| //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements semantic analysis member access expressions. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/ExprObjC.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/Sema/Lookup.h" | 
 | #include "clang/Sema/Overload.h" | 
 | #include "clang/Sema/Scope.h" | 
 | #include "clang/Sema/ScopeInfo.h" | 
 | #include "clang/Sema/SemaObjC.h" | 
 | #include "clang/Sema/SemaOpenMP.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace sema; | 
 |  | 
 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; | 
 |  | 
 | /// Determines if the given class is provably not derived from all of | 
 | /// the prospective base classes. | 
 | static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, | 
 |                                      const BaseSet &Bases) { | 
 |   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { | 
 |     return !Bases.count(Base->getCanonicalDecl()); | 
 |   }; | 
 |   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet); | 
 | } | 
 |  | 
 | enum IMAKind { | 
 |   /// The reference is definitely not an instance member access. | 
 |   IMA_Static, | 
 |  | 
 |   /// The reference may be an implicit instance member access. | 
 |   IMA_Mixed, | 
 |  | 
 |   /// The reference may be to an instance member, but it might be invalid if | 
 |   /// so, because the context is not an instance method. | 
 |   IMA_Mixed_StaticOrExplicitContext, | 
 |  | 
 |   /// The reference may be to an instance member, but it is invalid if | 
 |   /// so, because the context is from an unrelated class. | 
 |   IMA_Mixed_Unrelated, | 
 |  | 
 |   /// The reference is definitely an implicit instance member access. | 
 |   IMA_Instance, | 
 |  | 
 |   /// The reference may be to an unresolved using declaration. | 
 |   IMA_Unresolved, | 
 |  | 
 |   /// The reference is a contextually-permitted abstract member reference. | 
 |   IMA_Abstract, | 
 |  | 
 |   /// Whether the context is static is dependent on the enclosing template (i.e. | 
 |   /// in a dependent class scope explicit specialization). | 
 |   IMA_Dependent, | 
 |  | 
 |   /// The reference may be to an unresolved using declaration and the | 
 |   /// context is not an instance method. | 
 |   IMA_Unresolved_StaticOrExplicitContext, | 
 |  | 
 |   // The reference refers to a field which is not a member of the containing | 
 |   // class, which is allowed because we're in C++11 mode and the context is | 
 |   // unevaluated. | 
 |   IMA_Field_Uneval_Context, | 
 |  | 
 |   /// All possible referrents are instance members and the current | 
 |   /// context is not an instance method. | 
 |   IMA_Error_StaticOrExplicitContext, | 
 |  | 
 |   /// All possible referrents are instance members of an unrelated | 
 |   /// class. | 
 |   IMA_Error_Unrelated | 
 | }; | 
 |  | 
 | /// The given lookup names class member(s) and is not being used for | 
 | /// an address-of-member expression.  Classify the type of access | 
 | /// according to whether it's possible that this reference names an | 
 | /// instance member.  This is best-effort in dependent contexts; it is okay to | 
 | /// conservatively answer "yes", in which case some errors will simply | 
 | /// not be caught until template-instantiation. | 
 | static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, | 
 |                                             const LookupResult &R) { | 
 |   assert(!R.empty() && (*R.begin())->isCXXClassMember()); | 
 |  | 
 |   DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); | 
 |  | 
 |   bool couldInstantiateToStatic = false; | 
 |   bool isStaticOrExplicitContext = SemaRef.CXXThisTypeOverride.isNull(); | 
 |  | 
 |   if (auto *MD = dyn_cast<CXXMethodDecl>(DC)) { | 
 |     if (MD->isImplicitObjectMemberFunction()) { | 
 |       isStaticOrExplicitContext = false; | 
 |       // A dependent class scope function template explicit specialization | 
 |       // that is neither declared 'static' nor with an explicit object | 
 |       // parameter could instantiate to a static or non-static member function. | 
 |       couldInstantiateToStatic = MD->getDependentSpecializationInfo(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (R.isUnresolvableResult()) { | 
 |     if (couldInstantiateToStatic) | 
 |       return IMA_Dependent; | 
 |     return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext | 
 |                                      : IMA_Unresolved; | 
 |   } | 
 |  | 
 |   // Collect all the declaring classes of instance members we find. | 
 |   bool hasNonInstance = false; | 
 |   bool isField = false; | 
 |   BaseSet Classes; | 
 |   for (NamedDecl *D : R) { | 
 |     // Look through any using decls. | 
 |     D = D->getUnderlyingDecl(); | 
 |  | 
 |     if (D->isCXXInstanceMember()) { | 
 |       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) || | 
 |                  isa<IndirectFieldDecl>(D); | 
 |  | 
 |       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); | 
 |       Classes.insert(R->getCanonicalDecl()); | 
 |     } else | 
 |       hasNonInstance = true; | 
 |   } | 
 |  | 
 |   // If we didn't find any instance members, it can't be an implicit | 
 |   // member reference. | 
 |   if (Classes.empty()) | 
 |     return IMA_Static; | 
 |  | 
 |   if (couldInstantiateToStatic) | 
 |     return IMA_Dependent; | 
 |  | 
 |   // C++11 [expr.prim.general]p12: | 
 |   //   An id-expression that denotes a non-static data member or non-static | 
 |   //   member function of a class can only be used: | 
 |   //   (...) | 
 |   //   - if that id-expression denotes a non-static data member and it | 
 |   //     appears in an unevaluated operand. | 
 |   // | 
 |   // This rule is specific to C++11.  However, we also permit this form | 
 |   // in unevaluated inline assembly operands, like the operand to a SIZE. | 
 |   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' | 
 |   assert(!AbstractInstanceResult); | 
 |   switch (SemaRef.ExprEvalContexts.back().Context) { | 
 |   case Sema::ExpressionEvaluationContext::Unevaluated: | 
 |   case Sema::ExpressionEvaluationContext::UnevaluatedList: | 
 |     if (isField && SemaRef.getLangOpts().CPlusPlus11) | 
 |       AbstractInstanceResult = IMA_Field_Uneval_Context; | 
 |     break; | 
 |  | 
 |   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | 
 |     AbstractInstanceResult = IMA_Abstract; | 
 |     break; | 
 |  | 
 |   case Sema::ExpressionEvaluationContext::DiscardedStatement: | 
 |   case Sema::ExpressionEvaluationContext::ConstantEvaluated: | 
 |   case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: | 
 |   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | 
 |   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | 
 |     break; | 
 |   } | 
 |  | 
 |   // If the current context is not an instance method, it can't be | 
 |   // an implicit member reference. | 
 |   if (isStaticOrExplicitContext) { | 
 |     if (hasNonInstance) | 
 |       return IMA_Mixed_StaticOrExplicitContext; | 
 |  | 
 |     return AbstractInstanceResult ? AbstractInstanceResult | 
 |                                   : IMA_Error_StaticOrExplicitContext; | 
 |   } | 
 |  | 
 |   CXXRecordDecl *contextClass; | 
 |   if (auto *MD = dyn_cast<CXXMethodDecl>(DC)) | 
 |     contextClass = MD->getParent()->getCanonicalDecl(); | 
 |   else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) | 
 |     contextClass = RD; | 
 |   else | 
 |     return AbstractInstanceResult ? AbstractInstanceResult | 
 |                                   : IMA_Error_StaticOrExplicitContext; | 
 |  | 
 |   // [class.mfct.non-static]p3: | 
 |   // ...is used in the body of a non-static member function of class X, | 
 |   // if name lookup (3.4.1) resolves the name in the id-expression to a | 
 |   // non-static non-type member of some class C [...] | 
 |   // ...if C is not X or a base class of X, the class member access expression | 
 |   // is ill-formed. | 
 |   if (R.getNamingClass() && | 
 |       contextClass->getCanonicalDecl() != | 
 |         R.getNamingClass()->getCanonicalDecl()) { | 
 |     // If the naming class is not the current context, this was a qualified | 
 |     // member name lookup, and it's sufficient to check that we have the naming | 
 |     // class as a base class. | 
 |     Classes.clear(); | 
 |     Classes.insert(R.getNamingClass()->getCanonicalDecl()); | 
 |   } | 
 |  | 
 |   // If we can prove that the current context is unrelated to all the | 
 |   // declaring classes, it can't be an implicit member reference (in | 
 |   // which case it's an error if any of those members are selected). | 
 |   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) | 
 |     return hasNonInstance ? IMA_Mixed_Unrelated : | 
 |            AbstractInstanceResult ? AbstractInstanceResult : | 
 |                                     IMA_Error_Unrelated; | 
 |  | 
 |   return (hasNonInstance ? IMA_Mixed : IMA_Instance); | 
 | } | 
 |  | 
 | /// Diagnose a reference to a field with no object available. | 
 | static void diagnoseInstanceReference(Sema &SemaRef, | 
 |                                       const CXXScopeSpec &SS, | 
 |                                       NamedDecl *Rep, | 
 |                                       const DeclarationNameInfo &nameInfo) { | 
 |   SourceLocation Loc = nameInfo.getLoc(); | 
 |   SourceRange Range(Loc); | 
 |   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); | 
 |  | 
 |   // Look through using shadow decls and aliases. | 
 |   Rep = Rep->getUnderlyingDecl(); | 
 |  | 
 |   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); | 
 |   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC); | 
 |   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; | 
 |   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); | 
 |  | 
 |   bool InStaticMethod = Method && Method->isStatic(); | 
 |   bool InExplicitObjectMethod = | 
 |       Method && Method->isExplicitObjectMemberFunction(); | 
 |   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep); | 
 |  | 
 |   std::string Replacement; | 
 |   if (InExplicitObjectMethod) { | 
 |     DeclarationName N = Method->getParamDecl(0)->getDeclName(); | 
 |     if (!N.isEmpty()) { | 
 |       Replacement.append(N.getAsString()); | 
 |       Replacement.append("."); | 
 |     } | 
 |   } | 
 |   if (IsField && InStaticMethod) | 
 |     // "invalid use of member 'x' in static member function" | 
 |     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) | 
 |         << Range << nameInfo.getName() << /*static*/ 0; | 
 |   else if (IsField && InExplicitObjectMethod) { | 
 |     auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) | 
 |                 << Range << nameInfo.getName() << /*explicit*/ 1; | 
 |     if (!Replacement.empty()) | 
 |       Diag << FixItHint::CreateInsertion(Loc, Replacement); | 
 |   } else if (ContextClass && RepClass && SS.isEmpty() && | 
 |              !InExplicitObjectMethod && !InStaticMethod && | 
 |              !RepClass->Equals(ContextClass) && | 
 |              RepClass->Encloses(ContextClass)) | 
 |     // Unqualified lookup in a non-static member function found a member of an | 
 |     // enclosing class. | 
 |     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) | 
 |       << IsField << RepClass << nameInfo.getName() << ContextClass << Range; | 
 |   else if (IsField) | 
 |     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) | 
 |       << nameInfo.getName() << Range; | 
 |   else if (!InExplicitObjectMethod) | 
 |     SemaRef.Diag(Loc, diag::err_member_call_without_object) | 
 |         << Range << /*static*/ 0; | 
 |   else { | 
 |     if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Rep)) | 
 |       Rep = Tpl->getTemplatedDecl(); | 
 |     const auto *Callee = cast<CXXMethodDecl>(Rep); | 
 |     auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object) | 
 |                 << Range << Callee->isExplicitObjectMemberFunction(); | 
 |     if (!Replacement.empty()) | 
 |       Diag << FixItHint::CreateInsertion(Loc, Replacement); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::isPotentialImplicitMemberAccess(const CXXScopeSpec &SS, | 
 |                                            LookupResult &R, | 
 |                                            bool IsAddressOfOperand) { | 
 |   if (!getLangOpts().CPlusPlus) | 
 |     return false; | 
 |   else if (R.empty() || !R.begin()->isCXXClassMember()) | 
 |     return false; | 
 |   else if (!IsAddressOfOperand) | 
 |     return true; | 
 |   else if (!SS.isEmpty()) | 
 |     return false; | 
 |   else if (R.isOverloadedResult()) | 
 |     return false; | 
 |   else if (R.isUnresolvableResult()) | 
 |     return true; | 
 |   else | 
 |     return isa<FieldDecl, IndirectFieldDecl, MSPropertyDecl>(R.getFoundDecl()); | 
 | } | 
 |  | 
 | ExprResult Sema::BuildPossibleImplicitMemberExpr( | 
 |     const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, | 
 |     const TemplateArgumentListInfo *TemplateArgs, const Scope *S) { | 
 |   switch (IMAKind Classification = ClassifyImplicitMemberAccess(*this, R)) { | 
 |   case IMA_Instance: | 
 |   case IMA_Mixed: | 
 |   case IMA_Mixed_Unrelated: | 
 |   case IMA_Unresolved: | 
 |     return BuildImplicitMemberExpr( | 
 |         SS, TemplateKWLoc, R, TemplateArgs, | 
 |         /*IsKnownInstance=*/Classification == IMA_Instance, S); | 
 |   case IMA_Field_Uneval_Context: | 
 |     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) | 
 |       << R.getLookupNameInfo().getName(); | 
 |     [[fallthrough]]; | 
 |   case IMA_Static: | 
 |   case IMA_Abstract: | 
 |   case IMA_Mixed_StaticOrExplicitContext: | 
 |   case IMA_Unresolved_StaticOrExplicitContext: | 
 |     if (TemplateArgs || TemplateKWLoc.isValid()) | 
 |       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*RequiresADL=*/false, | 
 |                                  TemplateArgs); | 
 |     return BuildDeclarationNameExpr(SS, R, /*NeedsADL=*/false, | 
 |                                     /*AcceptInvalidDecl=*/false); | 
 |   case IMA_Dependent: | 
 |     R.suppressDiagnostics(); | 
 |     return UnresolvedLookupExpr::Create( | 
 |         Context, R.getNamingClass(), SS.getWithLocInContext(Context), | 
 |         TemplateKWLoc, R.getLookupNameInfo(), /*RequiresADL=*/false, | 
 |         TemplateArgs, R.begin(), R.end(), /*KnownDependent=*/true, | 
 |         /*KnownInstantiationDependent=*/true); | 
 |  | 
 |   case IMA_Error_StaticOrExplicitContext: | 
 |   case IMA_Error_Unrelated: | 
 |     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), | 
 |                               R.getLookupNameInfo()); | 
 |     return ExprError(); | 
 |   } | 
 |  | 
 |   llvm_unreachable("unexpected instance member access kind"); | 
 | } | 
 |  | 
 | /// Determine whether input char is from rgba component set. | 
 | static bool | 
 | IsRGBA(char c) { | 
 |   switch (c) { | 
 |   case 'r': | 
 |   case 'g': | 
 |   case 'b': | 
 |   case 'a': | 
 |     return true; | 
 |   default: | 
 |     return false; | 
 |   } | 
 | } | 
 |  | 
 | // OpenCL v1.1, s6.1.7 | 
 | // The component swizzle length must be in accordance with the acceptable | 
 | // vector sizes. | 
 | static bool IsValidOpenCLComponentSwizzleLength(unsigned len) | 
 | { | 
 |   return (len >= 1 && len <= 4) || len == 8 || len == 16; | 
 | } | 
 |  | 
 | /// Check an ext-vector component access expression. | 
 | /// | 
 | /// VK should be set in advance to the value kind of the base | 
 | /// expression. | 
 | static QualType | 
 | CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, | 
 |                         SourceLocation OpLoc, const IdentifierInfo *CompName, | 
 |                         SourceLocation CompLoc) { | 
 |   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, | 
 |   // see FIXME there. | 
 |   // | 
 |   // FIXME: This logic can be greatly simplified by splitting it along | 
 |   // halving/not halving and reworking the component checking. | 
 |   const ExtVectorType *vecType = baseType->castAs<ExtVectorType>(); | 
 |  | 
 |   // The vector accessor can't exceed the number of elements. | 
 |   const char *compStr = CompName->getNameStart(); | 
 |  | 
 |   // This flag determines whether or not the component is one of the four | 
 |   // special names that indicate a subset of exactly half the elements are | 
 |   // to be selected. | 
 |   bool HalvingSwizzle = false; | 
 |  | 
 |   // This flag determines whether or not CompName has an 's' char prefix, | 
 |   // indicating that it is a string of hex values to be used as vector indices. | 
 |   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; | 
 |  | 
 |   bool HasRepeated = false; | 
 |   bool HasIndex[16] = {}; | 
 |  | 
 |   int Idx; | 
 |  | 
 |   // Check that we've found one of the special components, or that the component | 
 |   // names must come from the same set. | 
 |   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || | 
 |       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { | 
 |     HalvingSwizzle = true; | 
 |   } else if (!HexSwizzle && | 
 |              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { | 
 |     bool HasRGBA = IsRGBA(*compStr); | 
 |     do { | 
 |       // Ensure that xyzw and rgba components don't intermingle. | 
 |       if (HasRGBA != IsRGBA(*compStr)) | 
 |         break; | 
 |       if (HasIndex[Idx]) HasRepeated = true; | 
 |       HasIndex[Idx] = true; | 
 |       compStr++; | 
 |     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); | 
 |  | 
 |     // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0. | 
 |     if (HasRGBA || (*compStr && IsRGBA(*compStr))) { | 
 |       if (S.getLangOpts().OpenCL && | 
 |           S.getLangOpts().getOpenCLCompatibleVersion() < 300) { | 
 |         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; | 
 |         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) | 
 |             << StringRef(DiagBegin, 1) << SourceRange(CompLoc); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (HexSwizzle) compStr++; | 
 |     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { | 
 |       if (HasIndex[Idx]) HasRepeated = true; | 
 |       HasIndex[Idx] = true; | 
 |       compStr++; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!HalvingSwizzle && *compStr) { | 
 |     // We didn't get to the end of the string. This means the component names | 
 |     // didn't come from the same set *or* we encountered an illegal name. | 
 |     size_t Offset = compStr - CompName->getNameStart() + 1; | 
 |     char Fmt[3] = {'\'', *compStr, '\''}; | 
 |     S.Diag(OpLoc.getLocWithOffset(Offset), | 
 |            diag::err_ext_vector_component_name_illegal) | 
 |         << StringRef(Fmt, 3) << SourceRange(CompLoc); | 
 |     return QualType(); | 
 |   } | 
 |  | 
 |   // Ensure no component accessor exceeds the width of the vector type it | 
 |   // operates on. | 
 |   if (!HalvingSwizzle) { | 
 |     compStr = CompName->getNameStart(); | 
 |  | 
 |     if (HexSwizzle) | 
 |       compStr++; | 
 |  | 
 |     while (*compStr) { | 
 |       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) { | 
 |         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) | 
 |           << baseType << SourceRange(CompLoc); | 
 |         return QualType(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // OpenCL mode requires swizzle length to be in accordance with accepted | 
 |   // sizes. Clang however supports arbitrary lengths for other languages. | 
 |   if (S.getLangOpts().OpenCL && !HalvingSwizzle) { | 
 |     unsigned SwizzleLength = CompName->getLength(); | 
 |  | 
 |     if (HexSwizzle) | 
 |       SwizzleLength--; | 
 |  | 
 |     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) { | 
 |       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length) | 
 |         << SwizzleLength << SourceRange(CompLoc); | 
 |       return QualType(); | 
 |     } | 
 |   } | 
 |  | 
 |   // The component accessor looks fine - now we need to compute the actual type. | 
 |   // The vector type is implied by the component accessor. For example, | 
 |   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. | 
 |   // vec4.s0 is a float, vec4.s23 is a vec3, etc. | 
 |   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. | 
 |   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 | 
 |                                      : CompName->getLength(); | 
 |   if (HexSwizzle) | 
 |     CompSize--; | 
 |  | 
 |   if (CompSize == 1) | 
 |     return vecType->getElementType(); | 
 |  | 
 |   if (HasRepeated) | 
 |     VK = VK_PRValue; | 
 |  | 
 |   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); | 
 |   // Now look up the TypeDefDecl from the vector type. Without this, | 
 |   // diagostics look bad. We want extended vector types to appear built-in. | 
 |   for (Sema::ExtVectorDeclsType::iterator | 
 |          I = S.ExtVectorDecls.begin(S.getExternalSource()), | 
 |          E = S.ExtVectorDecls.end(); | 
 |        I != E; ++I) { | 
 |     if ((*I)->getUnderlyingType() == VT) | 
 |       return S.Context.getTypedefType(*I); | 
 |   } | 
 |  | 
 |   return VT; // should never get here (a typedef type should always be found). | 
 | } | 
 |  | 
 | static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, | 
 |                                                 IdentifierInfo *Member, | 
 |                                                 const Selector &Sel, | 
 |                                                 ASTContext &Context) { | 
 |   if (Member) | 
 |     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( | 
 |             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) | 
 |       return PD; | 
 |   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) | 
 |     return OMD; | 
 |  | 
 |   for (const auto *I : PDecl->protocols()) { | 
 |     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, | 
 |                                                            Context)) | 
 |       return D; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, | 
 |                                       IdentifierInfo *Member, | 
 |                                       const Selector &Sel, | 
 |                                       ASTContext &Context) { | 
 |   // Check protocols on qualified interfaces. | 
 |   Decl *GDecl = nullptr; | 
 |   for (const auto *I : QIdTy->quals()) { | 
 |     if (Member) | 
 |       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( | 
 |               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { | 
 |         GDecl = PD; | 
 |         break; | 
 |       } | 
 |     // Also must look for a getter or setter name which uses property syntax. | 
 |     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { | 
 |       GDecl = OMD; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (!GDecl) { | 
 |     for (const auto *I : QIdTy->quals()) { | 
 |       // Search in the protocol-qualifier list of current protocol. | 
 |       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); | 
 |       if (GDecl) | 
 |         return GDecl; | 
 |     } | 
 |   } | 
 |   return GDecl; | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, | 
 |                                bool IsArrow, SourceLocation OpLoc, | 
 |                                const CXXScopeSpec &SS, | 
 |                                SourceLocation TemplateKWLoc, | 
 |                                NamedDecl *FirstQualifierInScope, | 
 |                                const DeclarationNameInfo &NameInfo, | 
 |                                const TemplateArgumentListInfo *TemplateArgs) { | 
 |   // Even in dependent contexts, try to diagnose base expressions with | 
 |   // obviously wrong types, e.g.: | 
 |   // | 
 |   // T* t; | 
 |   // t.f; | 
 |   // | 
 |   // In Obj-C++, however, the above expression is valid, since it could be | 
 |   // accessing the 'f' property if T is an Obj-C interface. The extra check | 
 |   // allows this, while still reporting an error if T is a struct pointer. | 
 |   if (!IsArrow) { | 
 |     const PointerType *PT = BaseType->getAs<PointerType>(); | 
 |     if (PT && (!getLangOpts().ObjC || | 
 |                PT->getPointeeType()->isRecordType())) { | 
 |       assert(BaseExpr && "cannot happen with implicit member accesses"); | 
 |       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) | 
 |         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); | 
 |       return ExprError(); | 
 |     } | 
 |   } | 
 |  | 
 |   assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() || | 
 |          isDependentScopeSpecifier(SS) || | 
 |          (TemplateArgs && llvm::any_of(TemplateArgs->arguments(), | 
 |                                        [](const TemplateArgumentLoc &Arg) { | 
 |                                          return Arg.getArgument().isDependent(); | 
 |                                        }))); | 
 |  | 
 |   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr | 
 |   // must have pointer type, and the accessed type is the pointee. | 
 |   return CXXDependentScopeMemberExpr::Create( | 
 |       Context, BaseExpr, BaseType, IsArrow, OpLoc, | 
 |       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, | 
 |       NameInfo, TemplateArgs); | 
 | } | 
 |  | 
 | /// We know that the given qualified member reference points only to | 
 | /// declarations which do not belong to the static type of the base | 
 | /// expression.  Diagnose the problem. | 
 | static void DiagnoseQualifiedMemberReference(Sema &SemaRef, | 
 |                                              Expr *BaseExpr, | 
 |                                              QualType BaseType, | 
 |                                              const CXXScopeSpec &SS, | 
 |                                              NamedDecl *rep, | 
 |                                        const DeclarationNameInfo &nameInfo) { | 
 |   // If this is an implicit member access, use a different set of | 
 |   // diagnostics. | 
 |   if (!BaseExpr) | 
 |     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); | 
 |  | 
 |   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) | 
 |     << SS.getRange() << rep << BaseType; | 
 | } | 
 |  | 
 | bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, | 
 |                                          QualType BaseType, | 
 |                                          const CXXScopeSpec &SS, | 
 |                                          const LookupResult &R) { | 
 |   CXXRecordDecl *BaseRecord = | 
 |     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType)); | 
 |   if (!BaseRecord) { | 
 |     // We can't check this yet because the base type is still | 
 |     // dependent. | 
 |     assert(BaseType->isDependentType()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
 |     // If this is an implicit member reference and we find a | 
 |     // non-instance member, it's not an error. | 
 |     if (!BaseExpr && !(*I)->isCXXInstanceMember()) | 
 |       return false; | 
 |  | 
 |     // Note that we use the DC of the decl, not the underlying decl. | 
 |     DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext(); | 
 |     if (!DC->isRecord()) | 
 |       continue; | 
 |  | 
 |     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl(); | 
 |     if (BaseRecord->getCanonicalDecl() == MemberRecord || | 
 |         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, | 
 |                                    R.getRepresentativeDecl(), | 
 |                                    R.getLookupNameInfo()); | 
 |   return true; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // Callback to only accept typo corrections that are either a ValueDecl or a | 
 | // FunctionTemplateDecl and are declared in the current record or, for a C++ | 
 | // classes, one of its base classes. | 
 | class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback { | 
 | public: | 
 |   explicit RecordMemberExprValidatorCCC(QualType RTy) | 
 |       : Record(RTy->getAsRecordDecl()) { | 
 |     // Don't add bare keywords to the consumer since they will always fail | 
 |     // validation by virtue of not being associated with any decls. | 
 |     WantTypeSpecifiers = false; | 
 |     WantExpressionKeywords = false; | 
 |     WantCXXNamedCasts = false; | 
 |     WantFunctionLikeCasts = false; | 
 |     WantRemainingKeywords = false; | 
 |   } | 
 |  | 
 |   bool ValidateCandidate(const TypoCorrection &candidate) override { | 
 |     NamedDecl *ND = candidate.getCorrectionDecl(); | 
 |     // Don't accept candidates that cannot be member functions, constants, | 
 |     // variables, or templates. | 
 |     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) | 
 |       return false; | 
 |  | 
 |     // Accept candidates that occur in the current record. | 
 |     if (Record->containsDecl(ND)) | 
 |       return true; | 
 |  | 
 |     if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) { | 
 |       // Accept candidates that occur in any of the current class' base classes. | 
 |       for (const auto &BS : RD->bases()) { | 
 |         if (const auto *BSTy = BS.getType()->getAs<RecordType>()) { | 
 |           if (BSTy->getDecl()->containsDecl(ND)) | 
 |             return true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   std::unique_ptr<CorrectionCandidateCallback> clone() override { | 
 |     return std::make_unique<RecordMemberExprValidatorCCC>(*this); | 
 |   } | 
 |  | 
 | private: | 
 |   const RecordDecl *const Record; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, | 
 |                                      Expr *BaseExpr, QualType RTy, | 
 |                                      SourceLocation OpLoc, bool IsArrow, | 
 |                                      CXXScopeSpec &SS, bool HasTemplateArgs, | 
 |                                      SourceLocation TemplateKWLoc, | 
 |                                      TypoExpr *&TE) { | 
 |   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); | 
 |   if (!RTy->isDependentType() && | 
 |       !SemaRef.isThisOutsideMemberFunctionBody(RTy) && | 
 |       SemaRef.RequireCompleteType( | 
 |           OpLoc, RTy, diag::err_typecheck_incomplete_tag, BaseRange)) | 
 |     return true; | 
 |  | 
 |   // LookupTemplateName/LookupParsedName don't expect these both to exist | 
 |   // simultaneously. | 
 |   QualType ObjectType = SS.isSet() ? QualType() : RTy; | 
 |   if (HasTemplateArgs || TemplateKWLoc.isValid()) | 
 |     return SemaRef.LookupTemplateName(R, | 
 |                                       /*S=*/nullptr, SS, ObjectType, | 
 |                                       /*EnteringContext=*/false, TemplateKWLoc); | 
 |  | 
 |   SemaRef.LookupParsedName(R, /*S=*/nullptr, &SS, ObjectType); | 
 |  | 
 |   if (!R.empty() || R.wasNotFoundInCurrentInstantiation()) | 
 |     return false; | 
 |  | 
 |   DeclarationName Typo = R.getLookupName(); | 
 |   SourceLocation TypoLoc = R.getNameLoc(); | 
 |   // Recompute the lookup context. | 
 |   DeclContext *DC = SS.isSet() ? SemaRef.computeDeclContext(SS) | 
 |                                : SemaRef.computeDeclContext(RTy); | 
 |  | 
 |   struct QueryState { | 
 |     Sema &SemaRef; | 
 |     DeclarationNameInfo NameInfo; | 
 |     Sema::LookupNameKind LookupKind; | 
 |     RedeclarationKind Redecl; | 
 |   }; | 
 |   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(), | 
 |                   R.redeclarationKind()}; | 
 |   RecordMemberExprValidatorCCC CCC(RTy); | 
 |   TE = SemaRef.CorrectTypoDelayed( | 
 |       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC, | 
 |       [=, &SemaRef](const TypoCorrection &TC) { | 
 |         if (TC) { | 
 |           assert(!TC.isKeyword() && | 
 |                  "Got a keyword as a correction for a member!"); | 
 |           bool DroppedSpecifier = | 
 |               TC.WillReplaceSpecifier() && | 
 |               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts()); | 
 |           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) | 
 |                                        << Typo << DC << DroppedSpecifier | 
 |                                        << SS.getRange()); | 
 |         } else { | 
 |           SemaRef.Diag(TypoLoc, diag::err_no_member) | 
 |               << Typo << DC << (SS.isSet() ? SS.getRange() : BaseRange); | 
 |         } | 
 |       }, | 
 |       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { | 
 |         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); | 
 |         R.clear(); // Ensure there's no decls lingering in the shared state. | 
 |         R.suppressDiagnostics(); | 
 |         R.setLookupName(TC.getCorrection()); | 
 |         for (NamedDecl *ND : TC) | 
 |           R.addDecl(ND); | 
 |         R.resolveKind(); | 
 |         return SemaRef.BuildMemberReferenceExpr( | 
 |             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(), | 
 |             nullptr, R, nullptr, nullptr); | 
 |       }, | 
 |       Sema::CTK_ErrorRecovery, DC); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, | 
 |                                    ExprResult &BaseExpr, bool &IsArrow, | 
 |                                    SourceLocation OpLoc, CXXScopeSpec &SS, | 
 |                                    Decl *ObjCImpDecl, bool HasTemplateArgs, | 
 |                                    SourceLocation TemplateKWLoc); | 
 |  | 
 | ExprResult Sema::BuildMemberReferenceExpr( | 
 |     Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, | 
 |     CXXScopeSpec &SS, SourceLocation TemplateKWLoc, | 
 |     NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, | 
 |     const TemplateArgumentListInfo *TemplateArgs, const Scope *S, | 
 |     ActOnMemberAccessExtraArgs *ExtraArgs) { | 
 |   LookupResult R(*this, NameInfo, LookupMemberName); | 
 |  | 
 |   // Implicit member accesses. | 
 |   if (!Base) { | 
 |     TypoExpr *TE = nullptr; | 
 |     QualType RecordTy = BaseType; | 
 |     if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType(); | 
 |     if (LookupMemberExprInRecord(*this, R, nullptr, RecordTy, OpLoc, IsArrow, | 
 |                                  SS, TemplateArgs != nullptr, TemplateKWLoc, | 
 |                                  TE)) | 
 |       return ExprError(); | 
 |     if (TE) | 
 |       return TE; | 
 |  | 
 |   // Explicit member accesses. | 
 |   } else { | 
 |     ExprResult BaseResult = Base; | 
 |     ExprResult Result = | 
 |         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS, | 
 |                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, | 
 |                          TemplateArgs != nullptr, TemplateKWLoc); | 
 |  | 
 |     if (BaseResult.isInvalid()) | 
 |       return ExprError(); | 
 |     Base = BaseResult.get(); | 
 |  | 
 |     if (Result.isInvalid()) | 
 |       return ExprError(); | 
 |  | 
 |     if (Result.get()) | 
 |       return Result; | 
 |  | 
 |     // LookupMemberExpr can modify Base, and thus change BaseType | 
 |     BaseType = Base->getType(); | 
 |   } | 
 |  | 
 |   // BuildMemberReferenceExpr expects the nested-name-specifier, if any, to be | 
 |   // valid. | 
 |   if (SS.isInvalid()) | 
 |     return ExprError(); | 
 |  | 
 |   return BuildMemberReferenceExpr(Base, BaseType, | 
 |                                   OpLoc, IsArrow, SS, TemplateKWLoc, | 
 |                                   FirstQualifierInScope, R, TemplateArgs, S, | 
 |                                   false, ExtraArgs); | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, | 
 |                                                SourceLocation loc, | 
 |                                                IndirectFieldDecl *indirectField, | 
 |                                                DeclAccessPair foundDecl, | 
 |                                                Expr *baseObjectExpr, | 
 |                                                SourceLocation opLoc) { | 
 |   // First, build the expression that refers to the base object. | 
 |  | 
 |   // Case 1:  the base of the indirect field is not a field. | 
 |   VarDecl *baseVariable = indirectField->getVarDecl(); | 
 |   CXXScopeSpec EmptySS; | 
 |   if (baseVariable) { | 
 |     assert(baseVariable->getType()->isRecordType()); | 
 |  | 
 |     // In principle we could have a member access expression that | 
 |     // accesses an anonymous struct/union that's a static member of | 
 |     // the base object's class.  However, under the current standard, | 
 |     // static data members cannot be anonymous structs or unions. | 
 |     // Supporting this is as easy as building a MemberExpr here. | 
 |     assert(!baseObjectExpr && "anonymous struct/union is static data member?"); | 
 |  | 
 |     DeclarationNameInfo baseNameInfo(DeclarationName(), loc); | 
 |  | 
 |     ExprResult result | 
 |       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); | 
 |     if (result.isInvalid()) return ExprError(); | 
 |  | 
 |     baseObjectExpr = result.get(); | 
 |   } | 
 |  | 
 |   assert((baseVariable || baseObjectExpr) && | 
 |          "referencing anonymous struct/union without a base variable or " | 
 |          "expression"); | 
 |  | 
 |   // Build the implicit member references to the field of the | 
 |   // anonymous struct/union. | 
 |   Expr *result = baseObjectExpr; | 
 |   IndirectFieldDecl::chain_iterator | 
 |   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); | 
 |  | 
 |   // Case 2: the base of the indirect field is a field and the user | 
 |   // wrote a member expression. | 
 |   if (!baseVariable) { | 
 |     FieldDecl *field = cast<FieldDecl>(*FI); | 
 |  | 
 |     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType(); | 
 |  | 
 |     // Make a nameInfo that properly uses the anonymous name. | 
 |     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); | 
 |  | 
 |     // Build the first member access in the chain with full information. | 
 |     result = | 
 |         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(), | 
 |                                 SS, field, foundDecl, memberNameInfo) | 
 |             .get(); | 
 |     if (!result) | 
 |       return ExprError(); | 
 |   } | 
 |  | 
 |   // In all cases, we should now skip the first declaration in the chain. | 
 |   ++FI; | 
 |  | 
 |   while (FI != FEnd) { | 
 |     FieldDecl *field = cast<FieldDecl>(*FI++); | 
 |  | 
 |     // FIXME: these are somewhat meaningless | 
 |     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); | 
 |     DeclAccessPair fakeFoundDecl = | 
 |         DeclAccessPair::make(field, field->getAccess()); | 
 |  | 
 |     result = | 
 |         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(), | 
 |                                 (FI == FEnd ? SS : EmptySS), field, | 
 |                                 fakeFoundDecl, memberNameInfo) | 
 |             .get(); | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | static ExprResult | 
 | BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, | 
 |                        const CXXScopeSpec &SS, | 
 |                        MSPropertyDecl *PD, | 
 |                        const DeclarationNameInfo &NameInfo) { | 
 |   // Property names are always simple identifiers and therefore never | 
 |   // require any interesting additional storage. | 
 |   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, | 
 |                                            S.Context.PseudoObjectTy, VK_LValue, | 
 |                                            SS.getWithLocInContext(S.Context), | 
 |                                            NameInfo.getLoc()); | 
 | } | 
 |  | 
 | MemberExpr *Sema::BuildMemberExpr( | 
 |     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, | 
 |     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, | 
 |     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, | 
 |     QualType Ty, ExprValueKind VK, ExprObjectKind OK, | 
 |     const TemplateArgumentListInfo *TemplateArgs) { | 
 |   assert((!IsArrow || Base->isPRValue()) && | 
 |          "-> base must be a pointer prvalue"); | 
 |   MemberExpr *E = | 
 |       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc, | 
 |                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, | 
 |                          VK, OK, getNonOdrUseReasonInCurrentContext(Member)); | 
 |   E->setHadMultipleCandidates(HadMultipleCandidates); | 
 |   MarkMemberReferenced(E); | 
 |  | 
 |   // C++ [except.spec]p17: | 
 |   //   An exception-specification is considered to be needed when: | 
 |   //   - in an expression the function is the unique lookup result or the | 
 |   //     selected member of a set of overloaded functions | 
 |   if (auto *FPT = Ty->getAs<FunctionProtoType>()) { | 
 |     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | 
 |       if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT)) | 
 |         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); | 
 |     } | 
 |   } | 
 |  | 
 |   return E; | 
 | } | 
 |  | 
 | /// Determine if the given scope is within a function-try-block handler. | 
 | static bool IsInFnTryBlockHandler(const Scope *S) { | 
 |   // Walk the scope stack until finding a FnTryCatchScope, or leave the | 
 |   // function scope. If a FnTryCatchScope is found, check whether the TryScope | 
 |   // flag is set. If it is not, it's a function-try-block handler. | 
 |   for (; S != S->getFnParent(); S = S->getParent()) { | 
 |     if (S->isFnTryCatchScope()) | 
 |       return (S->getFlags() & Scope::TryScope) != Scope::TryScope; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, | 
 |                                SourceLocation OpLoc, bool IsArrow, | 
 |                                const CXXScopeSpec &SS, | 
 |                                SourceLocation TemplateKWLoc, | 
 |                                NamedDecl *FirstQualifierInScope, | 
 |                                LookupResult &R, | 
 |                                const TemplateArgumentListInfo *TemplateArgs, | 
 |                                const Scope *S, | 
 |                                bool SuppressQualifierCheck, | 
 |                                ActOnMemberAccessExtraArgs *ExtraArgs) { | 
 |   assert(!SS.isInvalid() && "nested-name-specifier cannot be invalid"); | 
 |   // If the member wasn't found in the current instantiation, or if the | 
 |   // arrow operator was used with a dependent non-pointer object expression, | 
 |   // build a CXXDependentScopeMemberExpr. | 
 |   if (R.wasNotFoundInCurrentInstantiation() || | 
 |       (R.getLookupName().getCXXOverloadedOperator() == OO_Equal && | 
 |        (SS.isSet() ? SS.getScopeRep()->isDependent() | 
 |                    : BaseExprType->isDependentType()))) | 
 |     return ActOnDependentMemberExpr(BaseExpr, BaseExprType, IsArrow, OpLoc, SS, | 
 |                                     TemplateKWLoc, FirstQualifierInScope, | 
 |                                     R.getLookupNameInfo(), TemplateArgs); | 
 |  | 
 |   QualType BaseType = BaseExprType; | 
 |   if (IsArrow) { | 
 |     assert(BaseType->isPointerType()); | 
 |     BaseType = BaseType->castAs<PointerType>()->getPointeeType(); | 
 |   } | 
 |   R.setBaseObjectType(BaseType); | 
 |  | 
 |   assert((SS.isEmpty() | 
 |               ? !BaseType->isDependentType() || computeDeclContext(BaseType) | 
 |               : !isDependentScopeSpecifier(SS) || computeDeclContext(SS)) && | 
 |          "dependent lookup context that isn't the current instantiation?"); | 
 |  | 
 |   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); | 
 |   DeclarationName MemberName = MemberNameInfo.getName(); | 
 |   SourceLocation MemberLoc = MemberNameInfo.getLoc(); | 
 |  | 
 |   if (R.isAmbiguous()) | 
 |     return ExprError(); | 
 |  | 
 |   // [except.handle]p10: Referring to any non-static member or base class of an | 
 |   // object in the handler for a function-try-block of a constructor or | 
 |   // destructor for that object results in undefined behavior. | 
 |   const auto *FD = getCurFunctionDecl(); | 
 |   if (S && BaseExpr && FD && | 
 |       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) && | 
 |       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) && | 
 |       IsInFnTryBlockHandler(S)) | 
 |     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) | 
 |         << isa<CXXDestructorDecl>(FD); | 
 |  | 
 |   if (R.empty()) { | 
 |     ExprResult RetryExpr = ExprError(); | 
 |     if (ExtraArgs && !IsArrow && BaseExpr && !BaseExpr->isTypeDependent()) { | 
 |       SFINAETrap Trap(*this, true); | 
 |       ParsedType ObjectType; | 
 |       bool MayBePseudoDestructor = false; | 
 |       RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, OpLoc, | 
 |                                                tok::arrow, ObjectType, | 
 |                                                MayBePseudoDestructor); | 
 |       if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { | 
 |         CXXScopeSpec TempSS(SS); | 
 |         RetryExpr = ActOnMemberAccessExpr( | 
 |             ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, | 
 |             TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl); | 
 |       } | 
 |       if (Trap.hasErrorOccurred()) | 
 |         RetryExpr = ExprError(); | 
 |     } | 
 |  | 
 |     // Rederive where we looked up. | 
 |     DeclContext *DC = | 
 |         (SS.isSet() ? computeDeclContext(SS) : computeDeclContext(BaseType)); | 
 |     assert(DC); | 
 |  | 
 |     if (RetryExpr.isUsable()) | 
 |       Diag(OpLoc, diag::err_no_member_overloaded_arrow) | 
 |           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); | 
 |     else | 
 |       Diag(R.getNameLoc(), diag::err_no_member) | 
 |           << MemberName << DC | 
 |           << (SS.isSet() | 
 |                   ? SS.getRange() | 
 |                   : (BaseExpr ? BaseExpr->getSourceRange() : SourceRange())); | 
 |     return RetryExpr; | 
 |   } | 
 |  | 
 |   // Diagnose lookups that find only declarations from a non-base | 
 |   // type.  This is possible for either qualified lookups (which may | 
 |   // have been qualified with an unrelated type) or implicit member | 
 |   // expressions (which were found with unqualified lookup and thus | 
 |   // may have come from an enclosing scope).  Note that it's okay for | 
 |   // lookup to find declarations from a non-base type as long as those | 
 |   // aren't the ones picked by overload resolution. | 
 |   if ((SS.isSet() || !BaseExpr || | 
 |        (isa<CXXThisExpr>(BaseExpr) && | 
 |         cast<CXXThisExpr>(BaseExpr)->isImplicit())) && | 
 |       !SuppressQualifierCheck && | 
 |       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) | 
 |     return ExprError(); | 
 |  | 
 |   // Construct an unresolved result if we in fact got an unresolved | 
 |   // result. | 
 |   if (R.isOverloadedResult() || R.isUnresolvableResult()) { | 
 |     // Suppress any lookup-related diagnostics; we'll do these when we | 
 |     // pick a member. | 
 |     R.suppressDiagnostics(); | 
 |  | 
 |     UnresolvedMemberExpr *MemExpr | 
 |       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), | 
 |                                      BaseExpr, BaseExprType, | 
 |                                      IsArrow, OpLoc, | 
 |                                      SS.getWithLocInContext(Context), | 
 |                                      TemplateKWLoc, MemberNameInfo, | 
 |                                      TemplateArgs, R.begin(), R.end()); | 
 |  | 
 |     return MemExpr; | 
 |   } | 
 |  | 
 |   assert(R.isSingleResult()); | 
 |   DeclAccessPair FoundDecl = R.begin().getPair(); | 
 |   NamedDecl *MemberDecl = R.getFoundDecl(); | 
 |  | 
 |   // FIXME: diagnose the presence of template arguments now. | 
 |  | 
 |   // If the decl being referenced had an error, return an error for this | 
 |   // sub-expr without emitting another error, in order to avoid cascading | 
 |   // error cases. | 
 |   if (MemberDecl->isInvalidDecl()) | 
 |     return ExprError(); | 
 |  | 
 |   // Handle the implicit-member-access case. | 
 |   if (!BaseExpr) { | 
 |     // If this is not an instance member, convert to a non-member access. | 
 |     if (!MemberDecl->isCXXInstanceMember()) { | 
 |       // We might have a variable template specialization (or maybe one day a | 
 |       // member concept-id). | 
 |       if (TemplateArgs || TemplateKWLoc.isValid()) | 
 |         return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs); | 
 |  | 
 |       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl, | 
 |                                       FoundDecl, TemplateArgs); | 
 |     } | 
 |     SourceLocation Loc = R.getNameLoc(); | 
 |     if (SS.getRange().isValid()) | 
 |       Loc = SS.getRange().getBegin(); | 
 |     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true); | 
 |   } | 
 |  | 
 |   // C++17 [expr.ref]p2, per CWG2813: | 
 |   //   For the first option (dot), if the id-expression names a static member or | 
 |   //   an enumerator, the first expression is a discarded-value expression; if | 
 |   //   the id-expression names a non-static data member, the first expression | 
 |   //   shall be a glvalue. | 
 |   auto ConvertBaseExprToDiscardedValue = [&] { | 
 |     assert(getLangOpts().CPlusPlus && | 
 |            "Static member / member enumerator outside of C++"); | 
 |     if (IsArrow) | 
 |       return false; | 
 |     ExprResult Converted = IgnoredValueConversions(BaseExpr); | 
 |     if (Converted.isInvalid()) | 
 |       return true; | 
 |     BaseExpr = Converted.get(); | 
 |     return false; | 
 |   }; | 
 |   auto ConvertBaseExprToGLValue = [&] { | 
 |     if (IsArrow || !BaseExpr->isPRValue()) | 
 |       return false; | 
 |     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr); | 
 |     if (Converted.isInvalid()) | 
 |       return true; | 
 |     BaseExpr = Converted.get(); | 
 |     return false; | 
 |   }; | 
 |  | 
 |   // Check the use of this member. | 
 |   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) | 
 |     return ExprError(); | 
 |  | 
 |   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) { | 
 |     if (ConvertBaseExprToGLValue()) | 
 |       return ExprError(); | 
 |     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl, | 
 |                                    MemberNameInfo); | 
 |   } | 
 |  | 
 |   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) { | 
 |     // No temporaries are materialized for property references yet. | 
 |     // They might be materialized when this is transformed into a member call. | 
 |     // Note that this is slightly different behaviour from MSVC which doesn't | 
 |     // implement CWG2813 yet: MSVC might materialize an extra temporary if the | 
 |     // getter or setter function is an explicit object member function. | 
 |     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, | 
 |                                   MemberNameInfo); | 
 |   } | 
 |  | 
 |   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) { | 
 |     if (ConvertBaseExprToGLValue()) | 
 |       return ExprError(); | 
 |     // We may have found a field within an anonymous union or struct | 
 |     // (C++ [class.union]). | 
 |     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, | 
 |                                                     FoundDecl, BaseExpr, | 
 |                                                     OpLoc); | 
 |   } | 
 |  | 
 |   // Static data member | 
 |   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { | 
 |     if (ConvertBaseExprToDiscardedValue()) | 
 |       return ExprError(); | 
 |     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, | 
 |                            SS.getWithLocInContext(Context), TemplateKWLoc, Var, | 
 |                            FoundDecl, /*HadMultipleCandidates=*/false, | 
 |                            MemberNameInfo, Var->getType().getNonReferenceType(), | 
 |                            VK_LValue, OK_Ordinary); | 
 |   } | 
 |  | 
 |   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { | 
 |     ExprValueKind valueKind; | 
 |     QualType type; | 
 |     if (MemberFn->isInstance()) { | 
 |       valueKind = VK_PRValue; | 
 |       type = Context.BoundMemberTy; | 
 |       if (MemberFn->isImplicitObjectMemberFunction() && | 
 |           ConvertBaseExprToGLValue()) | 
 |         return ExprError(); | 
 |     } else { | 
 |       // Static member function | 
 |       if (ConvertBaseExprToDiscardedValue()) | 
 |         return ExprError(); | 
 |       valueKind = VK_LValue; | 
 |       type = MemberFn->getType(); | 
 |     } | 
 |  | 
 |     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, | 
 |                            SS.getWithLocInContext(Context), TemplateKWLoc, | 
 |                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false, | 
 |                            MemberNameInfo, type, valueKind, OK_Ordinary); | 
 |   } | 
 |   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); | 
 |  | 
 |   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { | 
 |     if (ConvertBaseExprToDiscardedValue()) | 
 |       return ExprError(); | 
 |     return BuildMemberExpr( | 
 |         BaseExpr, IsArrow, OpLoc, SS.getWithLocInContext(Context), | 
 |         TemplateKWLoc, Enum, FoundDecl, /*HadMultipleCandidates=*/false, | 
 |         MemberNameInfo, Enum->getType(), VK_PRValue, OK_Ordinary); | 
 |   } | 
 |  | 
 |   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) { | 
 |     if (ConvertBaseExprToDiscardedValue()) | 
 |       return ExprError(); | 
 |     if (!TemplateArgs) { | 
 |       diagnoseMissingTemplateArguments( | 
 |           SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), VarTempl, MemberLoc); | 
 |       return ExprError(); | 
 |     } | 
 |  | 
 |     DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc, | 
 |                                           MemberNameInfo.getLoc(), *TemplateArgs); | 
 |     if (VDecl.isInvalid()) | 
 |       return ExprError(); | 
 |  | 
 |     // Non-dependent member, but dependent template arguments. | 
 |     if (!VDecl.get()) | 
 |       return ActOnDependentMemberExpr( | 
 |           BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, | 
 |           FirstQualifierInScope, MemberNameInfo, TemplateArgs); | 
 |  | 
 |     VarDecl *Var = cast<VarDecl>(VDecl.get()); | 
 |     if (!Var->getTemplateSpecializationKind()) | 
 |       Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc); | 
 |  | 
 |     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, | 
 |                            SS.getWithLocInContext(Context), TemplateKWLoc, Var, | 
 |                            FoundDecl, /*HadMultipleCandidates=*/false, | 
 |                            MemberNameInfo, Var->getType().getNonReferenceType(), | 
 |                            VK_LValue, OK_Ordinary, TemplateArgs); | 
 |   } | 
 |  | 
 |   // We found something that we didn't expect. Complain. | 
 |   if (isa<TypeDecl>(MemberDecl)) | 
 |     Diag(MemberLoc, diag::err_typecheck_member_reference_type) | 
 |       << MemberName << BaseType << int(IsArrow); | 
 |   else | 
 |     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) | 
 |       << MemberName << BaseType << int(IsArrow); | 
 |  | 
 |   Diag(MemberDecl->getLocation(), diag::note_member_declared_here) | 
 |     << MemberName; | 
 |   R.suppressDiagnostics(); | 
 |   return ExprError(); | 
 | } | 
 |  | 
 | /// Given that normal member access failed on the given expression, | 
 | /// and given that the expression's type involves builtin-id or | 
 | /// builtin-Class, decide whether substituting in the redefinition | 
 | /// types would be profitable.  The redefinition type is whatever | 
 | /// this translation unit tried to typedef to id/Class;  we store | 
 | /// it to the side and then re-use it in places like this. | 
 | static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { | 
 |   const ObjCObjectPointerType *opty | 
 |     = base.get()->getType()->getAs<ObjCObjectPointerType>(); | 
 |   if (!opty) return false; | 
 |  | 
 |   const ObjCObjectType *ty = opty->getObjectType(); | 
 |  | 
 |   QualType redef; | 
 |   if (ty->isObjCId()) { | 
 |     redef = S.Context.getObjCIdRedefinitionType(); | 
 |   } else if (ty->isObjCClass()) { | 
 |     redef = S.Context.getObjCClassRedefinitionType(); | 
 |   } else { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Do the substitution as long as the redefinition type isn't just a | 
 |   // possibly-qualified pointer to builtin-id or builtin-Class again. | 
 |   opty = redef->getAs<ObjCObjectPointerType>(); | 
 |   if (opty && !opty->getObjectType()->getInterface()) | 
 |     return false; | 
 |  | 
 |   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool isRecordType(QualType T) { | 
 |   return T->isRecordType(); | 
 | } | 
 | static bool isPointerToRecordType(QualType T) { | 
 |   if (const PointerType *PT = T->getAs<PointerType>()) | 
 |     return PT->getPointeeType()->isRecordType(); | 
 |   return false; | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { | 
 |   if (IsArrow && !Base->getType()->isFunctionType()) | 
 |     return DefaultFunctionArrayLvalueConversion(Base); | 
 |  | 
 |   return CheckPlaceholderExpr(Base); | 
 | } | 
 |  | 
 | /// Look up the given member of the given non-type-dependent | 
 | /// expression.  This can return in one of two ways: | 
 | ///  * If it returns a sentinel null-but-valid result, the caller will | 
 | ///    assume that lookup was performed and the results written into | 
 | ///    the provided structure.  It will take over from there. | 
 | ///  * Otherwise, the returned expression will be produced in place of | 
 | ///    an ordinary member expression. | 
 | /// | 
 | /// The ObjCImpDecl bit is a gross hack that will need to be properly | 
 | /// fixed for ObjC++. | 
 | static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, | 
 |                                    ExprResult &BaseExpr, bool &IsArrow, | 
 |                                    SourceLocation OpLoc, CXXScopeSpec &SS, | 
 |                                    Decl *ObjCImpDecl, bool HasTemplateArgs, | 
 |                                    SourceLocation TemplateKWLoc) { | 
 |   assert(BaseExpr.get() && "no base expression"); | 
 |  | 
 |   // Perform default conversions. | 
 |   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow); | 
 |   if (BaseExpr.isInvalid()) | 
 |     return ExprError(); | 
 |  | 
 |   QualType BaseType = BaseExpr.get()->getType(); | 
 |  | 
 |   DeclarationName MemberName = R.getLookupName(); | 
 |   SourceLocation MemberLoc = R.getNameLoc(); | 
 |  | 
 |   // For later type-checking purposes, turn arrow accesses into dot | 
 |   // accesses.  The only access type we support that doesn't follow | 
 |   // the C equivalence "a->b === (*a).b" is ObjC property accesses, | 
 |   // and those never use arrows, so this is unaffected. | 
 |   if (IsArrow) { | 
 |     if (const PointerType *Ptr = BaseType->getAs<PointerType>()) | 
 |       BaseType = Ptr->getPointeeType(); | 
 |     else if (const ObjCObjectPointerType *Ptr = | 
 |                  BaseType->getAs<ObjCObjectPointerType>()) | 
 |       BaseType = Ptr->getPointeeType(); | 
 |     else if (BaseType->isFunctionType()) | 
 |       goto fail; | 
 |     else if (BaseType->isDependentType()) | 
 |       BaseType = S.Context.DependentTy; | 
 |     else if (BaseType->isRecordType()) { | 
 |       // Recover from arrow accesses to records, e.g.: | 
 |       //   struct MyRecord foo; | 
 |       //   foo->bar | 
 |       // This is actually well-formed in C++ if MyRecord has an | 
 |       // overloaded operator->, but that should have been dealt with | 
 |       // by now--or a diagnostic message already issued if a problem | 
 |       // was encountered while looking for the overloaded operator->. | 
 |       if (!S.getLangOpts().CPlusPlus) { | 
 |         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | 
 |             << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() | 
 |             << FixItHint::CreateReplacement(OpLoc, "."); | 
 |       } | 
 |       IsArrow = false; | 
 |     } else { | 
 |       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) | 
 |           << BaseType << BaseExpr.get()->getSourceRange(); | 
 |       return ExprError(); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the base type is an atomic type, this access is undefined behavior per | 
 |   // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user | 
 |   // about the UB and recover by converting the atomic lvalue into a non-atomic | 
 |   // lvalue. Because this is inherently unsafe as an atomic operation, the | 
 |   // warning defaults to an error. | 
 |   if (const auto *ATy = BaseType->getAs<AtomicType>()) { | 
 |     S.DiagRuntimeBehavior(OpLoc, nullptr, | 
 |                           S.PDiag(diag::warn_atomic_member_access)); | 
 |     BaseType = ATy->getValueType().getUnqualifiedType(); | 
 |     BaseExpr = ImplicitCastExpr::Create( | 
 |         S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType, | 
 |         CK_AtomicToNonAtomic, BaseExpr.get(), nullptr, | 
 |         BaseExpr.get()->getValueKind(), FPOptionsOverride()); | 
 |   } | 
 |  | 
 |   // Handle field access to simple records. | 
 |   if (BaseType->getAsRecordDecl()) { | 
 |     TypoExpr *TE = nullptr; | 
 |     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), BaseType, OpLoc, IsArrow, | 
 |                                  SS, HasTemplateArgs, TemplateKWLoc, TE)) | 
 |       return ExprError(); | 
 |  | 
 |     // Returning valid-but-null is how we indicate to the caller that | 
 |     // the lookup result was filled in. If typo correction was attempted and | 
 |     // failed, the lookup result will have been cleared--that combined with the | 
 |     // valid-but-null ExprResult will trigger the appropriate diagnostics. | 
 |     return ExprResult(TE); | 
 |   } else if (BaseType->isDependentType()) { | 
 |     R.setNotFoundInCurrentInstantiation(); | 
 |     return ExprEmpty(); | 
 |   } | 
 |  | 
 |   // Handle ivar access to Objective-C objects. | 
 |   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { | 
 |     if (!SS.isEmpty() && !SS.isInvalid()) { | 
 |       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) | 
 |         << 1 << SS.getScopeRep() | 
 |         << FixItHint::CreateRemoval(SS.getRange()); | 
 |       SS.clear(); | 
 |     } | 
 |  | 
 |     IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
 |  | 
 |     // There are three cases for the base type: | 
 |     //   - builtin id (qualified or unqualified) | 
 |     //   - builtin Class (qualified or unqualified) | 
 |     //   - an interface | 
 |     ObjCInterfaceDecl *IDecl = OTy->getInterface(); | 
 |     if (!IDecl) { | 
 |       if (S.getLangOpts().ObjCAutoRefCount && | 
 |           (OTy->isObjCId() || OTy->isObjCClass())) | 
 |         goto fail; | 
 |       // There's an implicit 'isa' ivar on all objects. | 
 |       // But we only actually find it this way on objects of type 'id', | 
 |       // apparently. | 
 |       if (OTy->isObjCId() && Member->isStr("isa")) | 
 |         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, | 
 |                                            OpLoc, S.Context.getObjCClassType()); | 
 |       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) | 
 |         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |       goto fail; | 
 |     } | 
 |  | 
 |     if (S.RequireCompleteType(OpLoc, BaseType, | 
 |                               diag::err_typecheck_incomplete_tag, | 
 |                               BaseExpr.get())) | 
 |       return ExprError(); | 
 |  | 
 |     ObjCInterfaceDecl *ClassDeclared = nullptr; | 
 |     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); | 
 |  | 
 |     if (!IV) { | 
 |       // Attempt to correct for typos in ivar names. | 
 |       DeclFilterCCC<ObjCIvarDecl> Validator{}; | 
 |       Validator.IsObjCIvarLookup = IsArrow; | 
 |       if (TypoCorrection Corrected = S.CorrectTypo( | 
 |               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, | 
 |               Validator, Sema::CTK_ErrorRecovery, IDecl)) { | 
 |         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); | 
 |         S.diagnoseTypo( | 
 |             Corrected, | 
 |             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) | 
 |                 << IDecl->getDeclName() << MemberName); | 
 |  | 
 |         // Figure out the class that declares the ivar. | 
 |         assert(!ClassDeclared); | 
 |  | 
 |         Decl *D = cast<Decl>(IV->getDeclContext()); | 
 |         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D)) | 
 |           D = Category->getClassInterface(); | 
 |  | 
 |         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D)) | 
 |           ClassDeclared = Implementation->getClassInterface(); | 
 |         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D)) | 
 |           ClassDeclared = Interface; | 
 |  | 
 |         assert(ClassDeclared && "cannot query interface"); | 
 |       } else { | 
 |         if (IsArrow && | 
 |             IDecl->FindPropertyDeclaration( | 
 |                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { | 
 |           S.Diag(MemberLoc, diag::err_property_found_suggest) | 
 |               << Member << BaseExpr.get()->getType() | 
 |               << FixItHint::CreateReplacement(OpLoc, "."); | 
 |           return ExprError(); | 
 |         } | 
 |  | 
 |         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) | 
 |             << IDecl->getDeclName() << MemberName | 
 |             << BaseExpr.get()->getSourceRange(); | 
 |         return ExprError(); | 
 |       } | 
 |     } | 
 |  | 
 |     assert(ClassDeclared); | 
 |  | 
 |     // If the decl being referenced had an error, return an error for this | 
 |     // sub-expr without emitting another error, in order to avoid cascading | 
 |     // error cases. | 
 |     if (IV->isInvalidDecl()) | 
 |       return ExprError(); | 
 |  | 
 |     // Check whether we can reference this field. | 
 |     if (S.DiagnoseUseOfDecl(IV, MemberLoc)) | 
 |       return ExprError(); | 
 |     if (IV->getAccessControl() != ObjCIvarDecl::Public && | 
 |         IV->getAccessControl() != ObjCIvarDecl::Package) { | 
 |       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; | 
 |       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) | 
 |         ClassOfMethodDecl =  MD->getClassInterface(); | 
 |       else if (ObjCImpDecl && S.getCurFunctionDecl()) { | 
 |         // Case of a c-function declared inside an objc implementation. | 
 |         // FIXME: For a c-style function nested inside an objc implementation | 
 |         // class, there is no implementation context available, so we pass | 
 |         // down the context as argument to this routine. Ideally, this context | 
 |         // need be passed down in the AST node and somehow calculated from the | 
 |         // AST for a function decl. | 
 |         if (ObjCImplementationDecl *IMPD = | 
 |               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) | 
 |           ClassOfMethodDecl = IMPD->getClassInterface(); | 
 |         else if (ObjCCategoryImplDecl* CatImplClass = | 
 |                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) | 
 |           ClassOfMethodDecl = CatImplClass->getClassInterface(); | 
 |       } | 
 |       if (!S.getLangOpts().DebuggerSupport) { | 
 |         if (IV->getAccessControl() == ObjCIvarDecl::Private) { | 
 |           if (!declaresSameEntity(ClassDeclared, IDecl) || | 
 |               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) | 
 |             S.Diag(MemberLoc, diag::err_private_ivar_access) | 
 |               << IV->getDeclName(); | 
 |         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) | 
 |           // @protected | 
 |           S.Diag(MemberLoc, diag::err_protected_ivar_access) | 
 |               << IV->getDeclName(); | 
 |       } | 
 |     } | 
 |     bool warn = true; | 
 |     if (S.getLangOpts().ObjCWeak) { | 
 |       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); | 
 |       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp)) | 
 |         if (UO->getOpcode() == UO_Deref) | 
 |           BaseExp = UO->getSubExpr()->IgnoreParenCasts(); | 
 |  | 
 |       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp)) | 
 |         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { | 
 |           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access); | 
 |           warn = false; | 
 |         } | 
 |     } | 
 |     if (warn) { | 
 |       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { | 
 |         ObjCMethodFamily MF = MD->getMethodFamily(); | 
 |         warn = (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && | 
 |                 !S.ObjC().IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); | 
 |       } | 
 |       if (warn) | 
 |         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); | 
 |     } | 
 |  | 
 |     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( | 
 |         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(), | 
 |         IsArrow); | 
 |  | 
 |     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { | 
 |       if (!S.isUnevaluatedContext() && | 
 |           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) | 
 |         S.getCurFunction()->recordUseOfWeak(Result); | 
 |     } | 
 |  | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Objective-C property access. | 
 |   const ObjCObjectPointerType *OPT; | 
 |   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { | 
 |     if (!SS.isEmpty() && !SS.isInvalid()) { | 
 |       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) | 
 |           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); | 
 |       SS.clear(); | 
 |     } | 
 |  | 
 |     // This actually uses the base as an r-value. | 
 |     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get()); | 
 |     if (BaseExpr.isInvalid()) | 
 |       return ExprError(); | 
 |  | 
 |     assert(S.Context.hasSameUnqualifiedType(BaseType, | 
 |                                             BaseExpr.get()->getType())); | 
 |  | 
 |     IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
 |  | 
 |     const ObjCObjectType *OT = OPT->getObjectType(); | 
 |  | 
 |     // id, with and without qualifiers. | 
 |     if (OT->isObjCId()) { | 
 |       // Check protocols on qualified interfaces. | 
 |       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); | 
 |       if (Decl *PMDecl = | 
 |               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) { | 
 |         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { | 
 |           // Check the use of this declaration | 
 |           if (S.DiagnoseUseOfDecl(PD, MemberLoc)) | 
 |             return ExprError(); | 
 |  | 
 |           return new (S.Context) | 
 |               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, | 
 |                                   OK_ObjCProperty, MemberLoc, BaseExpr.get()); | 
 |         } | 
 |  | 
 |         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { | 
 |           Selector SetterSel = | 
 |             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), | 
 |                                                    S.PP.getSelectorTable(), | 
 |                                                    Member); | 
 |           ObjCMethodDecl *SMD = nullptr; | 
 |           if (Decl *SDecl = FindGetterSetterNameDecl(OPT, | 
 |                                                      /*Property id*/ nullptr, | 
 |                                                      SetterSel, S.Context)) | 
 |             SMD = dyn_cast<ObjCMethodDecl>(SDecl); | 
 |  | 
 |           return new (S.Context) | 
 |               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, | 
 |                                   OK_ObjCProperty, MemberLoc, BaseExpr.get()); | 
 |         } | 
 |       } | 
 |       // Use of id.member can only be for a property reference. Do not | 
 |       // use the 'id' redefinition in this case. | 
 |       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr)) | 
 |         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |  | 
 |       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) | 
 |                          << MemberName << BaseType); | 
 |     } | 
 |  | 
 |     // 'Class', unqualified only. | 
 |     if (OT->isObjCClass()) { | 
 |       // Only works in a method declaration (??!). | 
 |       ObjCMethodDecl *MD = S.getCurMethodDecl(); | 
 |       if (!MD) { | 
 |         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) | 
 |           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |  | 
 |         goto fail; | 
 |       } | 
 |  | 
 |       // Also must look for a getter name which uses property syntax. | 
 |       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); | 
 |       ObjCInterfaceDecl *IFace = MD->getClassInterface(); | 
 |       if (!IFace) | 
 |         goto fail; | 
 |  | 
 |       ObjCMethodDecl *Getter; | 
 |       if ((Getter = IFace->lookupClassMethod(Sel))) { | 
 |         // Check the use of this method. | 
 |         if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) | 
 |           return ExprError(); | 
 |       } else | 
 |         Getter = IFace->lookupPrivateMethod(Sel, false); | 
 |       // If we found a getter then this may be a valid dot-reference, we | 
 |       // will look for the matching setter, in case it is needed. | 
 |       Selector SetterSel = | 
 |         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), | 
 |                                                S.PP.getSelectorTable(), | 
 |                                                Member); | 
 |       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); | 
 |       if (!Setter) { | 
 |         // If this reference is in an @implementation, also check for 'private' | 
 |         // methods. | 
 |         Setter = IFace->lookupPrivateMethod(SetterSel, false); | 
 |       } | 
 |  | 
 |       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) | 
 |         return ExprError(); | 
 |  | 
 |       if (Getter || Setter) { | 
 |         return new (S.Context) ObjCPropertyRefExpr( | 
 |             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, | 
 |             OK_ObjCProperty, MemberLoc, BaseExpr.get()); | 
 |       } | 
 |  | 
 |       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) | 
 |         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |  | 
 |       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) | 
 |                          << MemberName << BaseType); | 
 |     } | 
 |  | 
 |     // Normal property access. | 
 |     return S.ObjC().HandleExprPropertyRefExpr( | 
 |         OPT, BaseExpr.get(), OpLoc, MemberName, MemberLoc, SourceLocation(), | 
 |         QualType(), false); | 
 |   } | 
 |  | 
 |   if (BaseType->isPackedVectorBoolType(S.Context)) { | 
 |     // We disallow element access for ext_vector_type bool.  There is no way to | 
 |     // materialize a reference to a vector element as a pointer (each element is | 
 |     // one bit in the vector). | 
 |     S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal) | 
 |         << MemberName | 
 |         << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange()); | 
 |     return ExprError(); | 
 |   } | 
 |  | 
 |   // Handle 'field access' to vectors, such as 'V.xx'. | 
 |   if (BaseType->isExtVectorType()) { | 
 |     // FIXME: this expr should store IsArrow. | 
 |     IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
 |     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind()); | 
 |     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc, | 
 |                                            Member, MemberLoc); | 
 |     if (ret.isNull()) | 
 |       return ExprError(); | 
 |     Qualifiers BaseQ = | 
 |         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers(); | 
 |     ret = S.Context.getQualifiedType(ret, BaseQ); | 
 |  | 
 |     return new (S.Context) | 
 |         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); | 
 |   } | 
 |  | 
 |   // Adjust builtin-sel to the appropriate redefinition type if that's | 
 |   // not just a pointer to builtin-sel again. | 
 |   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && | 
 |       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { | 
 |     BaseExpr = S.ImpCastExprToType( | 
 |         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast); | 
 |     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |   } | 
 |  | 
 |   // Failure cases. | 
 |  fail: | 
 |  | 
 |   // Recover from dot accesses to pointers, e.g.: | 
 |   //   type *foo; | 
 |   //   foo.bar | 
 |   // This is actually well-formed in two cases: | 
 |   //   - 'type' is an Objective C type | 
 |   //   - 'bar' is a pseudo-destructor name which happens to refer to | 
 |   //     the appropriate pointer type | 
 |   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | 
 |     if (!IsArrow && Ptr->getPointeeType()->isRecordType() && | 
 |         MemberName.getNameKind() != DeclarationName::CXXDestructorName) { | 
 |       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) | 
 |           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() | 
 |           << FixItHint::CreateReplacement(OpLoc, "->"); | 
 |  | 
 |       if (S.isSFINAEContext()) | 
 |         return ExprError(); | 
 |  | 
 |       // Recurse as an -> access. | 
 |       IsArrow = true; | 
 |       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the user is trying to apply -> or . to a function name, it's probably | 
 |   // because they forgot parentheses to call that function. | 
 |   if (S.tryToRecoverWithCall( | 
 |           BaseExpr, S.PDiag(diag::err_member_reference_needs_call), | 
 |           /*complain*/ false, | 
 |           IsArrow ? &isPointerToRecordType : &isRecordType)) { | 
 |     if (BaseExpr.isInvalid()) | 
 |       return ExprError(); | 
 |     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get()); | 
 |     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, | 
 |                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); | 
 |   } | 
 |  | 
 |   // HLSL supports implicit conversion of scalar types to single element vector | 
 |   // rvalues in member expressions. | 
 |   if (S.getLangOpts().HLSL && BaseType->isScalarType()) { | 
 |     QualType VectorTy = S.Context.getExtVectorType(BaseType, 1); | 
 |     BaseExpr = S.ImpCastExprToType(BaseExpr.get(), VectorTy, CK_VectorSplat, | 
 |                                    BaseExpr.get()->getValueKind()); | 
 |     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, | 
 |                             HasTemplateArgs, TemplateKWLoc); | 
 |   } | 
 |  | 
 |   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) | 
 |     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; | 
 |  | 
 |   return ExprError(); | 
 | } | 
 |  | 
 | ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, | 
 |                                        SourceLocation OpLoc, | 
 |                                        tok::TokenKind OpKind, CXXScopeSpec &SS, | 
 |                                        SourceLocation TemplateKWLoc, | 
 |                                        UnqualifiedId &Id, Decl *ObjCImpDecl) { | 
 |   // Warn about the explicit constructor calls Microsoft extension. | 
 |   if (getLangOpts().MicrosoftExt && | 
 |       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) | 
 |     Diag(Id.getSourceRange().getBegin(), | 
 |          diag::ext_ms_explicit_constructor_call); | 
 |  | 
 |   TemplateArgumentListInfo TemplateArgsBuffer; | 
 |  | 
 |   // Decompose the name into its component parts. | 
 |   DeclarationNameInfo NameInfo; | 
 |   const TemplateArgumentListInfo *TemplateArgs; | 
 |   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, | 
 |                          NameInfo, TemplateArgs); | 
 |  | 
 |   bool IsArrow = (OpKind == tok::arrow); | 
 |  | 
 |   if (getLangOpts().HLSL && IsArrow) | 
 |     return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2); | 
 |  | 
 |   NamedDecl *FirstQualifierInScope | 
 |     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep())); | 
 |  | 
 |   // This is a postfix expression, so get rid of ParenListExprs. | 
 |   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); | 
 |   if (Result.isInvalid()) return ExprError(); | 
 |   Base = Result.get(); | 
 |  | 
 |   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl}; | 
 |   ExprResult Res = BuildMemberReferenceExpr( | 
 |       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, | 
 |       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs); | 
 |  | 
 |   if (!Res.isInvalid() && isa<MemberExpr>(Res.get())) | 
 |     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get())); | 
 |  | 
 |   return Res; | 
 | } | 
 |  | 
 | void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) { | 
 |   if (isUnevaluatedContext()) | 
 |     return; | 
 |  | 
 |   QualType ResultTy = E->getType(); | 
 |  | 
 |   // Member accesses have four cases: | 
 |   // 1: non-array member via "->": dereferences | 
 |   // 2: non-array member via ".": nothing interesting happens | 
 |   // 3: array member access via "->": nothing interesting happens | 
 |   //    (this returns an array lvalue and does not actually dereference memory) | 
 |   // 4: array member access via ".": *adds* a layer of indirection | 
 |   if (ResultTy->isArrayType()) { | 
 |     if (!E->isArrow()) { | 
 |       // This might be something like: | 
 |       //     (*structPtr).arrayMember | 
 |       // which behaves roughly like: | 
 |       //     &(*structPtr).pointerMember | 
 |       // in that the apparent dereference in the base expression does not | 
 |       // actually happen. | 
 |       CheckAddressOfNoDeref(E->getBase()); | 
 |     } | 
 |   } else if (E->isArrow()) { | 
 |     if (const auto *Ptr = dyn_cast<PointerType>( | 
 |             E->getBase()->getType().getDesugaredType(Context))) { | 
 |       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) | 
 |         ExprEvalContexts.back().PossibleDerefs.insert(E); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, | 
 |                               SourceLocation OpLoc, const CXXScopeSpec &SS, | 
 |                               FieldDecl *Field, DeclAccessPair FoundDecl, | 
 |                               const DeclarationNameInfo &MemberNameInfo) { | 
 |   // x.a is an l-value if 'a' has a reference type. Otherwise: | 
 |   // x.a is an l-value/x-value/pr-value if the base is (and note | 
 |   //   that *x is always an l-value), except that if the base isn't | 
 |   //   an ordinary object then we must have an rvalue. | 
 |   ExprValueKind VK = VK_LValue; | 
 |   ExprObjectKind OK = OK_Ordinary; | 
 |   if (!IsArrow) { | 
 |     if (BaseExpr->getObjectKind() == OK_Ordinary) | 
 |       VK = BaseExpr->getValueKind(); | 
 |     else | 
 |       VK = VK_PRValue; | 
 |   } | 
 |   if (VK != VK_PRValue && Field->isBitField()) | 
 |     OK = OK_BitField; | 
 |  | 
 |   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] | 
 |   QualType MemberType = Field->getType(); | 
 |   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { | 
 |     MemberType = Ref->getPointeeType(); | 
 |     VK = VK_LValue; | 
 |   } else { | 
 |     QualType BaseType = BaseExpr->getType(); | 
 |     if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); | 
 |  | 
 |     Qualifiers BaseQuals = BaseType.getQualifiers(); | 
 |  | 
 |     // GC attributes are never picked up by members. | 
 |     BaseQuals.removeObjCGCAttr(); | 
 |  | 
 |     // CVR attributes from the base are picked up by members, | 
 |     // except that 'mutable' members don't pick up 'const'. | 
 |     if (Field->isMutable()) BaseQuals.removeConst(); | 
 |  | 
 |     Qualifiers MemberQuals = | 
 |         Context.getCanonicalType(MemberType).getQualifiers(); | 
 |  | 
 |     assert(!MemberQuals.hasAddressSpace()); | 
 |  | 
 |     Qualifiers Combined = BaseQuals + MemberQuals; | 
 |     if (Combined != MemberQuals) | 
 |       MemberType = Context.getQualifiedType(MemberType, Combined); | 
 |  | 
 |     // Pick up NoDeref from the base in case we end up using AddrOf on the | 
 |     // result. E.g. the expression | 
 |     //     &someNoDerefPtr->pointerMember | 
 |     // should be a noderef pointer again. | 
 |     if (BaseType->hasAttr(attr::NoDeref)) | 
 |       MemberType = | 
 |           Context.getAttributedType(attr::NoDeref, MemberType, MemberType); | 
 |   } | 
 |  | 
 |   auto isDefaultedSpecialMember = [this](const DeclContext *Ctx) { | 
 |     auto *Method = dyn_cast<CXXMethodDecl>(CurContext); | 
 |     if (!Method || !Method->isDefaulted()) | 
 |       return false; | 
 |  | 
 |     return getDefaultedFunctionKind(Method).isSpecialMember(); | 
 |   }; | 
 |  | 
 |   // Implicit special members should not mark fields as used. | 
 |   if (!isDefaultedSpecialMember(CurContext)) | 
 |     UnusedPrivateFields.remove(Field); | 
 |  | 
 |   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), | 
 |                                                   FoundDecl, Field); | 
 |   if (Base.isInvalid()) | 
 |     return ExprError(); | 
 |  | 
 |   // Build a reference to a private copy for non-static data members in | 
 |   // non-static member functions, privatized by OpenMP constructs. | 
 |   if (getLangOpts().OpenMP && IsArrow && | 
 |       !CurContext->isDependentContext() && | 
 |       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) { | 
 |     if (auto *PrivateCopy = OpenMP().isOpenMPCapturedDecl(Field)) { | 
 |       return OpenMP().getOpenMPCapturedExpr(PrivateCopy, VK, OK, | 
 |                                             MemberNameInfo.getLoc()); | 
 |     } | 
 |   } | 
 |  | 
 |   return BuildMemberExpr( | 
 |       Base.get(), IsArrow, OpLoc, SS.getWithLocInContext(Context), | 
 |       /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, | 
 |       /*HadMultipleCandidates=*/false, MemberNameInfo, MemberType, VK, OK); | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, | 
 |                               SourceLocation TemplateKWLoc, | 
 |                               LookupResult &R, | 
 |                               const TemplateArgumentListInfo *TemplateArgs, | 
 |                               bool IsKnownInstance, const Scope *S) { | 
 |   assert(!R.empty() && !R.isAmbiguous()); | 
 |  | 
 |   SourceLocation loc = R.getNameLoc(); | 
 |  | 
 |   // If this is known to be an instance access, go ahead and build an | 
 |   // implicit 'this' expression now. | 
 |   QualType ThisTy = getCurrentThisType(); | 
 |   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); | 
 |  | 
 |   Expr *baseExpr = nullptr; // null signifies implicit access | 
 |   if (IsKnownInstance) { | 
 |     SourceLocation Loc = R.getNameLoc(); | 
 |     if (SS.getRange().isValid()) | 
 |       Loc = SS.getRange().getBegin(); | 
 |     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true); | 
 |   } | 
 |  | 
 |   return BuildMemberReferenceExpr( | 
 |       baseExpr, ThisTy, | 
 |       /*OpLoc=*/SourceLocation(), | 
 |       /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc, | 
 |       /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S); | 
 | } |