blob: 51c9af8a6e1fec14ed09995351260414949c9c6b [file] [log] [blame] [edit]
//===- SandboxIR.cpp - A transactional overlay IR on top of LLVM IR -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/SandboxIR/SandboxIR.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/Debug.h"
#include <sstream>
using namespace llvm::sandboxir;
Value *Use::get() const { return Ctx->getValue(LLVMUse->get()); }
void Use::set(Value *V) { LLVMUse->set(V->Val); }
unsigned Use::getOperandNo() const { return Usr->getUseOperandNo(*this); }
#ifndef NDEBUG
void Use::dump(raw_ostream &OS) const {
Value *Def = nullptr;
if (LLVMUse == nullptr)
OS << "<null> LLVM Use! ";
else
Def = Ctx->getValue(LLVMUse->get());
OS << "Def: ";
if (Def == nullptr)
OS << "NULL";
else
OS << *Def;
OS << "\n";
OS << "User: ";
if (Usr == nullptr)
OS << "NULL";
else
OS << *Usr;
OS << "\n";
OS << "OperandNo: ";
if (Usr == nullptr)
OS << "N/A";
else
OS << getOperandNo();
OS << "\n";
}
void Use::dump() const { dump(dbgs()); }
#endif // NDEBUG
Use OperandUseIterator::operator*() const { return Use; }
OperandUseIterator &OperandUseIterator::operator++() {
assert(Use.LLVMUse != nullptr && "Already at end!");
User *User = Use.getUser();
Use = User->getOperandUseInternal(Use.getOperandNo() + 1, /*Verify=*/false);
return *this;
}
UserUseIterator &UserUseIterator::operator++() {
// Get the corresponding llvm::Use, get the next in the list, and update the
// sandboxir::Use.
llvm::Use *&LLVMUse = Use.LLVMUse;
assert(LLVMUse != nullptr && "Already at end!");
LLVMUse = LLVMUse->getNext();
if (LLVMUse == nullptr) {
Use.Usr = nullptr;
return *this;
}
auto *Ctx = Use.Ctx;
auto *LLVMUser = LLVMUse->getUser();
Use.Usr = cast_or_null<sandboxir::User>(Ctx->getValue(LLVMUser));
return *this;
}
Value::Value(ClassID SubclassID, llvm::Value *Val, Context &Ctx)
: SubclassID(SubclassID), Val(Val), Ctx(Ctx) {
#ifndef NDEBUG
UID = Ctx.getNumValues();
#endif
}
Value::use_iterator Value::use_begin() {
llvm::Use *LLVMUse = nullptr;
if (Val->use_begin() != Val->use_end())
LLVMUse = &*Val->use_begin();
User *User = LLVMUse != nullptr ? cast_or_null<sandboxir::User>(Ctx.getValue(
Val->use_begin()->getUser()))
: nullptr;
return use_iterator(Use(LLVMUse, User, Ctx));
}
Value::user_iterator Value::user_begin() {
auto UseBegin = Val->use_begin();
auto UseEnd = Val->use_end();
bool AtEnd = UseBegin == UseEnd;
llvm::Use *LLVMUse = AtEnd ? nullptr : &*UseBegin;
User *User =
AtEnd ? nullptr
: cast_or_null<sandboxir::User>(Ctx.getValue(&*LLVMUse->getUser()));
return user_iterator(Use(LLVMUse, User, Ctx), UseToUser());
}
unsigned Value::getNumUses() const { return range_size(Val->users()); }
void Value::replaceUsesWithIf(
Value *OtherV, llvm::function_ref<bool(const Use &)> ShouldReplace) {
assert(getType() == OtherV->getType() && "Can't replace with different type");
llvm::Value *OtherVal = OtherV->Val;
// We are delegating RUWIf to LLVM IR's RUWIf.
Val->replaceUsesWithIf(
OtherVal, [&ShouldReplace, this](llvm::Use &LLVMUse) -> bool {
User *DstU = cast_or_null<User>(Ctx.getValue(LLVMUse.getUser()));
if (DstU == nullptr)
return false;
Use UseToReplace(&LLVMUse, DstU, Ctx);
if (!ShouldReplace(UseToReplace))
return false;
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking())
Tracker.track(std::make_unique<UseSet>(UseToReplace, Tracker));
return true;
});
}
void Value::replaceAllUsesWith(Value *Other) {
assert(getType() == Other->getType() &&
"Replacing with Value of different type!");
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking()) {
for (auto Use : uses())
Tracker.track(std::make_unique<UseSet>(Use, Tracker));
}
// We are delegating RAUW to LLVM IR's RAUW.
Val->replaceAllUsesWith(Other->Val);
}
#ifndef NDEBUG
std::string Value::getUid() const {
std::stringstream SS;
SS << "SB" << UID << ".";
return SS.str();
}
void Value::dumpCommonHeader(raw_ostream &OS) const {
OS << getUid() << " " << getSubclassIDStr(SubclassID) << " ";
}
void Value::dumpCommonFooter(raw_ostream &OS) const {
OS.indent(2) << "Val: ";
if (Val)
OS << *Val;
else
OS << "NULL";
OS << "\n";
}
void Value::dumpCommonPrefix(raw_ostream &OS) const {
if (Val)
OS << *Val;
else
OS << "NULL ";
}
void Value::dumpCommonSuffix(raw_ostream &OS) const {
OS << " ; " << getUid() << " (" << getSubclassIDStr(SubclassID) << ")";
}
void Value::printAsOperandCommon(raw_ostream &OS) const {
if (Val)
Val->printAsOperand(OS);
else
OS << "NULL ";
}
void Argument::printAsOperand(raw_ostream &OS) const {
printAsOperandCommon(OS);
}
void Argument::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void Argument::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
Use User::getOperandUseDefault(unsigned OpIdx, bool Verify) const {
assert((!Verify || OpIdx < getNumOperands()) && "Out of bounds!");
assert(isa<llvm::User>(Val) && "Non-users have no operands!");
llvm::Use *LLVMUse;
if (OpIdx != getNumOperands())
LLVMUse = &cast<llvm::User>(Val)->getOperandUse(OpIdx);
else
LLVMUse = cast<llvm::User>(Val)->op_end();
return Use(LLVMUse, const_cast<User *>(this), Ctx);
}
#ifndef NDEBUG
void User::verifyUserOfLLVMUse(const llvm::Use &Use) const {
assert(Ctx.getValue(Use.getUser()) == this &&
"Use not found in this SBUser's operands!");
}
#endif
bool User::classof(const Value *From) {
switch (From->getSubclassID()) {
#define DEF_VALUE(ID, CLASS)
#define DEF_USER(ID, CLASS) \
case ClassID::ID: \
return true;
#define DEF_INSTR(ID, OPC, CLASS) \
case ClassID::ID: \
return true;
#include "llvm/SandboxIR/SandboxIRValues.def"
default:
return false;
}
}
void User::setOperand(unsigned OperandIdx, Value *Operand) {
assert(isa<llvm::User>(Val) && "No operands!");
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking())
Tracker.track(std::make_unique<UseSet>(getOperandUse(OperandIdx), Tracker));
// We are delegating to llvm::User::setOperand().
cast<llvm::User>(Val)->setOperand(OperandIdx, Operand->Val);
}
bool User::replaceUsesOfWith(Value *FromV, Value *ToV) {
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking()) {
for (auto OpIdx : seq<unsigned>(0, getNumOperands())) {
auto Use = getOperandUse(OpIdx);
if (Use.get() == FromV)
Tracker.track(std::make_unique<UseSet>(Use, Tracker));
}
}
// We are delegating RUOW to LLVM IR's RUOW.
return cast<llvm::User>(Val)->replaceUsesOfWith(FromV->Val, ToV->Val);
}
#ifndef NDEBUG
void User::dumpCommonHeader(raw_ostream &OS) const {
Value::dumpCommonHeader(OS);
// TODO: This is incomplete
}
#endif // NDEBUG
BBIterator &BBIterator::operator++() {
auto ItE = BB->end();
assert(It != ItE && "Already at end!");
++It;
if (It == ItE)
return *this;
Instruction &NextI = *cast<sandboxir::Instruction>(Ctx->getValue(&*It));
unsigned Num = NextI.getNumOfIRInstrs();
assert(Num > 0 && "Bad getNumOfIRInstrs()");
It = std::next(It, Num - 1);
return *this;
}
BBIterator &BBIterator::operator--() {
assert(It != BB->begin() && "Already at begin!");
if (It == BB->end()) {
--It;
return *this;
}
Instruction &CurrI = **this;
unsigned Num = CurrI.getNumOfIRInstrs();
assert(Num > 0 && "Bad getNumOfIRInstrs()");
assert(std::prev(It, Num - 1) != BB->begin() && "Already at begin!");
It = std::prev(It, Num);
return *this;
}
const char *Instruction::getOpcodeName(Opcode Opc) {
switch (Opc) {
#define DEF_VALUE(ID, CLASS)
#define DEF_USER(ID, CLASS)
#define OP(OPC) \
case Opcode::OPC: \
return #OPC;
#define DEF_INSTR(ID, OPC, CLASS) OPC
#include "llvm/SandboxIR/SandboxIRValues.def"
}
llvm_unreachable("Unknown Opcode");
}
llvm::Instruction *Instruction::getTopmostLLVMInstruction() const {
Instruction *Prev = getPrevNode();
if (Prev == nullptr) {
// If at top of the BB, return the first BB instruction.
return &*cast<llvm::BasicBlock>(getParent()->Val)->begin();
}
// Else get the Previous sandbox IR instruction's bottom IR instruction and
// return its successor.
llvm::Instruction *PrevBotI = cast<llvm::Instruction>(Prev->Val);
return PrevBotI->getNextNode();
}
BBIterator Instruction::getIterator() const {
auto *I = cast<llvm::Instruction>(Val);
return BasicBlock::iterator(I->getParent(), I->getIterator(), &Ctx);
}
Instruction *Instruction::getNextNode() const {
assert(getParent() != nullptr && "Detached!");
assert(getIterator() != getParent()->end() && "Already at end!");
// `Val` is the bottom-most LLVM IR instruction. Get the next in the chain,
// and get the corresponding sandboxir Instruction that maps to it. This works
// even for SandboxIR Instructions that map to more than one LLVM Instruction.
auto *LLVMI = cast<llvm::Instruction>(Val);
assert(LLVMI->getParent() != nullptr && "LLVM IR instr is detached!");
auto *NextLLVMI = LLVMI->getNextNode();
auto *NextI = cast_or_null<Instruction>(Ctx.getValue(NextLLVMI));
if (NextI == nullptr)
return nullptr;
return NextI;
}
Instruction *Instruction::getPrevNode() const {
assert(getParent() != nullptr && "Detached!");
auto It = getIterator();
if (It != getParent()->begin())
return std::prev(getIterator()).get();
return nullptr;
}
void Instruction::removeFromParent() {
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking())
Tracker.track(std::make_unique<RemoveFromParent>(this, Tracker));
// Detach all the LLVM IR instructions from their parent BB.
for (llvm::Instruction *I : getLLVMInstrs())
I->removeFromParent();
}
void Instruction::eraseFromParent() {
assert(users().empty() && "Still connected to users, can't erase!");
std::unique_ptr<Value> Detached = Ctx.detach(this);
auto LLVMInstrs = getLLVMInstrs();
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking()) {
Tracker.track(
std::make_unique<EraseFromParent>(std::move(Detached), Tracker));
// We don't actually delete the IR instruction, because then it would be
// impossible to bring it back from the dead at the same memory location.
// Instead we remove it from its BB and track its current location.
for (llvm::Instruction *I : LLVMInstrs)
I->removeFromParent();
// TODO: Multi-instructions need special treatment because some of the
// references are internal to the instruction.
for (llvm::Instruction *I : LLVMInstrs)
I->dropAllReferences();
} else {
// Erase in reverse to avoid erasing nstructions with attached uses.
for (llvm::Instruction *I : reverse(LLVMInstrs))
I->eraseFromParent();
}
}
void Instruction::moveBefore(BasicBlock &BB, const BBIterator &WhereIt) {
if (std::next(getIterator()) == WhereIt)
// Destination is same as origin, nothing to do.
return;
auto &Tracker = Ctx.getTracker();
if (Tracker.isTracking())
Tracker.track(std::make_unique<MoveInstr>(this, Tracker));
auto *LLVMBB = cast<llvm::BasicBlock>(BB.Val);
llvm::BasicBlock::iterator It;
if (WhereIt == BB.end()) {
It = LLVMBB->end();
} else {
Instruction *WhereI = &*WhereIt;
It = WhereI->getTopmostLLVMInstruction()->getIterator();
}
// TODO: Move this to the verifier of sandboxir::Instruction.
assert(is_sorted(getLLVMInstrs(),
[](auto *I1, auto *I2) { return I1->comesBefore(I2); }) &&
"Expected program order!");
// Do the actual move in LLVM IR.
for (auto *I : getLLVMInstrs())
I->moveBefore(*LLVMBB, It);
}
void Instruction::insertBefore(Instruction *BeforeI) {
llvm::Instruction *BeforeTopI = BeforeI->getTopmostLLVMInstruction();
// TODO: Move this to the verifier of sandboxir::Instruction.
assert(is_sorted(getLLVMInstrs(),
[](auto *I1, auto *I2) { return I1->comesBefore(I2); }) &&
"Expected program order!");
// Insert the LLVM IR Instructions in program order.
for (llvm::Instruction *I : getLLVMInstrs())
I->insertBefore(BeforeTopI);
}
void Instruction::insertAfter(Instruction *AfterI) {
insertInto(AfterI->getParent(), std::next(AfterI->getIterator()));
}
void Instruction::insertInto(BasicBlock *BB, const BBIterator &WhereIt) {
llvm::BasicBlock *LLVMBB = cast<llvm::BasicBlock>(BB->Val);
llvm::Instruction *LLVMBeforeI;
llvm::BasicBlock::iterator LLVMBeforeIt;
if (WhereIt != BB->end()) {
Instruction *BeforeI = &*WhereIt;
LLVMBeforeI = BeforeI->getTopmostLLVMInstruction();
LLVMBeforeIt = LLVMBeforeI->getIterator();
} else {
LLVMBeforeI = nullptr;
LLVMBeforeIt = LLVMBB->end();
}
// Insert the LLVM IR Instructions in program order.
for (llvm::Instruction *I : getLLVMInstrs())
I->insertInto(LLVMBB, LLVMBeforeIt);
}
BasicBlock *Instruction::getParent() const {
// Get the LLVM IR Instruction that this maps to, get its parent, and get the
// corresponding sandboxir::BasicBlock by looking it up in sandboxir::Context.
auto *BB = cast<llvm::Instruction>(Val)->getParent();
if (BB == nullptr)
return nullptr;
return cast<BasicBlock>(Ctx.getValue(BB));
}
bool Instruction::classof(const sandboxir::Value *From) {
switch (From->getSubclassID()) {
#define DEF_INSTR(ID, OPC, CLASS) \
case ClassID::ID: \
return true;
#include "llvm/SandboxIR/SandboxIRValues.def"
default:
return false;
}
}
#ifndef NDEBUG
void Instruction::dump(raw_ostream &OS) const {
OS << "Unimplemented! Please override dump().";
}
void Instruction::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
Value *SelectInst::createCommon(Value *Cond, Value *True, Value *False,
const Twine &Name, IRBuilder<> &Builder,
Context &Ctx) {
llvm::Value *NewV =
Builder.CreateSelect(Cond->Val, True->Val, False->Val, Name);
if (auto *NewSI = dyn_cast<llvm::SelectInst>(NewV))
return Ctx.createSelectInst(NewSI);
assert(isa<llvm::Constant>(NewV) && "Expected constant");
return Ctx.getOrCreateConstant(cast<llvm::Constant>(NewV));
}
Value *SelectInst::create(Value *Cond, Value *True, Value *False,
Instruction *InsertBefore, Context &Ctx,
const Twine &Name) {
llvm::Instruction *BeforeIR = InsertBefore->getTopmostLLVMInstruction();
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(BeforeIR);
return createCommon(Cond, True, False, Name, Builder, Ctx);
}
Value *SelectInst::create(Value *Cond, Value *True, Value *False,
BasicBlock *InsertAtEnd, Context &Ctx,
const Twine &Name) {
auto *IRInsertAtEnd = cast<llvm::BasicBlock>(InsertAtEnd->Val);
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(IRInsertAtEnd);
return createCommon(Cond, True, False, Name, Builder, Ctx);
}
bool SelectInst::classof(const Value *From) {
return From->getSubclassID() == ClassID::Select;
}
#ifndef NDEBUG
void SelectInst::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void SelectInst::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
LoadInst *LoadInst::create(Type *Ty, Value *Ptr, MaybeAlign Align,
Instruction *InsertBefore, Context &Ctx,
const Twine &Name) {
llvm::Instruction *BeforeIR = InsertBefore->getTopmostLLVMInstruction();
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(BeforeIR);
auto *NewLI = Builder.CreateAlignedLoad(Ty, Ptr->Val, Align,
/*isVolatile=*/false, Name);
auto *NewSBI = Ctx.createLoadInst(NewLI);
return NewSBI;
}
LoadInst *LoadInst::create(Type *Ty, Value *Ptr, MaybeAlign Align,
BasicBlock *InsertAtEnd, Context &Ctx,
const Twine &Name) {
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(cast<llvm::BasicBlock>(InsertAtEnd->Val));
auto *NewLI = Builder.CreateAlignedLoad(Ty, Ptr->Val, Align,
/*isVolatile=*/false, Name);
auto *NewSBI = Ctx.createLoadInst(NewLI);
return NewSBI;
}
bool LoadInst::classof(const Value *From) {
return From->getSubclassID() == ClassID::Load;
}
Value *LoadInst::getPointerOperand() const {
return Ctx.getValue(cast<llvm::LoadInst>(Val)->getPointerOperand());
}
#ifndef NDEBUG
void LoadInst::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void LoadInst::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
StoreInst *StoreInst::create(Value *V, Value *Ptr, MaybeAlign Align,
Instruction *InsertBefore, Context &Ctx) {
llvm::Instruction *BeforeIR = InsertBefore->getTopmostLLVMInstruction();
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(BeforeIR);
auto *NewSI =
Builder.CreateAlignedStore(V->Val, Ptr->Val, Align, /*isVolatile=*/false);
auto *NewSBI = Ctx.createStoreInst(NewSI);
return NewSBI;
}
StoreInst *StoreInst::create(Value *V, Value *Ptr, MaybeAlign Align,
BasicBlock *InsertAtEnd, Context &Ctx) {
auto *InsertAtEndIR = cast<llvm::BasicBlock>(InsertAtEnd->Val);
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(InsertAtEndIR);
auto *NewSI =
Builder.CreateAlignedStore(V->Val, Ptr->Val, Align, /*isVolatile=*/false);
auto *NewSBI = Ctx.createStoreInst(NewSI);
return NewSBI;
}
bool StoreInst::classof(const Value *From) {
return From->getSubclassID() == ClassID::Store;
}
Value *StoreInst::getValueOperand() const {
return Ctx.getValue(cast<llvm::StoreInst>(Val)->getValueOperand());
}
Value *StoreInst::getPointerOperand() const {
return Ctx.getValue(cast<llvm::StoreInst>(Val)->getPointerOperand());
}
#ifndef NDEBUG
void StoreInst::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void StoreInst::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
ReturnInst *ReturnInst::createCommon(Value *RetVal, IRBuilder<> &Builder,
Context &Ctx) {
llvm::ReturnInst *NewRI;
if (RetVal != nullptr)
NewRI = Builder.CreateRet(RetVal->Val);
else
NewRI = Builder.CreateRetVoid();
return Ctx.createReturnInst(NewRI);
}
ReturnInst *ReturnInst::create(Value *RetVal, Instruction *InsertBefore,
Context &Ctx) {
llvm::Instruction *BeforeIR = InsertBefore->getTopmostLLVMInstruction();
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(BeforeIR);
return createCommon(RetVal, Builder, Ctx);
}
ReturnInst *ReturnInst::create(Value *RetVal, BasicBlock *InsertAtEnd,
Context &Ctx) {
auto &Builder = Ctx.getLLVMIRBuilder();
Builder.SetInsertPoint(cast<llvm::BasicBlock>(InsertAtEnd->Val));
return createCommon(RetVal, Builder, Ctx);
}
Value *ReturnInst::getReturnValue() const {
auto *LLVMRetVal = cast<llvm::ReturnInst>(Val)->getReturnValue();
return LLVMRetVal != nullptr ? Ctx.getValue(LLVMRetVal) : nullptr;
}
#ifndef NDEBUG
void ReturnInst::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void ReturnInst::dump() const {
dump(dbgs());
dbgs() << "\n";
}
void OpaqueInst::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void OpaqueInst::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
Constant *Constant::createInt(Type *Ty, uint64_t V, Context &Ctx,
bool IsSigned) {
llvm::Constant *LLVMC = llvm::ConstantInt::get(Ty, V, IsSigned);
return Ctx.getOrCreateConstant(LLVMC);
}
#ifndef NDEBUG
void Constant::dump(raw_ostream &OS) const {
dumpCommonPrefix(OS);
dumpCommonSuffix(OS);
}
void Constant::dump() const {
dump(dbgs());
dbgs() << "\n";
}
void Function::dumpNameAndArgs(raw_ostream &OS) const {
auto *F = cast<llvm::Function>(Val);
OS << *F->getReturnType() << " @" << F->getName() << "(";
interleave(
F->args(),
[this, &OS](const llvm::Argument &LLVMArg) {
auto *SBArg = cast_or_null<Argument>(Ctx.getValue(&LLVMArg));
if (SBArg == nullptr)
OS << "NULL";
else
SBArg->printAsOperand(OS);
},
[&] { OS << ", "; });
OS << ")";
}
void Function::dump(raw_ostream &OS) const {
dumpNameAndArgs(OS);
OS << " {\n";
auto *LLVMF = cast<llvm::Function>(Val);
interleave(
*LLVMF,
[this, &OS](const llvm::BasicBlock &LLVMBB) {
auto *BB = cast_or_null<BasicBlock>(Ctx.getValue(&LLVMBB));
if (BB == nullptr)
OS << "NULL";
else
OS << *BB;
},
[&OS] { OS << "\n"; });
OS << "}\n";
}
void Function::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
BasicBlock::iterator::pointer
BasicBlock::iterator::getInstr(llvm::BasicBlock::iterator It) const {
return cast_or_null<Instruction>(Ctx->getValue(&*It));
}
std::unique_ptr<Value> Context::detachLLVMValue(llvm::Value *V) {
std::unique_ptr<Value> Erased;
auto It = LLVMValueToValueMap.find(V);
if (It != LLVMValueToValueMap.end()) {
auto *Val = It->second.release();
Erased = std::unique_ptr<Value>(Val);
LLVMValueToValueMap.erase(It);
}
return Erased;
}
std::unique_ptr<Value> Context::detach(Value *V) {
assert(V->getSubclassID() != Value::ClassID::Constant &&
"Can't detach a constant!");
assert(V->getSubclassID() != Value::ClassID::User && "Can't detach a user!");
return detachLLVMValue(V->Val);
}
Value *Context::registerValue(std::unique_ptr<Value> &&VPtr) {
assert(VPtr->getSubclassID() != Value::ClassID::User &&
"Can't register a user!");
Value *V = VPtr.get();
[[maybe_unused]] auto Pair =
LLVMValueToValueMap.insert({VPtr->Val, std::move(VPtr)});
assert(Pair.second && "Already exists!");
return V;
}
Value *Context::getOrCreateValueInternal(llvm::Value *LLVMV, llvm::User *U) {
auto Pair = LLVMValueToValueMap.insert({LLVMV, nullptr});
auto It = Pair.first;
if (!Pair.second)
return It->second.get();
if (auto *C = dyn_cast<llvm::Constant>(LLVMV)) {
It->second = std::unique_ptr<Constant>(new Constant(C, *this));
auto *NewC = It->second.get();
for (llvm::Value *COp : C->operands())
getOrCreateValueInternal(COp, C);
return NewC;
}
if (auto *Arg = dyn_cast<llvm::Argument>(LLVMV)) {
It->second = std::unique_ptr<Argument>(new Argument(Arg, *this));
return It->second.get();
}
if (auto *BB = dyn_cast<llvm::BasicBlock>(LLVMV)) {
assert(isa<BlockAddress>(U) &&
"This won't create a SBBB, don't call this function directly!");
if (auto *SBBB = getValue(BB))
return SBBB;
return nullptr;
}
assert(isa<llvm::Instruction>(LLVMV) && "Expected Instruction");
switch (cast<llvm::Instruction>(LLVMV)->getOpcode()) {
case llvm::Instruction::Select: {
auto *LLVMSel = cast<llvm::SelectInst>(LLVMV);
It->second = std::unique_ptr<SelectInst>(new SelectInst(LLVMSel, *this));
return It->second.get();
}
case llvm::Instruction::Load: {
auto *LLVMLd = cast<llvm::LoadInst>(LLVMV);
It->second = std::unique_ptr<LoadInst>(new LoadInst(LLVMLd, *this));
return It->second.get();
}
case llvm::Instruction::Store: {
auto *LLVMSt = cast<llvm::StoreInst>(LLVMV);
It->second = std::unique_ptr<StoreInst>(new StoreInst(LLVMSt, *this));
return It->second.get();
}
case llvm::Instruction::Ret: {
auto *LLVMRet = cast<llvm::ReturnInst>(LLVMV);
It->second = std::unique_ptr<ReturnInst>(new ReturnInst(LLVMRet, *this));
return It->second.get();
}
default:
break;
}
It->second = std::unique_ptr<OpaqueInst>(
new OpaqueInst(cast<llvm::Instruction>(LLVMV), *this));
return It->second.get();
}
BasicBlock *Context::createBasicBlock(llvm::BasicBlock *LLVMBB) {
assert(getValue(LLVMBB) == nullptr && "Already exists!");
auto NewBBPtr = std::unique_ptr<BasicBlock>(new BasicBlock(LLVMBB, *this));
auto *BB = cast<BasicBlock>(registerValue(std::move(NewBBPtr)));
// Create SandboxIR for BB's body.
BB->buildBasicBlockFromLLVMIR(LLVMBB);
return BB;
}
SelectInst *Context::createSelectInst(llvm::SelectInst *SI) {
auto NewPtr = std::unique_ptr<SelectInst>(new SelectInst(SI, *this));
return cast<SelectInst>(registerValue(std::move(NewPtr)));
}
LoadInst *Context::createLoadInst(llvm::LoadInst *LI) {
auto NewPtr = std::unique_ptr<LoadInst>(new LoadInst(LI, *this));
return cast<LoadInst>(registerValue(std::move(NewPtr)));
}
StoreInst *Context::createStoreInst(llvm::StoreInst *SI) {
auto NewPtr = std::unique_ptr<StoreInst>(new StoreInst(SI, *this));
return cast<StoreInst>(registerValue(std::move(NewPtr)));
}
ReturnInst *Context::createReturnInst(llvm::ReturnInst *I) {
auto NewPtr = std::unique_ptr<ReturnInst>(new ReturnInst(I, *this));
return cast<ReturnInst>(registerValue(std::move(NewPtr)));
}
Value *Context::getValue(llvm::Value *V) const {
auto It = LLVMValueToValueMap.find(V);
if (It != LLVMValueToValueMap.end())
return It->second.get();
return nullptr;
}
Function *Context::createFunction(llvm::Function *F) {
assert(getValue(F) == nullptr && "Already exists!");
auto NewFPtr = std::unique_ptr<Function>(new Function(F, *this));
// Create arguments.
for (auto &Arg : F->args())
getOrCreateArgument(&Arg);
// Create BBs.
for (auto &BB : *F)
createBasicBlock(&BB);
auto *SBF = cast<Function>(registerValue(std::move(NewFPtr)));
return SBF;
}
Function *BasicBlock::getParent() const {
auto *BB = cast<llvm::BasicBlock>(Val);
auto *F = BB->getParent();
if (F == nullptr)
// Detached
return nullptr;
return cast_or_null<Function>(Ctx.getValue(F));
}
void BasicBlock::buildBasicBlockFromLLVMIR(llvm::BasicBlock *LLVMBB) {
for (llvm::Instruction &IRef : reverse(*LLVMBB)) {
llvm::Instruction *I = &IRef;
Ctx.getOrCreateValue(I);
for (auto [OpIdx, Op] : enumerate(I->operands())) {
// Skip instruction's label operands
if (isa<llvm::BasicBlock>(Op))
continue;
// Skip metadata
if (isa<llvm::MetadataAsValue>(Op))
continue;
// Skip asm
if (isa<llvm::InlineAsm>(Op))
continue;
Ctx.getOrCreateValue(Op);
}
}
#if !defined(NDEBUG) && defined(SBVEC_EXPENSIVE_CHECKS)
verify();
#endif
}
BasicBlock::iterator BasicBlock::begin() const {
llvm::BasicBlock *BB = cast<llvm::BasicBlock>(Val);
llvm::BasicBlock::iterator It = BB->begin();
if (!BB->empty()) {
auto *V = Ctx.getValue(&*BB->begin());
assert(V != nullptr && "No SandboxIR for BB->begin()!");
auto *I = cast<Instruction>(V);
unsigned Num = I->getNumOfIRInstrs();
assert(Num >= 1u && "Bad getNumOfIRInstrs()");
It = std::next(It, Num - 1);
}
return iterator(BB, It, &Ctx);
}
Instruction *BasicBlock::getTerminator() const {
auto *TerminatorV =
Ctx.getValue(cast<llvm::BasicBlock>(Val)->getTerminator());
return cast_or_null<Instruction>(TerminatorV);
}
Instruction &BasicBlock::front() const {
auto *BB = cast<llvm::BasicBlock>(Val);
assert(!BB->empty() && "Empty block!");
auto *SBI = cast<Instruction>(getContext().getValue(&*BB->begin()));
assert(SBI != nullptr && "Expected Instr!");
return *SBI;
}
Instruction &BasicBlock::back() const {
auto *BB = cast<llvm::BasicBlock>(Val);
assert(!BB->empty() && "Empty block!");
auto *SBI = cast<Instruction>(getContext().getValue(&*BB->rbegin()));
assert(SBI != nullptr && "Expected Instr!");
return *SBI;
}
#ifndef NDEBUG
void BasicBlock::dump(raw_ostream &OS) const {
llvm::BasicBlock *BB = cast<llvm::BasicBlock>(Val);
const auto &Name = BB->getName();
OS << Name;
if (!Name.empty())
OS << ":\n";
// If there are Instructions in the BB that are not mapped to SandboxIR, then
// use a crash-proof dump.
if (any_of(*BB, [this](llvm::Instruction &I) {
return Ctx.getValue(&I) == nullptr;
})) {
OS << "<Crash-proof mode!>\n";
DenseSet<Instruction *> Visited;
for (llvm::Instruction &IRef : *BB) {
Value *SBV = Ctx.getValue(&IRef);
if (SBV == nullptr)
OS << IRef << " *** No SandboxIR ***\n";
else {
auto *SBI = dyn_cast<Instruction>(SBV);
if (SBI == nullptr) {
OS << IRef << " *** Not a SBInstruction!!! ***\n";
} else {
if (Visited.insert(SBI).second)
OS << *SBI << "\n";
}
}
}
} else {
for (auto &SBI : *this) {
SBI.dump(OS);
OS << "\n";
}
}
}
void BasicBlock::dump() const {
dump(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG