| //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/StandardOps/Ops.h" |
| #include "mlir/Dialect/VectorOps/VectorOps.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/Module.h" |
| #include "mlir/IR/Operation.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/StandardTypes.h" |
| #include "mlir/IR/Types.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Pass/PassManager.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/Passes.h" |
| |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| template <typename T> |
| static LLVM::LLVMType getPtrToElementType(T containerType, |
| LLVMTypeConverter &lowering) { |
| return lowering.convertType(containerType.getElementType()) |
| .template cast<LLVM::LLVMType>() |
| .getPointerTo(); |
| } |
| |
| // Helper to reduce vector type by one rank at front. |
| static VectorType reducedVectorTypeFront(VectorType tp) { |
| assert((tp.getRank() > 1) && "unlowerable vector type"); |
| return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); |
| } |
| |
| // Helper to reduce vector type by *all* but one rank at back. |
| static VectorType reducedVectorTypeBack(VectorType tp) { |
| assert((tp.getRank() > 1) && "unlowerable vector type"); |
| return VectorType::get(tp.getShape().take_back(), tp.getElementType()); |
| } |
| |
| // Helper that picks the proper sequence for inserting. |
| static Value insertOne(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &lowering, Location loc, Value val1, |
| Value val2, Type llvmType, int64_t rank, int64_t pos) { |
| if (rank == 1) { |
| auto idxType = rewriter.getIndexType(); |
| auto constant = rewriter.create<LLVM::ConstantOp>( |
| loc, lowering.convertType(idxType), |
| rewriter.getIntegerAttr(idxType, pos)); |
| return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, |
| constant); |
| } |
| return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, |
| rewriter.getI64ArrayAttr(pos)); |
| } |
| |
| // Helper that picks the proper sequence for inserting. |
| static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, |
| Value into, int64_t offset) { |
| auto vectorType = into.getType().cast<VectorType>(); |
| if (vectorType.getRank() > 1) |
| return rewriter.create<InsertOp>(loc, from, into, offset); |
| return rewriter.create<vector::InsertElementOp>( |
| loc, vectorType, from, into, |
| rewriter.create<ConstantIndexOp>(loc, offset)); |
| } |
| |
| // Helper that picks the proper sequence for extracting. |
| static Value extractOne(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &lowering, Location loc, Value val, |
| Type llvmType, int64_t rank, int64_t pos) { |
| if (rank == 1) { |
| auto idxType = rewriter.getIndexType(); |
| auto constant = rewriter.create<LLVM::ConstantOp>( |
| loc, lowering.convertType(idxType), |
| rewriter.getIntegerAttr(idxType, pos)); |
| return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, |
| constant); |
| } |
| return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, |
| rewriter.getI64ArrayAttr(pos)); |
| } |
| |
| // Helper that picks the proper sequence for extracting. |
| static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, |
| int64_t offset) { |
| auto vectorType = vector.getType().cast<VectorType>(); |
| if (vectorType.getRank() > 1) |
| return rewriter.create<ExtractOp>(loc, vector, offset); |
| return rewriter.create<vector::ExtractElementOp>( |
| loc, vectorType.getElementType(), vector, |
| rewriter.create<ConstantIndexOp>(loc, offset)); |
| } |
| |
| // Helper that returns a subset of `arrayAttr` as a vector of int64_t. |
| // TODO(rriddle): Better support for attribute subtype forwarding + slicing. |
| static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, |
| unsigned dropFront = 0, |
| unsigned dropBack = 0) { |
| assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); |
| auto range = arrayAttr.getAsRange<IntegerAttr>(); |
| SmallVector<int64_t, 4> res; |
| res.reserve(arrayAttr.size() - dropFront - dropBack); |
| for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; |
| it != eit; ++it) |
| res.push_back((*it).getValue().getSExtValue()); |
| return res; |
| } |
| |
| namespace { |
| |
| class VectorBroadcastOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorBroadcastOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::BroadcastOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto broadcastOp = cast<vector::BroadcastOp>(op); |
| VectorType dstVectorType = broadcastOp.getVectorType(); |
| if (lowering.convertType(dstVectorType) == nullptr) |
| return matchFailure(); |
| // Rewrite when the full vector type can be lowered (which |
| // implies all 'reduced' types can be lowered too). |
| auto adaptor = vector::BroadcastOpOperandAdaptor(operands); |
| VectorType srcVectorType = |
| broadcastOp.getSourceType().dyn_cast<VectorType>(); |
| rewriter.replaceOp( |
| op, expandRanks(adaptor.source(), // source value to be expanded |
| op->getLoc(), // location of original broadcast |
| srcVectorType, dstVectorType, rewriter)); |
| return matchSuccess(); |
| } |
| |
| private: |
| // Expands the given source value over all the ranks, as defined |
| // by the source and destination type (a null source type denotes |
| // expansion from a scalar value into a vector). |
| // |
| // TODO(ajcbik): consider replacing this one-pattern lowering |
| // with a two-pattern lowering using other vector |
| // ops once all insert/extract/shuffle operations |
| // are available with lowering implementation. |
| // |
| Value expandRanks(Value value, Location loc, VectorType srcVectorType, |
| VectorType dstVectorType, |
| ConversionPatternRewriter &rewriter) const { |
| assert((dstVectorType != nullptr) && "invalid result type in broadcast"); |
| // Determine rank of source and destination. |
| int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0; |
| int64_t dstRank = dstVectorType.getRank(); |
| int64_t curDim = dstVectorType.getDimSize(0); |
| if (srcRank < dstRank) |
| // Duplicate this rank. |
| return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank, |
| curDim, rewriter); |
| // If all trailing dimensions are the same, the broadcast consists of |
| // simply passing through the source value and we are done. Otherwise, |
| // any non-matching dimension forces a stretch along this rank. |
| assert((srcVectorType != nullptr) && (srcRank > 0) && |
| (srcRank == dstRank) && "invalid rank in broadcast"); |
| for (int64_t r = 0; r < dstRank; r++) { |
| if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) { |
| return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank, |
| curDim, rewriter); |
| } |
| } |
| return value; |
| } |
| |
| // Picks the best way to duplicate a single rank. For the 1-D case, a |
| // single insert-elt/shuffle is the most efficient expansion. For higher |
| // dimensions, however, we need dim x insert-values on a new broadcast |
| // with one less leading dimension, which will be lowered "recursively" |
| // to matching LLVM IR. |
| // For example: |
| // v = broadcast s : f32 to vector<4x2xf32> |
| // becomes: |
| // x = broadcast s : f32 to vector<2xf32> |
| // v = [x,x,x,x] |
| // becomes: |
| // x = [s,s] |
| // v = [x,x,x,x] |
| Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType, |
| VectorType dstVectorType, int64_t rank, int64_t dim, |
| ConversionPatternRewriter &rewriter) const { |
| Type llvmType = lowering.convertType(dstVectorType); |
| assert((llvmType != nullptr) && "unlowerable vector type"); |
| if (rank == 1) { |
| Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType); |
| Value expand = |
| insertOne(rewriter, lowering, loc, undef, value, llvmType, rank, 0); |
| SmallVector<int32_t, 4> zeroValues(dim, 0); |
| return rewriter.create<LLVM::ShuffleVectorOp>( |
| loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues)); |
| } |
| Value expand = expandRanks(value, loc, srcVectorType, |
| reducedVectorTypeFront(dstVectorType), rewriter); |
| Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); |
| for (int64_t d = 0; d < dim; ++d) { |
| result = |
| insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d); |
| } |
| return result; |
| } |
| |
| // Picks the best way to stretch a single rank. For the 1-D case, a |
| // single insert-elt/shuffle is the most efficient expansion when at |
| // a stretch. Otherwise, every dimension needs to be expanded |
| // individually and individually inserted in the resulting vector. |
| // For example: |
| // v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32> |
| // becomes: |
| // a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32> |
| // b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32> |
| // c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32> |
| // d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32> |
| // v = [a,b,c,d] |
| // becomes: |
| // x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32> |
| // y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32> |
| // a = [x, y] |
| // etc. |
| Value stretchOneRank(Value value, Location loc, VectorType srcVectorType, |
| VectorType dstVectorType, int64_t rank, int64_t dim, |
| ConversionPatternRewriter &rewriter) const { |
| Type llvmType = lowering.convertType(dstVectorType); |
| assert((llvmType != nullptr) && "unlowerable vector type"); |
| Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); |
| bool atStretch = dim != srcVectorType.getDimSize(0); |
| if (rank == 1) { |
| assert(atStretch); |
| Type redLlvmType = lowering.convertType(dstVectorType.getElementType()); |
| Value one = |
| extractOne(rewriter, lowering, loc, value, redLlvmType, rank, 0); |
| Value expand = |
| insertOne(rewriter, lowering, loc, result, one, llvmType, rank, 0); |
| SmallVector<int32_t, 4> zeroValues(dim, 0); |
| return rewriter.create<LLVM::ShuffleVectorOp>( |
| loc, expand, result, rewriter.getI32ArrayAttr(zeroValues)); |
| } |
| VectorType redSrcType = reducedVectorTypeFront(srcVectorType); |
| VectorType redDstType = reducedVectorTypeFront(dstVectorType); |
| Type redLlvmType = lowering.convertType(redSrcType); |
| for (int64_t d = 0; d < dim; ++d) { |
| int64_t pos = atStretch ? 0 : d; |
| Value one = |
| extractOne(rewriter, lowering, loc, value, redLlvmType, rank, pos); |
| Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter); |
| result = |
| insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d); |
| } |
| return result; |
| } |
| }; |
| |
| class VectorReductionOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorReductionOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::ReductionOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto reductionOp = cast<vector::ReductionOp>(op); |
| auto kind = reductionOp.kind(); |
| Type eltType = reductionOp.dest().getType(); |
| Type llvmType = lowering.convertType(eltType); |
| if (eltType.isInteger(32) || eltType.isInteger(64)) { |
| // Integer reductions: add/mul/min/max/and/or/xor. |
| if (kind == "add") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>( |
| op, llvmType, operands[0]); |
| else if (kind == "mul") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>( |
| op, llvmType, operands[0]); |
| else if (kind == "min") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>( |
| op, llvmType, operands[0]); |
| else if (kind == "max") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>( |
| op, llvmType, operands[0]); |
| else if (kind == "and") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>( |
| op, llvmType, operands[0]); |
| else if (kind == "or") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>( |
| op, llvmType, operands[0]); |
| else if (kind == "xor") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>( |
| op, llvmType, operands[0]); |
| else |
| return matchFailure(); |
| return matchSuccess(); |
| |
| } else if (eltType.isF32() || eltType.isF64()) { |
| // Floating-point reductions: add/mul/min/max |
| if (kind == "add") { |
| Value zero = rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmType, rewriter.getZeroAttr(eltType)); |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( |
| op, llvmType, zero, operands[0]); |
| } else if (kind == "mul") { |
| Value one = rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmType, rewriter.getFloatAttr(eltType, 1.0)); |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( |
| op, llvmType, one, operands[0]); |
| } else if (kind == "min") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>( |
| op, llvmType, operands[0]); |
| else if (kind == "max") |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>( |
| op, llvmType, operands[0]); |
| else |
| return matchFailure(); |
| return matchSuccess(); |
| } |
| return matchFailure(); |
| } |
| }; |
| |
| // TODO(ajcbik): merge Reduction and ReductionV2 |
| class VectorReductionV2OpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorReductionV2OpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::ReductionV2Op::getOperationName(), context, |
| typeConverter) {} |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto reductionOp = cast<vector::ReductionV2Op>(op); |
| auto kind = reductionOp.kind(); |
| Type eltType = reductionOp.dest().getType(); |
| Type llvmType = lowering.convertType(eltType); |
| if (kind == "add") { |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( |
| op, llvmType, operands[1], operands[0]); |
| return matchSuccess(); |
| } else if (kind == "mul") { |
| rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( |
| op, llvmType, operands[1], operands[0]); |
| return matchSuccess(); |
| } |
| return matchFailure(); |
| } |
| }; |
| |
| class VectorShuffleOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorShuffleOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::ShuffleOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::ShuffleOpOperandAdaptor(operands); |
| auto shuffleOp = cast<vector::ShuffleOp>(op); |
| auto v1Type = shuffleOp.getV1VectorType(); |
| auto v2Type = shuffleOp.getV2VectorType(); |
| auto vectorType = shuffleOp.getVectorType(); |
| Type llvmType = lowering.convertType(vectorType); |
| auto maskArrayAttr = shuffleOp.mask(); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmType) |
| return matchFailure(); |
| |
| // Get rank and dimension sizes. |
| int64_t rank = vectorType.getRank(); |
| assert(v1Type.getRank() == rank); |
| assert(v2Type.getRank() == rank); |
| int64_t v1Dim = v1Type.getDimSize(0); |
| |
| // For rank 1, where both operands have *exactly* the same vector type, |
| // there is direct shuffle support in LLVM. Use it! |
| if (rank == 1 && v1Type == v2Type) { |
| Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( |
| loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); |
| rewriter.replaceOp(op, shuffle); |
| return matchSuccess(); |
| } |
| |
| // For all other cases, insert the individual values individually. |
| Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); |
| int64_t insPos = 0; |
| for (auto en : llvm::enumerate(maskArrayAttr)) { |
| int64_t extPos = en.value().cast<IntegerAttr>().getInt(); |
| Value value = adaptor.v1(); |
| if (extPos >= v1Dim) { |
| extPos -= v1Dim; |
| value = adaptor.v2(); |
| } |
| Value extract = |
| extractOne(rewriter, lowering, loc, value, llvmType, rank, extPos); |
| insert = insertOne(rewriter, lowering, loc, insert, extract, llvmType, |
| rank, insPos++); |
| } |
| rewriter.replaceOp(op, insert); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorExtractElementOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorExtractElementOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto adaptor = vector::ExtractElementOpOperandAdaptor(operands); |
| auto extractEltOp = cast<vector::ExtractElementOp>(op); |
| auto vectorType = extractEltOp.getVectorType(); |
| auto llvmType = lowering.convertType(vectorType.getElementType()); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmType) |
| return matchFailure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( |
| op, llvmType, adaptor.vector(), adaptor.position()); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorExtractOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorExtractOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::ExtractOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::ExtractOpOperandAdaptor(operands); |
| auto extractOp = cast<vector::ExtractOp>(op); |
| auto vectorType = extractOp.getVectorType(); |
| auto resultType = extractOp.getResult().getType(); |
| auto llvmResultType = lowering.convertType(resultType); |
| auto positionArrayAttr = extractOp.position(); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmResultType) |
| return matchFailure(); |
| |
| // One-shot extraction of vector from array (only requires extractvalue). |
| if (resultType.isa<VectorType>()) { |
| Value extracted = rewriter.create<LLVM::ExtractValueOp>( |
| loc, llvmResultType, adaptor.vector(), positionArrayAttr); |
| rewriter.replaceOp(op, extracted); |
| return matchSuccess(); |
| } |
| |
| // Potential extraction of 1-D vector from array. |
| auto *context = op->getContext(); |
| Value extracted = adaptor.vector(); |
| auto positionAttrs = positionArrayAttr.getValue(); |
| if (positionAttrs.size() > 1) { |
| auto oneDVectorType = reducedVectorTypeBack(vectorType); |
| auto nMinusOnePositionAttrs = |
| ArrayAttr::get(positionAttrs.drop_back(), context); |
| extracted = rewriter.create<LLVM::ExtractValueOp>( |
| loc, lowering.convertType(oneDVectorType), extracted, |
| nMinusOnePositionAttrs); |
| } |
| |
| // Remaining extraction of element from 1-D LLVM vector |
| auto position = positionAttrs.back().cast<IntegerAttr>(); |
| auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); |
| auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); |
| extracted = |
| rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); |
| rewriter.replaceOp(op, extracted); |
| |
| return matchSuccess(); |
| } |
| }; |
| |
| /// Conversion pattern that turns a vector.fma on a 1-D vector |
| /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. |
| /// This does not match vectors of n >= 2 rank. |
| /// |
| /// Example: |
| /// ``` |
| /// vector.fma %a, %a, %a : vector<8xf32> |
| /// ``` |
| /// is converted to: |
| /// ``` |
| /// llvm.intr.fma %va, %va, %va: |
| /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) |
| /// -> !llvm<"<8 x float>"> |
| /// ``` |
| class VectorFMAOp1DConversion : public LLVMOpLowering { |
| public: |
| explicit VectorFMAOp1DConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::FMAOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto adaptor = vector::FMAOpOperandAdaptor(operands); |
| vector::FMAOp fmaOp = cast<vector::FMAOp>(op); |
| VectorType vType = fmaOp.getVectorType(); |
| if (vType.getRank() != 1) |
| return matchFailure(); |
| rewriter.replaceOpWithNewOp<LLVM::FMAOp>(op, adaptor.lhs(), adaptor.rhs(), |
| adaptor.acc()); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorInsertElementOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorInsertElementOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::InsertElementOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto adaptor = vector::InsertElementOpOperandAdaptor(operands); |
| auto insertEltOp = cast<vector::InsertElementOp>(op); |
| auto vectorType = insertEltOp.getDestVectorType(); |
| auto llvmType = lowering.convertType(vectorType); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmType) |
| return matchFailure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( |
| op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorInsertOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorInsertOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::InsertOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::InsertOpOperandAdaptor(operands); |
| auto insertOp = cast<vector::InsertOp>(op); |
| auto sourceType = insertOp.getSourceType(); |
| auto destVectorType = insertOp.getDestVectorType(); |
| auto llvmResultType = lowering.convertType(destVectorType); |
| auto positionArrayAttr = insertOp.position(); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmResultType) |
| return matchFailure(); |
| |
| // One-shot insertion of a vector into an array (only requires insertvalue). |
| if (sourceType.isa<VectorType>()) { |
| Value inserted = rewriter.create<LLVM::InsertValueOp>( |
| loc, llvmResultType, adaptor.dest(), adaptor.source(), |
| positionArrayAttr); |
| rewriter.replaceOp(op, inserted); |
| return matchSuccess(); |
| } |
| |
| // Potential extraction of 1-D vector from array. |
| auto *context = op->getContext(); |
| Value extracted = adaptor.dest(); |
| auto positionAttrs = positionArrayAttr.getValue(); |
| auto position = positionAttrs.back().cast<IntegerAttr>(); |
| auto oneDVectorType = destVectorType; |
| if (positionAttrs.size() > 1) { |
| oneDVectorType = reducedVectorTypeBack(destVectorType); |
| auto nMinusOnePositionAttrs = |
| ArrayAttr::get(positionAttrs.drop_back(), context); |
| extracted = rewriter.create<LLVM::ExtractValueOp>( |
| loc, lowering.convertType(oneDVectorType), extracted, |
| nMinusOnePositionAttrs); |
| } |
| |
| // Insertion of an element into a 1-D LLVM vector. |
| auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); |
| auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); |
| Value inserted = rewriter.create<LLVM::InsertElementOp>( |
| loc, lowering.convertType(oneDVectorType), extracted, adaptor.source(), |
| constant); |
| |
| // Potential insertion of resulting 1-D vector into array. |
| if (positionAttrs.size() > 1) { |
| auto nMinusOnePositionAttrs = |
| ArrayAttr::get(positionAttrs.drop_back(), context); |
| inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, |
| adaptor.dest(), inserted, |
| nMinusOnePositionAttrs); |
| } |
| |
| rewriter.replaceOp(op, inserted); |
| return matchSuccess(); |
| } |
| }; |
| |
| /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. |
| /// |
| /// Example: |
| /// ``` |
| /// %d = vector.fma %a, %b, %c : vector<2x4xf32> |
| /// ``` |
| /// is rewritten into: |
| /// ``` |
| /// %r = splat %f0: vector<2x4xf32> |
| /// %va = vector.extractvalue %a[0] : vector<2x4xf32> |
| /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> |
| /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> |
| /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> |
| /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> |
| /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> |
| /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> |
| /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> |
| /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> |
| /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> |
| /// // %r3 holds the final value. |
| /// ``` |
| class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { |
| public: |
| using OpRewritePattern<FMAOp>::OpRewritePattern; |
| |
| PatternMatchResult matchAndRewrite(FMAOp op, |
| PatternRewriter &rewriter) const override { |
| auto vType = op.getVectorType(); |
| if (vType.getRank() < 2) |
| return matchFailure(); |
| |
| auto loc = op.getLoc(); |
| auto elemType = vType.getElementType(); |
| Value zero = rewriter.create<ConstantOp>(loc, elemType, |
| rewriter.getZeroAttr(elemType)); |
| Value desc = rewriter.create<SplatOp>(loc, vType, zero); |
| for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { |
| Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); |
| Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); |
| Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); |
| Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); |
| desc = rewriter.create<InsertOp>(loc, fma, desc, i); |
| } |
| rewriter.replaceOp(op, desc); |
| return matchSuccess(); |
| } |
| }; |
| |
| // When ranks are different, InsertStridedSlice needs to extract a properly |
| // ranked vector from the destination vector into which to insert. This pattern |
| // only takes care of this part and forwards the rest of the conversion to |
| // another pattern that converts InsertStridedSlice for operands of the same |
| // rank. |
| // |
| // RewritePattern for InsertStridedSliceOp where source and destination vectors |
| // have different ranks. In this case: |
| // 1. the proper subvector is extracted from the destination vector |
| // 2. a new InsertStridedSlice op is created to insert the source in the |
| // destination subvector |
| // 3. the destination subvector is inserted back in the proper place |
| // 4. the op is replaced by the result of step 3. |
| // The new InsertStridedSlice from step 2. will be picked up by a |
| // `VectorInsertStridedSliceOpSameRankRewritePattern`. |
| class VectorInsertStridedSliceOpDifferentRankRewritePattern |
| : public OpRewritePattern<InsertStridedSliceOp> { |
| public: |
| using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; |
| |
| PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, |
| PatternRewriter &rewriter) const override { |
| auto srcType = op.getSourceVectorType(); |
| auto dstType = op.getDestVectorType(); |
| |
| if (op.offsets().getValue().empty()) |
| return matchFailure(); |
| |
| auto loc = op.getLoc(); |
| int64_t rankDiff = dstType.getRank() - srcType.getRank(); |
| assert(rankDiff >= 0); |
| if (rankDiff == 0) |
| return matchFailure(); |
| |
| int64_t rankRest = dstType.getRank() - rankDiff; |
| // Extract / insert the subvector of matching rank and InsertStridedSlice |
| // on it. |
| Value extracted = |
| rewriter.create<ExtractOp>(loc, op.dest(), |
| getI64SubArray(op.offsets(), /*dropFront=*/0, |
| /*dropFront=*/rankRest)); |
| // A different pattern will kick in for InsertStridedSlice with matching |
| // ranks. |
| auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( |
| loc, op.source(), extracted, |
| getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), |
| getI64SubArray(op.strides(), /*dropFront=*/0)); |
| rewriter.replaceOpWithNewOp<InsertOp>( |
| op, stridedSliceInnerOp.getResult(), op.dest(), |
| getI64SubArray(op.offsets(), /*dropFront=*/0, |
| /*dropFront=*/rankRest)); |
| return matchSuccess(); |
| } |
| }; |
| |
| // RewritePattern for InsertStridedSliceOp where source and destination vectors |
| // have the same rank. In this case, we reduce |
| // 1. the proper subvector is extracted from the destination vector |
| // 2. a new InsertStridedSlice op is created to insert the source in the |
| // destination subvector |
| // 3. the destination subvector is inserted back in the proper place |
| // 4. the op is replaced by the result of step 3. |
| // The new InsertStridedSlice from step 2. will be picked up by a |
| // `VectorInsertStridedSliceOpSameRankRewritePattern`. |
| class VectorInsertStridedSliceOpSameRankRewritePattern |
| : public OpRewritePattern<InsertStridedSliceOp> { |
| public: |
| using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; |
| |
| PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, |
| PatternRewriter &rewriter) const override { |
| auto srcType = op.getSourceVectorType(); |
| auto dstType = op.getDestVectorType(); |
| |
| if (op.offsets().getValue().empty()) |
| return matchFailure(); |
| |
| int64_t rankDiff = dstType.getRank() - srcType.getRank(); |
| assert(rankDiff >= 0); |
| if (rankDiff != 0) |
| return matchFailure(); |
| |
| if (srcType == dstType) { |
| rewriter.replaceOp(op, op.source()); |
| return matchSuccess(); |
| } |
| |
| int64_t offset = |
| op.offsets().getValue().front().cast<IntegerAttr>().getInt(); |
| int64_t size = srcType.getShape().front(); |
| int64_t stride = |
| op.strides().getValue().front().cast<IntegerAttr>().getInt(); |
| |
| auto loc = op.getLoc(); |
| Value res = op.dest(); |
| // For each slice of the source vector along the most major dimension. |
| for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; |
| off += stride, ++idx) { |
| // 1. extract the proper subvector (or element) from source |
| Value extractedSource = extractOne(rewriter, loc, op.source(), idx); |
| if (extractedSource.getType().isa<VectorType>()) { |
| // 2. If we have a vector, extract the proper subvector from destination |
| // Otherwise we are at the element level and no need to recurse. |
| Value extractedDest = extractOne(rewriter, loc, op.dest(), off); |
| // 3. Reduce the problem to lowering a new InsertStridedSlice op with |
| // smaller rank. |
| InsertStridedSliceOp insertStridedSliceOp = |
| rewriter.create<InsertStridedSliceOp>( |
| loc, extractedSource, extractedDest, |
| getI64SubArray(op.offsets(), /* dropFront=*/1), |
| getI64SubArray(op.strides(), /* dropFront=*/1)); |
| // Call matchAndRewrite recursively from within the pattern. This |
| // circumvents the current limitation that a given pattern cannot |
| // be called multiple times by the PatternRewrite infrastructure (to |
| // avoid infinite recursion, but in this case, infinite recursion |
| // cannot happen because the rank is strictly decreasing). |
| // TODO(rriddle, nicolasvasilache) Implement something like a hook for |
| // a potential function that must decrease and allow the same pattern |
| // multiple times. |
| auto success = matchAndRewrite(insertStridedSliceOp, rewriter); |
| (void)success; |
| assert(success && "Unexpected failure"); |
| extractedSource = insertStridedSliceOp; |
| } |
| // 4. Insert the extractedSource into the res vector. |
| res = insertOne(rewriter, loc, extractedSource, res, off); |
| } |
| |
| rewriter.replaceOp(op, res); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorOuterProductOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorOuterProductOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::OuterProductOpOperandAdaptor(operands); |
| auto *ctx = op->getContext(); |
| auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>(); |
| auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>(); |
| auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements(); |
| auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements(); |
| auto llvmArrayOfVectType = lowering.convertType( |
| cast<vector::OuterProductOp>(op).getResult().getType()); |
| Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType); |
| Value a = adaptor.lhs(), b = adaptor.rhs(); |
| Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front(); |
| SmallVector<Value, 8> lhs, accs; |
| lhs.reserve(rankLHS); |
| accs.reserve(rankLHS); |
| for (unsigned d = 0, e = rankLHS; d < e; ++d) { |
| // shufflevector explicitly requires i32. |
| auto attr = rewriter.getI32IntegerAttr(d); |
| SmallVector<Attribute, 4> bcastAttr(rankRHS, attr); |
| auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx); |
| Value aD = nullptr, accD = nullptr; |
| // 1. Broadcast the element a[d] into vector aD. |
| aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr); |
| // 2. If acc is present, extract 1-d vector acc[d] into accD. |
| if (acc) |
| accD = rewriter.create<LLVM::ExtractValueOp>( |
| loc, vRHS, acc, rewriter.getI64ArrayAttr(d)); |
| // 3. Compute aD outer b (plus accD, if relevant). |
| Value aOuterbD = |
| accD |
| ? rewriter.create<LLVM::FMAOp>(loc, vRHS, aD, b, accD).getResult() |
| : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult(); |
| // 4. Insert as value `d` in the descriptor. |
| desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType, |
| desc, aOuterbD, |
| rewriter.getI64ArrayAttr(d)); |
| } |
| rewriter.replaceOp(op, desc); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorTypeCastOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorTypeCastOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::TypeCastOp::getOperationName(), context, |
| typeConverter) {} |
| |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); |
| MemRefType sourceMemRefType = |
| castOp.getOperand().getType().cast<MemRefType>(); |
| MemRefType targetMemRefType = |
| castOp.getResult().getType().cast<MemRefType>(); |
| |
| // Only static shape casts supported atm. |
| if (!sourceMemRefType.hasStaticShape() || |
| !targetMemRefType.hasStaticShape()) |
| return matchFailure(); |
| |
| auto llvmSourceDescriptorTy = |
| operands[0].getType().dyn_cast<LLVM::LLVMType>(); |
| if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) |
| return matchFailure(); |
| MemRefDescriptor sourceMemRef(operands[0]); |
| |
| auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType) |
| .dyn_cast_or_null<LLVM::LLVMType>(); |
| if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) |
| return matchFailure(); |
| |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = |
| getStridesAndOffset(sourceMemRefType, strides, offset); |
| bool isContiguous = (strides.back() == 1); |
| if (isContiguous) { |
| auto sizes = sourceMemRefType.getShape(); |
| for (int index = 0, e = strides.size() - 2; index < e; ++index) { |
| if (strides[index] != strides[index + 1] * sizes[index + 1]) { |
| isContiguous = false; |
| break; |
| } |
| } |
| } |
| // Only contiguous source tensors supported atm. |
| if (failed(successStrides) || !isContiguous) |
| return matchFailure(); |
| |
| auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); |
| |
| // Create descriptor. |
| auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); |
| Type llvmTargetElementTy = desc.getElementType(); |
| // Set allocated ptr. |
| Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); |
| allocated = |
| rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); |
| desc.setAllocatedPtr(rewriter, loc, allocated); |
| // Set aligned ptr. |
| Value ptr = sourceMemRef.alignedPtr(rewriter, loc); |
| ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); |
| desc.setAlignedPtr(rewriter, loc, ptr); |
| // Fill offset 0. |
| auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); |
| auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); |
| desc.setOffset(rewriter, loc, zero); |
| |
| // Fill size and stride descriptors in memref. |
| for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { |
| int64_t index = indexedSize.index(); |
| auto sizeAttr = |
| rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); |
| auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); |
| desc.setSize(rewriter, loc, index, size); |
| auto strideAttr = |
| rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]); |
| auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); |
| desc.setStride(rewriter, loc, index, stride); |
| } |
| |
| rewriter.replaceOp(op, {desc}); |
| return matchSuccess(); |
| } |
| }; |
| |
| class VectorPrintOpConversion : public LLVMOpLowering { |
| public: |
| explicit VectorPrintOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : LLVMOpLowering(vector::PrintOp::getOperationName(), context, |
| typeConverter) {} |
| |
| // Proof-of-concept lowering implementation that relies on a small |
| // runtime support library, which only needs to provide a few |
| // printing methods (single value for all data types, opening/closing |
| // bracket, comma, newline). The lowering fully unrolls a vector |
| // in terms of these elementary printing operations. The advantage |
| // of this approach is that the library can remain unaware of all |
| // low-level implementation details of vectors while still supporting |
| // output of any shaped and dimensioned vector. Due to full unrolling, |
| // this approach is less suited for very large vectors though. |
| // |
| // TODO(ajcbik): rely solely on libc in future? something else? |
| // |
| PatternMatchResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto printOp = cast<vector::PrintOp>(op); |
| auto adaptor = vector::PrintOpOperandAdaptor(operands); |
| Type printType = printOp.getPrintType(); |
| |
| if (lowering.convertType(printType) == nullptr) |
| return matchFailure(); |
| |
| // Make sure element type has runtime support (currently just Float/Double). |
| VectorType vectorType = printType.dyn_cast<VectorType>(); |
| Type eltType = vectorType ? vectorType.getElementType() : printType; |
| int64_t rank = vectorType ? vectorType.getRank() : 0; |
| Operation *printer; |
| if (eltType.isInteger(32)) |
| printer = getPrintI32(op); |
| else if (eltType.isInteger(64)) |
| printer = getPrintI64(op); |
| else if (eltType.isF32()) |
| printer = getPrintFloat(op); |
| else if (eltType.isF64()) |
| printer = getPrintDouble(op); |
| else |
| return matchFailure(); |
| |
| // Unroll vector into elementary print calls. |
| emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank); |
| emitCall(rewriter, op->getLoc(), getPrintNewline(op)); |
| rewriter.eraseOp(op); |
| return matchSuccess(); |
| } |
| |
| private: |
| void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, |
| Value value, VectorType vectorType, Operation *printer, |
| int64_t rank) const { |
| Location loc = op->getLoc(); |
| if (rank == 0) { |
| emitCall(rewriter, loc, printer, value); |
| return; |
| } |
| |
| emitCall(rewriter, loc, getPrintOpen(op)); |
| Operation *printComma = getPrintComma(op); |
| int64_t dim = vectorType.getDimSize(0); |
| for (int64_t d = 0; d < dim; ++d) { |
| auto reducedType = |
| rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; |
| auto llvmType = lowering.convertType( |
| rank > 1 ? reducedType : vectorType.getElementType()); |
| Value nestedVal = |
| extractOne(rewriter, lowering, loc, value, llvmType, rank, d); |
| emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1); |
| if (d != dim - 1) |
| emitCall(rewriter, loc, printComma); |
| } |
| emitCall(rewriter, loc, getPrintClose(op)); |
| } |
| |
| // Helper to emit a call. |
| static void emitCall(ConversionPatternRewriter &rewriter, Location loc, |
| Operation *ref, ValueRange params = ValueRange()) { |
| rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{}, |
| rewriter.getSymbolRefAttr(ref), params); |
| } |
| |
| // Helper for printer method declaration (first hit) and lookup. |
| static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect, |
| StringRef name, ArrayRef<LLVM::LLVMType> params) { |
| auto module = op->getParentOfType<ModuleOp>(); |
| auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); |
| if (func) |
| return func; |
| OpBuilder moduleBuilder(module.getBodyRegion()); |
| return moduleBuilder.create<LLVM::LLVMFuncOp>( |
| op->getLoc(), name, |
| LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect), |
| params, /*isVarArg=*/false)); |
| } |
| |
| // Helpers for method names. |
| Operation *getPrintI32(Operation *op) const { |
| LLVM::LLVMDialect *dialect = lowering.getDialect(); |
| return getPrint(op, dialect, "print_i32", |
| LLVM::LLVMType::getInt32Ty(dialect)); |
| } |
| Operation *getPrintI64(Operation *op) const { |
| LLVM::LLVMDialect *dialect = lowering.getDialect(); |
| return getPrint(op, dialect, "print_i64", |
| LLVM::LLVMType::getInt64Ty(dialect)); |
| } |
| Operation *getPrintFloat(Operation *op) const { |
| LLVM::LLVMDialect *dialect = lowering.getDialect(); |
| return getPrint(op, dialect, "print_f32", |
| LLVM::LLVMType::getFloatTy(dialect)); |
| } |
| Operation *getPrintDouble(Operation *op) const { |
| LLVM::LLVMDialect *dialect = lowering.getDialect(); |
| return getPrint(op, dialect, "print_f64", |
| LLVM::LLVMType::getDoubleTy(dialect)); |
| } |
| Operation *getPrintOpen(Operation *op) const { |
| return getPrint(op, lowering.getDialect(), "print_open", {}); |
| } |
| Operation *getPrintClose(Operation *op) const { |
| return getPrint(op, lowering.getDialect(), "print_close", {}); |
| } |
| Operation *getPrintComma(Operation *op) const { |
| return getPrint(op, lowering.getDialect(), "print_comma", {}); |
| } |
| Operation *getPrintNewline(Operation *op) const { |
| return getPrint(op, lowering.getDialect(), "print_newline", {}); |
| } |
| }; |
| |
| /// Progressive lowering of StridedSliceOp to either: |
| /// 1. extractelement + insertelement for the 1-D case |
| /// 2. extract + optional strided_slice + insert for the n-D case. |
| class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> { |
| public: |
| using OpRewritePattern<StridedSliceOp>::OpRewritePattern; |
| |
| PatternMatchResult matchAndRewrite(StridedSliceOp op, |
| PatternRewriter &rewriter) const override { |
| auto dstType = op.getResult().getType().cast<VectorType>(); |
| |
| assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); |
| |
| int64_t offset = |
| op.offsets().getValue().front().cast<IntegerAttr>().getInt(); |
| int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); |
| int64_t stride = |
| op.strides().getValue().front().cast<IntegerAttr>().getInt(); |
| |
| auto loc = op.getLoc(); |
| auto elemType = dstType.getElementType(); |
| assert(elemType.isIntOrIndexOrFloat()); |
| Value zero = rewriter.create<ConstantOp>(loc, elemType, |
| rewriter.getZeroAttr(elemType)); |
| Value res = rewriter.create<SplatOp>(loc, dstType, zero); |
| for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; |
| off += stride, ++idx) { |
| Value extracted = extractOne(rewriter, loc, op.vector(), off); |
| if (op.offsets().getValue().size() > 1) { |
| StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>( |
| loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1), |
| getI64SubArray(op.sizes(), /* dropFront=*/1), |
| getI64SubArray(op.strides(), /* dropFront=*/1)); |
| // Call matchAndRewrite recursively from within the pattern. This |
| // circumvents the current limitation that a given pattern cannot |
| // be called multiple times by the PatternRewrite infrastructure (to |
| // avoid infinite recursion, but in this case, infinite recursion |
| // cannot happen because the rank is strictly decreasing). |
| // TODO(rriddle, nicolasvasilache) Implement something like a hook for |
| // a potential function that must decrease and allow the same pattern |
| // multiple times. |
| auto success = matchAndRewrite(stridedSliceOp, rewriter); |
| (void)success; |
| assert(success && "Unexpected failure"); |
| extracted = stridedSliceOp; |
| } |
| res = insertOne(rewriter, loc, extracted, res, idx); |
| } |
| rewriter.replaceOp(op, {res}); |
| return matchSuccess(); |
| } |
| }; |
| |
| } // namespace |
| |
| /// Populate the given list with patterns that convert from Vector to LLVM. |
| void mlir::populateVectorToLLVMConversionPatterns( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { |
| MLIRContext *ctx = converter.getDialect()->getContext(); |
| patterns.insert<VectorFMAOpNDRewritePattern, |
| VectorInsertStridedSliceOpDifferentRankRewritePattern, |
| VectorInsertStridedSliceOpSameRankRewritePattern, |
| VectorStridedSliceOpConversion>(ctx); |
| patterns.insert<VectorBroadcastOpConversion, VectorReductionOpConversion, |
| VectorReductionV2OpConversion, VectorShuffleOpConversion, |
| VectorExtractElementOpConversion, VectorExtractOpConversion, |
| VectorFMAOp1DConversion, VectorInsertElementOpConversion, |
| VectorInsertOpConversion, VectorOuterProductOpConversion, |
| VectorTypeCastOpConversion, VectorPrintOpConversion>( |
| ctx, converter); |
| } |
| |
| namespace { |
| struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> { |
| void runOnModule() override; |
| }; |
| } // namespace |
| |
| void LowerVectorToLLVMPass::runOnModule() { |
| // Perform progressive lowering of operations on "slices" and |
| // all contraction operations. Also applies folding and DCE. |
| { |
| OwningRewritePatternList patterns; |
| populateVectorSlicesLoweringPatterns(patterns, &getContext()); |
| populateVectorContractLoweringPatterns(patterns, &getContext()); |
| applyPatternsGreedily(getModule(), patterns); |
| } |
| |
| // Convert to the LLVM IR dialect. |
| LLVMTypeConverter converter(&getContext()); |
| OwningRewritePatternList patterns; |
| populateVectorToLLVMConversionPatterns(converter, patterns); |
| populateStdToLLVMConversionPatterns(converter, patterns); |
| |
| ConversionTarget target(getContext()); |
| target.addLegalDialect<LLVM::LLVMDialect>(); |
| target.addDynamicallyLegalOp<FuncOp>( |
| [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); |
| if (failed( |
| applyPartialConversion(getModule(), target, patterns, &converter))) { |
| signalPassFailure(); |
| } |
| } |
| |
| OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() { |
| return new LowerVectorToLLVMPass(); |
| } |
| |
| static PassRegistration<LowerVectorToLLVMPass> |
| pass("convert-vector-to-llvm", |
| "Lower the operations from the vector dialect into the LLVM dialect"); |