| //===- LowerGpuOpsToNVVMOps.cpp - MLIR GPU to NVVM lowering passes --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a pass to generate NVVMIR operations for higher-level |
| // GPU operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h" |
| |
| #include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h" |
| #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h" |
| #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h" |
| #include "mlir/Conversion/GPUCommon/GPUCommonPass.h" |
| #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" |
| #include "mlir/Conversion/LLVMCommon/LoweringOptions.h" |
| #include "mlir/Conversion/LLVMCommon/TypeConverter.h" |
| #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" |
| #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" |
| #include "mlir/Dialect/ControlFlow/IR/ControlFlow.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| #include "mlir/Dialect/GPU/Transforms/Passes.h" |
| #include "mlir/Dialect/LLVMIR/NVVMDialect.h" |
| #include "mlir/Dialect/Math/IR/Math.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| |
| #include "../GPUCommon/GPUOpsLowering.h" |
| #include "../GPUCommon/IndexIntrinsicsOpLowering.h" |
| #include "../GPUCommon/OpToFuncCallLowering.h" |
| #include <optional> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_CONVERTGPUOPSTONVVMOPS |
| #include "mlir/Conversion/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| |
| namespace { |
| |
| /// Convert gpu dialect shfl mode enum to the equivalent nvvm one. |
| static NVVM::ShflKind convertShflKind(gpu::ShuffleMode mode) { |
| switch (mode) { |
| case gpu::ShuffleMode::XOR: |
| return NVVM::ShflKind::bfly; |
| case gpu::ShuffleMode::UP: |
| return NVVM::ShflKind::up; |
| case gpu::ShuffleMode::DOWN: |
| return NVVM::ShflKind::down; |
| case gpu::ShuffleMode::IDX: |
| return NVVM::ShflKind::idx; |
| } |
| llvm_unreachable("unknown shuffle mode"); |
| } |
| |
| static std::optional<NVVM::ReduxKind> |
| convertReduxKind(gpu::AllReduceOperation mode) { |
| switch (mode) { |
| case gpu::AllReduceOperation::ADD: |
| return NVVM::ReduxKind::ADD; |
| case gpu::AllReduceOperation::MUL: |
| return std::nullopt; |
| case gpu::AllReduceOperation::MINSI: |
| return NVVM::ReduxKind::MIN; |
| case gpu::AllReduceOperation::MINUI: |
| return std::nullopt; |
| case gpu::AllReduceOperation::MINNUMF: |
| return NVVM::ReduxKind::MIN; |
| case gpu::AllReduceOperation::MAXSI: |
| return NVVM::ReduxKind::MAX; |
| case gpu::AllReduceOperation::MAXUI: |
| return std::nullopt; |
| case gpu::AllReduceOperation::MAXNUMF: |
| return NVVM::ReduxKind::MAX; |
| case gpu::AllReduceOperation::AND: |
| return NVVM::ReduxKind::AND; |
| case gpu::AllReduceOperation::OR: |
| return NVVM::ReduxKind::OR; |
| case gpu::AllReduceOperation::XOR: |
| return NVVM::ReduxKind::XOR; |
| case gpu::AllReduceOperation::MINIMUMF: |
| case gpu::AllReduceOperation::MAXIMUMF: |
| return std::nullopt; |
| } |
| return std::nullopt; |
| } |
| |
| /// This pass lowers gpu.subgroup_reduce op into to the nvvm.redux op. The op |
| /// must be run by the entire subgroup, otherwise it is undefined behaviour. |
| struct GPUSubgroupReduceOpLowering |
| : public ConvertOpToLLVMPattern<gpu::SubgroupReduceOp> { |
| using ConvertOpToLLVMPattern<gpu::SubgroupReduceOp>::ConvertOpToLLVMPattern; |
| LogicalResult |
| |
| matchAndRewrite(gpu::SubgroupReduceOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| if (!op.getUniform()) |
| return rewriter.notifyMatchFailure( |
| op, "cannot be lowered to redux as the op must be run " |
| "uniformly (entire subgroup)."); |
| if (!op.getValue().getType().isInteger(32)) |
| return rewriter.notifyMatchFailure(op, "unsupported data type"); |
| |
| std::optional<NVVM::ReduxKind> mode = convertReduxKind(op.getOp()); |
| if (!mode.has_value()) |
| return rewriter.notifyMatchFailure( |
| op, "unsupported reduction mode for redux"); |
| |
| Location loc = op->getLoc(); |
| auto int32Type = IntegerType::get(rewriter.getContext(), 32); |
| Value offset = rewriter.create<LLVM::ConstantOp>(loc, int32Type, -1); |
| |
| auto reduxOp = rewriter.create<NVVM::ReduxOp>(loc, int32Type, op.getValue(), |
| mode.value(), offset); |
| |
| rewriter.replaceOp(op, reduxOp->getResult(0)); |
| return success(); |
| } |
| }; |
| |
| struct GPUShuffleOpLowering : public ConvertOpToLLVMPattern<gpu::ShuffleOp> { |
| using ConvertOpToLLVMPattern<gpu::ShuffleOp>::ConvertOpToLLVMPattern; |
| |
| /// Lowers a shuffle to the corresponding NVVM op. |
| /// |
| /// Convert the `width` argument into an activeMask (a bitmask which specifies |
| /// which threads participate in the shuffle) and a maskAndClamp (specifying |
| /// the highest lane which participates in the shuffle). |
| /// |
| /// %one = llvm.constant(1 : i32) : i32 |
| /// %minus_one = llvm.constant(-1 : i32) : i32 |
| /// %thirty_two = llvm.constant(32 : i32) : i32 |
| /// %num_lanes = llvm.sub %thirty_two, %width : i32 |
| /// %active_mask = llvm.lshr %minus_one, %num_lanes : i32 |
| /// %mask_and_clamp = llvm.sub %width, %one : i32 |
| /// %shfl = nvvm.shfl.sync.bfly %active_mask, %value, %offset, |
| /// %mask_and_clamp : !llvm<"{ float, i1 }"> |
| /// %shfl_value = llvm.extractvalue %shfl[0] : |
| /// !llvm<"{ float, i1 }"> |
| /// %shfl_pred = llvm.extractvalue %shfl[1] : |
| /// !llvm<"{ float, i1 }"> |
| LogicalResult |
| matchAndRewrite(gpu::ShuffleOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| Location loc = op->getLoc(); |
| |
| auto valueTy = adaptor.getValue().getType(); |
| auto int32Type = IntegerType::get(rewriter.getContext(), 32); |
| auto predTy = IntegerType::get(rewriter.getContext(), 1); |
| |
| Value one = rewriter.create<LLVM::ConstantOp>(loc, int32Type, 1); |
| Value minusOne = rewriter.create<LLVM::ConstantOp>(loc, int32Type, -1); |
| Value thirtyTwo = rewriter.create<LLVM::ConstantOp>(loc, int32Type, 32); |
| Value numLeadInactiveLane = rewriter.create<LLVM::SubOp>( |
| loc, int32Type, thirtyTwo, adaptor.getWidth()); |
| // Bit mask of active lanes: `(-1) >> (32 - activeWidth)`. |
| Value activeMask = rewriter.create<LLVM::LShrOp>(loc, int32Type, minusOne, |
| numLeadInactiveLane); |
| Value maskAndClamp; |
| if (op.getMode() == gpu::ShuffleMode::UP) { |
| // Clamp lane: `32 - activeWidth` |
| maskAndClamp = numLeadInactiveLane; |
| } else { |
| // Clamp lane: `activeWidth - 1` |
| maskAndClamp = |
| rewriter.create<LLVM::SubOp>(loc, int32Type, adaptor.getWidth(), one); |
| } |
| |
| bool predIsUsed = !op->getResult(1).use_empty(); |
| UnitAttr returnValueAndIsValidAttr = nullptr; |
| Type resultTy = valueTy; |
| if (predIsUsed) { |
| returnValueAndIsValidAttr = rewriter.getUnitAttr(); |
| resultTy = LLVM::LLVMStructType::getLiteral(rewriter.getContext(), |
| {valueTy, predTy}); |
| } |
| Value shfl = rewriter.create<NVVM::ShflOp>( |
| loc, resultTy, activeMask, adaptor.getValue(), adaptor.getOffset(), |
| maskAndClamp, convertShflKind(op.getMode()), returnValueAndIsValidAttr); |
| if (predIsUsed) { |
| Value shflValue = rewriter.create<LLVM::ExtractValueOp>(loc, shfl, 0); |
| Value isActiveSrcLane = |
| rewriter.create<LLVM::ExtractValueOp>(loc, shfl, 1); |
| rewriter.replaceOp(op, {shflValue, isActiveSrcLane}); |
| } else { |
| rewriter.replaceOp(op, {shfl, nullptr}); |
| } |
| return success(); |
| } |
| }; |
| |
| struct GPULaneIdOpToNVVM : ConvertOpToLLVMPattern<gpu::LaneIdOp> { |
| using ConvertOpToLLVMPattern<gpu::LaneIdOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(gpu::LaneIdOp op, gpu::LaneIdOp::Adaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| MLIRContext *context = rewriter.getContext(); |
| Value newOp = rewriter.create<NVVM::LaneIdOp>(loc, rewriter.getI32Type()); |
| // Truncate or extend the result depending on the index bitwidth specified |
| // by the LLVMTypeConverter options. |
| const unsigned indexBitwidth = getTypeConverter()->getIndexTypeBitwidth(); |
| if (indexBitwidth > 32) { |
| newOp = rewriter.create<LLVM::SExtOp>( |
| loc, IntegerType::get(context, indexBitwidth), newOp); |
| } else if (indexBitwidth < 32) { |
| newOp = rewriter.create<LLVM::TruncOp>( |
| loc, IntegerType::get(context, indexBitwidth), newOp); |
| } |
| rewriter.replaceOp(op, {newOp}); |
| return success(); |
| } |
| }; |
| |
| /// Import the GPU Ops to NVVM Patterns. |
| #include "GPUToNVVM.cpp.inc" |
| |
| /// A pass that replaces all occurrences of GPU device operations with their |
| /// corresponding NVVM equivalent. |
| /// |
| /// This pass only handles device code and is not meant to be run on GPU host |
| /// code. |
| struct LowerGpuOpsToNVVMOpsPass |
| : public impl::ConvertGpuOpsToNVVMOpsBase<LowerGpuOpsToNVVMOpsPass> { |
| using Base::Base; |
| |
| void runOnOperation() override { |
| gpu::GPUModuleOp m = getOperation(); |
| |
| // Request C wrapper emission. |
| for (auto func : m.getOps<func::FuncOp>()) { |
| func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(), |
| UnitAttr::get(&getContext())); |
| } |
| |
| // Customize the bitwidth used for the device side index computations. |
| LowerToLLVMOptions options( |
| m.getContext(), |
| DataLayout(cast<DataLayoutOpInterface>(m.getOperation()))); |
| if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) |
| options.overrideIndexBitwidth(indexBitwidth); |
| options.useBarePtrCallConv = useBarePtrCallConv; |
| |
| // Apply in-dialect lowering. In-dialect lowering will replace |
| // ops which need to be lowered further, which is not supported by a |
| // single conversion pass. |
| { |
| RewritePatternSet patterns(m.getContext()); |
| populateGpuRewritePatterns(patterns); |
| if (failed(applyPatternsAndFoldGreedily(m, std::move(patterns)))) |
| return signalPassFailure(); |
| } |
| |
| LLVMTypeConverter converter(m.getContext(), options); |
| // NVVM uses alloca in the default address space to represent private |
| // memory allocations, so drop private annotations. NVVM uses address |
| // space 3 for shared memory. NVVM uses the default address space to |
| // represent global memory. |
| populateGpuMemorySpaceAttributeConversions( |
| converter, [](gpu::AddressSpace space) -> unsigned { |
| switch (space) { |
| case gpu::AddressSpace::Global: |
| return static_cast<unsigned>( |
| NVVM::NVVMMemorySpace::kGlobalMemorySpace); |
| case gpu::AddressSpace::Workgroup: |
| return static_cast<unsigned>( |
| NVVM::NVVMMemorySpace::kSharedMemorySpace); |
| case gpu::AddressSpace::Private: |
| return 0; |
| } |
| llvm_unreachable("unknown address space enum value"); |
| return 0; |
| }); |
| // Lowering for MMAMatrixType. |
| converter.addConversion([&](gpu::MMAMatrixType type) -> Type { |
| return convertMMAToLLVMType(type); |
| }); |
| RewritePatternSet llvmPatterns(m.getContext()); |
| |
| arith::populateArithToLLVMConversionPatterns(converter, llvmPatterns); |
| cf::populateControlFlowToLLVMConversionPatterns(converter, llvmPatterns); |
| populateFuncToLLVMConversionPatterns(converter, llvmPatterns); |
| populateFinalizeMemRefToLLVMConversionPatterns(converter, llvmPatterns); |
| populateGpuToNVVMConversionPatterns(converter, llvmPatterns); |
| populateGpuWMMAToNVVMConversionPatterns(converter, llvmPatterns); |
| populateVectorToLLVMConversionPatterns(converter, llvmPatterns); |
| if (this->hasRedux) |
| populateGpuSubgroupReduceOpLoweringPattern(converter, llvmPatterns); |
| LLVMConversionTarget target(getContext()); |
| configureGpuToNVVMConversionLegality(target); |
| if (failed(applyPartialConversion(m, target, std::move(llvmPatterns)))) |
| signalPassFailure(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::configureGpuToNVVMConversionLegality(ConversionTarget &target) { |
| target.addIllegalOp<func::FuncOp>(); |
| target.addLegalDialect<::mlir::LLVM::LLVMDialect>(); |
| target.addLegalDialect<::mlir::NVVM::NVVMDialect>(); |
| target.addIllegalDialect<gpu::GPUDialect>(); |
| target.addIllegalOp<LLVM::CosOp, LLVM::ExpOp, LLVM::Exp2Op, LLVM::FAbsOp, |
| LLVM::FCeilOp, LLVM::FFloorOp, LLVM::FRemOp, LLVM::LogOp, |
| LLVM::Log10Op, LLVM::Log2Op, LLVM::PowOp, LLVM::SinOp, |
| LLVM::SqrtOp>(); |
| |
| // TODO: Remove once we support replacing non-root ops. |
| target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>(); |
| } |
| |
| template <typename OpTy> |
| static void populateOpPatterns(LLVMTypeConverter &converter, |
| RewritePatternSet &patterns, StringRef f32Func, |
| StringRef f64Func) { |
| patterns.add<ScalarizeVectorOpLowering<OpTy>>(converter); |
| patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func); |
| } |
| |
| void mlir::populateGpuSubgroupReduceOpLoweringPattern( |
| LLVMTypeConverter &converter, RewritePatternSet &patterns) { |
| patterns.add<GPUSubgroupReduceOpLowering>(converter); |
| } |
| |
| void mlir::populateGpuToNVVMConversionPatterns(LLVMTypeConverter &converter, |
| RewritePatternSet &patterns) { |
| populateWithGenerated(patterns); |
| patterns.add<GPUPrintfOpToVPrintfLowering>(converter); |
| patterns.add< |
| GPUIndexIntrinsicOpLowering<gpu::ThreadIdOp, NVVM::ThreadIdXOp, |
| NVVM::ThreadIdYOp, NVVM::ThreadIdZOp>, |
| GPUIndexIntrinsicOpLowering<gpu::BlockDimOp, NVVM::BlockDimXOp, |
| NVVM::BlockDimYOp, NVVM::BlockDimZOp>, |
| GPUIndexIntrinsicOpLowering<gpu::ClusterIdOp, NVVM::ClusterIdXOp, |
| NVVM::ClusterIdYOp, NVVM::ClusterIdZOp>, |
| GPUIndexIntrinsicOpLowering<gpu::ClusterDimOp, NVVM::ClusterDimXOp, |
| NVVM::ClusterDimYOp, NVVM::ClusterDimZOp>, |
| GPUIndexIntrinsicOpLowering<gpu::BlockIdOp, NVVM::BlockIdXOp, |
| NVVM::BlockIdYOp, NVVM::BlockIdZOp>, |
| GPUIndexIntrinsicOpLowering<gpu::GridDimOp, NVVM::GridDimXOp, |
| NVVM::GridDimYOp, NVVM::GridDimZOp>, |
| GPULaneIdOpToNVVM, GPUShuffleOpLowering, GPUReturnOpLowering>(converter); |
| |
| patterns.add<GPUDynamicSharedMemoryOpLowering>( |
| converter, NVVM::kSharedMemoryAlignmentBit); |
| |
| // Explicitly drop memory space when lowering private memory |
| // attributions since NVVM models it as `alloca`s in the default |
| // memory space and does not support `alloca`s with addrspace(5). |
| patterns.add<GPUFuncOpLowering>( |
| converter, /*allocaAddrSpace=*/0, |
| /*workgroupAddrSpace=*/ |
| static_cast<unsigned>(NVVM::NVVMMemorySpace::kSharedMemorySpace), |
| StringAttr::get(&converter.getContext(), |
| NVVM::NVVMDialect::getKernelFuncAttrName()), |
| StringAttr::get(&converter.getContext(), |
| NVVM::NVVMDialect::getMaxntidAttrName())); |
| |
| populateOpPatterns<math::AbsFOp>(converter, patterns, "__nv_fabsf", |
| "__nv_fabs"); |
| populateOpPatterns<math::AtanOp>(converter, patterns, "__nv_atanf", |
| "__nv_atan"); |
| populateOpPatterns<math::Atan2Op>(converter, patterns, "__nv_atan2f", |
| "__nv_atan2"); |
| populateOpPatterns<math::CbrtOp>(converter, patterns, "__nv_cbrtf", |
| "__nv_cbrt"); |
| populateOpPatterns<math::CeilOp>(converter, patterns, "__nv_ceilf", |
| "__nv_ceil"); |
| populateOpPatterns<math::CosOp>(converter, patterns, "__nv_cosf", "__nv_cos"); |
| populateOpPatterns<math::ErfOp>(converter, patterns, "__nv_erff", "__nv_erf"); |
| populateOpPatterns<math::ExpOp>(converter, patterns, "__nv_expf", "__nv_exp"); |
| populateOpPatterns<math::Exp2Op>(converter, patterns, "__nv_exp2f", |
| "__nv_exp2"); |
| populateOpPatterns<math::ExpM1Op>(converter, patterns, "__nv_expm1f", |
| "__nv_expm1"); |
| populateOpPatterns<math::FloorOp>(converter, patterns, "__nv_floorf", |
| "__nv_floor"); |
| populateOpPatterns<arith::RemFOp>(converter, patterns, "__nv_fmodf", |
| "__nv_fmod"); |
| populateOpPatterns<math::LogOp>(converter, patterns, "__nv_logf", "__nv_log"); |
| populateOpPatterns<math::Log1pOp>(converter, patterns, "__nv_log1pf", |
| "__nv_log1p"); |
| populateOpPatterns<math::Log10Op>(converter, patterns, "__nv_log10f", |
| "__nv_log10"); |
| populateOpPatterns<math::Log2Op>(converter, patterns, "__nv_log2f", |
| "__nv_log2"); |
| populateOpPatterns<math::PowFOp>(converter, patterns, "__nv_powf", |
| "__nv_pow"); |
| populateOpPatterns<math::RsqrtOp>(converter, patterns, "__nv_rsqrtf", |
| "__nv_rsqrt"); |
| populateOpPatterns<math::SinOp>(converter, patterns, "__nv_sinf", "__nv_sin"); |
| populateOpPatterns<math::SqrtOp>(converter, patterns, "__nv_sqrtf", |
| "__nv_sqrt"); |
| populateOpPatterns<math::TanhOp>(converter, patterns, "__nv_tanhf", |
| "__nv_tanh"); |
| populateOpPatterns<math::TanOp>(converter, patterns, "__nv_tanf", "__nv_tan"); |
| } |