalVariable *GV : GVars) {
O << "\t// demoted variable\n\t";
printModuleLevelGV(GV, O, /*processDemoted=*/true, STI);
}
}
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
raw_ostream &O) const {
switch (AddressSpace) {
case ADDRESS_SPACE_LOCAL:
O << "local";
break;
case ADDRESS_SPACE_GLOBAL:
O << "global";
break;
case ADDRESS_SPACE_CONST:
O << "const";
break;
case ADDRESS_SPACE_SHARED:
O << "shared";
break;
default:
report_fatal_error("Bad address space found while emitting PTX: " +
llvm::Twine(AddressSpace));
break;
}
}
std::string
NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return "pred";
if (NumBits <= 64) {
std::string name = "u";
return name + utostr(NumBits);
}
llvm_unreachable("Integer too large");
break;
}
case Type::BFloatTyID:
case Type::HalfTyID:
// fp16 and bf16 are stored as .b16 for compatibility with pre-sm_53
// PTX assembly.
return "b16";
case Type::FloatTyID:
return "f32";
case Type::DoubleTyID:
return "f64";
case Type::PointerTyID: {
unsigned PtrSize = TM.getPointerSizeInBits(Ty->getPointerAddressSpace());
assert((PtrSize == 64 || PtrSize == 32) && "Unexpected pointer size");
if (PtrSize == 64)
if (useB4PTR)
return "b64";
else
return "u64";
else if (useB4PTR)
return "b32";
else
return "u32";
}
default:
break;
}
llvm_unreachable("unexpected type");
}
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
raw_ostream &O,
const NVPTXSubtarget &STI) {
const DataLayout &DL = getDataLayout();
// GlobalVariables are always constant pointers themselves.
Type *ETy = GVar->getValueType();
O << ".";
emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
if (isManaged(*GVar)) {
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30)
report_fatal_error(
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
O << " .attribute(.managed)";
}
O << " .align "
<< GVar->getAlign().value_or(DL.getPrefTypeAlign(ETy)).value();
// Special case for i128/fp128
if (ETy->getScalarSizeInBits() == 128) {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
O << "[16]";
return;
}
if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
O << " ." << getPTXFundamentalTypeStr(ETy) << " ";
getSymbol(GVar)->print(O, MAI);
return;
}
int64_t ElementSize = 0;
// Although PTX has direct support for struct type and array type and LLVM IR
// is very similar to PTX, the LLVM CodeGen does not support for targets that
// support these high level field accesses. Structs and arrays are lowered
// into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::FixedVectorTyID:
ElementSize = DL.getTypeStoreSize(ETy);
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
O << "[";
if (ElementSize) {
O << ElementSize;
}
O << "]";
break;
default:
llvm_unreachable("type not supported yet");
}
}
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
const NVPTXMachineFunctionInfo *MFI =
MF ? MF->getInfo<NVPTXMachineFunctionInfo>() : nullptr;
bool IsFirst = true;
const bool IsKernelFunc = isKernelFunction(*F);
if (F->arg_empty() && !F->isVarArg()) {
O << "()";
return;
}
O << "(\n";
for (const Argument &Arg : F->args()) {
Type *Ty = Arg.getType();
const std::string ParamSym = TLI->getParamName(F, Arg.getArgNo());
if (!IsFirst)
O << ",\n";
IsFirst = false;
// Handle image/sampler parameters
if (IsKernelFunc) {
const bool IsSampler = isSampler(Arg);
const bool IsTexture = !IsSampler && isImageReadOnly(Arg);
const bool IsSurface = !IsSampler && !IsTexture &&
(isImageReadWrite(Arg) || isImageWriteOnly(Arg));
if (IsSampler || IsTexture || IsSurface) {
const bool EmitImgPtr = !MFI || !MFI->checkImageHandleSymbol(ParamSym);
O << "\t.param ";
if (EmitImgPtr)
O << ".u64 .ptr ";
if (IsSampler)
O << ".samplerref ";
else if (IsTexture)
O << ".texref ";
else // IsSurface
O << ".surfref ";
O << ParamSym;
continue;
}
}
auto GetOptimalAlignForParam = [TLI, &DL, F, &Arg](Type *Ty) -> Align {
if (MaybeAlign StackAlign =
getAlign(*F, Arg.getArgNo() + AttributeList::FirstArgIndex))
return StackAlign.value();
Align TypeAlign = TLI->getFunctionParamOptimizedAlign(F, Ty, DL);
MaybeAlign ParamAlign =
Arg.hasByValAttr() ? Arg.getParamAlign() : MaybeAlign();
return std::max(TypeAlign, ParamAlign.valueOrOne());
};
if (Arg.hasByValAttr()) {
// param has byVal attribute.
Type *ETy = Arg.getParamByValType();
assert(ETy && "Param should have byval type");
// Print .param .align <a> .b8 .param[size];
// <a> = optimal alignment for the element type; always multiple of
// PAL.getParamAlignment
// size = typeallocsize of element type
const Align OptimalAlign =
IsKernelFunc ? GetOptimalAlignForParam(ETy)
: TLI->getFunctionByValParamAlign(
F, ETy, Arg.getParamAlign().valueOrOne(), DL);
O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym
<< "[" << DL.getTypeAllocSize(ETy) << "]";
continue;
}
if (shouldPassAsArray(Ty)) {
// Just print .param .align <a> .b8 .param[size];
// <a> = optimal alignment for the element type; always multiple of
// PAL.getParamAlignment
// size = typeallocsize of element type
Align OptimalAlign = GetOptimalAlignForParam(Ty);
O << "\t.param .align " << OptimalAlign.value() << " .b8 " << ParamSym
<< "[" << DL.getTypeAllocSize(Ty) << "]";
continue;
}
// Just a scalar
auto *PTy = dyn_cast<PointerType>(Ty);
unsigned PTySizeInBits = 0;
if (PTy) {
PTySizeInBits =
TLI->getPointerTy(DL, PTy->getAddressSpace()).getSizeInBits();
assert(PTySizeInBits && "Invalid pointer size");
}
if (IsKernelFunc) {
if (PTy) {
O << "\t.param .u" << PTySizeInBits << " .ptr";
switch (PTy->getAddressSpace()) {
default:
break;
case ADDRESS_SPACE_GLOBAL:
O << " .global";
break;
case ADDRESS_SPACE_SHARED:
O << " .shared";
break;
case ADDRESS_SPACE_CONST:
O << " .const";
break;
case ADDRESS_SPACE_LOCAL:
O << " .local";
break;
}
O << " .align " << Arg.getParamAlign().valueOrOne().value() << " "
<< ParamSym;
continue;
}
// non-pointer scalar to kernel func
O << "\t.param .";
// Special case: predicate operands become .u8 types
if (Ty->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(Ty);
O << " " << ParamSym;
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non-ABI
unsigned Size;
if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
Size = promoteScalarArgumentSize(ITy->getBitWidth());
} else if (PTy) {
assert(PTySizeInBits && "Invalid pointer size");
Size = PTySizeInBits;
} else
Size = Ty->getPrimitiveSizeInBits();
O << "\t.param .b" << Size << " " << ParamSym;
}
if (F->isVarArg()) {
if (!IsFirst)
O << ",\n";
O << "\t.param .align " << STI.getMaxRequiredAlignment() << " .b8 "
<< TLI->getParamName(F, /* vararg */ -1) << "[]";
}
O << "\n)";
}
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
const MachineFunction &MF) {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Map the global virtual register number to a register class specific
// virtual register number starting from 1 with that class.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
//unsigned numRegClasses = TRI->getNumRegClasses();
// Emit the Fake Stack Object
const MachineFrameInfo &MFI = MF.getFrameInfo();
int64_t NumBytes = MFI.getStackSize();
if (NumBytes) {
O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t"
<< DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n";
if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
O << "\t.reg .b64 \t%SP;\n"
<< "\t.reg .b64 \t%SPL;\n";
} else {
O << "\t.reg .b32 \t%SP;\n"
<< "\t.reg .b32 \t%SPL;\n";
}
}
// Go through all virtual registers to establish the mapping between the
// global virtual
// register number and the per class virtual register number.
// We use the per class virtual register number in the ptx output.
unsigned int numVRs = MRI->getNumVirtRegs();
for (unsigned i = 0; i < numVRs; i++) {
Register vr = Register::index2VirtReg(i);
const TargetRegisterClass *RC = MRI->getRegClass(vr);
DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
int n = regmap.size();
regmap.insert(std::make_pair(vr, n + 1));
}
// Emit declaration of the virtual registers or 'physical' registers for
// each register class
for (const TargetRegisterClass *RC : TRI->regclasses()) {
const unsigned N = VRegMapping[RC].size();
// Only declare those registers that may be used.
if (N) {
const StringRef RCName = getNVPTXRegClassName(RC);
const StringRef RCStr = getNVPTXRegClassStr(RC);
O << "\t.reg " << RCName << " \t" << RCStr << "<" << (N + 1) << ">;\n";
}
}
OutStreamer->emitRawText(O.str());
}
/// Translate virtual register numbers in DebugInfo locations to their printed
/// encodings, as used by CUDA-GDB.
void NVPTXAsmPrinter::encodeDebugInfoRegisterNumbers(
const MachineFunction &MF) {
const NVPTXSubtarget &STI = MF.getSubtarget<NVPTXSubtarget>();
const NVPTXRegisterInfo *registerInfo = STI.getRegisterInfo();
// Clear the old mapping, and add the new one. This mapping is used after the
// printing of the current function is complete, but before the next function
// is printed.
registerInfo->clearDebugRegisterMap();
for (auto &classMap : VRegMapping) {
for (auto &registerMapping : classMap.getSecond()) {
auto reg = registerMapping.getFirst();
registerInfo->addToDebugRegisterMap(reg, getVirtualRegisterName(reg));
}
}
}
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp,
raw_ostream &O) const {
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
bool ignored;
unsigned int numHex;
const char *lead;
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
numHex = 8;
lead = "0f";
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
numHex = 16;
lead = "0d";
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
} else
llvm_unreachable("unsupported fp type");
APInt API = APF.bitcastToAPInt();
O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
}
void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
O << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
printFPConstant(CFP, O);
return;
}
if (isa<ConstantPointerNull>(CPV)) {
O << "0";
return;
}
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
const bool IsNonGenericPointer = GVar->getAddressSpace() != 0;
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
O << "generic(";
getSymbol(GVar)->print(O, MAI);
O << ")";
} else {
getSymbol(GVar)->print(O, MAI);
}
return;
}
if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
const MCExpr *E = lowerConstantForGV(cast<Constant>(Cexpr), false);
printMCExpr(*E, O);
return;
}
llvm_unreachable("Not scalar type found in printScalarConstant()");
}
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
AggBuffer *AggBuffer) {
const DataLayout &DL = getDataLayout();
int AllocSize = DL.getTypeAllocSize(CPV->getType());
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
// Non-zero Bytes indicates that we need to zero-fill everything. Otherwise,
// only the space allocated by CPV.
AggBuffer->addZeros(Bytes ? Bytes : AllocSize);
return;
}
// Helper for filling AggBuffer with APInts.
auto AddIntToBuffer = [AggBuffer, Bytes](const APInt &Val) {
size_t NumBytes = (Val.getBitWidth() + 7) / 8;
SmallVector<unsigned char, 16> Buf(NumBytes);
// `extractBitsAsZExtValue` does not allow the extraction of bits beyond the
// input's bit width, and i1 arrays may not have a length that is a multuple
// of 8. We handle the last byte separately, so we never request out of
// bounds bits.
for (unsigned I = 0; I < NumBytes - 1; ++I) {
Buf[I] = Val.extractBitsAsZExtValue(8, I * 8);
}
size_t LastBytePosition = (NumBytes - 1) * 8;
size_t LastByteBits = Val.getBitWidth() - LastBytePosition;
Buf[NumBytes - 1] =
Val.extractBitsAsZExtValue(LastByteBits, LastBytePosition);
AggBuffer->addBytes(Buf.data(), NumBytes, Bytes);
};
switch (CPV->getType()->getTypeID()) {
case Type::IntegerTyID:
if (const auto *CI = dyn_cast<ConstantInt>(CPV)) {
AddIntToBuffer(CI->getValue());
break;
}
if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (const auto *CI =
dyn_cast<ConstantInt>(ConstantFoldConstant(Cexpr, DL))) {
AddIntToBuffer(CI->getValue());
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *V = Cexpr->getOperand(0)->stripPointerCasts();
AggBuffer->addSymbol(V, Cexpr->getOperand(0));
AggBuffer->addZeros(AllocSize);
break;
}
}
llvm_unreachable("unsupported integer const type");
break;
case Type::HalfTyID:
case Type::BFloatTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
AddIntToBuffer(cast<ConstantFP>(CPV)->getValueAPF().bitcastToAPInt());
break;
case Type::PointerTyID: {
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
AggBuffer->addSymbol(GVar, GVar);
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
const Value *v = Cexpr->stripPointerCasts();
AggBuffer->addSymbol(v, Cexpr);
}
AggBuffer->addZeros(AllocSize);
break;
}
case Type::ArrayTyID:
case Type::FixedVectorTyID:
case Type::StructTyID: {
if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
bufferAggregateConstant(CPV, AggBuffer);
if (Bytes > AllocSize)
AggBuffer->addZeros(Bytes - AllocSize);
} else if (isa<ConstantAggregateZero>(CPV))
AggBuffer->addZeros(Bytes);
else
llvm_unreachable("Unexpected Constant type");
break;
}
default:
llvm_unreachable("unsupported type");
}
}
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
AggBuffer *aggBuffer) {
const DataLayout &DL = getDataLayout();
auto ExtendBuffer = [](APInt Val, AggBuffer *Buffer) {
for (unsigned I : llvm::seq(Val.getBitWidth() / 8))
Buffer->addByte(Val.extractBitsAsZExtValue(8, I * 8));
};
// Integers of arbitrary width
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
ExtendBuffer(CI->getValue(), aggBuffer);
return;
}
// f128
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
if (CFP->getType()->isFP128Ty()) {
ExtendBuffer(CFP->getValueAPF().bitcastToAPInt(), aggBuffer);
return;
}
}
// Old constants
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
for (const auto &Op : CPV->operands())
bufferLEByte(cast<Constant>(Op), 0, aggBuffer);
return;
}
if (const auto *CDS = dyn_cast<ConstantDataSequential>(CPV)) {
for (unsigned I : llvm::seq(CDS->getNumElements()))
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(I)), 0, aggBuffer);
return;
}
if (isa<ConstantStruct>(CPV)) {
if (CPV->getNumOperands()) {
StructType *ST = cast<StructType>(CPV->getType());
for (unsigned I : llvm::seq(CPV->getNumOperands())) {
int EndOffset = (I + 1 == CPV->getNumOperands())
? DL.getStructLayout(ST)->getElementOffset(0) +
DL.getTypeAllocSize(ST)
: DL.getStructLayout(ST)->getElementOffset(I + 1);
int Bytes = EndOffset - DL.getStructLayout(ST)->getElementOffset(I);
bufferLEByte(cast<Constant>(CPV->getOperand(I)), Bytes, aggBuffer);
}
}
return;
}
llvm_unreachable("unsupported constant type in printAggregateConstant()");
}
/// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
/// a copy from AsmPrinter::lowerConstant, except customized to only handle
/// expressions that are representable in PTX and create
/// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
const MCExpr *
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV,
bool ProcessingGeneric) const {
MCContext &Ctx = OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(getSymbol(GV), Ctx);
if (ProcessingGeneric)
return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
return Expr;
}
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (!CE) {
llvm_unreachable("Unknown constant value to lower!");
}
switch (CE->getOpcode()) {
default:
break; // Error
case Instruction::AddrSpaceCast: {
// Strip the addrspacecast and pass along the operand
PointerType *DstTy = cast<PointerType>(CE->getType());
if (DstTy->getAddressSpace() == 0)
return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
break; // Error
}
case Instruction::GetElementPtr: {
const DataLayout &DL = getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
ProcessingGeneric);
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
[[fallthrough]];
case Instruction::BitCast:
return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
case Instruction::IntToPtr: {
const DataLayout &DL = getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
/*IsSigned*/ false, DL);
if (Op)
return lowerConstantForGV(Op, ProcessingGeneric);
break; // Error
}
case Instruction::PtrToInt: {
const DataLayout &DL = getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add: {
const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
}
}
}
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
Constant *C = ConstantFoldConstant(CE, getDataLayout());
if (C != CE)
return lowerConstantForGV(C, ProcessingGeneric);
// Otherwise report the problem to the user.
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/false,
!MF ? nullptr : MF->getFunction().getParent());
report_fatal_error(Twine(OS.str()));
}
// Copy of MCExpr::print customized for NVPTX
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) const {
switch (Expr.getKind()) {
case MCExpr::Target:
return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
case MCExpr::Constant:
OS << cast<MCConstantExpr>(Expr).getValue();
return;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
const MCSymbol &Sym = SRE.getSymbol();
Sym.print(OS, MAI);
return;
}
case MCExpr::Unary: {
const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
switch (UE.getOpcode()) {
case MCUnaryExpr::LNot: OS << '!'; break;
case MCUnaryExpr::Minus: OS << '-'; break;
case MCUnaryExpr::Not: OS << '~'; break;
case MCUnaryExpr::Plus: OS << '+'; break;
}
printMCExpr(*UE.getSubExpr(), OS);
return;
}
case MCExpr::Binary: {
const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
printMCExpr(*BE.getLHS(), OS);
} else {
OS << '(';
printMCExpr(*BE.getLHS(), OS);
OS<< ')';
}
switch (BE.getOpcode()) {
case MCBinaryExpr::Add:
// Print "X-42" instead of "X+-42".
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
if (RHSC->getValue() < 0) {
OS << RHSC->getValue();
return;
}
}
OS << '+';
break;
default: llvm_unreachable("Unhandled binary operator");
}
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
printMCExpr(*BE.getRHS(), OS);
} else {
OS << '(';
printMCExpr(*BE.getRHS(), OS);
OS << ')';
}
return;
}
}
llvm_unreachable("Invalid expression kind!");
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
case 'r':
break;
}
}
printOperand(MI, OpNo, O);
return false;
}
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier
O << '[';
printMemOperand(MI, OpNo, O);
O << ']';
return false;
}
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (MO.getReg().isPhysical()) {
if (MO.getReg() == NVPTX::VRDepot)
O << DEPOTNAME << getFunctionNumber();
else
O << NVPTXInstPrinter::getRegisterName(MO.getReg());
} else {
emitVirtualRegister(MO.getReg(), O);
}
break;
case MachineOperand::MO_Immediate:
O << MO.getImm();
break;
case MachineOperand::MO_FPImmediate:
printFPConstant(MO.getFPImm(), O);
break;
case MachineOperand::MO_GlobalAddress:
PrintSymbolOperand(MO, O);
break;
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
break;
default:
llvm_unreachable("Operand type not supported.");
}
}
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, unsigned OpNum,
raw_ostream &O, const char *Modifier) {
printOperand(MI, OpNum, O);
if (Modifier && strcmp(Modifier, "add") == 0) {
O << ", ";
printOperand(MI, OpNum + 1, O);
} else {
if (MI->getOperand(OpNum + 1).isImm() &&
MI->getOperand(OpNum + 1).getImm() == 0)
return; // don't print ',0' or '+0'
O << "+";
printOperand(MI, OpNum + 1, O);
}
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());
}