| # RUN: env SUPPORT_LIB=%mlir_cuda_runtime \ |
| # RUN: %PYTHON %s | FileCheck %s |
| |
| # ===----------------------------------------------------------------------===// |
| # Chapter 0 : Hello World |
| # ===----------------------------------------------------------------------===// |
| # |
| # This program demonstrates Hello World: |
| # 1. Build MLIR function with arguments |
| # 2. Build MLIR GPU kernel |
| # 3. Print from a GPU thread |
| # 4. Pass arguments, JIT compile and run the MLIR function |
| # |
| # ===----------------------------------------------------------------------===// |
| |
| |
| from mlir.dialects import gpu |
| from tools.nvdsl import * |
| |
| |
| # 1. The decorator generates a MLIR func.func. |
| # Everything inside the Python function becomes the body of the func. |
| # The decorator also translates `alpha` to an `index` type. |
| @NVDSL.mlir_func |
| def main(alpha): |
| # 2. The decorator generates a MLIR gpu.launch. |
| # Everything inside the Python function becomes the body of the gpu.launch. |
| # This allows for late outlining of the GPU kernel, enabling optimizations |
| # like constant folding from host to device. |
| @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(4, 1, 1)) |
| def kernel(): |
| tidx = gpu.thread_id(gpu.Dimension.x) |
| # + operator generates arith.addi |
| myValue = alpha + tidx |
| # Print from a GPU thread |
| gpu.printf("GPU thread %llu has %llu\n", [tidx, myValue]) |
| |
| # 3. Call the GPU kernel |
| kernel() |
| |
| |
| alpha = 100 |
| # 4. The `mlir_func` decorator JIT compiles the IR and executes the MLIR function. |
| main(alpha) |
| |
| |
| # CHECK: GPU thread 0 has 100 |
| # CHECK: GPU thread 1 has 101 |
| # CHECK: GPU thread 2 has 102 |
| # CHECK: GPU thread 3 has 103 |