blob: a542b117b423cce71d1b71508abc5a31bdb0cf81 [file] [log] [blame]
//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//
#include "mlir/Parser.h"
#include "Lexer.h"
#include "mlir/Analysis/Verifier.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
using namespace mlir;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;
namespace {
class Parser;
//===----------------------------------------------------------------------===//
// SymbolState
//===----------------------------------------------------------------------===//
/// This class contains record of any parsed top-level symbols.
struct SymbolState {
// A map from attribute alias identifier to Attribute.
llvm::StringMap<Attribute> attributeAliasDefinitions;
// A map from type alias identifier to Type.
llvm::StringMap<Type> typeAliasDefinitions;
/// A set of locations into the main parser memory buffer for each of the
/// active nested parsers. Given that some nested parsers, i.e. custom dialect
/// parsers, operate on a temporary memory buffer, this provides an anchor
/// point for emitting diagnostics.
SmallVector<llvm::SMLoc, 1> nestedParserLocs;
/// The top-level lexer that contains the original memory buffer provided by
/// the user. This is used by nested parsers to get a properly encoded source
/// location.
Lexer *topLevelLexer = nullptr;
};
//===----------------------------------------------------------------------===//
// ParserState
//===----------------------------------------------------------------------===//
/// This class refers to all of the state maintained globally by the parser,
/// such as the current lexer position etc.
struct ParserState {
ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx,
SymbolState &symbols)
: context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()),
symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) {
// Set the top level lexer for the symbol state if one doesn't exist.
if (!symbols.topLevelLexer)
symbols.topLevelLexer = &lex;
}
~ParserState() {
// Reset the top level lexer if it refers the lexer in our state.
if (symbols.topLevelLexer == &lex)
symbols.topLevelLexer = nullptr;
}
ParserState(const ParserState &) = delete;
void operator=(const ParserState &) = delete;
/// The context we're parsing into.
MLIRContext *const context;
/// The lexer for the source file we're parsing.
Lexer lex;
/// This is the next token that hasn't been consumed yet.
Token curToken;
/// The current state for symbol parsing.
SymbolState &symbols;
/// The depth of this parser in the nested parsing stack.
size_t parserDepth;
};
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// This class implement support for parsing global entities like types and
/// shared entities like SSA names. It is intended to be subclassed by
/// specialized subparsers that include state, e.g. when a local symbol table.
class Parser {
public:
Builder builder;
Parser(ParserState &state) : builder(state.context), state(state) {}
// Helper methods to get stuff from the parser-global state.
ParserState &getState() const { return state; }
MLIRContext *getContext() const { return state.context; }
const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }
/// Parse a comma-separated list of elements up until the specified end token.
ParseResult
parseCommaSeparatedListUntil(Token::Kind rightToken,
const std::function<ParseResult()> &parseElement,
bool allowEmptyList = true);
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult
parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);
ParseResult parsePrettyDialectSymbolName(StringRef &prettyName);
// We have two forms of parsing methods - those that return a non-null
// pointer on success, and those that return a ParseResult to indicate whether
// they returned a failure. The second class fills in by-reference arguments
// as the results of their action.
//===--------------------------------------------------------------------===//
// Error Handling
//===--------------------------------------------------------------------===//
/// Emit an error and return failure.
InFlightDiagnostic emitError(const Twine &message = {}) {
return emitError(state.curToken.getLoc(), message);
}
InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {});
/// Encode the specified source location information into an attribute for
/// attachment to the IR.
Location getEncodedSourceLocation(llvm::SMLoc loc) {
// If there are no active nested parsers, we can get the encoded source
// location directly.
if (state.parserDepth == 0)
return state.lex.getEncodedSourceLocation(loc);
// Otherwise, we need to re-encode it to point to the top level buffer.
return state.symbols.topLevelLexer->getEncodedSourceLocation(
remapLocationToTopLevelBuffer(loc));
}
/// Remaps the given SMLoc to the top level lexer of the parser. This is used
/// to adjust locations of potentially nested parsers to ensure that they can
/// be emitted properly as diagnostics.
llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) {
// If there are no active nested parsers, we can return location directly.
SymbolState &symbols = state.symbols;
if (state.parserDepth == 0)
return loc;
assert(symbols.topLevelLexer && "expected valid top-level lexer");
// Otherwise, we need to remap the location to the main parser. This is
// simply offseting the location onto the location of the last nested
// parser.
size_t offset = loc.getPointer() - state.lex.getBufferBegin();
auto *rawLoc =
symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset;
return llvm::SMLoc::getFromPointer(rawLoc);
}
//===--------------------------------------------------------------------===//
// Token Parsing
//===--------------------------------------------------------------------===//
/// Return the current token the parser is inspecting.
const Token &getToken() const { return state.curToken; }
StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
/// If the current token has the specified kind, consume it and return true.
/// If not, return false.
bool consumeIf(Token::Kind kind) {
if (state.curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(state.curToken.isNot(Token::eof, Token::error) &&
"shouldn't advance past EOF or errors");
state.curToken = state.lex.lexToken();
}
/// Advance the current lexer onto the next token, asserting what the expected
/// current token is. This is preferred to the above method because it leads
/// to more self-documenting code with better checking.
void consumeToken(Token::Kind kind) {
assert(state.curToken.is(kind) && "consumed an unexpected token");
consumeToken();
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements);
ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements);
/// Parse an arbitrary type.
Type parseType();
/// Parse a complex type.
Type parseComplexType();
/// Parse an extended type.
Type parseExtendedType();
/// Parse a function type.
Type parseFunctionType();
/// Parse a memref type.
Type parseMemRefType();
/// Parse a non function type.
Type parseNonFunctionType();
/// Parse a tensor type.
Type parseTensorType();
/// Parse a tuple type.
Type parseTupleType();
/// Parse a vector type.
VectorType parseVectorType();
ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
bool allowDynamic = true);
ParseResult parseXInDimensionList();
/// Parse strided layout specification.
ParseResult parseStridedLayout(int64_t &offset,
SmallVectorImpl<int64_t> &strides);
// Parse a brace-delimiter list of comma-separated integers with `?` as an
// unknown marker.
ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions);
//===--------------------------------------------------------------------===//
// Attribute Parsing
//===--------------------------------------------------------------------===//
/// Parse an arbitrary attribute with an optional type.
Attribute parseAttribute(Type type = {});
/// Parse an attribute dictionary.
ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);
/// Parse an extended attribute.
Attribute parseExtendedAttr(Type type);
/// Parse a float attribute.
Attribute parseFloatAttr(Type type, bool isNegative);
/// Parse a decimal or a hexadecimal literal, which can be either an integer
/// or a float attribute.
Attribute parseDecOrHexAttr(Type type, bool isNegative);
/// Parse an opaque elements attribute.
Attribute parseOpaqueElementsAttr(Type attrType);
/// Parse a dense elements attribute.
Attribute parseDenseElementsAttr(Type attrType);
ShapedType parseElementsLiteralType(Type type);
/// Parse a sparse elements attribute.
Attribute parseSparseElementsAttr(Type attrType);
//===--------------------------------------------------------------------===//
// Location Parsing
//===--------------------------------------------------------------------===//
/// Parse an inline location.
ParseResult parseLocation(LocationAttr &loc);
/// Parse a raw location instance.
ParseResult parseLocationInstance(LocationAttr &loc);
/// Parse a callsite location instance.
ParseResult parseCallSiteLocation(LocationAttr &loc);
/// Parse a fused location instance.
ParseResult parseFusedLocation(LocationAttr &loc);
/// Parse a name or FileLineCol location instance.
ParseResult parseNameOrFileLineColLocation(LocationAttr &loc);
/// Parse an optional trailing location.
///
/// trailing-location ::= (`loc` `(` location `)`)?
///
ParseResult parseOptionalTrailingLocation(Location &loc) {
// If there is a 'loc' we parse a trailing location.
if (!getToken().is(Token::kw_loc))
return success();
// Parse the location.
LocationAttr directLoc;
if (parseLocation(directLoc))
return failure();
loc = directLoc;
return success();
}
//===--------------------------------------------------------------------===//
// Affine Parsing
//===--------------------------------------------------------------------===//
/// Parse a reference to either an affine map, or an integer set.
ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map,
IntegerSet &set);
ParseResult parseAffineMapReference(AffineMap &map);
ParseResult parseIntegerSetReference(IntegerSet &set);
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult
parseAffineMapOfSSAIds(AffineMap &map,
function_ref<ParseResult(bool)> parseElement,
OpAsmParser::Delimiter delimiter);
private:
/// The Parser is subclassed and reinstantiated. Do not add additional
/// non-trivial state here, add it to the ParserState class.
ParserState &state;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult Parser::parseCommaSeparatedList(
const std::function<ParseResult()> &parseElement) {
// Non-empty case starts with an element.
if (parseElement())
return failure();
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::comma)) {
if (parseElement())
return failure();
}
return success();
}
/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token. This allows empty lists if allowEmptyList is true.
///
/// abstract-list ::= rightToken // if allowEmptyList == true
/// abstract-list ::= element (',' element)* rightToken
///
ParseResult Parser::parseCommaSeparatedListUntil(
Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (getToken().is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return success();
}
if (parseCommaSeparatedList(parseElement) ||
parseToken(rightToken, "expected ',' or '" +
Token::getTokenSpelling(rightToken) + "'"))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// DialectAsmParser
//===----------------------------------------------------------------------===//
namespace {
/// This class provides the main implementation of the DialectAsmParser that
/// allows for dialects to parse attributes and types. This allows for dialect
/// hooking into the main MLIR parsing logic.
class CustomDialectAsmParser : public DialectAsmParser {
public:
CustomDialectAsmParser(StringRef fullSpec, Parser &parser)
: fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()),
parser(parser) {}
~CustomDialectAsmParser() override {}
/// Emit a diagnostic at the specified location and return failure.
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
return parser.emitError(loc, message);
}
/// Return a builder which provides useful access to MLIRContext, global
/// objects like types and attributes.
Builder &getBuilder() const override { return parser.builder; }
/// Get the location of the next token and store it into the argument. This
/// always succeeds.
llvm::SMLoc getCurrentLocation() override {
return parser.getToken().getLoc();
}
/// Return the location of the original name token.
llvm::SMLoc getNameLoc() const override { return nameLoc; }
/// Re-encode the given source location as an MLIR location and return it.
Location getEncodedSourceLoc(llvm::SMLoc loc) override {
return parser.getEncodedSourceLocation(loc);
}
/// Returns the full specification of the symbol being parsed. This allows
/// for using a separate parser if necessary.
StringRef getFullSymbolSpec() const override { return fullSpec; }
/// Parse a floating point value from the stream.
ParseResult parseFloat(double &result) override {
bool negative = parser.consumeIf(Token::minus);
Token curTok = parser.getToken();
// Check for a floating point value.
if (curTok.is(Token::floatliteral)) {
auto val = curTok.getFloatingPointValue();
if (!val.hasValue())
return emitError(curTok.getLoc(), "floating point value too large");
parser.consumeToken(Token::floatliteral);
result = negative ? -*val : *val;
return success();
}
// TODO(riverriddle) support hex floating point values.
return emitError(getCurrentLocation(), "expected floating point literal");
}
/// Parse an optional integer value from the stream.
OptionalParseResult parseOptionalInteger(uint64_t &result) override {
Token curToken = parser.getToken();
if (curToken.isNot(Token::integer, Token::minus))
return llvm::None;
bool negative = parser.consumeIf(Token::minus);
Token curTok = parser.getToken();
if (parser.parseToken(Token::integer, "expected integer value"))
return failure();
auto val = curTok.getUInt64IntegerValue();
if (!val)
return emitError(curTok.getLoc(), "integer value too large");
result = negative ? -*val : *val;
return success();
}
//===--------------------------------------------------------------------===//
// Token Parsing
//===--------------------------------------------------------------------===//
/// Parse a `->` token.
ParseResult parseArrow() override {
return parser.parseToken(Token::arrow, "expected '->'");
}
/// Parses a `->` if present.
ParseResult parseOptionalArrow() override {
return success(parser.consumeIf(Token::arrow));
}
/// Parse a '{' token.
ParseResult parseLBrace() override {
return parser.parseToken(Token::l_brace, "expected '{'");
}
/// Parse a '{' token if present
ParseResult parseOptionalLBrace() override {
return success(parser.consumeIf(Token::l_brace));
}
/// Parse a `}` token.
ParseResult parseRBrace() override {
return parser.parseToken(Token::r_brace, "expected '}'");
}
/// Parse a `}` token if present
ParseResult parseOptionalRBrace() override {
return success(parser.consumeIf(Token::r_brace));
}
/// Parse a `:` token.
ParseResult parseColon() override {
return parser.parseToken(Token::colon, "expected ':'");
}
/// Parse a `:` token if present.
ParseResult parseOptionalColon() override {
return success(parser.consumeIf(Token::colon));
}
/// Parse a `,` token.
ParseResult parseComma() override {
return parser.parseToken(Token::comma, "expected ','");
}
/// Parse a `,` token if present.
ParseResult parseOptionalComma() override {
return success(parser.consumeIf(Token::comma));
}
/// Parses a `...` if present.
ParseResult parseOptionalEllipsis() override {
return success(parser.consumeIf(Token::ellipsis));
}
/// Parse a `=` token.
ParseResult parseEqual() override {
return parser.parseToken(Token::equal, "expected '='");
}
/// Parse a '<' token.
ParseResult parseLess() override {
return parser.parseToken(Token::less, "expected '<'");
}
/// Parse a `<` token if present.
ParseResult parseOptionalLess() override {
return success(parser.consumeIf(Token::less));
}
/// Parse a '>' token.
ParseResult parseGreater() override {
return parser.parseToken(Token::greater, "expected '>'");
}
/// Parse a `>` token if present.
ParseResult parseOptionalGreater() override {
return success(parser.consumeIf(Token::greater));
}
/// Parse a `(` token.
ParseResult parseLParen() override {
return parser.parseToken(Token::l_paren, "expected '('");
}
/// Parses a '(' if present.
ParseResult parseOptionalLParen() override {
return success(parser.consumeIf(Token::l_paren));
}
/// Parse a `)` token.
ParseResult parseRParen() override {
return parser.parseToken(Token::r_paren, "expected ')'");
}
/// Parses a ')' if present.
ParseResult parseOptionalRParen() override {
return success(parser.consumeIf(Token::r_paren));
}
/// Parse a `[` token.
ParseResult parseLSquare() override {
return parser.parseToken(Token::l_square, "expected '['");
}
/// Parses a '[' if present.
ParseResult parseOptionalLSquare() override {
return success(parser.consumeIf(Token::l_square));
}
/// Parse a `]` token.
ParseResult parseRSquare() override {
return parser.parseToken(Token::r_square, "expected ']'");
}
/// Parses a ']' if present.
ParseResult parseOptionalRSquare() override {
return success(parser.consumeIf(Token::r_square));
}
/// Parses a '?' if present.
ParseResult parseOptionalQuestion() override {
return success(parser.consumeIf(Token::question));
}
/// Parses a '*' if present.
ParseResult parseOptionalStar() override {
return success(parser.consumeIf(Token::star));
}
/// Returns if the current token corresponds to a keyword.
bool isCurrentTokenAKeyword() const {
return parser.getToken().is(Token::bare_identifier) ||
parser.getToken().isKeyword();
}
/// Parse the given keyword if present.
ParseResult parseOptionalKeyword(StringRef keyword) override {
// Check that the current token has the same spelling.
if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
return failure();
parser.consumeToken();
return success();
}
/// Parse a keyword, if present, into 'keyword'.
ParseResult parseOptionalKeyword(StringRef *keyword) override {
// Check that the current token is a keyword.
if (!isCurrentTokenAKeyword())
return failure();
*keyword = parser.getTokenSpelling();
parser.consumeToken();
return success();
}
//===--------------------------------------------------------------------===//
// Attribute Parsing
//===--------------------------------------------------------------------===//
/// Parse an arbitrary attribute and return it in result.
ParseResult parseAttribute(Attribute &result, Type type) override {
result = parser.parseAttribute(type);
return success(static_cast<bool>(result));
}
/// Parse an affine map instance into 'map'.
ParseResult parseAffineMap(AffineMap &map) override {
return parser.parseAffineMapReference(map);
}
/// Parse an integer set instance into 'set'.
ParseResult printIntegerSet(IntegerSet &set) override {
return parser.parseIntegerSetReference(set);
}
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
ParseResult parseType(Type &result) override {
result = parser.parseType();
return success(static_cast<bool>(result));
}
ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions,
bool allowDynamic) override {
return parser.parseDimensionListRanked(dimensions, allowDynamic);
}
private:
/// The full symbol specification.
StringRef fullSpec;
/// The source location of the dialect symbol.
SMLoc nameLoc;
/// The main parser.
Parser &parser;
};
} // namespace
/// Parse the body of a pretty dialect symbol, which starts and ends with <>'s,
/// and may be recursive. Return with the 'prettyName' StringRef encompassing
/// the entire pretty name.
///
/// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
/// pretty-dialect-sym-contents ::= pretty-dialect-sym-body
/// | '(' pretty-dialect-sym-contents+ ')'
/// | '[' pretty-dialect-sym-contents+ ']'
/// | '{' pretty-dialect-sym-contents+ '}'
/// | '[^[<({>\])}\0]+'
///
ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) {
// Pretty symbol names are a relatively unstructured format that contains a
// series of properly nested punctuation, with anything else in the middle.
// Scan ahead to find it and consume it if successful, otherwise emit an
// error.
auto *curPtr = getTokenSpelling().data();
SmallVector<char, 8> nestedPunctuation;
// Scan over the nested punctuation, bailing out on error and consuming until
// we find the end. We know that we're currently looking at the '<', so we
// can go until we find the matching '>' character.
assert(*curPtr == '<');
do {
char c = *curPtr++;
switch (c) {
case '\0':
// This also handles the EOF case.
return emitError("unexpected nul or EOF in pretty dialect name");
case '<':
case '[':
case '(':
case '{':
nestedPunctuation.push_back(c);
continue;
case '-':
// The sequence `->` is treated as special token.
if (*curPtr == '>')
++curPtr;
continue;
case '>':
if (nestedPunctuation.pop_back_val() != '<')
return emitError("unbalanced '>' character in pretty dialect name");
break;
case ']':
if (nestedPunctuation.pop_back_val() != '[')
return emitError("unbalanced ']' character in pretty dialect name");
break;
case ')':
if (nestedPunctuation.pop_back_val() != '(')
return emitError("unbalanced ')' character in pretty dialect name");
break;
case '}':
if (nestedPunctuation.pop_back_val() != '{')
return emitError("unbalanced '}' character in pretty dialect name");
break;
default:
continue;
}
} while (!nestedPunctuation.empty());
// Ok, we succeeded, remember where we stopped, reset the lexer to know it is
// consuming all this stuff, and return.
state.lex.resetPointer(curPtr);
unsigned length = curPtr - prettyName.begin();
prettyName = StringRef(prettyName.begin(), length);
consumeToken();
return success();
}
/// Parse an extended dialect symbol.
template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok,
SymbolAliasMap &aliases,
CreateFn &&createSymbol) {
// Parse the dialect namespace.
StringRef identifier = p.getTokenSpelling().drop_front();
auto loc = p.getToken().getLoc();
p.consumeToken(identifierTok);
// If there is no '<' token following this, and if the typename contains no
// dot, then we are parsing a symbol alias.
if (p.getToken().isNot(Token::less) && !identifier.contains('.')) {
// Check for an alias for this type.
auto aliasIt = aliases.find(identifier);
if (aliasIt == aliases.end())
return (p.emitError("undefined symbol alias id '" + identifier + "'"),
nullptr);
return aliasIt->second;
}
// Otherwise, we are parsing a dialect-specific symbol. If the name contains
// a dot, then this is the "pretty" form. If not, it is the verbose form that
// looks like <"...">.
std::string symbolData;
auto dialectName = identifier;
// Handle the verbose form, where "identifier" is a simple dialect name.
if (!identifier.contains('.')) {
// Consume the '<'.
if (p.parseToken(Token::less, "expected '<' in dialect type"))
return nullptr;
// Parse the symbol specific data.
if (p.getToken().isNot(Token::string))
return (p.emitError("expected string literal data in dialect symbol"),
nullptr);
symbolData = p.getToken().getStringValue();
loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1);
p.consumeToken(Token::string);
// Consume the '>'.
if (p.parseToken(Token::greater, "expected '>' in dialect symbol"))
return nullptr;
} else {
// Ok, the dialect name is the part of the identifier before the dot, the
// part after the dot is the dialect's symbol, or the start thereof.
auto dotHalves = identifier.split('.');
dialectName = dotHalves.first;
auto prettyName = dotHalves.second;
loc = llvm::SMLoc::getFromPointer(prettyName.data());
// If the dialect's symbol is followed immediately by a <, then lex the body
// of it into prettyName.
if (p.getToken().is(Token::less) &&
prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) {
if (p.parsePrettyDialectSymbolName(prettyName))
return nullptr;
}
symbolData = prettyName.str();
}
// Record the name location of the type remapped to the top level buffer.
llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc);
p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer);
// Call into the provided symbol construction function.
Symbol sym = createSymbol(dialectName, symbolData, loc);
// Pop the last parser location.
p.getState().symbols.nestedParserLocs.pop_back();
return sym;
}
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context,
SymbolState &symbolState, ParserFn &&parserFn,
size_t *numRead = nullptr) {
SourceMgr sourceMgr;
auto memBuffer = MemoryBuffer::getMemBuffer(
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
/*RequiresNullTerminator=*/false);
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
ParserState state(sourceMgr, context, symbolState);
Parser parser(state);
Token startTok = parser.getToken();
T symbol = parserFn(parser);
if (!symbol)
return T();
// If 'numRead' is valid, then provide the number of bytes that were read.
Token endTok = parser.getToken();
if (numRead) {
*numRead = static_cast<size_t>(endTok.getLoc().getPointer() -
startTok.getLoc().getPointer());
// Otherwise, ensure that all of the tokens were parsed.
} else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) {
parser.emitError(endTok.getLoc(), "encountered unexpected token");
return T();
}
return symbol;
}
//===----------------------------------------------------------------------===//
// Error Handling
//===----------------------------------------------------------------------===//
InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
// If we hit a parse error in response to a lexer error, then the lexer
// already reported the error.
if (getToken().is(Token::error))
diag.abandon();
return diag;
}
//===----------------------------------------------------------------------===//
// Token Parsing
//===----------------------------------------------------------------------===//
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
const Twine &message) {
if (consumeIf(expectedToken))
return success();
return emitError(message);
}
//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//
/// Parse an arbitrary type.
///
/// type ::= function-type
/// | non-function-type
///
Type Parser::parseType() {
if (getToken().is(Token::l_paren))
return parseFunctionType();
return parseNonFunctionType();
}
/// Parse a function result type.
///
/// function-result-type ::= type-list-parens
/// | non-function-type
///
ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) {
if (getToken().is(Token::l_paren))
return parseTypeListParens(elements);
Type t = parseNonFunctionType();
if (!t)
return failure();
elements.push_back(t);
return success();
}
/// Parse a list of types without an enclosing parenthesis. The list must have
/// at least one member.
///
/// type-list-no-parens ::= type (`,` type)*
///
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
auto parseElt = [&]() -> ParseResult {
auto elt = parseType();
elements.push_back(elt);
return elt ? success() : failure();
};
return parseCommaSeparatedList(parseElt);
}
/// Parse a parenthesized list of types.
///
/// type-list-parens ::= `(` `)`
/// | `(` type-list-no-parens `)`
///
ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) {
if (parseToken(Token::l_paren, "expected '('"))
return failure();
// Handle empty lists.
if (getToken().is(Token::r_paren))
return consumeToken(), success();
if (parseTypeListNoParens(elements) ||
parseToken(Token::r_paren, "expected ')'"))
return failure();
return success();
}
/// Parse a complex type.
///
/// complex-type ::= `complex` `<` type `>`
///
Type Parser::parseComplexType() {
consumeToken(Token::kw_complex);
// Parse the '<'.
if (parseToken(Token::less, "expected '<' in complex type"))
return nullptr;
llvm::SMLoc elementTypeLoc = getToken().getLoc();
auto elementType = parseType();
if (!elementType ||
parseToken(Token::greater, "expected '>' in complex type"))
return nullptr;
if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>())
return emitError(elementTypeLoc, "invalid element type for complex"),
nullptr;
return ComplexType::get(elementType);
}
/// Parse an extended type.
///
/// extended-type ::= (dialect-type | type-alias)
/// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>`
/// dialect-type ::= `!` alias-name pretty-dialect-attribute-body?
/// type-alias ::= `!` alias-name
///
Type Parser::parseExtendedType() {
return parseExtendedSymbol<Type>(
*this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions,
[&](StringRef dialectName, StringRef symbolData,
llvm::SMLoc loc) -> Type {
// If we found a registered dialect, then ask it to parse the type.
if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
return parseSymbol<Type>(
symbolData, state.context, state.symbols, [&](Parser &parser) {
CustomDialectAsmParser customParser(symbolData, parser);
return dialect->parseType(customParser);
});
}
// Otherwise, form a new opaque type.
return OpaqueType::getChecked(
Identifier::get(dialectName, state.context), symbolData,
state.context, getEncodedSourceLocation(loc));
});
}
/// Parse a function type.
///
/// function-type ::= type-list-parens `->` function-result-type
///
Type Parser::parseFunctionType() {
assert(getToken().is(Token::l_paren));
SmallVector<Type, 4> arguments, results;
if (parseTypeListParens(arguments) ||
parseToken(Token::arrow, "expected '->' in function type") ||
parseFunctionResultTypes(results))
return nullptr;
return builder.getFunctionType(arguments, results);
}
/// Parse the offset and strides from a strided layout specification.
///
/// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list
///
ParseResult Parser::parseStridedLayout(int64_t &offset,
SmallVectorImpl<int64_t> &strides) {
// Parse offset.
consumeToken(Token::kw_offset);
if (!consumeIf(Token::colon))
return emitError("expected colon after `offset` keyword");
auto maybeOffset = getToken().getUnsignedIntegerValue();
bool question = getToken().is(Token::question);
if (!maybeOffset && !question)
return emitError("invalid offset");
offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue())
: MemRefType::getDynamicStrideOrOffset();
consumeToken();
if (!consumeIf(Token::comma))
return emitError("expected comma after offset value");
// Parse stride list.
if (!consumeIf(Token::kw_strides))
return emitError("expected `strides` keyword after offset specification");
if (!consumeIf(Token::colon))
return emitError("expected colon after `strides` keyword");
if (failed(parseStrideList(strides)))
return emitError("invalid braces-enclosed stride list");
if (llvm::any_of(strides, [](int64_t st) { return st == 0; }))
return emitError("invalid memref stride");
return success();
}
/// Parse a memref type.
///
/// memref-type ::= ranked-memref-type | unranked-memref-type
///
/// ranked-memref-type ::= `memref` `<` dimension-list-ranked type
/// (`,` semi-affine-map-composition)? (`,`
/// memory-space)? `>`
///
/// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>`
///
/// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
/// memory-space ::= integer-literal /* | TODO: address-space-id */
///
Type Parser::parseMemRefType() {
consumeToken(Token::kw_memref);
if (parseToken(Token::less, "expected '<' in memref type"))
return nullptr;
bool isUnranked;
SmallVector<int64_t, 4> dimensions;
if (consumeIf(Token::star)) {
// This is an unranked memref type.
isUnranked = true;
if (parseXInDimensionList())
return nullptr;
} else {
isUnranked = false;
if (parseDimensionListRanked(dimensions))
return nullptr;
}
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto elementType = parseType();
if (!elementType)
return nullptr;
// Check that memref is formed from allowed types.
if (!elementType.isSignlessIntOrFloat() && !elementType.isa<VectorType>() &&
!elementType.isa<ComplexType>())
return emitError(typeLoc, "invalid memref element type"), nullptr;
// Parse semi-affine-map-composition.
SmallVector<AffineMap, 2> affineMapComposition;
Optional<unsigned> memorySpace;
unsigned numDims = dimensions.size();
auto parseElt = [&]() -> ParseResult {
// Check for the memory space.
if (getToken().is(Token::integer)) {
if (memorySpace)
return emitError("multiple memory spaces specified in memref type");
memorySpace = getToken().getUnsignedIntegerValue();
if (!memorySpace.hasValue())
return emitError("invalid memory space in memref type");
consumeToken(Token::integer);
return success();
}
if (isUnranked)
return emitError("cannot have affine map for unranked memref type");
if (memorySpace)
return emitError("expected memory space to be last in memref type");
AffineMap map;
llvm::SMLoc mapLoc = getToken().getLoc();
if (getToken().is(Token::kw_offset)) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(parseStridedLayout(offset, strides)))
return failure();
// Construct strided affine map.
map = makeStridedLinearLayoutMap(strides, offset, state.context);
} else {
// Parse an affine map attribute.
auto affineMap = parseAttribute();
if (!affineMap)
return failure();
auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>();
if (!affineMapAttr)
return emitError("expected affine map in memref type");
map = affineMapAttr.getValue();
}
if (map.getNumDims() != numDims) {
size_t i = affineMapComposition.size();
return emitError(mapLoc, "memref affine map dimension mismatch between ")
<< (i == 0 ? Twine("memref rank") : "affine map " + Twine(i))
<< " and affine map" << i + 1 << ": " << numDims
<< " != " << map.getNumDims();
}
numDims = map.getNumResults();
affineMapComposition.push_back(map);
return success();
};
// Parse a list of mappings and address space if present.
if (!consumeIf(Token::greater)) {
// Parse comma separated list of affine maps, followed by memory space.
if (parseToken(Token::comma, "expected ',' or '>' in memref type") ||
parseCommaSeparatedListUntil(Token::greater, parseElt,
/*allowEmptyList=*/false)) {
return nullptr;
}
}
if (isUnranked)
return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0));
return MemRefType::get(dimensions, elementType, affineMapComposition,
memorySpace.getValueOr(0));
}
/// Parse any type except the function type.
///
/// non-function-type ::= integer-type
/// | index-type
/// | float-type
/// | extended-type
/// | vector-type
/// | tensor-type
/// | memref-type
/// | complex-type
/// | tuple-type
/// | none-type
///
/// index-type ::= `index`
/// float-type ::= `f16` | `bf16` | `f32` | `f64`
/// none-type ::= `none`
///
Type Parser::parseNonFunctionType() {
switch (getToken().getKind()) {
default:
return (emitError("expected non-function type"), nullptr);
case Token::kw_memref:
return parseMemRefType();
case Token::kw_tensor:
return parseTensorType();
case Token::kw_complex:
return parseComplexType();
case Token::kw_tuple:
return parseTupleType();
case Token::kw_vector:
return parseVectorType();
// integer-type
case Token::inttype: {
auto width = getToken().getIntTypeBitwidth();
if (!width.hasValue())
return (emitError("invalid integer width"), nullptr);
if (width.getValue() > IntegerType::kMaxWidth) {
emitError(getToken().getLoc(), "integer bitwidth is limited to ")
<< IntegerType::kMaxWidth << " bits";
return nullptr;
}
IntegerType::SignednessSemantics signSemantics = IntegerType::Signless;
if (Optional<bool> signedness = getToken().getIntTypeSignedness())
signSemantics = *signedness ? IntegerType::Signed : IntegerType::Unsigned;
auto loc = getEncodedSourceLocation(getToken().getLoc());
consumeToken(Token::inttype);
return IntegerType::getChecked(width.getValue(), signSemantics, loc);
}
// float-type
case Token::kw_bf16:
consumeToken(Token::kw_bf16);
return builder.getBF16Type();
case Token::kw_f16:
consumeToken(Token::kw_f16);
return builder.getF16Type();
case Token::kw_f32:
consumeToken(Token::kw_f32);
return builder.getF32Type();
case Token::kw_f64:
consumeToken(Token::kw_f64);
return builder.getF64Type();
// index-type
case Token::kw_index:
consumeToken(Token::kw_index);
return builder.getIndexType();
// none-type
case Token::kw_none:
consumeToken(Token::kw_none);
return builder.getNoneType();
// extended type
case Token::exclamation_identifier:
return parseExtendedType();
}
}
/// Parse a tensor type.
///
/// tensor-type ::= `tensor` `<` dimension-list type `>`
/// dimension-list ::= dimension-list-ranked | `*x`
///
Type Parser::parseTensorType() {
consumeToken(Token::kw_tensor);
if (parseToken(Token::less, "expected '<' in tensor type"))
return nullptr;
bool isUnranked;
SmallVector<int64_t, 4> dimensions;
if (consumeIf(Token::star)) {
// This is an unranked tensor type.
isUnranked = true;
if (parseXInDimensionList())
return nullptr;
} else {
isUnranked = false;
if (parseDimensionListRanked(dimensions))
return nullptr;
}
// Parse the element type.
auto elementTypeLoc = getToken().getLoc();
auto elementType = parseType();
if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
return nullptr;
if (!TensorType::isValidElementType(elementType))
return emitError(elementTypeLoc, "invalid tensor element type"), nullptr;
if (isUnranked)
return UnrankedTensorType::get(elementType);
return RankedTensorType::get(dimensions, elementType);
}
/// Parse a tuple type.
///
/// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>`
///
Type Parser::parseTupleType() {
consumeToken(Token::kw_tuple);
// Parse the '<'.
if (parseToken(Token::less, "expected '<' in tuple type"))
return nullptr;
// Check for an empty tuple by directly parsing '>'.
if (consumeIf(Token::greater))
return TupleType::get(getContext());
// Parse the element types and the '>'.
SmallVector<Type, 4> types;
if (parseTypeListNoParens(types) ||
parseToken(Token::greater, "expected '>' in tuple type"))
return nullptr;
return TupleType::get(types, getContext());
}
/// Parse a vector type.
///
/// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>`
/// non-empty-static-dimension-list ::= decimal-literal `x`
/// static-dimension-list
/// static-dimension-list ::= (decimal-literal `x`)*
///
VectorType Parser::parseVectorType() {
consumeToken(Token::kw_vector);
if (parseToken(Token::less, "expected '<' in vector type"))
return nullptr;
SmallVector<int64_t, 4> dimensions;
if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false))
return nullptr;
if (dimensions.empty())
return (emitError("expected dimension size in vector type"), nullptr);
if (any_of(dimensions, [](int64_t i) { return i <= 0; }))
return emitError(getToken().getLoc(),
"vector types must have positive constant sizes"),
nullptr;
// Parse the element type.
auto typeLoc = getToken().getLoc();
auto elementType = parseType();
if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
return nullptr;
if (!VectorType::isValidElementType(elementType))
return emitError(typeLoc, "vector elements must be int or float type"),
nullptr;
return VectorType::get(dimensions, elementType);
}
/// Parse a dimension list of a tensor or memref type. This populates the
/// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and
/// errors out on `?` otherwise.
///
/// dimension-list-ranked ::= (dimension `x`)*
/// dimension ::= `?` | decimal-literal
///
/// When `allowDynamic` is not set, this is used to parse:
///
/// static-dimension-list ::= (decimal-literal `x`)*
ParseResult
Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
bool allowDynamic) {
while (getToken().isAny(Token::integer, Token::question)) {
if (consumeIf(Token::question)) {
if (!allowDynamic)
return emitError("expected static shape");
dimensions.push_back(-1);
} else {
// Hexadecimal integer literals (starting with `0x`) are not allowed in
// aggregate type declarations. Therefore, `0xf32` should be processed as
// a sequence of separate elements `0`, `x`, `f32`.
if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') {
// We can get here only if the token is an integer literal. Hexadecimal
// integer literals can only start with `0x` (`1x` wouldn't lex as a
// literal, just `1` would, at which point we don't get into this
// branch).
assert(getTokenSpelling()[0] == '0' && "invalid integer literal");
dimensions.push_back(0);
state.lex.resetPointer(getTokenSpelling().data() + 1);
consumeToken();
} else {
// Make sure this integer value is in bound and valid.
auto dimension = getToken().getUnsignedIntegerValue();
if (!dimension.hasValue())
return emitError("invalid dimension");
dimensions.push_back((int64_t)dimension.getValue());
consumeToken(Token::integer);
}
}
// Make sure we have an 'x' or something like 'xbf32'.
if (parseXInDimensionList())
return failure();
}
return success();
}
/// Parse an 'x' token in a dimension list, handling the case where the x is
/// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
/// token.
ParseResult Parser::parseXInDimensionList() {
if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
return emitError("expected 'x' in dimension list");
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
if (getTokenSpelling().size() != 1)
state.lex.resetPointer(getTokenSpelling().data() + 1);
// Consume the 'x'.
consumeToken(Token::bare_identifier);
return success();
}
// Parse a comma-separated list of dimensions, possibly empty:
// stride-list ::= `[` (dimension (`,` dimension)*)? `]`
ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) {
if (!consumeIf(Token::l_square))
return failure();
// Empty list early exit.
if (consumeIf(Token::r_square))
return success();
while (true) {
if (consumeIf(Token::question)) {
dimensions.push_back(MemRefType::getDynamicStrideOrOffset());
} else {
// This must be an integer value.
int64_t val;
if (getToken().getSpelling().getAsInteger(10, val))
return emitError("invalid integer value: ") << getToken().getSpelling();
// Make sure it is not the one value for `?`.
if (ShapedType::isDynamic(val))
return emitError("invalid integer value: ")
<< getToken().getSpelling()
<< ", use `?` to specify a dynamic dimension";
dimensions.push_back(val);
consumeToken(Token::integer);
}
if (!consumeIf(Token::comma))
break;
}
if (!consumeIf(Token::r_square))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// Attribute parsing.
//===----------------------------------------------------------------------===//
/// Return the symbol reference referred to by the given token, that is known to
/// be an @-identifier.
static std::string extractSymbolReference(Token tok) {
assert(tok.is(Token::at_identifier) && "expected valid @-identifier");
StringRef nameStr = tok.getSpelling().drop_front();
// Check to see if the reference is a string literal, or a bare identifier.
if (nameStr.front() == '"')
return tok.getStringValue();
return std::string(nameStr);
}
/// Parse an arbitrary attribute.
///
/// attribute-value ::= `unit`
/// | bool-literal
/// | integer-literal (`:` (index-type | integer-type))?
/// | float-literal (`:` float-type)?
/// | string-literal (`:` type)?
/// | type
/// | `[` (attribute-value (`,` attribute-value)*)? `]`
/// | `{` (attribute-entry (`,` attribute-entry)*)? `}`
/// | symbol-ref-id (`::` symbol-ref-id)*
/// | `dense` `<` attribute-value `>` `:`
/// (tensor-type | vector-type)
/// | `sparse` `<` attribute-value `,` attribute-value `>`
/// `:` (tensor-type | vector-type)
/// | `opaque` `<` dialect-namespace `,` hex-string-literal
/// `>` `:` (tensor-type | vector-type)
/// | extended-attribute
///
Attribute Parser::parseAttribute(Type type) {
switch (getToken().getKind()) {
// Parse an AffineMap or IntegerSet attribute.
case Token::kw_affine_map: {
consumeToken(Token::kw_affine_map);
AffineMap map;
if (parseToken(Token::less, "expected '<' in affine map") ||
parseAffineMapReference(map) ||
parseToken(Token::greater, "expected '>' in affine map"))
return Attribute();
return AffineMapAttr::get(map);
}
case Token::kw_affine_set: {
consumeToken(Token::kw_affine_set);
IntegerSet set;
if (parseToken(Token::less, "expected '<' in integer set") ||
parseIntegerSetReference(set) ||
parseToken(Token::greater, "expected '>' in integer set"))
return Attribute();
return IntegerSetAttr::get(set);
}
// Parse an array attribute.
case Token::l_square: {
consumeToken(Token::l_square);
SmallVector<Attribute, 4> elements;
auto parseElt = [&]() -> ParseResult {
elements.push_back(parseAttribute());
return elements.back() ? success() : failure();
};
if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
return nullptr;
return builder.getArrayAttr(elements);
}
// Parse a boolean attribute.
case Token::kw_false:
consumeToken(Token::kw_false);
return builder.getBoolAttr(false);
case Token::kw_true:
consumeToken(Token::kw_true);
return builder.getBoolAttr(true);
// Parse a dense elements attribute.
case Token::kw_dense:
return parseDenseElementsAttr(type);
// Parse a dictionary attribute.
case Token::l_brace: {
SmallVector<NamedAttribute, 4> elements;
if (parseAttributeDict(elements))
return nullptr;
return builder.getDictionaryAttr(elements);
}
// Parse an extended attribute, i.e. alias or dialect attribute.
case Token::hash_identifier:
return parseExtendedAttr(type);
// Parse floating point and integer attributes.
case Token::floatliteral:
return parseFloatAttr(type, /*isNegative=*/false);
case Token::integer:
return parseDecOrHexAttr(type, /*isNegative=*/false);
case Token::minus: {
consumeToken(Token::minus);
if (getToken().is(Token::integer))
return parseDecOrHexAttr(type, /*isNegative=*/true);
if (getToken().is(Token::floatliteral))
return parseFloatAttr(type, /*isNegative=*/true);
return (emitError("expected constant integer or floating point value"),
nullptr);
}
// Parse a location attribute.
case Token::kw_loc: {
LocationAttr attr;
return failed(parseLocation(attr)) ? Attribute() : attr;
}
// Parse an opaque elements attribute.
case Token::kw_opaque:
return parseOpaqueElementsAttr(type);
// Parse a sparse elements attribute.
case Token::kw_sparse:
return parseSparseElementsAttr(type);
// Parse a string attribute.
case Token::string: {
auto val = getToken().getStringValue();
consumeToken(Token::string);
// Parse the optional trailing colon type if one wasn't explicitly provided.
if (!type && consumeIf(Token::colon) && !(type = parseType()))
return Attribute();
return type ? StringAttr::get(val, type)
: StringAttr::get(val, getContext());
}
// Parse a symbol reference attribute.
case Token::at_identifier: {
std::string nameStr = extractSymbolReference(getToken());
consumeToken(Token::at_identifier);
// Parse any nested references.
std::vector<FlatSymbolRefAttr> nestedRefs;
while (getToken().is(Token::colon)) {
// Check for the '::' prefix.
const char *curPointer = getToken().getLoc().getPointer();
consumeToken(Token::colon);
if (!consumeIf(Token::colon)) {
state.lex.resetPointer(curPointer);
consumeToken();
break;
}
// Parse the reference itself.
auto curLoc = getToken().getLoc();
if (getToken().isNot(Token::at_identifier)) {
emitError(curLoc, "expected nested symbol reference identifier");
return Attribute();
}
std::string nameStr = extractSymbolReference(getToken());
consumeToken(Token::at_identifier);
nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext()));
}
return builder.getSymbolRefAttr(nameStr, nestedRefs);
}
// Parse a 'unit' attribute.
case Token::kw_unit:
consumeToken(Token::kw_unit);
return builder.getUnitAttr();
default:
// Parse a type attribute.
if (Type type = parseType())
return TypeAttr::get(type);
return nullptr;
}
}
/// Attribute dictionary.
///
/// attribute-dict ::= `{` `}`
/// | `{` attribute-entry (`,` attribute-entry)* `}`
/// attribute-entry ::= bare-id `=` attribute-value
///
ParseResult
Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
if (parseToken(Token::l_brace, "expected '{' in attribute dictionary"))
return failure();
auto parseElt = [&]() -> ParseResult {
// We allow keywords as attribute names.
if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
!getToken().isKeyword())
return emitError("expected attribute name");
Identifier nameId = builder.getIdentifier(getTokenSpelling());
consumeToken();
// Try to parse the '=' for the attribute value.
if (!consumeIf(Token::equal)) {
// If there is no '=', we treat this as a unit attribute.
attributes.push_back({nameId, builder.getUnitAttr()});
return success();
}
auto attr = parseAttribute();
if (!attr)
return failure();
attributes.push_back({nameId, attr});
return success();
};
if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
return failure();
return success();
}
/// Parse an extended attribute.
///
/// extended-attribute ::= (dialect-attribute | attribute-alias)
/// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>`
/// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body?
/// attribute-alias ::= `#` alias-name
///
Attribute Parser::parseExtendedAttr(Type type) {
Attribute attr = parseExtendedSymbol<Attribute>(
*this, Token::hash_identifier, state.symbols.attributeAliasDefinitions,
[&](StringRef dialectName, StringRef symbolData,
llvm::SMLoc loc) -> Attribute {
// Parse an optional trailing colon type.
Type attrType = type;
if (consumeIf(Token::colon) && !(attrType = parseType()))
return Attribute();
// If we found a registered dialect, then ask it to parse the attribute.
if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
return parseSymbol<Attribute>(
symbolData, state.context, state.symbols, [&](Parser &parser) {
CustomDialectAsmParser customParser(symbolData, parser);
return dialect->parseAttribute(customParser, attrType);
});
}
// Otherwise, form a new opaque attribute.
return OpaqueAttr::getChecked(
Identifier::get(dialectName, state.context), symbolData,
attrType ? attrType : NoneType::get(state.context),
getEncodedSourceLocation(loc));
});
// Ensure that the attribute has the same type as requested.
if (attr && type && attr.getType() != type) {
emitError("attribute type different than expected: expected ")
<< type << ", but got " << attr.getType();
return nullptr;
}
return attr;
}
/// Parse a float attribute.
Attribute Parser::parseFloatAttr(Type type, bool isNegative) {
auto val = getToken().getFloatingPointValue();
if (!val.hasValue())
return (emitError("floating point value too large for attribute"), nullptr);
consumeToken(Token::floatliteral);
if (!type) {
// Default to F64 when no type is specified.
if (!consumeIf(Token::colon))
type = builder.getF64Type();
else if (!(type = parseType()))
return nullptr;
}
if (!type.isa<FloatType>())
return (emitError("floating point value not valid for specified type"),
nullptr);
return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue());
}
/// Construct a float attribute bitwise equivalent to the integer literal.
static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type,
uint64_t value) {
// FIXME: bfloat is currently stored as a double internally because it doesn't
// have valid APFloat semantics.
if (type.isF64() || type.isBF16())
return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value));
APInt apInt(type.getWidth(), value);
if (apInt != value) {
p->emitError("hexadecimal float constant out of range for type");
return llvm::None;
}
return APFloat(type.getFloatSemantics(), apInt);
}
/// Parse a decimal or a hexadecimal literal, which can be either an integer
/// or a float attribute.
Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue())
return (emitError("integer constant out of range for attribute"), nullptr);
// Remember if the literal is hexadecimal.
StringRef spelling = getToken().getSpelling();
auto loc = state.curToken.getLoc();
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
consumeToken(Token::integer);
if (!type) {
// Default to i64 if not type is specified.
if (!consumeIf(Token::colon))
type = builder.getIntegerType(64);
else if (!(type = parseType()))
return nullptr;
}
if (auto floatType = type.dyn_cast<FloatType>()) {
if (isNegative)
return emitError(
loc,
"hexadecimal float literal should not have a leading minus"),
nullptr;
if (!isHex) {
emitError(loc, "unexpected decimal integer literal for a float attribute")
.attachNote()
<< "add a trailing dot to make the literal a float";
return nullptr;
}
// Construct a float attribute bitwise equivalent to the integer literal.
Optional<APFloat> apVal =
buildHexadecimalFloatLiteral(this, floatType, *val);
return apVal ? FloatAttr::get(floatType, *apVal) : Attribute();
}
if (!type.isa<IntegerType>() && !type.isa<IndexType>())
return emitError(loc, "integer literal not valid for specified type"),
nullptr;
if (isNegative && type.isUnsignedInteger()) {
emitError(loc,
"negative integer literal not valid for unsigned integer type");
return nullptr;
}
// Parse the integer literal.
int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
APInt apInt(width, *val, isNegative);
if (apInt != *val)
return emitError(loc, "integer constant out of range for attribute"),
nullptr;
// Otherwise construct an integer attribute.
if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0)
return emitError(loc, "integer constant out of range for attribute"),
nullptr;
return builder.getIntegerAttr(type, isNegative ? -apInt : apInt);
}
/// Parse elements values stored within a hex etring. On success, the values are
/// stored into 'result'.
static ParseResult parseElementAttrHexValues(Parser &parser, Token tok,
std::string &result) {
std::string val = tok.getStringValue();
if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
return parser.emitError(tok.getLoc(),
"elements hex string should start with '0x'");
StringRef hexValues = StringRef(val).drop_front(2);
if (!llvm::all_of(hexValues, llvm::isHexDigit))
return parser.emitError(tok.getLoc(),
"elements hex string only contains hex digits");
result = llvm::fromHex(hexValues);
return success();
}
/// Parse an opaque elements attribute.
Attribute Parser::parseOpaqueElementsAttr(Type attrType) {
consumeToken(Token::kw_opaque);
if (parseToken(Token::less, "expected '<' after 'opaque'"))
return nullptr;
if (getToken().isNot(Token::string))
return (emitError("expected dialect namespace"), nullptr);
auto name = getToken().getStringValue();
auto *dialect = builder.getContext()->getRegisteredDialect(name);
// TODO(shpeisman): Allow for having an unknown dialect on an opaque
// attribute. Otherwise, it can't be roundtripped without having the dialect
// registered.
if (!dialect)
return (emitError("no registered dialect with namespace '" + name + "'"),
nullptr);
consumeToken(Token::string);
if (parseToken(Token::comma, "expected ','"))
return nullptr;
Token hexTok = getToken();
if (parseToken(Token::string, "elements hex string should start with '0x'") ||
parseToken(Token::greater, "expected '>'"))
return nullptr;
auto type = parseElementsLiteralType(attrType);
if (!type)
return nullptr;
std::string data;
if (parseElementAttrHexValues(*this, hexTok, data))
return nullptr;
return OpaqueElementsAttr::get(dialect, type, data);
}
namespace {
class TensorLiteralParser {
public:
TensorLiteralParser(Parser &p) : p(p) {}
/// Parse the elements of a tensor literal. If 'allowHex' is true, the parser
/// may also parse a tensor literal that is store as a hex string.
ParseResult parse(bool allowHex);
/// Build a dense attribute instance with the parsed elements and the given
/// shaped type.
DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type);
ArrayRef<int64_t> getShape() const { return shape; }
private:
enum class ElementKind { Boolean, Integer, Float };
/// Return a string to represent the given element kind.
const char *getElementKindStr(ElementKind kind) {
switch (kind) {
case ElementKind::Boolean:
return "'boolean'";
case ElementKind::Integer:
return "'integer'";
case ElementKind::Float:
return "'float'";
}
llvm_unreachable("unknown element kind");
}
/// Build a Dense Integer attribute for the given type.
DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type,
IntegerType eltTy);
/// Build a Dense Float attribute for the given type.
DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type,
FloatType eltTy);
/// Build a Dense attribute with hex data for the given type.
DenseElementsAttr getHexAttr(llvm::SMLoc loc, ShapedType type);
/// Parse a single element, returning failure if it isn't a valid element
/// literal. For example:
/// parseElement(1) -> Success, 1
/// parseElement([1]) -> Failure
ParseResult parseElement();
/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
/// parseList([1, 2, 3]) -> Success, [3]
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
/// parseList([[1, 2], 3]) -> Failure
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult parseList(SmallVectorImpl<int64_t> &dims);
/// Parse a literal that was printed as a hex string.
ParseResult parseHexElements();
Parser &p;
/// The shape inferred from the parsed elements.
SmallVector<int64_t, 4> shape;
/// Storage used when parsing elements, this is a pair of <is_negated, token>.
std::vector<std::pair<bool, Token>> storage;
/// A flag that indicates the type of elements that have been parsed.
Optional<ElementKind> knownEltKind;
/// Storage used when parsing elements that were stored as hex values.
Optional<Token> hexStorage;
};
} // namespace
/// Parse the elements of a tensor literal. If 'allowHex' is true, the parser
/// may also parse a tensor literal that is store as a hex string.
ParseResult TensorLiteralParser::parse(bool allowHex) {
// If hex is allowed, check for a string literal.
if (allowHex && p.getToken().is(Token::string)) {
hexStorage = p.getToken();
p.consumeToken(Token::string);
return success();
}
// Otherwise, parse a list or an individual element.
if (p.getToken().is(Token::l_square))
return parseList(shape);
return parseElement();
}
/// Build a dense attribute instance with the parsed elements and the given
/// shaped type.
DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc,
ShapedType type) {
// Check to see if we parsed the literal from a hex string.
if (hexStorage.hasValue())
return getHexAttr(loc, type);
// Check that the parsed storage size has the same number of elements to the
// type, or is a known splat.
if (!shape.empty() && getShape() != type.getShape()) {
p.emitError(loc) << "inferred shape of elements literal ([" << getShape()
<< "]) does not match type ([" << type.getShape() << "])";
return nullptr;
}
// If the type is an integer, build a set of APInt values from the storage
// with the correct bitwidth.
if (auto intTy = type.getElementType().dyn_cast<IntegerType>())
return getIntAttr(loc, type, intTy);
// Otherwise, this must be a floating point type.
auto floatTy = type.getElementType().dyn_cast<FloatType>();
if (!floatTy) {
p.emitError(loc) << "expected floating-point or integer element type, got "
<< type.getElementType();
return nullptr;
}
return getFloatAttr(loc, type, floatTy);
}
/// Build a Dense Integer attribute for the given type.
DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc,
ShapedType type,
IntegerType eltTy) {
std::vector<APInt> intElements;
intElements.reserve(storage.size());
auto isUintType = type.getElementType().isUnsignedInteger();
for (const auto &signAndToken : storage) {
bool isNegative = signAndToken.first;
const Token &token = signAndToken.second;
auto tokenLoc = token.getLoc();
if (isNegative && isUintType) {
p.emitError(tokenLoc)
<< "expected unsigned integer elements, but parsed negative value";
return nullptr;
}
// Check to see if floating point values were parsed.
if (token.is(Token::floatliteral)) {
p.emitError(tokenLoc)
<< "expected integer elements, but parsed floating-point";
return nullptr;
}
assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) &&
"unexpected token type");
if (token.isAny(Token::kw_true, Token::kw_false)) {
if (!eltTy.isInteger(1))
p.emitError(tokenLoc)
<< "expected i1 type for 'true' or 'false' values";
APInt apInt(eltTy.getWidth(), token.is(Token::kw_true),
/*isSigned=*/false);
intElements.push_back(apInt);
continue;
}
// Create APInt values for each element with the correct bitwidth.
auto val = token.getUInt64IntegerValue();
if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0
: (int64_t)val.getValue() < 0)) {
p.emitError(tokenLoc, "integer constant out of range for attribute");
return nullptr;
}
APInt apInt(eltTy.getWidth(), val.getValue(), isNegative);
if (apInt != val.getValue())
return (p.emitError(tokenLoc, "integer constant out of range for type"),
nullptr);
intElements.push_back(isNegative ? -apInt : apInt);
}
return DenseElementsAttr::get(type, intElements);
}
/// Build a Dense Float attribute for the given type.
DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc,
ShapedType type,
FloatType eltTy) {
std::vector<APFloat> floatValues;
floatValues.reserve(storage.size());
for (const auto &signAndToken : storage) {
bool isNegative = signAndToken.first;
const Token &token = signAndToken.second;
// Handle hexadecimal float literals.
if (token.is(Token::integer) && token.getSpelling().startswith("0x")) {
if (isNegative) {
p.emitError(token.getLoc())
<< "hexadecimal float literal should not have a leading minus";
return nullptr;
}
auto val = token.getUInt64IntegerValue();
if (!val.hasValue()) {
p.emitError("hexadecimal float constant out of range for attribute");
return nullptr;
}
Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val);
if (!apVal)
return nullptr;
floatValues.push_back(*apVal);
continue;
}
// Check to see if any decimal integers or booleans were parsed.
if (!token.is(Token::floatliteral)) {
p.emitError() << "expected floating-point elements, but parsed integer";
return nullptr;
}
// Build the float values from tokens.
auto val = token.getFloatingPointValue();
if (!val.hasValue()) {
p.emitError("floating point value too large for attribute");
return nullptr;
}
// Treat BF16 as double because it is not supported in LLVM's APFloat.
APFloat apVal(isNegative ? -*val : *val);
if (!eltTy.isBF16() && !eltTy.isF64()) {
bool unused;
apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven,
&unused);
}
floatValues.push_back(apVal);
}
return DenseElementsAttr::get(type, floatValues);
}
/// Build a Dense attribute with hex data for the given type.
DenseElementsAttr TensorLiteralParser::getHexAttr(llvm::SMLoc loc,
ShapedType type) {
Type elementType = type.getElementType();
if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) {
p.emitError(loc) << "expected floating-point or integer element type, got "
<< elementType;
return nullptr;
}
std::string data;
if (parseElementAttrHexValues(p, hexStorage.getValue(), data))
return nullptr;
// Check that the size of the hex data correpsonds to the size of the type, or
// a splat of the type.
if (static_cast<int64_t>(data.size() * CHAR_BIT) !=
(type.getNumElements() * elementType.getIntOrFloatBitWidth())) {
p.emitError(loc) << "elements hex data size is invalid for provided type: "
<< type;
return nullptr;
}
return DenseElementsAttr::getFromRawBuffer(
type, ArrayRef<char>(data.data(), data.size()), /*isSplatBuffer=*/false);
}
ParseResult TensorLiteralParser::parseElement() {
switch (p.getToken().getKind()) {
// Parse a boolean element.
case Token::kw_true:
case Token::kw_false:
case Token::floatliteral:
case Token::integer:
storage.emplace_back(/*isNegative=*/false, p.getToken());
p.consumeToken();
break;
// Parse a signed integer or a negative floating-point element.
case Token::minus:
p.consumeToken(Token::minus);
if (!p.getToken().isAny(Token::floatliteral, Token::integer))
return p.emitError("expected integer or floating point literal");
storage.emplace_back(/*isNegative=*/true, p.getToken());
p.consumeToken();
break;
default:
return p.emitError("expected element literal of primitive type");
}
return success();
}
/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
/// parseList([1, 2, 3]) -> Success, [3]
/// parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
/// parseList([[1, 2], 3]) -> Failure
/// parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) {
p.consumeToken(Token::l_square);
auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims,
const SmallVectorImpl<int64_t> &newDims) -> ParseResult {
if (prevDims == newDims)
return success();
return p.emitError("tensor literal is invalid; ranks are not consistent "
"between elements");
};
bool first = true;
SmallVector<int64_t, 4> newDims;
unsigned size = 0;
auto parseCommaSeparatedList = [&]() -> ParseResult {
SmallVector<int64_t, 4> thisDims;
if (p.getToken().getKind() == Token::l_square) {
if (parseList(thisDims))
return failure();
} else if (parseElement()) {
return failure();
}
++size;
if (!first)
return checkDims(newDims, thisDims);
newDims = thisDims;
first = false;
return success();
};
if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
return failure();
// Return the sublists' dimensions with 'size' prepended.
dims.clear();
dims.push_back(size);
dims.append(newDims.begin(), newDims.end());
return success();
}
/// Parse a dense elements attribute.
Attribute Parser::parseDenseElementsAttr(Type attrType) {
consumeToken(Token::kw_dense);
if (parseToken(Token::less, "expected '<' after 'dense'"))
return nullptr;
// Parse the literal data.
TensorLiteralParser literalParser(*this);
if (literalParser.parse(/*allowHex=*/true))
return nullptr;
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
auto typeLoc = getToken().getLoc();
auto type = parseElementsLiteralType(attrType);
if (!type)
return nullptr;
return literalParser.getAttr(typeLoc, type);
}
/// Shaped type for elements attribute.
///
/// elements-literal-type ::= vector-type | ranked-tensor-type
///
/// This method also checks the type has static shape.
ShapedType Parser::parseElementsLiteralType(Type type) {
// If the user didn't provide a type, parse the colon type for the literal.
if (!type) {
if (parseToken(Token::colon, "expected ':'"))
return nullptr;
if (!(type = parseType()))
return nullptr;
}
if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) {
emitError("elements literal must be a ranked tensor or vector type");
return nullptr;
}
auto sType = type.cast<ShapedType>();
if (!sType.hasStaticShape())
return (emitError("elements literal type must have static shape"), nullptr);
return sType;
}
/// Parse a sparse elements attribute.
Attribute Parser::parseSparseElementsAttr(Type attrType) {
consumeToken(Token::kw_sparse);
if (parseToken(Token::less, "Expected '<' after 'sparse'"))
return nullptr;
/// Parse the indices. We don't allow hex values here as we may need to use
/// the inferred shape.
auto indicesLoc = getToken().getLoc();
TensorLiteralParser indiceParser(*this);
if (indiceParser.parse(/*allowHex=*/false))
return nullptr;
if (parseToken(Token::comma, "expected ','"))
return nullptr;
/// Parse the values.
auto valuesLoc = getToken().getLoc();
TensorLiteralParser valuesParser(*this);
if (valuesParser.parse(/*allowHex=*/true))
return nullptr;
if (parseToken(Token::greater, "expected '>'"))
return nullptr;
auto type = parseElementsLiteralType(attrType);
if (!type)
return nullptr;
// If the indices are a splat, i.e. the literal parser parsed an element and
// not a list, we set the shape explicitly. The indices are represented by a
// 2-dimensional shape where the second dimension is the rank of the type.
// Given that the parsed indices is a splat, we know that we only have one
// indice and thus one for the first dimension.
auto indiceEltType = builder.getIntegerType(64);
ShapedType indicesType;
if (indiceParser.getShape().empty()) {
indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType);
} else {
// Otherwise, set the shape to the one parsed by the literal parser.
indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType);
}
auto indices = indiceParser.getAttr(indicesLoc, indicesType);
// If the values are a splat, set the shape explicitly based on the number of
// indices. The number of indices is encoded in the first dimension of the
// indice shape type.
auto valuesEltType = type.getElementType();
ShapedType valuesType =
valuesParser.getShape().empty()
? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType)
: RankedTensorType::get(valuesParser.getShape(), valuesEltType);
auto values = valuesParser.getAttr(valuesLoc, valuesType);
/// Sanity check.
if (valuesType.getRank() != 1)
return (emitError("expected 1-d tensor for values"), nullptr);
auto sameShape = (indicesType.getRank() == 1) ||
(type.getRank() == indicesType.getDimSize(1));
auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0);
if (!sameShape || !sameElementNum) {
emitError() << "expected shape ([" << type.getShape()
<< "]); inferred shape of indices literal (["
<< indicesType.getShape()
<< "]); inferred shape of values literal (["
<< valuesType.getShape() << "])";
return nullptr;
}
// Build the sparse elements attribute by the indices and values.
return SparseElementsAttr::get(type, indices, values);
}
//===----------------------------------------------------------------------===//
// Location parsing.
//===----------------------------------------------------------------------===//
/// Parse a location.
///
/// location ::= `loc` inline-location
/// inline-location ::= '(' location-inst ')'
///
ParseResult Parser::parseLocation(LocationAttr &loc) {
// Check for 'loc' identifier.
if (parseToken(Token::kw_loc, "expected 'loc' keyword"))
return emitError();
// Parse the inline-location.
if (parseToken(Token::l_paren, "expected '(' in inline location") ||
parseLocationInstance(loc) ||
parseToken(Token::r_paren, "expected ')' in inline location"))
return failure();
return success();
}
/// Specific location instances.
///
/// location-inst ::= filelinecol-location |
/// name-location |
/// callsite-location |
/// fused-location |
/// unknown-location
/// filelinecol-location ::= string-literal ':' integer-literal
/// ':' integer-literal
/// name-location ::= string-literal
/// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')'
/// fused-location ::= fused ('<' attribute-value '>')?
/// '[' location-inst (location-inst ',')* ']'
/// unknown-location ::= 'unknown'
///
ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) {
consumeToken(Token::bare_identifier);
// Parse the '('.
if (parseToken(Token::l_paren, "expected '(' in callsite location"))
return failure();
// Parse the callee location.
LocationAttr calleeLoc;
if (parseLocationInstance(calleeLoc))
return failure();
// Parse the 'at'.
if (getToken().isNot(Token::bare_identifier) ||
getToken().getSpelling() != "at")
return emitError("expected 'at' in callsite location");
consumeToken(Token::bare_identifier);
// Parse the caller location.
LocationAttr callerLoc;
if (parseLocationInstance(callerLoc))
return failure();
// Parse the ')'.
if (parseToken(Token::r_paren, "expected ')' in callsite location"))
return failure();
// Return the callsite location.
loc = CallSiteLoc::get(calleeLoc, callerLoc);
return success();
}
ParseResult Parser::parseFusedLocation(LocationAttr &loc) {
consumeToken(Token::bare_identifier);
// Try to parse the optional metadata.
Attribute metadata;
if (consumeIf(Token::less)) {
metadata = parseAttribute();
if (!metadata)
return emitError("expected valid attribute metadata");
// Parse the '>' token.
if (parseToken(Token::greater,
"expected '>' after fused location metadata"))
return failure();
}
SmallVector<Location, 4> locations;
auto parseElt = [&] {
LocationAttr newLoc;
if (parseLocationInstance(newLoc))
return failure();
locations.push_back(newLoc);
return success();
};
if (parseToken(Token::l_square, "expected '[' in fused location") ||
parseCommaSeparatedList(parseElt) ||
parseToken(Token::r_square, "expected ']' in fused location"))
return failure();
// Return the fused location.
loc = FusedLoc::get(locations, metadata, getContext());
return success();
}
ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) {
auto *ctx = getContext();
auto str = getToken().getStringValue();
consumeToken(Token::string);
// If the next token is ':' this is a filelinecol location.
if (consumeIf(Token::colon)) {
// Parse the line number.
if (getToken().isNot(Token::integer))
return emitError("expected integer line number in FileLineColLoc");
auto line = getToken().getUnsignedIntegerValue();
if (!line.hasValue())
return emitError("expected integer line number in FileLineColLoc");
consumeToken(Token::integer);
// Parse the ':'.
if (parseToken(Token::colon, "expected ':' in FileLineColLoc"))
return failure();
// Parse the column number.
if (getToken().isNot(Token::integer))
return emitError("expected integer column number in FileLineColLoc");
auto column = getToken().getUnsignedIntegerValue();
if (!column.hasValue())
return emitError("expected integer column number in FileLineColLoc");
consumeToken(Token::integer);
loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx);
return success();
}
// Otherwise, this is a NameLoc.
// Check for a child location.
if (consumeIf(Token::l_paren)) {
auto childSourceLoc = getToken().getLoc();
// Parse the child location.
LocationAttr childLoc;
if (parseLocationInstance(childLoc))
return failure();
// The child must not be another NameLoc.
if (childLoc.isa<NameLoc>())
return emitError(childSourceLoc,
"child of NameLoc cannot be another NameLoc");
loc = NameLoc::get(Identifier::get(str, ctx), childLoc);
// Parse the closing ')'.
if (parseToken(Token::r_paren,
"expected ')' after child location of NameLoc"))
return failure();
} else {
loc = NameLoc::get(Identifier::get(str, ctx), ctx);
}
return success();
}
ParseResult Parser::parseLocationInstance(LocationAttr &loc) {
// Handle either name or filelinecol locations.
if (getToken().is(Token::string))
return parseNameOrFileLineColLocation(loc);
// Bare tokens required for other cases.
if (!getToken().is(Token::bare_identifier))
return emitError("expected location instance");
// Check for the 'callsite' signifying a callsite location.
if (getToken().getSpelling() == "callsite")
return parseCallSiteLocation(loc);
// If the token is 'fused', then this is a fused location.
if (getToken().getSpelling() == "fused")
return parseFusedLocation(loc);
// Check for a 'unknown' for an unknown location.
if (getToken().getSpelling() == "unknown") {
consumeToken(Token::bare_identifier);
loc = UnknownLoc::get(getContext());
return success();
}
return emitError("expected location instance");
}
//===----------------------------------------------------------------------===//
// Affine parsing.
//===----------------------------------------------------------------------===//
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
namespace {
/// This is a specialized parser for affine structures (affine maps, affine
/// expressions, and integer sets), maintaining the state transient to their
/// bodies.
class AffineParser : public Parser {
public:
AffineParser(ParserState &state, bool allowParsingSSAIds = false,
function_ref<ParseResult(bool)> parseElement = nullptr)
: Parser(state), allowParsingSSAIds(allowParsingSSAIds),
parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}
AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
ParseResult parseAffineMapOfSSAIds(AffineMap &map,
OpAsmParser::Delimiter delimiter);
void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
unsigned &numDims);
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// Identifier lists for polyhedral structures.
ParseResult parseDimIdList(unsigned &numDims);
ParseResult parseSymbolIdList(unsigned &numSymbols);
ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
unsigned &numSymbols);
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
AffineExpr parseAffineExpr();
AffineExpr parseParentheticalExpr();
AffineExpr parseNegateExpression(AffineExpr lhs);
AffineExpr parseIntegerExpr();
AffineExpr parseBareIdExpr();
AffineExpr parseSSAIdExpr(bool isSymbol);
AffineExpr parseSymbolSSAIdExpr();
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
AffineExpr rhs, SMLoc opLoc);
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
AffineExpr rhs);
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc);
AffineExpr parseAffineConstraint(bool *isEq);
private:
bool allowParsingSSAIds;
function_ref<ParseResult(bool)> parseElement;
unsigned numDimOperands;
unsigned numSymbolOperands;
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
AffineExpr lhs, AffineExpr rhs,
SMLoc opLoc) {
// TODO: make the error location info accurate.
switch (op) {
case Mul:
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return lhs * rhs;
case FloorDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.floorDiv(rhs);
case CeilDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.ceilDiv(rhs);
case Mod:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs % rhs;
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineHighPrecOp");
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
AffineExpr lhs, AffineExpr rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return lhs + rhs;
case AffineLowPrecOp::Sub:
return lhs - rhs;
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineLowPrecOp");
}
/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
switch (getToken().getKind()) {
case Token::plus:
consumeToken(Token::plus);
return AffineLowPrecOp::Add;
case Token::minus:
consumeToken(Token::minus);
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
switch (getToken().getKind()) {
case Token::star:
consumeToken(Token::star);
return Mul;
case Token::kw_floordiv:
consumeToken(Token::kw_floordiv);
return FloorDiv;
case Token::kw_ceildiv:
consumeToken(Token::kw_ceildiv);
return CeilDiv;
case Token::kw_mod:
consumeToken(Token::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
if (parseToken(Token::l_paren, "expected '('"))
return nullptr;
if (getToken().is(Token::r_paren))
return (emitError("no expression inside parentheses"), nullptr);
auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')'"))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
if (parseToken(Token::minus, "expected '-'"))
return nullptr;
AffineExpr operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return (emitError("missing operand of negation"), nullptr);
return (-1) * operand;
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
if (getToken().isNot(Token::bare_identifier))
return (emitError("expected bare identifier"), nullptr);
StringRef sRef = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == sRef) {
consumeToken(Token::bare_identifier);
return entry.second;
}
}
return (emitError("use of undeclared identifier"), nullptr);
}
/// Parse an SSA id which may appear in an affine expression.
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
if (!allowParsingSSAIds)
return (emitError("unexpected ssa identifier"), nullptr);
if (getToken().isNot(Token::percent_identifier))
return (emitError("expected ssa identifier"), nullptr);
auto name = getTokenSpelling();
// Check if we already parsed this SSA id.
for (auto entry : dimsAndSymbols) {
if (entry.first == name) {
consumeToken(Token::percent_identifier);
return entry.second;
}
}
// Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
if (parseElement(isSymbol))
return (emitError("failed to parse ssa identifier"), nullptr);
auto idExpr = isSymbol
? getAffineSymbolExpr(numSymbolOperands++, getContext())
: getAffineDimExpr(numDimOperands++, getContext());
dimsAndSymbols.push_back({name, idExpr});
return idExpr;
}
AffineExpr AffineParser::parseSymbolSSAIdExpr() {
if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
return nullptr;
AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
if (!symbolExpr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
return nullptr;
return symbolExpr;
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("constant too large for index"), nullptr);
consumeToken(Token::integer);
return builder.getAffineConstantExpr((int64_t)val.getValue());
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
// -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
switch (getToken().getKind()) {
case Token::bare_identifier:
return parseBareIdExpr();
case Token::kw_symbol:
return parseSymbolSSAIdExpr();
case Token::percent_identifier:
return parseSSAIdExpr(/*isSymbol=*/false);
case Token::integer:
return parseIntegerExpr();
case Token::l_paren:
return parseParentheticalExpr();
case Token::minus:
return parseNegateExpression(lhs);
case Token::kw_ceildiv:
case Token::kw_floordiv:
case Token::kw_mod:
case Token::plus:
case Token::star:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
AffineLowPrecOp llhsOp) {
AffineExpr lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr expr =
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
/// Parse a dim or symbol from the lists appearing before the actual
/// expressions of the affine map. Update our state to store the
/// dimensional/symbolic identifier.
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
if (getToken().isNot(Token::bare_identifier))
return emitError("expected bare identifier");
auto name = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == name)
return emitError("redefinition of identifier '" + name + "'");
}
consumeToken(Token::bare_identifier);
dimsAndSymbols.push_back({name, idExpr});
return success();
}
/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
if (parseToken(Token::l_paren,
"expected '(' at start of dimensional identifiers list")) {
return failure();
}
auto parseElt = [&]() -> ParseResult {
auto dimension = getAffineDimExpr(numDims++, getContext());
return parseIdentifierDefinition(dimension);
};
return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
consumeToken(Token::l_square);
auto parseElt = [&]() -> ParseResult {
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
return parseIdentifierDefinition(symbol);
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt);
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
unsigned &numSymbols) {
if (parseDimIdList(numDims)) {
return failure();
}
if (!getToken().is(Token::l_square)) {
numSymbols = 0;
return success();
}
return parseSymbolIdList(numSymbols);
}
/// Parses an ambiguous affine map or integer set definition inline.
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
IntegerSet &set) {
unsigned numDims = 0, numSymbols = 0;
// List of dimensional and optional symbol identifiers.
if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
return failure();
}
// This is needed for parsing attributes as we wouldn't know whether we would
// be parsing an integer set attribute or an affine map attribute.
bool isArrow = getToken().is(Token::arrow);
bool isColon = getToken().is(Token::colon);
if (!isArrow && !isColon) {
return emitError("expected '->' or ':'");
} else if (isArrow) {
parseToken(Token::arrow, "expected '->' or '['");
map = parseAffineMapRange(numDims, numSymbols);
return map ? success() : failure();
} else if (parseToken(Token::colon, "expected ':' or '['")) {
return failure();
}
if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
return success();
return failure();
}
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult
AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
OpAsmParser::Delimiter delimiter) {
Token::Kind rightToken;
switch (delimiter) {
case OpAsmParser::Delimiter::Square:
if (parseToken(Token::l_square, "expected '['"))
return failure();
rightToken = Token::r_square;
break;
case OpAsmParser::Delimiter::Paren:
if (parseToken(Token::l_paren, "expected '('"))
return failure();
rightToken = Token::r_paren;
break;
default:
return emitError("unexpected delimiter");
}
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
exprs.push_back(elt);
return elt ? success() : failure();
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions); the list cannot be empty. Grammar:
// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
if (parseCommaSeparatedListUntil(rightToken, parseElt,
/*allowEmptyList=*/true))
return failure();
// Parsed a valid affine map.
if (exprs.empty())
map = AffineMap::get(getContext());
else
map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
exprs);
return success();
}
/// Parse the range and sizes affine map definition inline.
///
/// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
///
/// multi-dim-affine-expr ::= `(` `)`
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
unsigned numSymbols) {
parseToken(Token::l_paren, "expected '(' at start of affine map range");
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
ParseResult res = elt ? success() : failure();
exprs.push_back(elt);
return res;
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions); the list cannot be empty. Grammar:
// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
return AffineMap();
if (exprs.empty())
return AffineMap::get(getContext());
// Parsed a valid affine map.
return AffineMap::get(numDims, numSymbols, exprs);
}
/// Parse an affine constraint.
/// affine-constraint ::= affine-expr `>=` `0`
/// | affine-expr `==` `0`
///
/// isEq is set to true if the parsed constraint is an equality, false if it
/// is an inequality (greater than or equal).
///
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
AffineExpr expr = parseAffineExpr();
if (!expr)
return nullptr;
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = false;
return expr;
}
return (emitError("expected '0' after '>='"), nullptr);
}
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = true;
return expr;
}
return (emitError("expected '0' after '=='"), nullptr);
}
return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
nullptr);
}
/// Parse the constraints that are part of an integer set definition.
/// integer-set-inline
/// ::= dim-and-symbol-id-lists `:`
/// '(' affine-constraint-conjunction? ')'
/// affine-constraint-conjunction ::= affine-constraint (`,`
/// affine-constraint)*
///
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
unsigned numSymbols) {
if (parseToken(Token::l_paren,
"expected '(' at start of integer set constraint list"))
return IntegerSet();
SmallVector<AffineExpr, 4> constraints;
SmallVector<bool, 4> isEqs;
auto parseElt = [&]() -> ParseResult {
bool isEq;
auto elt = parseAffineConstraint(&isEq);
ParseResult res = elt ? success() : failure();
if (elt) {
constraints.push_back(elt);
isEqs.push_back(isEq);
}
return res;
};
// Parse a list of affine constraints (comma-separated).
if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
return IntegerSet();
// If no constraints were parsed, then treat this as a degenerate 'true' case.
if (constraints.empty()) {
/* 0 == 0 */
auto zero = getAffineConstantExpr(0, getContext());
return IntegerSet::get(numDims, numSymbols, zero, true);
}
// Parsed a valid integer set.
return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
}
/// Parse an ambiguous reference to either and affine map or an integer set.
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
IntegerSet &set) {
return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
}
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
llvm::SMLoc curLoc = getToken().getLoc();
IntegerSet set;
if (parseAffineMapOrIntegerSetReference(map, set))
return failure();
if (set)
return emitError(curLoc, "expected AffineMap, but got IntegerSet");
return success();
}
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
llvm::SMLoc curLoc = getToken().getLoc();
AffineMap map;
if (parseAffineMapOrIntegerSetReference(map, set))
return failure();
if (map)
return emitError(curLoc, "expected IntegerSet, but got AffineMap");
return success();
}
/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
/// parse SSA value uses encountered while parsing affine expressions.
ParseResult
Parser::parseAffineMapOfSSAIds(AffineMap &map,
function_ref<ParseResult(bool)> parseElement,
OpAsmParser::Delimiter delimiter) {
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
.parseAffineMapOfSSAIds(map, delimiter);
}
//===----------------------------------------------------------------------===//
// OperationParser
//===----------------------------------------------------------------------===//
namespace {
/// This class provides support for parsing operations and regions of
/// operations.
class OperationParser : public Parser {
public:
OperationParser(ParserState &state, ModuleOp moduleOp)
: Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) {
}
~OperationParser();
/// After parsing is finished, this function must be called to see if there
/// are any remaining issues.
ParseResult finalize();
//===--------------------------------------------------------------------===//
// SSA Value Handling
//===--------------------------------------------------------------------===//
/// This represents a use of an SSA value in the program. The first two
/// entries in the tuple are the name and result number of a reference. The
/// third is the location of the reference, which is used in case this ends
/// up being a use of an undefined value.
struct SSAUseInfo {
StringRef name; // Value name, e.g. %42 or %abc
unsigned number; // Number, specified with #12
SMLoc loc; // Location of first definition or use.
};
/// Push a new SSA name scope to the parser.
void pushSSANameScope(bool isIsolated);
/// Pop the last SSA name scope from the parser.
ParseResult popSSANameScope();
/// Register a definition of a value with the symbol table.
ParseResult addDefinition(SSAUseInfo useInfo, Value value);
/// Parse an optional list of SSA uses into 'results'.
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
/// Parse a single SSA use into 'result'.
ParseResult parseSSAUse(SSAUseInfo &result);
/// Given a reference to an SSA value and its type, return a reference. This
/// returns null on failure.
Value resolveSSAUse(SSAUseInfo useInfo, Type type);
ParseResult parseSSADefOrUseAndType(
const std::function<ParseResult(SSAUseInfo, Type)> &action);
ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
/// Return the location of the value identified by its name and number if it
/// has been already reference.
Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
auto &values = isolatedNameScopes.back().values;
if (!values.count(name) || number >= values[name].size())
return {};
if (values[name][number].first)
return values[name][number].second;
return {};
}
//===--------------------------------------------------------------------===//
// Operation Parsing
//===--------------------------------------------------------------------===//
/// Parse an operation instance.
ParseResult parseOperation();
/// Parse a single operation successor and its operand list.
ParseResult parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value> &operands);
/// Parse a comma-separated list of operation successors in brackets.
ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations,
SmallVectorImpl<SmallVector<Value, 4>> &operands);
/// Parse an operation instance that is in the generic form.
Operation *parseGenericOperation();
/// Parse an operation instance that is in the generic form and insert it at
/// the provided insertion point.
Operation *parseGenericOperation(Block *insertBlock,
Block::iterator insertPt);
/// Parse an operation instance that is in the op-defined custom form.
Operation *parseCustomOperation();
//===--------------------------------------------------------------------===//
// Region Parsing
//===--------------------------------------------------------------------===//
/// Parse a region into 'region' with the provided entry block arguments.
/// 'isIsolatedNameScope' indicates if the naming scope of this region is
/// isolated from those above.
ParseResult parseRegion(Region &region,
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
bool isIsolatedNameScope = false);
/// Parse a region body into 'region'.
ParseResult parseRegionBody(Region &region);
//===--------------------------------------------------------------------===//
// Block Parsing
//===--------------------------------------------------------------------===//
/// Parse a new block into 'block'.
ParseResult parseBlock(Block *&block);
/// Parse a list of operations into 'block'.
ParseResult parseBlockBody(Block *block);
/// Parse a (possibly empty) list of block arguments.
ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results,
Block *owner);
/// Get the block with the specified name, creating it if it doesn't
/// already exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *getBlockNamed(StringRef name, SMLoc loc);
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
private:
/// Returns the info for a block at the current scope for the given name.
std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) {
return blocksByName.back()[name];
}
/// Insert a new forward reference to the given block.
void insertForwardRef(Block *block, SMLoc loc) {
forwardRef.back().try_emplace(block, loc);
}
/// Erase any forward reference to the given block.
bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
/// Record that a definition was added at the current scope.
void recordDefinition(StringRef def);
/// Get the value entry for the given SSA name.
SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name);
/// Create a forward reference placeholder value with the given location and
/// result type.
Value createForwardRefPlaceholder(SMLoc loc, Type type);
/// Return true if this is a forward reference.
bool isForwardRefPlaceholder(Value value) {
return forwardRefPlaceholders.count(value);
}
/// This struct represents an isolated SSA name scope. This scope may contain
/// other nested non-isolated scopes. These scopes are used for operations
/// that are known to be isolated to allow for reusing names within their
/// regions, even if those names are used above.
struct IsolatedSSANameScope {
/// Record that a definition was added at the current scope.
void recordDefinition(StringRef def) {
definitionsPerScope.back().insert(def);
}
/// Push a nested name scope.
void pushSSANameScope() { definitionsPerScope.push_back({}); }
/// Pop a nested name scope.
void popSSANameScope() {
for (auto &def : definitionsPerScope.pop_back_val())
values.erase(def.getKey());
}
/// This keeps track of all of the SSA values we are tracking for each name
/// scope, indexed by their name. This has one entry per result number.
llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values;
/// This keeps track of all of the values defined by a specific name scope.
SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
};
/// A list of isolated name scopes.
SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
/// This keeps track of the block names as well as the location of the first
/// reference for each nested name scope. This is used to diagnose invalid
/// block references and memorize them.
SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName;
SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
/// These are all of the placeholders we've made along with the location of
/// their first reference, to allow checking for use of undefined values.
DenseMap<Value, SMLoc> forwardRefPlaceholders;
/// The builder used when creating parsed operation instances.
OpBuilder opBuilder;
/// The top level module operation.
ModuleOp moduleOp;
};
} // end anonymous namespace
OperationParser::~OperationParser() {
for (auto &fwd : forwardRefPlaceholders) {
// Drop all uses of undefined forward declared reference and destroy
// defining operation.
fwd.first.dropAllUses();
fwd.first.getDefiningOp()->destroy();
}
}
/// After parsing is finished, this function must be called to see if there are
/// any remaining issues.
ParseResult OperationParser::finalize() {
// Check for any forward references that are left. If we find any, error
// out.
if (!forwardRefPlaceholders.empty()) {
SmallVector<std::pair<const char *, Value>, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRefPlaceholders)
errors.push_back({entry.second.getPointer(), entry.first});
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry.first);
emitError(loc, "use of undeclared SSA value name");
}
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// SSA Value Handling
//===----------------------------------------------------------------------===//
void OperationParser::pushSSANameScope(bool isIsolated) {
blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>());
forwardRef.push_back(DenseMap<Block *, SMLoc>());
// Push back a new name definition scope.
if (isIsolated)
isolatedNameScopes.push_back({});
isolatedNameScopes.back().pushSSANameScope();
}
ParseResult OperationParser::popSSANameScope() {
auto forwardRefInCurrentScope = forwardRef.pop_back_val();
// Verify that all referenced blocks were defined.
if (!forwardRefInCurrentScope.empty()) {
SmallVector<std::pair<const char *, Block *>, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRefInCurrentScope) {
errors.push_back({entry.second.getPointer(), entry.first});
// Add this block to the top-level region to allow for automatic cleanup.
moduleOp.getOperation()->getRegion(0).push_back(entry.first);
}
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry.first);
emitError(loc, "reference to an undefined block");
}
return failure();
}
// Pop the next nested namescope. If there is only one internal namescope,
// just pop the isolated scope.
auto &currentNameScope = isolatedNameScopes.back();
if (currentNameScope.definitionsPerScope.size() == 1)
isolatedNameScopes.pop_back();
else
currentNameScope.popSSANameScope();
blocksByName.pop_back();
return success();
}
/// Register a definition of a value with the symbol table.
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
auto &entries = getSSAValueEntry(useInfo.name);
// Make sure there is a slot for this value.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If we already have an entry for this, check to see if it was a definition
// or a forward reference.
if (auto existing = entries[useInfo.number].first) {
if (!isForwardRefPlaceholder(existing)) {
return emitError(useInfo.loc)
.append("redefinition of SSA value '", useInfo.name, "'")
.attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
.append("previously defined here");
}
// If it was a forward reference, update everything that used it to use
// the actual definition instead, delete the forward ref, and remove it
// from our set of forward references we track.
existing.replaceAllUsesWith(value);
existing.getDefiningOp()->destroy();
forwardRefPlaceholders.erase(existing);
}
/// Record this definition for the current scope.
entries[useInfo.number] = {value, useInfo.loc};
recordDefinition(useInfo.name);
return success();
}
/// Parse a (possibly empty) list of SSA operands.
///
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
/// ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
if (getToken().isNot(Token::percent_identifier))
return success();
return parseCommaSeparatedList([&]() -> ParseResult {
SSAUseInfo result;
if (parseSSAUse(result))
return failure();
results.push_back(result);
return success();
});
}
/// Parse a SSA operand for an operation.
///
/// ssa-use ::= ssa-id
///
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
result.name = getTokenSpelling();
result.number = 0;
result.loc = getToken().getLoc();
if (parseToken(Token::percent_identifier, "expected SSA operand"))
return failure();
// If we have an attribute ID, it is a result number.
if (getToken().is(Token::hash_identifier)) {
if (auto value = getToken().getHashIdentifierNumber())
result.number = value.getValue();
else
return emitError("invalid SSA value result number");
consumeToken(Token::hash_identifier);
}
return success();
}
/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies. This returns null on failure.
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
auto &entries = getSSAValueEntry(useInfo.name);
// If we have already seen a value of this name, return it.
if (useInfo.number < entries.size() && entries[useInfo.number].first) {
auto result = entries[useInfo.number].first;
// Check that the type matches the other uses.
if (result.getType() == type)
return result;
emitError(useInfo.loc, "use of value '")
.append(useInfo.name,
"' expects different type than prior uses: ", type, " vs ",
result.getType())
.attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
.append("prior use here");
return nullptr;
}
// Make sure we have enough slots for this.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If the value has already been defined and this is an overly large result
// number, diagnose that.
if (entries[0].first && !isForwardRefPlaceholder(entries[0].first))
return (emitError(useInfo.loc, "reference to invalid result number"),
nullptr);
// Otherwise, this is a forward reference. Create a placeholder and remember
// that we did so.
auto result = createForwardRefPlaceholder(useInfo.loc, type);
entries[useInfo.number].first = result;
entries[useInfo.number].second = useInfo.loc;
return result;
}
/// Parse an SSA use with an associated type.
///
/// ssa-use-and-type ::= ssa-use `:` type
ParseResult OperationParser::parseSSADefOrUseAndType(
const std::function<ParseResult(SSAUseInfo, Type)> &action) {
SSAUseInfo useInfo;
if (parseSSAUse(useInfo) ||
parseToken(Token::colon, "expected ':' and type for SSA operand"))
return failure();
auto type = parseType();
if (!type)
return failure();
return action(useInfo, type);
}
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
/// ssa-use-and-type-list
/// ::= ssa-use-list ':' type-list-no-parens
///
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
SmallVectorImpl<Value> &results) {
SmallVector<SSAUseInfo, 4> valueIDs;
if (parseOptionalSSAUseList(valueIDs))
return failure();
// If there were no operands, then there is no colon or type lists.
if (valueIDs.empty())
return success();
SmallVector<Type, 4> types;
if (parseToken(Token::colon, "expected ':' in operand list") ||
parseTypeListNoParens(types))
return failure();
if (valueIDs.size() != types.size())
return emitError("expected ")
<< valueIDs.size() << " types to match operand list";
results.reserve(valueIDs.size());
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
if (auto value = resolveSSAUse(valueIDs[i], types[i]))
results.push_back(value);
else
return failure();
}
return success();
}
/// Record that a definition was added at the current scope.
void OperationParser::recordDefinition(StringRef def) {
isolatedNameScopes.back().recordDefinition(def);
}
/// Get the value entry for the given SSA name.
SmallVectorImpl<std::pair<Value, SMLoc>> &
OperationParser::getSSAValueEntry(StringRef name) {
return isolatedNameScopes.back().values[name];
}
/// Create and remember a new placeholder for a forward reference.
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
// Forward references are always created as operations, because we just need
// something with a def/use chain.
//
// We create these placeholders as having an empty name, which we know
// cannot be created through normal user input, allowing us to distinguish
// them.
auto name = OperationName("placeholder", getContext());
auto *op = Operation::create(
getEncodedSourceLocation(loc), name, type, /*operands=*/{},
/*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0,
/*resizableOperandList=*/false);
forwardRefPlaceholders[op->getResult(0)] = loc;
return op->getResult(0);
}
//===----------------------------------------------------------------------===//
// Operation Parsing
//===----------------------------------------------------------------------===//
/// Parse an operation.
///
/// operation ::= op-result-list?
/// (generic-operation | custom-operation)
/// trailing-location?
/// generic-operation ::= string-literal `(` ssa-use-list? `)`
/// successor-list? (`(` region-list `)`)?
/// attribute-dict? `:` function-type
/// custom-operation ::= bare-id custom-operation-format
/// op-result-list ::= op-result (`,` op-result)* `=`
/// op-result ::= ssa-id (`:` integer-literal)
///
ParseResult OperationParser::parseOperation() {
auto loc = getToken().getLoc();
SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs;
size_t numExpectedResults = 0;
if (getToken().is(Token::percent_identifier)) {
// Parse the group of result ids.
auto parseNextResult = [&]() -> ParseResult {
// Parse the next result id.
if (!getToken().is(Token::percent_identifier))
return emitError("expected valid ssa identifier");
Token nameTok = getToken();
consumeToken(Token::percent_identifier);
// If the next token is a ':', we parse the expected result count.
size_t expectedSubResults = 1;
if (consumeIf(Token::colon)) {
// Check that the next token is an integer.
if (!getToken().is(Token::integer))
return emitError("expected integer number of results");
// Check that number of results is > 0.
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || val.getValue() < 1)
return emitError("expected named operation to have atleast 1 result");
consumeToken(Token::integer);
expectedSubResults = *val;
}
resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
nameTok.getLoc());
numExpectedResults += expectedSubResults;
return success();
};
if (parseCommaSeparatedList(parseNextResult))
return failure();
if (parseToken(Token::equal, "expected '=' after SSA name"))
return failure();
}
Operation *op;
if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
op = parseCustomOperation();
else if (getToken().is(Token::string))
op = parseGenericOperation();
else
return emitError("expected operation name in quotes");
// If parsing of the basic operation failed, then this whole thing fails.
if (!op)
return failure();
// If the operation had a name, register it.
if (!resultIDs.empty()) {
if (op->getNumResults() == 0)
return emitError(loc, "cannot name an operation with no results");
if (numExpectedResults != op->getNumResults())
return emitError(loc, "operation defines ")
<< op->getNumResults() << " results but was provided "
<< numExpectedResults << " to bind";
// Add definitions for each of the result groups.
unsigned opResI = 0;
for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) {
for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
op->getResult(opResI++)))
return failure();
}
}
}
return success();
}
/// Parse a single operation successor and its operand list.
///
/// successor ::= block-id branch-use-list?
/// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)`
///
ParseResult
OperationParser::parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value> &operands) {
// Verify branch is identifier and get the matching block.
if (!getToken().is(Token::caret_identifier))
return emitError("expected block name");
dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
consumeToken();
// Handle optional arguments.
if (consumeIf(Token::l_paren) &&
(parseOptionalSSAUseAndTypeList(operands) ||
parseToken(Token::r_paren, "expected ')' to close argument list"))) {
return failure();
}
return success();
}
/// Parse a comma-separated list of operation successors in brackets.
///
/// successor-list ::= `[` successor (`,` successor )* `]`
///
ParseResult OperationParser::parseSuccessors(
SmallVectorImpl<Block *> &destinations,
SmallVectorImpl<SmallVector<Value, 4>> &operands) {
if (parseToken(Token::l_square, "expected '['"))
return failure();
auto parseElt = [this, &destinations, &operands]() {
Block *dest;
SmallVector<Value, 4> destOperands;
auto res = parseSuccessorAndUseList(dest, destOperands);
destinations.push_back(dest);
operands.push_back(destOperands);
return res;
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt,
/*allowEmptyList=*/false);
}
namespace {
// RAII-style guard for cleaning up the regions in the operation state before
// deleting them. Within the parser, regions may get deleted if parsing failed,
// and other errors may be present, in particular undominated uses. This makes
// sure such uses are deleted.
struct CleanupOpStateRegions {
~CleanupOpStateRegions() {
SmallVector<Region *, 4> regionsToClean;
regionsToClean.reserve(state.regions.size());
for (auto &region : state.regions)
if (region)
for (auto &block : *region)
block.dropAllDefinedValueUses();
}
OperationState &state;
};
} // namespace
Operation *OperationParser::parseGenericOperation() {
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
auto name = getToken().getStringValue();
if (name.empty())
return (emitError("empty operation name is invalid"), nullptr);
if (name.find('\0') != StringRef::npos)
return (emitError("null character not allowed in operation name"), nullptr);
consumeToken(Token::string);
OperationState result(srcLocation, name);
// Generic operations have a resizable operation list.
result.setOperandListToResizable();
// Parse the operand list.
SmallVector<SSAUseInfo, 8> operandInfos;
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
parseOptionalSSAUseList(operandInfos) ||
parseToken(Token::r_paren, "expected ')' to end operand list")) {
return nullptr;
}
// Parse the successor list but don't add successors to the result yet to
// avoid messing up with the argument order.
SmallVector<Block *, 2> successors;
SmallVector<SmallVector<Value, 4>, 2> successorOperands;
if (getToken().is(Token::l_square)) {
// Check if the operation is a known terminator.
const AbstractOperation *abstractOp = result.name.getAbstractOperation();
if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator))
return emitError("successors in non-terminator"), nullptr;
if (parseSuccessors(successors, successorOperands))
return nullptr;
}
// Parse the region list.
CleanupOpStateRegions guard{result};
if (consumeIf(Token::l_paren)) {
do {
// Create temporary regions with the top level region as parent.
result.regions.emplace_back(new Region(moduleOp));
if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
return nullptr;
} while (consumeIf(Token::comma));
if (parseToken(Token::r_paren, "expected ')' to end region list"))
return nullptr;
}
if (getToken().is(Token::l_brace)) {
if (parseAttributeDict(result.attributes))
return nullptr;
}
if (parseToken(Token::colon, "expected ':' followed by operation type"))
return nullptr;
auto typeLoc = getToken().getLoc();
auto type = parseType();
if (!type)
return nullptr;
auto fnType = type.dyn_cast<FunctionType>();
if (!fnType)
return (emitError(typeLoc, "expected function type"), nullptr);
result.addTypes(fnType.getResults());
// Check that we have the right number of types for the operands.
auto operandTypes = fnType.getInputs();
if (operandTypes.size() != operandInfos.size()) {
auto plural = "s"[operandInfos.size() == 1];
return (emitError(typeLoc, "expected ")
<< operandInfos.size() << " operand type" << plural
<< " but had " << operandTypes.size(),
nullptr);
}
// Resolve all of the operands.
for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
if (!result.operands.back())
return nullptr;
}
// Add the successors, and their operands after the proper operands.
for (auto succ : llvm::zip(successors, successorOperands)) {
Block *successor = std::get<0>(succ);
const SmallVector<Value, 4> &operands = std::get<1>(succ);
result.addSuccessor(successor, operands);
}
// Parse a location if one is present.
if (parseOptionalTrailingLocation(result.location))
return nullptr;
return opBuilder.createOperation(result);
}
Operation *OperationParser::parseGenericOperation(Block *insertBlock,
Block::iterator insertPt) {
OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
opBuilder.setInsertionPoint(insertBlock, insertPt);
return parseGenericOperation();
}
namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition,
OperationParser &parser)
: nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {}
/// Parse an instance of the operation described by 'opDefinition' into the
/// provided operation state.
ParseResult parseOperation(OperationState &opState) {
if (opDefinition->parseAssembly(*this, opState))
return failure();
return success();
}
Operation *parseGenericOperation(Block *insertBlock,
Block::iterator insertPt) final {
return parser.parseGenericOperation(insertBlock, insertPt);
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// Return if any errors were emitted during parsing.
bool didEmitError() const { return emittedError; }
/// Emit a diagnostic at the specified location and return failure.
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
emittedError = true;
return parser.emitError(loc, "custom op '" + opDefinition->name + "' " +
message);
}
llvm::SMLoc getCurrentLocation() override {
return parser.getToken().getLoc();
}
Builder &getBuilder() const override { return parser.builder; }
llvm::SMLoc getNameLoc() const override { return nameLoc; }
//===--------------------------------------------------------------------===//
// Token Parsing
//===--------------------------------------------------------------------===//
/// Parse a `->` token.
ParseResult parseArrow() override {
return parser.parseToken(Token::arrow, "expected '->'");
}
/// Parses a `->` if present.
ParseResult parseOptionalArrow() override {
return success(parser.consumeIf(Token::arrow));
}
/// Parse a `:` token.
ParseResult parseColon() override {
return parser.parseToken(Token::colon, "expected ':'");
}
/// Parse a `:` token if present.
ParseResult parseOptionalColon() override {
return success(parser.consumeIf(Token::colon));
}
/// Parse a `,` token.
ParseResult parseComma() override {
return parser.parseToken(Token::comma, "expected ','");
}
/// Parse a `,` token if present.
ParseResult parseOptionalComma() override {
return success(parser.consumeIf(Token::comma));
}
/// Parses a `...` if present.
ParseResult parseOptionalEllipsis() override {
return success(parser.consumeIf(Token::ellipsis));
}
/// Parse a `=` token.
ParseResult parseEqual() override {
return parser.parseToken(Token::equal, "expected '='");
}
/// Parse a '<' token.
ParseResult parseLess() override {
return parser.parseToken(Token::less, "expected '<'");
}
/// Parse a '>' token.
ParseResult parseGreater() override {
return parser.parseToken(Token::greater, "expected '>'");
}
/// Parse a `(` token.
ParseResult parseLParen() override {
return parser.parseToken(Token::l_paren, "expected '('");
}
/// Parses a '(' if present.
ParseResult parseOptionalLParen() override {
return success(parser.consumeIf(Token::l_paren));
}
/// Parse a `)` token.
ParseResult parseRParen() override {
return parser.parseToken(Token::r_paren, "expected ')'");
}
/// Parses a ')' if present.
ParseResult parseOptionalRParen() override {
return success(parser.consumeIf(Token::r_paren));
}
/// Parse a `[` token.
ParseResult parseLSquare() override {
return parser.parseToken(Token::l_square, "expected '['");
}
/// Parses a '[' if present.
ParseResult parseOptionalLSquare() override {
return success(parser.consumeIf(Token::l_square));
}
/// Parse a `]` token.
ParseResult parseRSquare() override {
return parser.parseToken(Token::r_square, "expected ']'");
}
/// Parses a ']' if present.
ParseResult parseOptionalRSquare() override {
return success(parser.consumeIf(Token::r_square));
}
//===--------------------------------------------------------------------===//
// Attribute Parsing
//===--------------------------------------------------------------------===//
/// Parse an arbitrary attribute of a given type and return it in result. This
/// also adds the attribute to the specified attribute list with the specified
/// name.
ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName,
SmallVectorImpl<NamedAttribute> &attrs) override {
result = parser.parseAttribute(type);
if (!result)
return failure();
attrs.push_back(parser.builder.getNamedAttr(attrName, result));
return success();
}
/// Parse a named dictionary into 'result' if it is present.
ParseResult
parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override {
if (parser.getToken().isNot(Token::l_brace))
return success();
return parser.parseAttributeDict(result);
}
/// Parse a named dictionary into 'result' if the `attributes` keyword is
/// present.
ParseResult parseOptionalAttrDictWithKeyword(
SmallVectorImpl<NamedAttribute> &result) override {
if (failed(parseOptionalKeyword("attributes")))
return success();
return parser.parseAttributeDict(result);
}
/// Parse an affine map instance into 'map'.
ParseResult parseAffineMap(AffineMap &map) override {
return parser.parseAffineMapReference(map);
}
/// Parse an integer set instance into 'set'.
ParseResult printIntegerSet(IntegerSet &set) override {
return parser.parseIntegerSetReference(set);
}
//===--------------------------------------------------------------------===//
// Identifier Parsing
//===--------------------------------------------------------------------===//
/// Returns if the current token corresponds to a keyword.
bool isCurrentTokenAKeyword() const {
return parser.getToken().is(Token::bare_identifier) ||
parser.getToken().isKeyword();
}
/// Parse the given keyword if present.
ParseResult parseOptionalKeyword(StringRef keyword) override {
// Check that the current token has the same spelling.
if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
return failure();
parser.consumeToken();
return success();
}
/// Parse a keyword, if present, into 'keyword'.
ParseResult parseOptionalKeyword(StringRef *keyword) override {
// Check that the current token is a keyword.
if (!isCurrentTokenAKeyword())
return failure();
*keyword = parser.getTokenSpelling();
parser.consumeToken();
return success();
}
/// Parse an optional @-identifier and store it (without the '@' symbol) in a
/// string attribute named 'attrName'.
ParseResult
parseOptionalSymbolName(StringAttr &result, StringRef attrName,
SmallVectorImpl<NamedAttribute> &attrs) override {
Token atToken = parser.getToken();
if (atToken.isNot(Token::at_identifier))
return failure();
result = getBuilder().getStringAttr(extractSymbolReference(atToken));
attrs.push_back(getBuilder().getNamedAttr(attrName, result));
parser.consumeToken();
return success();
}
//===--------------------------------------------------------------------===//
// Operand Parsing
//===--------------------------------------------------------------------===//
/// Parse a single operand.
ParseResult parseOperand(OperandType &result) override {
OperationParser::SSAUseInfo useInfo;
if (parser.parseSSAUse(useInfo))
return failure();
result = {useInfo.loc, useInfo.name, useInfo.number};
return success();
}
/// Parse zero or more SSA comma-separated operand references with a specified
/// surrounding delimiter, and an optional required operand count.
ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
requiredOperandCount, delimiter);
}
/// Parse zero or more SSA comma-separated operand or region arguments with
/// optional surrounding delimiter and required operand count.
ParseResult
parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
bool isOperandList, int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) {
auto startLoc = parser.getToken().getLoc();
// Handle delimiters.
switch (delimiter) {
case Delimiter::None:
// Don't check for the absence of a delimiter if the number of operands
// is unknown (and hence the operand list could be empty).
if (requiredOperandCount == -1)
break;
// Token already matches an identifier and so can't be a delimiter.
if (parser.getToken().is(Token::percent_identifier))
break;
// Test against known delimiters.
if (parser.getToken().is(Token::l_paren) ||
parser.getToken().is(Token::l_square))
return emitError(startLoc, "unexpected delimiter");
return emitError(startLoc, "invalid operand");
case Delimiter::OptionalParen:
if (parser.getToken().isNot(Token::l_paren))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Paren:
if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
return failure();
break;
case Delimiter::OptionalSquare:
if (parser.getToken().isNot(Token::l_square))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Square:
if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
return failure();
break;
}
// Check for zero operands.
if (parser.getToken().is(Token::percent_identifier)) {
do {
OperandType operandOrArg;
if (isOperandList ? parseOperand(operandOrArg)
: parseRegionArgument(operandOrArg))
return failure();
result.push_back(operandOrArg);
} while (parser.consumeIf(Token::comma));
}
// Handle delimiters. If we reach here, the optional delimiters were
// present, so we need to parse their closing one.
switch (delimiter) {
case Delimiter::None:
break;
case Delimiter::OptionalParen:
case Delimiter::Paren:
if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
return failure();
break;
case Delimiter::OptionalSquare:
case Delimiter::Square:
if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
return failure();
break;
}
if (requiredOperandCount != -1 &&
result.size() != static_cast<size_t>(requiredOperandCount))
return emitError(startLoc, "expected ")
<< requiredOperandCount << " operands";
return success();
}
/// Parse zero or more trailing SSA comma-separated trailing operand
/// references with a specified surrounding delimiter, and an optional
/// required operand count. A leading comma is expected before the operands.
ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount,
Delimiter delimiter) override {
if (parser.getToken().is(Token::comma)) {
parseComma();
return parseOperandList(result, requiredOperandCount, delimiter);
}
if (requiredOperandCount != -1)
return emitError(parser.getToken().getLoc(), "expected ")
<< requiredOperandCount << " operands";
return success();
}
/// Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperand(const OperandType &operand, Type type,
SmallVectorImpl<Value> &result) override {
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
if (auto value = parser.resolveSSAUse(operandInfo, type)) {
result.push_back(value);
return success();
}
return failure();
}
/// Parse an AffineMap of SSA ids.
ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
Attribute &mapAttr, StringRef attrName,
SmallVectorImpl<NamedAttribute> &attrs,
Delimiter delimiter) override {
SmallVector<OperandType, 2> dimOperands;
SmallVector<OperandType, 1> symOperands;
auto parseElement = [&](bool isSymbol) -> ParseResult {
OperandType operand;
if (parseOperand(operand))
return failure();
if (isSymbol)
symOperands.push_back(operand);
else
dimOperands.push_back(operand);
return success();
};
AffineMap map;
if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
return failure();
// Add AffineMap attribute.
if (map) {
mapAttr = AffineMapAttr::get(map);
attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
}
// Add dim operands before symbol operands in 'operands'.
operands.assign(dimOperands.begin(), dimOperands.end());
operands.append(symOperands.begin(), symOperands.end());
return success();
}
//===--------------------------------------------------------------------===//
// Region Parsing
//===--------------------------------------------------------------------===//
/// Parse a region that takes `arguments` of `argTypes` types. This
/// effectively defines the SSA values of `arguments` and assigns their type.
ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
ArrayRef<Type> argTypes,
bool enableNameShadowing) override {
assert(arguments.size() == argTypes.size() &&
"mismatching number of arguments and types");
SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
regionArguments;
for (auto pair : llvm::zip(arguments, argTypes)) {
const OperandType &operand = std::get<0>(pair);
Type type = std::get<1>(pair);
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
regionArguments.emplace_back(operandInfo, type);
}
// Try to parse the region.
assert((!enableNameShadowing ||
opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) &&
"name shadowing is only allowed on isolated regions");
if (parser.parseRegion(region, regionArguments, enableNameShadowing))
return failure();
return success();
}
/// Parses a region if present.
ParseResult parseOptionalRegion(Region &region,
ArrayRef<OperandType> arguments,
ArrayRef<Type> argTypes,
bool enableNameShadowing) override {
if (parser.getToken().isNot(Token::l_brace))
return success();
return parseRegion(region, arguments, argTypes, enableNameShadowing);
}
/// Parse a region argument. The type of the argument will be resolved later
/// by a call to `parseRegion`.
ParseResult parseRegionArgument(OperandType &argument) override {
return parseOperand(argument);
}
/// Parse a region argument if present.
ParseResult parseOptionalRegionArgument(OperandType &argument) override {
if (parser.getToken().isNot(Token::percent_identifier))
return success();
return parseRegionArgument(argument);
}
ParseResult
parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
requiredOperandCount, delimiter);
}
//===--------------------------------------------------------------------===//
// Successor Parsing
//===--------------------------------------------------------------------===//
/// Parse a single operation successor and its operand list.
ParseResult
parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value> &operands) override {
return parser.parseSuccessorAndUseList(dest, operands);
}
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
/// Parse a type.
ParseResult parseType(Type &result) override {
return failure(!(result = parser.parseType()));
}
/// Parse an arrow followed by a type list.
ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override {
if (parseArrow() || parser.parseFunctionResultTypes(result))
return failure();
return success();
}
/// Parse an optional arrow followed by a type list.
ParseResult
parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
if (!parser.consumeIf(Token::arrow))
return success();
return parser.parseFunctionResultTypes(result);
}
/// Parse a colon followed by a type.
ParseResult parseColonType(Type &result) override {
return failure(parser.parseToken(Token::colon, "expected ':'") ||
!(result = parser.parseType()));
}
/// Parse a colon followed by a type list, which must have at least one type.
ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
if (parser.parseToken(Token::colon, "expected ':'"))
return failure();
return parser.parseTypeListNoParens(result);
}
/// Parse an optional colon followed by a type list, which if present must
/// have at least one type.
ParseResult
parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
if (!parser.consumeIf(Token::colon))
return success();
return parser.parseTypeListNoParens(result);
}
/// Parse a list of assignments of the form
/// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
/// The list must contain at least one entry
ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs) {
auto parseElt = [&]() -> ParseResult {
OperandType regionArg, operand;
Type type;
if (parseRegionArgument(regionArg) || parseEqual() ||
parseOperand(operand))
return failure();
lhs.push_back(regionArg);
rhs.push_back(operand);
return success();
};
if (parseLParen())
return failure();
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
private:
/// The source location of the operation name.
SMLoc nameLoc;
/// The abstract information of the operation.
const AbstractOperation *opDefinition;
/// The main operation parser.
OperationParser &parser;
/// A flag that indicates if any errors were emitted during parsing.
bool emittedError = false;
};
} // end anonymous namespace.
Operation *OperationParser::parseCustomOperation() {
auto opLoc = getToken().getLoc();
auto opName = getTokenSpelling();
auto *opDefinition = AbstractOperation::lookup(opName, getContext());
if (!opDefinition && !opName.contains('.')) {
// If the operation name has no namespace prefix we treat it as a standard
// operation and prefix it with "std".
// TODO: Would it be better to just build a mapping of the registered
// operations in the standard dialect?
opDefinition =
AbstractOperation::lookup(Twine("std." + opName).str(), getContext());
}
if (!opDefinition) {
emitError(opLoc) << "custom op '" << opName << "' is unknown";
return nullptr;
}
consumeToken();
// If the custom op parser crashes, produce some indication to help
// debugging.
std::string opNameStr = opName.str();
llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
opNameStr.c_str());
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(opLoc);
// Have the op implementation take a crack and parsing this.
OperationState opState(srcLocation, opDefinition->name);
CleanupOpStateRegions guard{opState};
CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this);
if (opAsmParser.parseOperation(opState))
return nullptr;
// If it emitted an error, we failed.
if (opAsmParser.didEmitError())
return nullptr;
// Parse a location if one is present.
if (parseOptionalTrailingLocation(opState.location))
return nullptr;
// Otherwise, we succeeded. Use the state it parsed as our op information.
return opBuilder.createOperation(opState);
}
//===----------------------------------------------------------------------===//
// Region Parsing
//===----------------------------------------------------------------------===//
/// Region.
///
/// region ::= '{' region-body
///
ParseResult OperationParser::parseRegion(
Region &region,
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
bool isIsolatedNameScope) {
// Parse the '{'.
if (parseToken(Token::l_brace, "expected '{' to begin a region"))
return failure();
// Check for an empty region.
if (entryArguments.empty() && consumeIf(Token::r_brace))
return success();
auto currentPt = opBuilder.saveInsertionPoint();
// Push a new named value scope.
pushSSANameScope(isIsolatedNameScope);
// Parse the first block directly to allow for it to be unnamed.
Block *block = new Block();
// Add arguments to the entry block.
if (!entryArguments.empty()) {
for (auto &placeholderArgPair : entryArguments) {
auto &argInfo = placeholderArgPair.first;
// Ensure that the argument was not already defined.
if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
"' is already in use")
.attachNote(getEncodedSourceLocation(*defLoc))
<< "previously referenced here";
}
if (addDefinition(placeholderArgPair.first,
block->addArgument(placeholderArgPair.second))) {
delete block;
return failure();
}
}
// If we had named arguments, then don't allow a block name.
if (getToken().is(Token::caret_identifier))
return emitError("invalid block name in region with named arguments");
}
if (parseBlock(block)) {
delete block;
return failure();
}
// Verify that no other arguments were parsed.
if (!entryArguments.empty() &&
block->getNumArguments() > entryArguments.size()) {
delete block;
return emitError("entry block arguments were already defined");
}
// Parse the rest of the region.
region.push_back(block);
if (parseRegionBody(region))
return failure();
// Pop the SSA value scope for this region.
if (popSSANameScope())
return failure();
// Reset the original insertion point.
opBuilder.restoreInsertionPoint(currentPt);
return success();
}
/// Region.
///
/// region-body ::= block* '}'
///
ParseResult OperationParser::parseRegionBody(Region &region) {
// Parse the list of blocks.
while (!consumeIf(Token::r_brace)) {
Block *newBlock = nullptr;
if (parseBlock(newBlock))
return failure();
region.push_back(newBlock);
}
return success();
}
//===----------------------------------------------------------------------===//
// Block Parsing
//===----------------------------------------------------------------------===//
/// Block declaration.
///
/// block ::= block-label? operation*
/// block-label ::= block-id block-arg-list? `:`
/// block-id ::= caret-id
/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult OperationParser::parseBlock(Block *&block) {
// The first block of a region may already exist, if it does the caret
// identifier is optional.
if (block && getToken().isNot(Token::caret_identifier))
return parseBlockBody(block);
SMLoc nameLoc = getToken().getLoc();
auto name = getTokenSpelling();
if (parseToken(Token::caret_identifier, "expected block name"))
return failure();
block = defineBlockNamed(name, nameLoc, block);
// Fail if the block was already defined.
if (!block)
return emitError(nameLoc, "redefinition of block '") << name << "'";
// If an argument list is present, parse it.
if (consumeIf(Token::l_paren)) {
SmallVector<BlockArgument, 8> bbArgs;
if (parseOptionalBlockArgList(bbArgs, block) ||
parseToken(Token::r_paren, "expected ')' to end argument list"))
return failure();
}
if (parseToken(Token::colon, "expected ':' after block name"))
return failure();
return parseBlockBody(block);
}
ParseResult OperationParser::parseBlockBody(Block *block) {
// Set the insertion point to the end of the block to parse.
opBuilder.setInsertionPointToEnd(block);
// Parse the list of operations that make up the body of the block.
while (getToken().isNot(Token::caret_identifier, Token::r_brace))
if (parseOperation())
return failure();
return success();
}
/// Get the block with the specified name, creating it if it doesn't already
/// exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
auto &blockAndLoc = getBlockInfoByName(name);
if (!blockAndLoc.first) {
blockAndLoc = {new Block(), loc};
insertForwardRef(blockAndLoc.first, loc);
}
return blockAndLoc.first;
}
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
Block *existing) {
auto &blockAndLoc = getBlockInfoByName(name);
if (!blockAndLoc.first) {
// If the caller provided a block, use it. Otherwise create a new one.
if (!existing)
existing = new Block();
blockAndLoc.first = existing;
blockAndLoc.second = loc;
return blockAndLoc.first;
}
// Forward declarations are removed once defined, so if we are defining a
// existing block and it is not a forward declaration, then it is a
// redeclaration.
if (!eraseForwardRef(blockAndLoc.first))
return nullptr;
return blockAndLoc.first;
}
/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult OperationParser::parseOptionalBlockArgList(
SmallVectorImpl<BlockArgument> &results, Block *owner) {
if (getToken().is(Token::r_brace))
return success();
// If the block already has arguments, then we're handling the entry block.
// Parse and register the names for the arguments, but do not add them.
bool definingExistingArgs = owner->getNumArguments() != 0;
unsigned nextArgument = 0;
return parseCommaSeparatedList([&]() -> ParseResult {
return parseSSADefOrUseAndType(
[&](SSAUseInfo useInfo, Type type) -> ParseResult {
// If this block did not have existing arguments, define a new one.
if (!definingExistingArgs)
return addDefinition(useInfo, owner->addArgument(type));
// Otherwise, ensure that this argument has already been created.
if (nextArgument >= owner->getNumArguments())
return emitError("too many arguments specified in argument list");
// Finally, make sure the existing argument has the correct type.
auto arg = owner->getArgument(nextArgument++);
if (arg.getType() != type)
return emitError("argument and block argument type mismatch");
return addDefinition(useInfo, arg);
});
});
}
//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//
namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class ModuleParser : public Parser {
public:
explicit ModuleParser(ParserState &state) : Parser(state) {}
ParseResult parseModule(ModuleOp module);
private:
/// Parse an attribute alias declaration.
ParseResult parseAttributeAliasDef();
/// Parse an attribute alias declaration.
ParseResult parseTypeAliasDef();
};
} // end anonymous namespace
/// Parses an attribute alias declaration.
///
/// attribute-alias-def ::= '#' alias-name `=` attribute-value
///
ParseResult ModuleParser::parseAttributeAliasDef() {
assert(getToken().is(Token::hash_identifier));
StringRef aliasName = getTokenSpelling().drop_front();
// Check for redefinitions.
if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0)
return emitError("redefinition of attribute alias id '" + aliasName + "'");
// Make sure this isn't invading the dialect attribute namespace.
if (aliasName.contains('.'))
return emitError("attribute names with a '.' are reserved for "
"dialect-defined names");
consumeToken(Token::hash_identifier);
// Parse the '='.
if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
return failure();
// Parse the attribute value.
Attribute attr = parseAttribute();
if (!attr)
return failure();
getState().symbols.attributeAliasDefinitions[aliasName] = attr;
return success();
}
/// Parse a type alias declaration.
///
/// type-alias-def ::= '!' alias-name `=` 'type' type
///
ParseResult ModuleParser::parseTypeAliasDef() {
assert(getToken().is(Token::exclamation_identifier));
StringRef aliasName = getTokenSpelling().drop_front();
// Check for redefinitions.
if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0)
return emitError("redefinition of type alias id '" + aliasName + "'");
// Make sure this isn't invading the dialect type namespace.
if (aliasName.contains('.'))
return emitError("type names with a '.' are reserved for "
"dialect-defined names");
consumeToken(Token::exclamation_identifier);
// Parse the '=' and 'type'.
if (parseToken(Token::equal, "expected '=' in type alias definition") ||
parseToken(Token::kw_type, "expected 'type' in type alias definition"))
return failure();
// Parse the type.
Type aliasedType = parseType();
if (!aliasedType)
return failure();
// Register this alias with the parser state.
getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
return success();
}
/// This is the top-level module parser.
ParseResult ModuleParser::parseModule(ModuleOp module) {
OperationParser opParser(getState(), module);
// Module itself is a name scope.
opParser.pushSSANameScope(/*isIsolated=*/true);
while (true) {
switch (getToken().getKind()) {
default:
// Parse a top-level operation.
if (opParser.parseOperation())
return failure();
break;
// If we got to the end of the file, then we're done.
case Token::eof: {
if (opParser.finalize())
return failure();
// Handle the case where the top level module was explicitly defined.
auto &bodyBlocks = module.getBodyRegion().getBlocks();
auto &operations = bodyBlocks.front().getOperations();
assert(!operations.empty() && "expected a valid module terminator");
// Check that the first operation is a module, and it is the only
// non-terminator operation.
ModuleOp nested = dyn_cast<ModuleOp>(operations.front());
if (nested && std::next(operations.begin(), 2) == operations.end()) {
// Merge the data of the nested module operation into 'module'.
module.setLoc(nested.getLoc());
module.setAttrs(nested.getOperation()->getAttrList());
bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks());
// Erase the original module body.
bodyBlocks.pop_front();
}
return opParser.popSSANameScope();
}
// If we got an error token, then the lexer already emitted an error, just
// stop. Someday we could introduce error recovery if there was demand
// for it.
case Token::error:
return failure();
// Parse an attribute alias.
case Token::hash_identifier:
if (parseAttributeAliasDef())
return failure();
break;
// Parse a type alias.
case Token::exclamation_identifier:
if (parseTypeAliasDef())
return failure();
break;
}
}
}
//===----------------------------------------------------------------------===//
/// This parses the file specified by the indicated SourceMgr and returns an
/// MLIR module if it was valid. If not, it emits diagnostics and returns
/// null.
OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
MLIRContext *context) {
auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
// This is the result module we are parsing into.
OwningModuleRef module(ModuleOp::create(FileLineColLoc::get(
sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context)));
SymbolState aliasState;
ParserState state(sourceMgr, context, aliasState);
if (ModuleParser(state).parseModule(*module))
return nullptr;
// Make sure the parse module has no other structural problems detected by
// the verifier.
if (failed(verify(*module)))
return nullptr;
return module;
}
/// This parses the file specified by the indicated filename and returns an
/// MLIR module if it was valid. If not, the error message is emitted through
/// the error handler registered in the context, and a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
MLIRContext *context) {
llvm::SourceMgr sourceMgr;
return parseSourceFile(filename, sourceMgr, context);
}
/// This parses the file specified by the indicated filename using the provided
/// SourceMgr and returns an MLIR module if it was valid. If not, the error
/// message is emitted through the error handler registered in the context, and
/// a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
llvm::SourceMgr &sourceMgr,
MLIRContext *context) {
if (sourceMgr.getNumBuffers() != 0) {
// TODO(b/136086478): Extend to support multiple buffers.
emitError(mlir::UnknownLoc::get(context),
"only main buffer parsed at the moment");
return nullptr;
}
auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
if (std::error_code error = file_or_err.getError()) {
emitError(mlir::UnknownLoc::get(context),
"could not open input file " + filename);
return nullptr;
}
// Load the MLIR module.
sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
return parseSourceFile(sourceMgr, context);
}
/// This parses the program string to a MLIR module if it was valid. If not,
/// it emits diagnostics and returns null.
OwningModuleRef mlir::parseSourceString(StringRef moduleStr,
MLIRContext *context) {
auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
if (!memBuffer)
return nullptr;
SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
return parseSourceFile(sourceMgr, context);
}
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead,
ParserFn &&parserFn) {
SymbolState aliasState;
return parseSymbol<T>(
inputStr, context, aliasState,
[&](Parser &parser) {
SourceMgrDiagnosticHandler handler(
const_cast<llvm::SourceMgr &>(parser.getSourceMgr()),
parser.getContext());
return parserFn(parser);
},
&numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) {
size_t numRead = 0;
return parseAttribute(attrStr, context, numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type) {
size_t numRead = 0;
return parseAttribute(attrStr, type, numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context,
size_t &numRead) {
return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) {
return parser.parseAttribute();
});
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) {
return parseSymbol<Attribute>(
attrStr, type.getContext(), numRead,
[type](Parser &parser) { return parser.parseAttribute(type); });
}
Type mlir::parseType(StringRef typeStr, MLIRContext *context) {
size_t numRead = 0;
return parseType(typeStr, context, numRead);
}
Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) {
return parseSymbol<Type>(typeStr, context, numRead,
[](Parser &parser) { return parser.parseType(); });
}