| // RUN: mlir-opt %s -transform-interpreter -test-transform-dialect-erase-schedule -one-shot-bufferize="bufferize-function-boundaries" -buffer-deallocation-pipeline -lower-vector-mask --test-lower-to-llvm | \ | 
 | // RUN: mlir-cpu-runner -e main -entry-point-result=void --shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \ | 
 | // RUN: FileCheck %s | 
 |  | 
 | func.func private @printMemrefF32(%ptr : tensor<*xf32>) | 
 |  | 
 | func.func @main() { | 
 |   %c4 = arith.constant 4 : index | 
 |   %c8 = arith.constant 8 : index | 
 |  | 
 |   %A = arith.constant dense<[ | 
 |           [ 1.1, 2.1 ], | 
 |           [ 1.2, 2.2 ], | 
 |           [ 1.3, 2.3 ], | 
 |           [ 1.4, 2.4 ], | 
 |           [ 1.5, 2.5 ], | 
 |           [ 1.6, 2.6 ], | 
 |           [ 1.7, 2.7 ], | 
 |           [ 1.8, 2.8 ] | 
 |       ]> : tensor<8x2xf32> | 
 |   %B = arith.constant dense<[ | 
 |           [ 10.1, 11.1, 12.1, 13.1 ], | 
 |           [ 10.2, 11.2, 12.2, 13.2 ] | 
 |       ]> : tensor<2x4xf32> | 
 |   %C_dyn = bufferization.alloc_tensor(%c8, %c4) : tensor<?x?xf32> | 
 |  | 
 |   %A_dyn = tensor.cast %A : tensor<8x2xf32> to tensor<?x?xf32> | 
 |   %B_dyn = tensor.cast %B : tensor<2x4xf32> to tensor<?x?xf32> | 
 |  | 
 |   %c0_i32 = arith.constant  0 : i32 | 
 |   %C_init = linalg.fill ins(%c0_i32 : i32) outs(%C_dyn : tensor<?x?xf32>) -> tensor<?x?xf32> | 
 |  | 
 |   %res = linalg.matmul ins(%A_dyn, %B_dyn: tensor<?x?xf32>, tensor<?x?xf32>) | 
 |             outs(%C_init: tensor<?x?xf32>) -> tensor<?x?xf32> | 
 |   %xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32> | 
 |  | 
 |   // CHECK:      {{\[}}[32.53,   35.73,   38.93,   42.13], | 
 |   // CHECK-NEXT: [34.56,   37.96,   41.36,   44.76], | 
 |   // CHECK-NEXT: [36.59,   40.19,   43.79,   47.39], | 
 |   // CHECK-NEXT: [38.62,   42.42,   46.22,   50.02], | 
 |   // CHECK-NEXT: [0,   0,   0,   0], | 
 |   // CHECK-NEXT: [0,   0,   0,   0], | 
 |   // CHECK-NEXT: [0,   0,   0,   0], | 
 |   // CHECK-NEXT: [0,   0,   0,   0]] | 
 |   call @printMemrefF32(%xf) : (tensor<*xf32>) -> () | 
 |  | 
 |   return | 
 | } | 
 |  | 
 | module attributes {transform.with_named_sequence} { | 
 |   transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | 
 |     %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op | 
 |     %func_op = transform.get_parent_op %0 : (!transform.any_op) -> !transform.op<"func.func"> | 
 |     transform.structured.vectorize %0 vector_sizes [4, 4, 2] : !transform.any_op | 
 |     transform.apply_patterns to %func_op { | 
 |       transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerreduction" | 
 |     } : !transform.op<"func.func"> | 
 |     transform.yield | 
 |   } | 
 | } |