| //===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file Std transformations to expand Divs operation to help for the |
| // lowering to LLVM. Currently implemented transformations are Ceil and Floor |
| // for Signed Integers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/MemRef/Transforms/Passes.h" |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Transforms/Passes.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/MemRef/Transforms/Transforms.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "llvm/ADT/STLExtras.h" |
| |
| namespace mlir { |
| namespace memref { |
| #define GEN_PASS_DEF_EXPANDOPS |
| #include "mlir/Dialect/MemRef/Transforms/Passes.h.inc" |
| } // namespace memref |
| } // namespace mlir |
| |
| using namespace mlir; |
| |
| namespace { |
| |
| /// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with |
| /// AtomicRMWOpLowering pattern, such as minimum and maximum operations for |
| /// floating-point numbers, to `memref.generic_atomic_rmw` with the expanded |
| /// code. |
| /// |
| /// %x = atomic_rmw maximumf %fval, %F[%i] : (f32, memref<10xf32>) -> f32 |
| /// |
| /// will be lowered to |
| /// |
| /// %x = memref.generic_atomic_rmw %F[%i] : memref<10xf32> { |
| /// ^bb0(%current: f32): |
| /// %1 = arith.maximumf %current, %fval : f32 |
| /// memref.atomic_yield %1 : f32 |
| /// } |
| struct AtomicRMWOpConverter : public OpRewritePattern<memref::AtomicRMWOp> { |
| public: |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(memref::AtomicRMWOp op, |
| PatternRewriter &rewriter) const final { |
| auto loc = op.getLoc(); |
| auto genericOp = rewriter.create<memref::GenericAtomicRMWOp>( |
| loc, op.getMemref(), op.getIndices()); |
| OpBuilder bodyBuilder = |
| OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener()); |
| |
| Value lhs = genericOp.getCurrentValue(); |
| Value rhs = op.getValue(); |
| |
| Value arithOp = |
| mlir::arith::getReductionOp(op.getKind(), bodyBuilder, loc, lhs, rhs); |
| bodyBuilder.create<memref::AtomicYieldOp>(loc, arithOp); |
| |
| rewriter.replaceOp(op, genericOp.getResult()); |
| return success(); |
| } |
| }; |
| |
| /// Converts `memref.reshape` that has a target shape of a statically-known |
| /// size to `memref.reinterpret_cast`. |
| struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> { |
| public: |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(memref::ReshapeOp op, |
| PatternRewriter &rewriter) const final { |
| auto shapeType = cast<MemRefType>(op.getShape().getType()); |
| if (!shapeType.hasStaticShape()) |
| return failure(); |
| |
| int64_t rank = cast<MemRefType>(shapeType).getDimSize(0); |
| SmallVector<OpFoldResult, 4> sizes, strides; |
| sizes.resize(rank); |
| strides.resize(rank); |
| |
| Location loc = op.getLoc(); |
| Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1); |
| for (int i = rank - 1; i >= 0; --i) { |
| Value size; |
| // Load dynamic sizes from the shape input, use constants for static dims. |
| if (op.getType().isDynamicDim(i)) { |
| Value index = rewriter.create<arith::ConstantIndexOp>(loc, i); |
| size = rewriter.create<memref::LoadOp>(loc, op.getShape(), index); |
| if (!isa<IndexType>(size.getType())) |
| size = rewriter.create<arith::IndexCastOp>( |
| loc, rewriter.getIndexType(), size); |
| sizes[i] = size; |
| } else { |
| auto sizeAttr = rewriter.getIndexAttr(op.getType().getDimSize(i)); |
| size = rewriter.create<arith::ConstantOp>(loc, sizeAttr); |
| sizes[i] = sizeAttr; |
| } |
| strides[i] = stride; |
| if (i > 0) |
| stride = rewriter.create<arith::MulIOp>(loc, stride, size); |
| } |
| rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>( |
| op, op.getType(), op.getSource(), /*offset=*/rewriter.getIndexAttr(0), |
| sizes, strides); |
| return success(); |
| } |
| }; |
| |
| struct ExpandOpsPass : public memref::impl::ExpandOpsBase<ExpandOpsPass> { |
| void runOnOperation() override { |
| MLIRContext &ctx = getContext(); |
| |
| RewritePatternSet patterns(&ctx); |
| memref::populateExpandOpsPatterns(patterns); |
| ConversionTarget target(ctx); |
| |
| target.addLegalDialect<arith::ArithDialect, memref::MemRefDialect>(); |
| target.addDynamicallyLegalOp<memref::AtomicRMWOp>( |
| [](memref::AtomicRMWOp op) { |
| constexpr std::array shouldBeExpandedKinds = { |
| arith::AtomicRMWKind::maximumf, arith::AtomicRMWKind::minimumf, |
| arith::AtomicRMWKind::minnumf, arith::AtomicRMWKind::maxnumf}; |
| return !llvm::is_contained(shouldBeExpandedKinds, op.getKind()); |
| }); |
| target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) { |
| return !cast<MemRefType>(op.getShape().getType()).hasStaticShape(); |
| }); |
| if (failed(applyPartialConversion(getOperation(), target, |
| std::move(patterns)))) |
| signalPassFailure(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::memref::populateExpandOpsPatterns(RewritePatternSet &patterns) { |
| patterns.add<AtomicRMWOpConverter, MemRefReshapeOpConverter>( |
| patterns.getContext()); |
| } |
| |
| std::unique_ptr<Pass> mlir::memref::createExpandOpsPass() { |
| return std::make_unique<ExpandOpsPass>(); |
| } |