| //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the GPU dialect kernel outlining pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/GPU/Transforms/Passes.h" |
| |
| #include "mlir/AsmParser/AsmParser.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
| #include "mlir/Dialect/DLTI/DLTI.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| #include "mlir/Dialect/GPU/Transforms/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinAttributes.h" |
| #include "mlir/IR/IRMapping.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/SymbolTable.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include <limits> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_GPULAUNCHSINKINDEXCOMPUTATIONS |
| #define GEN_PASS_DEF_GPUKERNELOUTLINING |
| #include "mlir/Dialect/GPU/Transforms/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| |
| template <typename OpTy> |
| static void createForAllDimensions(OpBuilder &builder, Location loc, |
| SmallVectorImpl<Value> &values) { |
| for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z}) |
| values.push_back(builder.create<OpTy>(loc, builder.getIndexType(), dim)); |
| } |
| |
| /// Adds operations generating block/thread ids and grid/block dimensions at the |
| /// beginning of the `launchFuncOpBody` region. Add mapping from argument in |
| /// entry block of `launchOpBody`, to the corresponding result value of the |
| /// added operations. |
| static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody, |
| Region &launchOpBody, IRMapping &map, |
| bool hasCluster = false) { |
| OpBuilder builder(loc->getContext()); |
| Block &firstBlock = launchOpBody.front(); |
| builder.setInsertionPointToStart(&launchFuncOpBody.front()); |
| SmallVector<Value> indexOps; |
| // The order is important here, as it must match the order of the arguments |
| createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps); |
| createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps); |
| createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps); |
| createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps); |
| if (hasCluster) { |
| createForAllDimensions<gpu::ClusterIdOp>(builder, loc, indexOps); |
| createForAllDimensions<gpu::ClusterDimOp>(builder, loc, indexOps); |
| } |
| // Replace the leading 12 function args with the respective thread/block index |
| // operations. Iterate backwards since args are erased and indices change. |
| for (const auto &indexOp : enumerate(indexOps)) |
| map.map(firstBlock.getArgument(indexOp.index()), indexOp.value()); |
| } |
| |
| /// Identifies operations that are beneficial to sink into kernels. These |
| /// operations may not have side-effects, as otherwise sinking (and hence |
| /// duplicating them) is not legal. |
| static bool isLikelyAnIndexComputation(Operation *op) { |
| return matchPattern(op, m_Constant()) || |
| isa<memref::DimOp, arith::SelectOp, arith::CmpIOp>(op); |
| } |
| |
| /// For a given operation `op`, computes whether it is beneficial to sink the |
| /// operation into the kernel. An operation can be sunk if doing so does not |
| /// introduce new kernel arguments. Whether a value is already available in the |
| /// kernel (and hence does not introduce new arguments) is checked by |
| /// querying `existingDependencies` and `availableValues`. |
| /// If an operand is not yet available, we recursively check whether it can be |
| /// made available by siking its defining op. |
| /// Operations that are indentified for sinking are added to `beneficiaryOps` in |
| /// the order they should appear in the kernel. Furthermore, `availableValues` |
| /// is updated with results that will be available after sinking the identified |
| /// ops. |
| static bool extractBeneficiaryOps( |
| Operation *op, const SetVector<Value> &existingDependencies, |
| SetVector<Operation *> &beneficiaryOps, |
| llvm::SmallPtrSetImpl<Value> &availableValues, |
| llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) { |
| if (beneficiaryOps.count(op)) |
| return true; |
| |
| if (!isSinkingBeneficiary(op)) |
| return false; |
| |
| for (Value operand : op->getOperands()) { |
| // It is already visible in the kernel, keep going. |
| if (availableValues.count(operand)) |
| continue; |
| // Else check whether it can be made available via sinking or already is a |
| // dependency. |
| Operation *definingOp = operand.getDefiningOp(); |
| if ((!definingOp || !extractBeneficiaryOps(definingOp, existingDependencies, |
| beneficiaryOps, availableValues, |
| isSinkingBeneficiary)) && |
| !existingDependencies.count(operand)) |
| return false; |
| } |
| // We will sink the operation, mark its results as now available. |
| beneficiaryOps.insert(op); |
| for (Value result : op->getResults()) |
| availableValues.insert(result); |
| return true; |
| } |
| |
| LogicalResult mlir::sinkOperationsIntoLaunchOp( |
| gpu::LaunchOp launchOp, |
| llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) { |
| assert(isSinkingBeneficiary); |
| Region &launchOpBody = launchOp.getBody(); |
| |
| // Identify uses from values defined outside of the scope of the launch |
| // operation. |
| SetVector<Value> sinkCandidates; |
| getUsedValuesDefinedAbove(launchOpBody, sinkCandidates); |
| |
| SetVector<Operation *> toBeSunk; |
| llvm::SmallPtrSet<Value, 4> availableValues; |
| for (Value operand : sinkCandidates) { |
| Operation *operandOp = operand.getDefiningOp(); |
| if (!operandOp) |
| continue; |
| extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues, |
| isSinkingBeneficiary); |
| } |
| |
| // Insert operations so that the defs get cloned before uses. |
| IRMapping map; |
| OpBuilder builder(launchOpBody); |
| for (Operation *op : toBeSunk) { |
| Operation *clonedOp = builder.clone(*op, map); |
| // Only replace uses within the launch op. |
| for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults())) |
| replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair), |
| launchOp.getBody()); |
| } |
| return success(); |
| } |
| |
| /// Return the provided KernelDim3 as an array of i32 constants if possible. |
| static DenseI32ArrayAttr maybeConstantDimsAttr(gpu::KernelDim3 dims) { |
| SmallVector<int32_t, 3> constants; |
| MLIRContext *ctx = dims.x.getContext(); |
| for (Value v : {dims.x, dims.y, dims.z}) { |
| APInt constValue; |
| if (!matchPattern(v, m_ConstantInt(&constValue))) |
| return nullptr; |
| // In the event someone called for a too-large block or grid dimension, |
| // don't set bounds as it is likely to cause more confusing behavior. |
| if (constValue.ugt(std::numeric_limits<uint32_t>::max())) |
| return nullptr; |
| constants.push_back( |
| constValue.getLimitedValue(std::numeric_limits<uint32_t>::max())); |
| } |
| return DenseI32ArrayAttr::get(ctx, constants); |
| } |
| |
| /// Outline the `gpu.launch` operation body into a kernel function. Replace |
| /// `gpu.terminator` operations by `gpu.return` in the generated function. |
| /// Set block and grid size bounds if known. |
| static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp, |
| StringRef kernelFnName, |
| SetVector<Value> &operands) { |
| Location loc = launchOp.getLoc(); |
| // Create a builder with no insertion point, insertion will happen separately |
| // due to symbol table manipulation. |
| OpBuilder builder(launchOp.getContext()); |
| Region &launchOpBody = launchOp.getBody(); |
| |
| // Identify uses from values defined outside of the scope of the launch |
| // operation. |
| getUsedValuesDefinedAbove(launchOpBody, operands); |
| |
| // Create the gpu.func operation. |
| SmallVector<Type, 4> kernelOperandTypes; |
| kernelOperandTypes.reserve(operands.size()); |
| for (Value operand : operands) { |
| kernelOperandTypes.push_back(operand.getType()); |
| } |
| FunctionType type = |
| FunctionType::get(launchOp.getContext(), kernelOperandTypes, {}); |
| auto outlinedFunc = builder.create<gpu::GPUFuncOp>( |
| loc, kernelFnName, type, |
| TypeRange(ValueRange(launchOp.getWorkgroupAttributions())), |
| TypeRange(ValueRange(launchOp.getPrivateAttributions()))); |
| outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(), |
| builder.getUnitAttr()); |
| |
| // If we can infer bounds on the grid and/or block sizes from the arguments |
| // to the launch op, propagate them to the generated kernel. This is safe |
| // because multiple launches with the same body are not deduplicated. |
| if (auto blockBounds = |
| maybeConstantDimsAttr(launchOp.getBlockSizeOperandValues())) |
| outlinedFunc->setAttr(gpu::GPUFuncOp::getKnownBlockSizeAttrName(), |
| blockBounds); |
| if (auto gridBounds = |
| maybeConstantDimsAttr(launchOp.getGridSizeOperandValues())) |
| outlinedFunc->setAttr(gpu::GPUFuncOp::getKnownGridSizeAttrName(), |
| gridBounds); |
| |
| IRMapping map; |
| |
| // Map the arguments corresponding to the launch parameters like blockIdx, |
| // threadIdx, etc. If cluster is present, then we also generate clusterIdx and |
| // clusterDim. |
| Region &outlinedFuncBody = outlinedFunc.getBody(); |
| injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map, |
| launchOp.hasClusterSize()); |
| |
| // Map memory attributions from the LaunOp op to the GPUFuncOp attributions. |
| for (const auto &[launchArg, funcArg] : |
| llvm::zip(launchOp.getWorkgroupAttributions(), |
| outlinedFunc.getWorkgroupAttributions())) |
| map.map(launchArg, funcArg); |
| for (const auto &[launchArg, funcArg] : |
| llvm::zip(launchOp.getPrivateAttributions(), |
| outlinedFunc.getPrivateAttributions())) |
| map.map(launchArg, funcArg); |
| |
| // Map arguments from gpu.launch region to the arguments of the gpu.func |
| // operation. |
| Block &entryBlock = outlinedFuncBody.front(); |
| for (const auto &operand : enumerate(operands)) |
| map.map(operand.value(), entryBlock.getArgument(operand.index())); |
| |
| // Clone the region of the gpu.launch operation into the gpu.func operation. |
| // TODO: If cloneInto can be modified such that if a mapping for |
| // a block exists, that block will be used to clone operations into (at the |
| // end of the block), instead of creating a new block, this would be much |
| // cleaner. |
| launchOpBody.cloneInto(&outlinedFuncBody, map); |
| |
| // Branch from entry of the gpu.func operation to the block that is cloned |
| // from the entry block of the gpu.launch operation. |
| Block &launchOpEntry = launchOpBody.front(); |
| Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry); |
| builder.setInsertionPointToEnd(&entryBlock); |
| builder.create<cf::BranchOp>(loc, clonedLaunchOpEntry); |
| |
| outlinedFunc.walk([](gpu::TerminatorOp op) { |
| OpBuilder replacer(op); |
| replacer.create<gpu::ReturnOp>(op.getLoc()); |
| op.erase(); |
| }); |
| return outlinedFunc; |
| } |
| |
| gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp, |
| StringRef kernelFnName, |
| llvm::SmallVectorImpl<Value> &operands) { |
| DenseSet<Value> inputOperandSet; |
| inputOperandSet.insert(operands.begin(), operands.end()); |
| SetVector<Value> operandSet(operands.begin(), operands.end()); |
| auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet); |
| for (auto operand : operandSet) { |
| if (!inputOperandSet.count(operand)) |
| operands.push_back(operand); |
| } |
| return funcOp; |
| } |
| |
| /// Replace `gpu.launch` operations with an `gpu.launch_func` operation |
| /// launching `kernelFunc`. The kernel func contains the body of the |
| /// `gpu.launch` with constant region arguments inlined. |
| static void convertToLaunchFuncOp(gpu::LaunchOp launchOp, |
| gpu::GPUFuncOp kernelFunc, |
| ValueRange operands) { |
| OpBuilder builder(launchOp); |
| // The launch op has an optional dynamic shared memory size. If it doesn't |
| // exist, we use zero. |
| Value asyncToken = launchOp.getAsyncToken(); |
| std::optional<gpu::KernelDim3> clusterSize = |
| launchOp.getClusterSizeOperandValues(); |
| auto launchFunc = builder.create<gpu::LaunchFuncOp>( |
| launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(), |
| launchOp.getBlockSizeOperandValues(), |
| launchOp.getDynamicSharedMemorySize(), operands, |
| asyncToken ? asyncToken.getType() : nullptr, |
| launchOp.getAsyncDependencies(), clusterSize); |
| launchOp.replaceAllUsesWith(launchFunc); |
| launchOp.erase(); |
| } |
| |
| namespace { |
| /// Pass that moves ops which are likely an index computation into gpu.launch |
| /// body. |
| class GpuLaunchSinkIndexComputationsPass |
| : public impl::GpuLaunchSinkIndexComputationsBase< |
| GpuLaunchSinkIndexComputationsPass> { |
| public: |
| void runOnOperation() override { |
| Operation *op = getOperation(); |
| if (op->walk([](gpu::LaunchOp launch) { |
| // Pull in instructions that can be sunk |
| if (failed(sinkOperationsIntoLaunchOp(launch, |
| isLikelyAnIndexComputation))) |
| return WalkResult::interrupt(); |
| |
| return WalkResult::advance(); |
| }).wasInterrupted()) |
| signalPassFailure(); |
| } |
| }; |
| |
| /// Pass that moves the kernel of each LaunchOp into its separate nested module. |
| /// |
| /// This pass moves the kernel code of each LaunchOp into a function created |
| /// inside a nested module. It also creates an external function of the same |
| /// name in the parent module. |
| /// |
| /// The gpu.modules are intended to be compiled to a cubin blob independently in |
| /// a separate pass. The external functions can then be annotated with the |
| /// symbol of the cubin accessor function. |
| class GpuKernelOutliningPass |
| : public impl::GpuKernelOutliningBase<GpuKernelOutliningPass> { |
| public: |
| GpuKernelOutliningPass(StringRef dlStr) { |
| if (!dlStr.empty() && !dataLayoutStr.hasValue()) |
| dataLayoutStr = dlStr.str(); |
| } |
| |
| GpuKernelOutliningPass(const GpuKernelOutliningPass &other) |
| : GpuKernelOutliningBase(other), dataLayoutSpec(other.dataLayoutSpec) { |
| dataLayoutStr = other.dataLayoutStr.getValue(); |
| } |
| |
| LogicalResult initialize(MLIRContext *context) override { |
| // Initialize the data layout specification from the data layout string. |
| if (!dataLayoutStr.empty()) { |
| Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context); |
| if (!resultAttr) |
| return failure(); |
| |
| dataLayoutSpec = dyn_cast<DataLayoutSpecInterface>(resultAttr); |
| if (!dataLayoutSpec) |
| return failure(); |
| } |
| |
| return success(); |
| } |
| |
| void runOnOperation() override { |
| SymbolTable symbolTable(getOperation()); |
| bool modified = false; |
| for (auto func : getOperation().getOps<SymbolOpInterface>()) { |
| // Insert just after the function. |
| Block::iterator insertPt(func->getNextNode()); |
| auto funcWalkResult = func.walk([&](gpu::LaunchOp op) { |
| SetVector<Value> operands; |
| std::string kernelFnName = |
| Twine(op->getParentOfType<SymbolOpInterface>().getName(), "_kernel") |
| .str(); |
| |
| gpu::GPUFuncOp outlinedFunc = |
| outlineKernelFuncImpl(op, kernelFnName, operands); |
| |
| // Create nested module and insert outlinedFunc. The module will |
| // originally get the same name as the function, but may be renamed on |
| // insertion into the parent module. |
| auto kernelModule = createKernelModule(outlinedFunc, symbolTable); |
| symbolTable.insert(kernelModule, insertPt); |
| |
| // Potentially changes signature, pulling in constants. |
| convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef()); |
| modified = true; |
| return WalkResult::advance(); |
| }); |
| if (funcWalkResult.wasInterrupted()) |
| return signalPassFailure(); |
| } |
| |
| // If any new module was inserted in this module, annotate this module as |
| // a container module. |
| if (modified) |
| getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(), |
| UnitAttr::get(&getContext())); |
| } |
| |
| private: |
| /// Returns a gpu.module containing kernelFunc and all callees (recursive). |
| gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc, |
| const SymbolTable &parentSymbolTable) { |
| // TODO: This code cannot use an OpBuilder because it must be inserted into |
| // a SymbolTable by the caller. SymbolTable needs to be refactored to |
| // prevent manual building of Ops with symbols in code using SymbolTables |
| // and then this needs to use the OpBuilder. |
| auto *context = getOperation().getContext(); |
| OpBuilder builder(context); |
| auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(), |
| kernelFunc.getName()); |
| |
| // If a valid data layout spec was provided, attach it to the kernel module. |
| // Otherwise, the default data layout will be used. |
| if (dataLayoutSpec) |
| kernelModule->setAttr(DLTIDialect::kDataLayoutAttrName, dataLayoutSpec); |
| |
| SymbolTable symbolTable(kernelModule); |
| symbolTable.insert(kernelFunc); |
| |
| SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc}; |
| while (!symbolDefWorklist.empty()) { |
| if (std::optional<SymbolTable::UseRange> symbolUses = |
| SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) { |
| for (SymbolTable::SymbolUse symbolUse : *symbolUses) { |
| StringRef symbolName = |
| cast<FlatSymbolRefAttr>(symbolUse.getSymbolRef()).getValue(); |
| if (symbolTable.lookup(symbolName)) |
| continue; |
| |
| Operation *symbolDefClone = |
| parentSymbolTable.lookup(symbolName)->clone(); |
| symbolDefWorklist.push_back(symbolDefClone); |
| symbolTable.insert(symbolDefClone); |
| } |
| } |
| } |
| |
| return kernelModule; |
| } |
| |
| Option<std::string> dataLayoutStr{ |
| *this, "data-layout-str", |
| llvm::cl::desc("String containing the data layout specification to be " |
| "attached to the GPU kernel module")}; |
| |
| DataLayoutSpecInterface dataLayoutSpec; |
| }; |
| |
| } // namespace |
| |
| std::unique_ptr<Pass> mlir::createGpuLauchSinkIndexComputationsPass() { |
| return std::make_unique<GpuLaunchSinkIndexComputationsPass>(); |
| } |
| |
| std::unique_ptr<OperationPass<ModuleOp>> |
| mlir::createGpuKernelOutliningPass(StringRef dataLayoutStr) { |
| return std::make_unique<GpuKernelOutliningPass>(dataLayoutStr); |
| } |