| // RUN: mlir-opt -slice-analysis-test -split-input-file %s | FileCheck %s |
| |
| func.func @slicing_linalg_op(%arg0 : index, %arg1 : index, %arg2 : index) { |
| %a = memref.alloc(%arg0, %arg2) : memref<?x?xf32> |
| %b = memref.alloc(%arg2, %arg1) : memref<?x?xf32> |
| %c = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| %d = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| linalg.matmul ins(%a, %b : memref<?x?xf32>, memref<?x?xf32>) |
| outs(%c : memref<?x?xf32>) |
| linalg.matmul ins(%a, %b : memref<?x?xf32>, memref<?x?xf32>) |
| outs(%d : memref<?x?xf32>) |
| memref.dealloc %c : memref<?x?xf32> |
| memref.dealloc %b : memref<?x?xf32> |
| memref.dealloc %a : memref<?x?xf32> |
| memref.dealloc %d : memref<?x?xf32> |
| return |
| } |
| |
| // CHECK-LABEL: func @slicing_linalg_op__backward_slice__0 |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: index |
| // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: index |
| // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: index |
| // CHECK-DAG: %[[A:.+]] = memref.alloc(%[[ARG0]], %[[ARG2]]) : memref<?x?xf32> |
| // CHECK-DAG: %[[B:.+]] = memref.alloc(%[[ARG2]], %[[ARG1]]) : memref<?x?xf32> |
| // CHECK-DAG: %[[C:.+]] = memref.alloc(%[[ARG0]], %[[ARG1]]) : memref<?x?xf32> |
| // CHECK: return |
| |
| // CHECK-LABEL: func @slicing_linalg_op__backward_slice__1 |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: index |
| // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: index |
| // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: index |
| // CHECK-DAG: %[[A:.+]] = memref.alloc(%[[ARG0]], %[[ARG2]]) : memref<?x?xf32> |
| // CHECK-DAG: %[[B:.+]] = memref.alloc(%[[ARG2]], %[[ARG1]]) : memref<?x?xf32> |
| // CHECK-DAG: %[[C:.+]] = memref.alloc(%[[ARG0]], %[[ARG1]]) : memref<?x?xf32> |
| // CHECK: return |
| |
| // ----- |
| |
| #map = affine_map<(d0, d1) -> (d0, d1)> |
| func.func @slice_use_from_above(%arg0: tensor<5x5xf32>, %arg1: tensor<5x5xf32>) { |
| %0 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<5x5xf32>) outs(%arg1 : tensor<5x5xf32>) { |
| ^bb0(%in: f32, %out: f32): |
| %2 = arith.addf %in, %in : f32 |
| linalg.yield %2 : f32 |
| } -> tensor<5x5xf32> |
| %collapsed = tensor.collapse_shape %0 [[0, 1]] : tensor<5x5xf32> into tensor<25xf32> |
| %1 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%0 : tensor<5x5xf32>) outs(%arg1 : tensor<5x5xf32>) { |
| ^bb0(%in: f32, %out: f32): |
| %c2 = arith.constant 2 : index |
| %extracted = tensor.extract %collapsed[%c2] : tensor<25xf32> |
| %2 = arith.addf %extracted, %extracted : f32 |
| linalg.yield %2 : f32 |
| } -> tensor<5x5xf32> |
| return |
| } |
| |
| // CHECK-LABEL: func @slice_use_from_above__backward_slice__0 |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor |
| // CHECK: %[[A:.+]] = linalg.generic {{.*}} ins(%[[ARG0]] |
| // CHECK: %[[B:.+]] = tensor.collapse_shape %[[A]] |
| // CHECK: return |