blob: 1a84a59ddb69df6cb71da18361696d0795ad9250 [file] [log] [blame]
//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the tiling using TilingInterface.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "tile-using-interface"
using namespace mlir;
scf::SCFTilingOptions &
scf::SCFTilingOptions::setTileSizes(ArrayRef<OpFoldResult> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
auto tileSizes = llvm::to_vector(ts);
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
return tileSizes;
};
return *this;
}
/// Helper method to adjust the interchange vector to match the iteration
/// domain.
static SmallVector<int64_t>
fillInterchangeVector(ArrayRef<int64_t> interchangeVector,
size_t iterationDomainSize) {
SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector);
if (filledVector.size() < iterationDomainSize) {
auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize);
filledVector.append(range.begin(), range.end());
}
if (filledVector.size() > iterationDomainSize)
filledVector.resize(iterationDomainSize);
return filledVector;
}
//===----------------------------------------------------------------------===//
// tileUsingSCF implementation.
//===----------------------------------------------------------------------===//
// Check if `stride` evenly divides the trip count `size - offset`.
static bool tileDividesIterationDomain(Range loopRange) {
std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
if (!offsetAsInt)
return false;
std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size);
if (!sizeAsInt)
return false;
std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride);
if (!strideAsInt)
return false;
return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0);
}
/// Returns the bounded tile size given the current `iv`, `loopRange` and
/// `tileSize`, i.e., `min(tileSize, range.end() - iv)`.
static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc,
Range loopRange, Value iv,
OpFoldResult tileSize) {
std::optional<int64_t> ts = getConstantIntValue(tileSize);
if (ts && ts.value() == 1)
return tileSize;
if (tileDividesIterationDomain(
Range{loopRange.offset, loopRange.size, tileSize}))
return tileSize;
// The tile size to use (to avoid out of bounds access) is minimum of
// `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled
// loop.
AffineExpr s0, s1, d0;
bindDims(b.getContext(), d0);
bindSymbols(b.getContext(), s0, s1);
AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, b.getContext());
Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size);
return affine::makeComposedFoldedAffineMin(
b, loc, minMap, SmallVector<OpFoldResult>{iv, tileSize, size});
}
/// A function that allows returning additional yielded values during
/// `yieldTiledValuesAndReplace`.
/// - `ivs` induction variable for the loop.
/// - `newBbArgs` basic block arguments corresponding to newly added iter_args.
/// - `tiledValues` the tiled values to return. Must be of same size as
/// `newbbArgs`, each element of this array is inserted into the corresponding
/// element in `newbbArgs`.
/// - `resultOffsets` is of the same size as `tiledValues` and represents
/// the offsets to use when inserting corresponding element from `tiledValues`
/// into the element from `newBbArgs`.
/// - `resultSizes` is of the same size as `tiledValues` and represents
/// the size of the corresponding element from `tiledValues` inserted into
/// the element from `newBbArgs`.
/// In case the method needs to return `failure()` the method is expected
/// to clean up any inserted operations.
using YieldTiledValuesFn = std::function<LogicalResult(
RewriterBase &rewriter, Location loc, ValueRange ivs, ValueRange newBbArgs,
SmallVector<Value> &tiledValues,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)>;
/// Clones the operation and updates the destination if the operation
/// implements the `DestinationStyleOpInterface`.
static Operation *cloneOpAndUpdateDestinationArgs(RewriterBase &rewriter,
Operation *op,
ValueRange newDestArgs) {
Operation *clonedOp = rewriter.clone(*op);
if (newDestArgs.empty())
return clonedOp;
if (auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp))
destinationStyleOp.getDpsInitsMutable().assign(newDestArgs);
return clonedOp;
}
/// Generate the tile-loop nest using `scf.for` operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNestUsingForOp(
RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes, ValueRange destinationTensors,
YieldTiledValuesFn yieldTiledValuesFn,
SmallVector<LoopLikeOpInterface> &loops) {
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == tileSizes.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(rewriter);
SmallVector<Value> ivs;
for (auto [loopRange, tileSize] : llvm::zip_equal(loopRanges, tileSizes)) {
// No loops if tile size is zero. Set offset and size to the loop
// offset and size.
if (isConstantIntValue(tileSize, 0))
continue;
Value lb = getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
Value ub = getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
Value step = getValueOrCreateConstantIndexOp(rewriter, loc, tileSize);
auto loop =
rewriter.create<scf::ForOp>(loc, lb, ub, step, destinationTensors,
[](OpBuilder &bodyBuilder, Location bodyLoc,
Value iv, ValueRange /*iterArgs*/) {});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPointToEnd(loop.getBody());
destinationTensors = loop.getRegionIterArgs();
}
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(yieldTiledValuesFn(rewriter, loc, ivs, destinationTensors,
tiledResults, resultOffsets, resultSizes))) {
return rewriter.notifyMatchFailure(
loc, "failed to generate inner tile loop body");
}
if (loops.empty())
return success();
// 6. Yield all the results of the tiled operation.
SmallVector<Value> yieldedValues;
for (auto [tiledValue, destinationTensor, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, destinationTensors, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
auto insertSlice = rewriter.create<tensor::InsertSliceOp>(
loc, tiledValue, destinationTensor, resultOffset, resultSize,
resultStride);
yieldedValues.push_back(insertSlice);
}
rewriter.create<scf::YieldOp>(loc, yieldedValues);
// Add the scf.yield operations for all the outer loops.
for (auto [outerLoop, innerLoop] :
llvm::zip_equal(MutableArrayRef(loops).drop_back(),
MutableArrayRef(loops).drop_front())) {
rewriter.setInsertionPointToEnd(
cast<scf::ForOp>(outerLoop.getOperation()).getBody());
rewriter.create<scf::YieldOp>(outerLoop.getLoc(), innerLoop->getResults());
}
return success();
}
/// Generate the tile-loop nest using `scf.forall` operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `mappingVector` is the mapping attributes to use for loop construction.
/// Can be empty.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNestUsingForallOp(
RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes, ArrayRef<Attribute> mappingVector,
ValueRange destinationTensors, YieldTiledValuesFn tiledBodyFn,
SmallVector<LoopLikeOpInterface> &loops) {
SmallVector<OpFoldResult> lbs, ubs, steps;
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == tileSizes.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(rewriter);
SmallVector<OpFoldResult> offsets(loopRanges.size()),
sizes(loopRanges.size());
for (auto [tileSize, loopRange] : llvm::zip_equal(tileSizes, loopRanges)) {
if (isConstantIntValue(tileSize, 0))
continue;
lbs.push_back(loopRange.offset);
ubs.push_back(loopRange.size);
steps.push_back(tileSize);
}
assert(!lbs.empty() && "Expected at least one loop range");
std::optional<ArrayAttr> mappingAttr;
if (!mappingVector.empty())
mappingAttr = rewriter.getArrayAttr(mappingVector);
auto forallOp = rewriter.create<scf::ForallOp>(
loc, lbs, ubs, steps, destinationTensors, mappingAttr);
loops.push_back(forallOp);
rewriter.setInsertionPoint(forallOp.getTerminator());
destinationTensors = forallOp.getRegionOutArgs();
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(tiledBodyFn(rewriter, loc, forallOp.getInductionVars(),
destinationTensors, tiledResults, resultOffsets,
resultSizes)))
return rewriter.notifyMatchFailure(loc, "failed to generate loop body");
rewriter.setInsertionPointToEnd(forallOp.getTerminator().getBody());
for (auto [tiledValue, destinationTensor, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, destinationTensors, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
rewriter.create<tensor::ParallelInsertSliceOp>(
loc, tiledValue, destinationTensor, resultOffset, resultSize,
resultStride);
}
return success();
}
/// Generate the tile-loop nest using the loop construct specifed in `options`.
/// - `options`: Tiling options specified.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// - `loops` is an in-out parameter into which the generated loops are
/// populated.
static LogicalResult generateLoopNest(RewriterBase &rewriter, Location loc,
const scf::SCFTilingOptions &options,
ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> tileSizes,
ValueRange destinationTensors,
YieldTiledValuesFn tiledBodyFn,
SmallVector<LoopLikeOpInterface> &loops) {
// If the tile sizes are all zero, no loops are generated. Just call the
// callback function to handle untiled case.
if (llvm::all_of(tileSizes, isZeroIndex)) {
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
return tiledBodyFn(rewriter, loc, ValueRange{}, destinationTensors,
tiledResults, resultOffsets, resultSizes);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForOp) {
return generateLoopNestUsingForOp(rewriter, loc, loopRanges, tileSizes,
destinationTensors, tiledBodyFn, loops);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForallOp) {
return generateLoopNestUsingForallOp(
rewriter, loc, loopRanges, tileSizes, options.mappingVector,
destinationTensors, tiledBodyFn, loops);
}
return rewriter.notifyMatchFailure(loc, "unhandled loop type");
}
/// Append the specified additional `newInitOperands` operands to the
/// loops existing `init` operands (or similar), and replace `loopOp` with
/// the new loop that has the additional init operands. The loop body of
/// this loop is moved over to the new loop. `yieldTiledValuesFn`
/// is called to get the new tiled values returned, and the offset
/// and sizes at which the tiled value is inserted into the
/// new region iter_args that correspond to the newly added init operands.
template <typename LoopType>
FailureOr<LoopLikeOpInterface>
yieldTiledValuesAndReplaceLoop(LoopType loopOp, RewriterBase &rewriter,
ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
return rewriter.notifyMatchFailure(loopOp, "unhandled loop type");
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for `scf.for`.
template <>
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop<scf::ForOp>(
scf::ForOp loopOp, RewriterBase &rewriter, ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = loopOp.getLoc();
rewriter.setInsertionPoint(loopOp);
auto inits = llvm::to_vector(loopOp.getInitArgs());
inits.append(newInitOperands.begin(), newInitOperands.end());
auto newLoop = rewriter.create<scf::ForOp>(
loc, loopOp.getLowerBound(), loopOp.getUpperBound(), loopOp.getStep(),
inits, [](OpBuilder &, Location, Value, ValueRange) {});
// Move the loop body to the new op.
Block *loopBody = loopOp.getBody();
Block *newLoopBody = newLoop.getBody();
rewriter.mergeBlocks(
loopBody, newLoopBody,
newLoopBody->getArguments().take_front(loopBody->getNumArguments()));
auto yieldOp = cast<scf::YieldOp>(newLoopBody->getTerminator());
rewriter.setInsertionPoint(yieldOp);
SmallVector<Value> tiledValues;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
ValueRange newRegionIterArgs =
newLoop.getRegionIterArgs().take_back(newInitOperands.size());
if (failed(yieldTiledValuesFn(rewriter, loc, newLoop.getInductionVar(),
newRegionIterArgs, tiledValues, resultOffsets,
resultSizes))) {
rewriter.eraseOp(newLoop);
return rewriter.notifyMatchFailure(loopOp, "failed to get tiled values");
}
SmallVector<Value> newYieldValues = llvm::to_vector(yieldOp.getOperands());
for (auto [tiledValue, regionIterArg, resultOffset, resultSize] :
llvm::zip_equal(tiledValues, newRegionIterArgs, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
Value insert = rewriter.create<tensor::InsertSliceOp>(
yieldOp->getLoc(), tiledValue, regionIterArg, resultOffset, resultSize,
resultStride);
newYieldValues.push_back(insert);
}
rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues);
rewriter.replaceOp(loopOp,
newLoop->getResults().take_front(loopOp.getNumResults()));
return cast<LoopLikeOpInterface>(newLoop.getOperation());
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for `scf.forall`
template <>
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop<scf::ForallOp>(
scf::ForallOp loopOp, RewriterBase &rewriter, ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = loopOp.getLoc();
rewriter.setInsertionPoint(loopOp);
auto inits = llvm::to_vector(loopOp.getOutputs());
inits.append(newInitOperands.begin(), newInitOperands.end());
auto newLoop = rewriter.create<scf::ForallOp>(
loc, loopOp.getMixedLowerBound(), loopOp.getMixedUpperBound(),
loopOp.getMixedStep(), inits, loopOp.getMapping(),
[](OpBuilder &, Location, ValueRange) {});
// Move the region of the current block to the newly created op.
Block *loopBody = loopOp.getBody();
Block *newLoopBody = newLoop.getBody();
rewriter.mergeBlocks(
loopBody, newLoopBody,
newLoopBody->getArguments().take_front(loopBody->getNumArguments()));
auto terminator = cast<scf::InParallelOp>(newLoopBody->getTerminator());
rewriter.setInsertionPoint(terminator);
SmallVector<Value> tiledValues;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
ValueRange regionIterArgs =
newLoop.getRegionIterArgs().take_back(newInitOperands.size());
if (failed(yieldTiledValuesFn(rewriter, loc, newLoop.getInductionVars(),
regionIterArgs, tiledValues, resultOffsets,
resultSizes))) {
rewriter.eraseOp(newLoop);
return rewriter.notifyMatchFailure(loopOp,
"failed to get yielded tiled values");
}
// Update the terminator.
rewriter.setInsertionPointToEnd(terminator.getBody());
for (auto [tiledValue, iterArg, resultOffset, resultSize] : llvm::zip_equal(
tiledValues, regionIterArgs, resultOffsets, resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
rewriter.create<tensor::ParallelInsertSliceOp>(
terminator.getLoc(), tiledValue, iterArg, resultOffset, resultSize,
resultStride);
}
rewriter.replaceOp(loopOp,
newLoop->getResults().take_front(loopOp.getNumResults()));
return cast<LoopLikeOpInterface>(newLoop.getOperation());
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for
/// `LoopLikeOpInterface`, that just dispatches to the implementation for each
/// supported loop type.
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop(
LoopLikeOpInterface loopLikeOp, RewriterBase &rewriter,
ValueRange newInitOperands, YieldTiledValuesFn yieldTiledValuesFn) {
return TypeSwitch<Operation *, FailureOr<LoopLikeOpInterface>>(
loopLikeOp.getOperation())
.Case<scf::ForOp, scf::ForallOp>(
[&](auto loopOp) -> FailureOr<LoopLikeOpInterface> {
return yieldTiledValuesAndReplaceLoop(
loopOp, rewriter, newInitOperands, yieldTiledValuesFn);
})
.Default([&](auto loopOp) -> FailureOr<LoopLikeOpInterface> {
return rewriter.notifyMatchFailure(loopOp, "unhandled loop type");
});
}
/// Method to add new init values to a loop nest. Updates `loops` in-place with
/// new loops that use the `newInitValues`.
/// The outer-loops are updated to yield the new result values of the inner
/// loop. For the innermost loop, the call back `getNewYields` is invoked to get
/// the additional values to yield form the innermost loop.
static LogicalResult addInitOperandsToLoopNest(
RewriterBase &rewriter, MutableArrayRef<LoopLikeOpInterface> loops,
ValueRange newInitValues, YieldTiledValuesFn getNewTiledYieldsFn) {
SmallVector<scf::ForOp> newLoops;
if (loops.empty())
return success();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(loops.front());
SmallVector<Value> ivs;
for (auto &loop : loops.drop_back()) {
rewriter.setInsertionPoint(loop);
// if loops.size() > 1 we assume that scf.for is used for the loops.
auto forLoop = cast<scf::ForOp>(loop.getOperation());
// Create a new loop with the new init values for this loop.
SmallVector<Value> newInits = llvm::to_vector(forLoop.getInitArgs());
newInits.append(newInitValues.begin(), newInitValues.end());
auto newLoop = rewriter.create<scf::ForOp>(
forLoop.getLoc(), forLoop.getLowerBound(), forLoop.getUpperBound(),
forLoop.getStep(), newInits,
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {});
// Merge the body of the new loop with the body of the old loops.
SmallVector<Value> sourceBlockArgs;
sourceBlockArgs.push_back(newLoop.getInductionVar());
auto newRegionIterArgs = newLoop.getRegionIterArgs();
sourceBlockArgs.append(
newRegionIterArgs.begin(),
std::next(newRegionIterArgs.begin(), forLoop.getNumResults()));
rewriter.mergeBlocks(forLoop.getBody(), newLoop.getBody(), sourceBlockArgs);
rewriter.replaceOp(
forLoop, newLoop.getResults().take_front(forLoop.getNumResults()));
loop = newLoop;
ivs.push_back(newLoop.getInductionVar());
newInitValues = newLoop.getRegionIterArgs().take_back(newInitValues.size());
}
// Update the loop body of the innermost loop to get new yield values.
LoopLikeOpInterface innerMostLoop = loops.back();
FailureOr<LoopLikeOpInterface> newInnerMostLoop =
yieldTiledValuesAndReplaceLoop(innerMostLoop, rewriter, newInitValues,
getNewTiledYieldsFn);
if (failed(newInnerMostLoop))
return innerMostLoop.emitOpError("failed to return additional yields");
loops.back() = newInnerMostLoop.value();
// Make all other loops except the innermost loops yield the values returned
// by the inner loop.
for (auto [outerLoop, innerLoop] :
llvm::zip_equal(loops.drop_back(), loops.drop_front())) {
// Again assume that all the outer loops are scf.for operations.
auto outerForLoop = cast<scf::ForOp>(outerLoop);
auto outerLoopYield =
cast<scf::YieldOp>(outerForLoop.getBody()->getTerminator());
SmallVector<Value> newYields =
llvm::to_vector(outerLoopYield.getOperands());
ValueRange additionalYields =
innerLoop->getResults().take_back(newInitValues.size());
newYields.append(additionalYields.begin(), additionalYields.end());
rewriter.setInsertionPoint(outerLoopYield);
rewriter.replaceOpWithNewOp<scf::YieldOp>(outerLoopYield, newYields);
}
return success();
}
/// Implementation of tiling transformation of `op` that implements the
/// `TilingInterface` using `scf.for` to iterate over the tiles.
FailureOr<scf::SCFTilingResult>
mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
const scf::SCFTilingOptions &options) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfter(op);
if (!options.tileSizeComputationFunction) {
return rewriter.notifyMatchFailure(
op, "missing tile size computation function");
}
// 1. Get the range of the loops that are represented by the operation.
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
size_t numLoops = iterationDomain.size();
// 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
// skips tiling a particular dimension. This convention is significantly
// simpler to handle instead of adjusting affine maps to account for missing
// dimensions.
SmallVector<OpFoldResult> tileSizes =
options.tileSizeComputationFunction(rewriter, op);
if (tileSizes.size() < iterationDomain.size()) {
auto zero = rewriter.getIndexAttr(0);
tileSizes.append(numLoops - tileSizes.size(), zero);
}
// 3. If there is an interchange specified, permute the iteration domain and
// the tile sizes.
SmallVector<int64_t> interchangeVector;
if (!options.interchangeVector.empty()) {
interchangeVector = fillInterchangeVector(options.interchangeVector,
iterationDomain.size());
}
if (!interchangeVector.empty()) {
if (!isPermutationVector(interchangeVector)) {
return rewriter.notifyMatchFailure(
op, "invalid intechange vector, not a permutation of the entire "
"iteration space");
}
applyPermutationToVector(iterationDomain, interchangeVector);
applyPermutationToVector(tileSizes, interchangeVector);
}
FailureOr<TilingResult> tilingResult;
// 4. Define the lambda function used later to generate the body of the
// innermost tiled loop.
YieldTiledValuesFn innerYieldTiledValuesFn =
[&](RewriterBase &rewriter, Location loc, ValueRange ivs,
ValueRange regionIterArgs, SmallVector<Value> &tiledResults,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)
-> LogicalResult {
// 4a. Compute the `offsets` and `sizes` to use for tiling.
SmallVector<OpFoldResult> offsets, sizes;
{
int materializedLoopNum = 0;
for (auto [tileSize, loopRange] :
llvm::zip_equal(tileSizes, iterationDomain)) {
if (isConstantIntValue(tileSize, 0)) {
offsets.push_back(loopRange.offset);
sizes.push_back(loopRange.size);
continue;
}
Value iv = ivs[materializedLoopNum++];
offsets.push_back(iv);
sizes.push_back(
getBoundedTileSize(rewriter, loc, loopRange, iv, tileSize));
}
}
// 4b. If interchange was provided, apply inverse of the interchange
// to get back the offsets/sizes in the order to be specified.
if (!interchangeVector.empty()) {
auto inversePermutation = invertPermutationVector(interchangeVector);
applyPermutationToVector(offsets, inversePermutation);
applyPermutationToVector(sizes, inversePermutation);
}
// 5. Generate the tiled implementation within the inner most loop.
// 5a. Clone the operation within the loop body.
auto clonedOp = cast<TilingInterface>(
cloneOpAndUpdateDestinationArgs(rewriter, op, regionIterArgs));
// 5b. Early return cloned op if tiling is not happening. We can not return
// the original op because it could lead to
// `rewriter.replaceOp(op, op->getResults())` and users would get crash.
if (llvm::all_of(tileSizes, isZeroIndex)) {
tiledResults.append(clonedOp->result_begin(), clonedOp->result_end());
tilingResult =
TilingResult{/*tiledOps=*/{clonedOp}, clonedOp->getResults()};
return success();
}
// 5c. Tile the cloned operation.
tilingResult = clonedOp.getTiledImplementation(rewriter, offsets, sizes);
if (failed(tilingResult)) {
rewriter.eraseOp(clonedOp);
return op.emitOpError("faild to tile operation");
}
// 5d. Delete the cloned operation.
rewriter.eraseOp(clonedOp);
// 5e. Compute the offsets at which the result values are to be inserted
// back into its destinations.
for (auto [index, tiledValue] :
llvm::enumerate(tilingResult->tiledValues)) {
tiledResults.push_back(tiledValue);
SmallVector<OpFoldResult> resultOffset, resultSize;
if (failed(op.getResultTilePosition(rewriter, index, offsets, sizes,
resultOffset, resultSize))) {
for (auto op : tilingResult->tiledOps) {
rewriter.eraseOp(op);
}
return rewriter.notifyMatchFailure(
op, "failed to get slice of result produced");
}
resultOffsets.emplace_back(std::move(resultOffset));
resultSizes.emplace_back(std::move(resultSize));
}
return success();
};
// 6. Find the destination tensors to use for the operation.
SmallVector<Value> destinationTensors;
if (failed(tensor::getOrCreateDestinations(rewriter, op.getLoc(), op,
destinationTensors))) {
return rewriter.notifyMatchFailure(op,
"unable to create destination tensors");
}
// 7. Generate the tiled loops nest using the callback defined above.
SmallVector<LoopLikeOpInterface> loops;
if (failed(generateLoopNest(rewriter, op.getLoc(), options, iterationDomain,
tileSizes, destinationTensors,
innerYieldTiledValuesFn, loops)))
return op.emitOpError("failed to generate tiling loops");
assert(succeeded(tilingResult) &&
"expected tiling result to be computed after loop generation");
// If loops are empty, the tiled op is used as the replacement for the untiled
// op.
if (loops.empty()) {
return scf::SCFTilingResult{tilingResult->tiledOps, loops,
tilingResult->tiledValues};
}
SmallVector<Value> replacements = llvm::map_to_vector(
loops.front()->getResults(), [](OpResult r) -> Value { return r; });
return scf::SCFTilingResult{tilingResult->tiledOps, loops, replacements};
}
FailureOr<scf::SCFReductionTilingResult>
mlir::scf::tileReductionUsingScf(RewriterBase &b,
PartialReductionOpInterface op,
ArrayRef<OpFoldResult> tileSizes) {
Location loc = op.getLoc();
// Ops implementing PartialReductionOpInterface are expected to implement
// TilingInterface.
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
auto tileSizesVector = llvm::to_vector(tileSizes);
if (tileSizesVector.size() < iterationDomain.size()) {
auto zero = b.getIndexAttr(0);
tileSizesVector.append(iterationDomain.size() - tileSizesVector.size(),
zero);
}
if (op->getNumResults() != 1)
return b.notifyMatchFailure(
op, "don't support ops with multiple results for now");
SmallVector<utils::IteratorType> iterators =
tilingInterfaceOp.getLoopIteratorTypes();
SmallVector<int> reductionDims;
for (auto [idx, iteratorType] :
llvm::enumerate(tilingInterfaceOp.getLoopIteratorTypes())) {
if (iteratorType == utils::IteratorType::reduction)
reductionDims.push_back(idx);
}
// 2. create the inital tensor value.
FailureOr<Operation *> identityTensor =
op.generateInitialTensorForPartialReduction(b, loc, tileSizesVector,
reductionDims);
if (failed(identityTensor))
return b.notifyMatchFailure(op,
"cannot create a tensor of identity value.");
// 3. Define the callback to use for generating the inner most tile loop body.
Operation *parallelOp = nullptr;
auto innerYieldTiledValuesFn =
[&](RewriterBase &rewriter, Location loc, ValueRange ivs,
ValueRange regionIterArgs, SmallVector<Value> &tiledResult,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)
-> LogicalResult {
SmallVector<OpFoldResult> offsets, sizes;
{
int materializedLoopNum = 0;
for (auto [tileSize, loopRange] :
llvm::zip_equal(tileSizesVector, iterationDomain)) {
if (isConstantIntValue(tileSize, 0)) {
offsets.push_back(loopRange.offset);
sizes.push_back(loopRange.size);
continue;
}
Value iv = ivs[materializedLoopNum++];
offsets.push_back(iv);
sizes.push_back(
getBoundedTileSize(rewriter, loc, loopRange, iv, tileSize));
}
}
// 4a. Clone the operation.
auto clonedOp = cast<PartialReductionOpInterface>(
cloneOpAndUpdateDestinationArgs(b, op, regionIterArgs));
// 4b. Tile the cloned operation.
parallelOp = clonedOp.tileToPartialReduction(b, loc, regionIterArgs,
offsets, sizes, reductionDims);
// 4c. Delete the cloned operation.
b.eraseOp(clonedOp);
tiledResult.append(parallelOp->result_begin(), parallelOp->result_end());
// 4d. Compute the offsets and sizes needed to insert the result of the
// tiled value back into destination before yielding the destination.
SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
resultOffsets.emplace_back(std::move(outOffsets));
SmallVector<OpFoldResult> outSizes;
for (size_t i = 0; i < offsets.size(); i++) {
outSizes.push_back(
tensor::getMixedSize(b, loc, parallelOp->getResult(0), i));
}
resultSizes.emplace_back(std::move(outSizes));
return success();
};
// 5. Generate the tiled implementation using the destination tensors.
SmallVector<Value> destinationTensors =
llvm::map_to_vector(identityTensor.value()->getResults(),
[](OpResult res) -> Value { return res; });
SmallVector<LoopLikeOpInterface> loops;
scf::SCFTilingOptions options;
options.setLoopType(scf::SCFTilingOptions::LoopType::ForOp);
if (failed(generateLoopNest(b, loc, options, iterationDomain, tileSizesVector,
destinationTensors, innerYieldTiledValuesFn,
loops)))
return b.notifyMatchFailure(op, "failed to tile for parallel reduction");
SmallVector<Value> replacements = llvm::map_to_vector(
loops.front()->getResults(), [](OpResult r) -> Value { return r; });
// 5. Apply the merge reduction to combine all the partial values.
b.setInsertionPointAfter(*loops.begin());
Operation *mergeOp = op.mergeReductions(b, loc, replacements, reductionDims);
b.replaceOp(op, mergeOp->getResults());
SCFReductionTilingResult results;
results.initialOp = *identityTensor;
results.loops = loops;
results.parallelTiledOp = parallelOp;
results.mergeOp = mergeOp;
return results;
}
//===----------------------------------------------------------------------===//
// tileConsumerAndFuseProducersUsingSCF implementation.
//===----------------------------------------------------------------------===//
/// Return the untiled producer whose slice is used in a tiled consumer. The
/// method traverses the tile loop nest (`loops`) if needed, and returns the
/// `iter_args` of the outer most that is encountered. Traversing the iter_args
/// indicates that this is a destination operand of the consumer. If there was
/// no loop traversal needed, the second value of the returned tuple is empty.
static std::tuple<OpResult, std::optional<OpOperand *>>
getUntiledProducerFromSliceSource(OpOperand *source,
ArrayRef<LoopLikeOpInterface> loops) {
std::optional<OpOperand *> destinationIterArg;
auto loopIt = loops.rbegin();
while (auto iterArg = dyn_cast<BlockArgument>(source->get())) {
auto loop = *loopIt;
if (iterArg.getOwner()->getParentOp() != loop)
break;
source = loop.getTiedLoopInit(iterArg);
loopIt++;
}
if (loopIt == loops.rend())
destinationIterArg = source;
return {dyn_cast<OpResult>(source->get()), destinationIterArg};
}
/// Implementation of fusing producer of a single slice by computing the
/// slice of the producer in-place.
std::optional<scf::SCFFuseProducerOfSliceResult>
mlir::scf::tileAndFuseProducerOfSlice(
RewriterBase &rewriter, tensor::ExtractSliceOp candidateSliceOp,
MutableArrayRef<LoopLikeOpInterface> loops) {
// 1. Get the producer of the source (potentially walking through
// `iter_args` of nested `scf.for`)
auto [fusableProducer, destinationInitArg] =
getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable(),
loops);
if (!fusableProducer)
return std::nullopt;
unsigned resultNumber = fusableProducer.getResultNumber();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(candidateSliceOp);
// 2. Clone the fused producer
// 2a. Compute the destination operands to use for the cloned operation.
SmallVector<Value> origDestinationTensors, clonedOpDestinationTensors;
Operation *fusableProducerOp = fusableProducer.getOwner();
if (isa<DestinationStyleOpInterface>(fusableProducerOp) &&
failed(tensor::getOrCreateDestinations(
rewriter, fusableProducerOp->getLoc(), fusableProducerOp,
origDestinationTensors)))
return std::nullopt;
clonedOpDestinationTensors = origDestinationTensors;
if (destinationInitArg &&
isa<DestinationStyleOpInterface>(fusableProducerOp)) {
// 2b. If the producer is also destination style, then to maintain the
// destination passing style, update the destination of the producer to be
// the source of the slice.
clonedOpDestinationTensors[resultNumber] = candidateSliceOp.getSource();
}
// 2c. Clone the fused producer.
Operation *clonedProducerOp = cloneOpAndUpdateDestinationArgs(
rewriter, fusableProducerOp, clonedOpDestinationTensors);
// 2d. Update the source of the candidateSlice to be the cloned producer.
// Easier to just clone the slice with different source since replacements
// and DCE of cloned ops becomes easier
SmallVector<Value> candidateSliceOpOperands =
llvm::to_vector(candidateSliceOp->getOperands());
candidateSliceOpOperands[0] = clonedProducerOp->getResult(resultNumber);
tensor::ExtractSliceOp clonedCandidateSliceOp =
mlir::clone(rewriter, candidateSliceOp,
candidateSliceOp->getResultTypes(), candidateSliceOpOperands);
// 3. Generate the tiled implementation of the producer of the source
FailureOr<TilingResult> tileAndFuseResult =
tensor::replaceExtractSliceWithTiledProducer(
rewriter, clonedCandidateSliceOp,
clonedProducerOp->getResult(resultNumber));
if (failed(tileAndFuseResult))
return std::nullopt;
// Note: Do not delete the candidateSliceOp, since its passed in from the
// caller.
rewriter.replaceAllUsesWith(candidateSliceOp,
tileAndFuseResult->tiledValues[0]);
rewriter.eraseOp(clonedCandidateSliceOp);
rewriter.eraseOp(clonedProducerOp);
// 3. If the slice is for a destination operand, for example,
//
// ```mlir
// %0 = linalg.init
// %1 = linalg.fill .. outs(%0 : )
// %2 = scf.for .. iter_args(%arg0 = %1) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1 [..]
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
//
// the IR is currently
//
// ```
// %0 = linalg.init
// %1 = linalg.fill
// %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1[..]
// %5 = linalg.fill .. outs(%4 : )
// .. = linalg.matmul .. outs(%5 : )
// }
// }
// ```
//
// The untiled `linalg.fill` is still used as the `init_value` since it
// was originally a destination operand of the untiled `linalg.matmul`.
// When fusing an operand that is a destination operand, the iter_arg of
// the outer most loop should be changed to use the destination of the
// fused operation. With this the IR will be.
//
// ```
// %0 = linalg.init
// %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) {
// %2 = scf.for .. iter_args(%arg1 = %arg0) {
// %3 = tensor.extract_slice %arg1[..]
// %4 = linalg.fill .. outs(%3 : )
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
if (destinationInitArg &&
isa<DestinationStyleOpInterface>(fusableProducerOp) && !loops.empty()) {
loops.front()
->getOpOperands()[destinationInitArg.value()->getOperandNumber()]
.set(origDestinationTensors[resultNumber]);
}
return scf::SCFFuseProducerOfSliceResult{fusableProducer,
tileAndFuseResult->tiledValues[0],
tileAndFuseResult->tiledOps};
}
/// Reconstruct the fused producer from within the tiled-and-fused code.
LogicalResult mlir::scf::yieldReplacementForFusedProducer(
RewriterBase &rewriter, tensor::ExtractSliceOp sliceOp,
scf::SCFFuseProducerOfSliceResult fusedProducerInfo,
MutableArrayRef<LoopLikeOpInterface> loops) {
if (loops.empty())
return success();
OpResult fusableProducer = fusedProducerInfo.origProducer;
Value tiledAndFusedProducer = fusedProducerInfo.tiledAndFusedProducer;
FailureOr<Value> initValue = tensor::getOrCreateDestination(
rewriter, fusableProducer.getOwner()->getLoc(), fusableProducer);
if (succeeded(initValue)) {
YieldTiledValuesFn newYieldValuesFn =
[&](RewriterBase &innerRewriter, Location loc, ValueRange /*ivs*/,
ValueRange newRegionIterArgs, SmallVector<Value> &tiledResult,
SmallVector<SmallVector<OpFoldResult>> &tiledOffset,
SmallVector<SmallVector<OpFoldResult>> &tiledSizes)
-> LogicalResult {
OpBuilder::InsertionGuard g(innerRewriter);
if (auto tiledDestStyleOp =
tiledAndFusedProducer
.getDefiningOp<DestinationStyleOpInterface>()) {
rewriter.setInsertionPoint(tiledDestStyleOp);
Value newRegionArg = newRegionIterArgs.back();
auto destSlice = rewriter.create<tensor::ExtractSliceOp>(
sliceOp.getLoc(), newRegionArg, sliceOp.getMixedOffsets(),
sliceOp.getMixedSizes(), sliceOp.getMixedStrides());
unsigned resultNumber = fusableProducer.getResultNumber();
rewriter.modifyOpInPlace(tiledDestStyleOp, [&]() {
tiledDestStyleOp.getDpsInitsMutable()[resultNumber].set(destSlice);
});
}
Block *block = rewriter.getInsertionPoint()->getBlock();
rewriter.setInsertionPoint(block->getTerminator());
tiledResult.push_back(fusedProducerInfo.tiledAndFusedProducer);
tiledOffset.emplace_back(sliceOp.getMixedOffsets());
tiledSizes.emplace_back(sliceOp.getMixedSizes());
return success();
};
return addInitOperandsToLoopNest(rewriter, loops,
SmallVector<Value>{initValue.value()},
newYieldValuesFn);
}
return success();
}
/// Implementation of tile consumer and fuse producer greedily.
FailureOr<scf::SCFTileAndFuseResult>
mlir::scf::tileConsumerAndFuseProducersUsingSCF(
RewriterBase &rewriter, TilingInterface consumer,
const scf::SCFTileAndFuseOptions &options) {
// This transformation is only valid for ops that return values (i.e. not
// valid to use with operations that have memref operands).
if (!consumer->getNumResults()) {
return rewriter.notifyMatchFailure(
consumer, "invalid pattern for op with no results");
}
// 1. First tile the consumer.
SetVector<Operation *> fusedProducers, tiledAndFusedOps;
llvm::SmallDenseMap<Value, size_t> origProducerToLoopResultNum;
FailureOr<scf::SCFTilingResult> tilingResult =
tileUsingSCF(rewriter, consumer, options.tilingOptions);
if (failed(tilingResult))
return rewriter.notifyMatchFailure(consumer, "failed to tile consumer");
for (auto *tiledOp : tilingResult->tiledOps)
tiledAndFusedOps.insert(tiledOp);
// If there are no loops generated, fusion is immaterial.
auto &loops = tilingResult->loops;
if (loops.empty()) {
DenseMap<Value, Value> replacements;
for (auto [origVal, replacement] :
llvm::zip_equal(consumer->getResults(), tilingResult->replacements)) {
replacements[origVal] = replacement;
}
return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, loops,
replacements};
}
// To keep track of replacements for now just record the map from the original
// untiled value to the result number of the for loop. Since the loop gets
// potentially replaced during fusion, keeping the value directly wont work.
DenseMap<Value, size_t> origValToResultNumber;
for (auto [index, result] : llvm::enumerate(consumer->getResults())) {
origValToResultNumber[result] = index;
}
// 2. Typically, the operands of the tiled operation are slices of the
// operands of the untiled operation. These are expressed in IR using
// `tensor.extract_slice` operations with source being the operands of the
// untiled operation. Create a worklist of these `tensor.extract_slice`
// operations. If the producers of the source of the `tensor.extract_slice`
// can be tiled such that the tiled value is generated in-place, that
// effectively tiles + fuses the operations.
auto addCandidateSlices = [](Operation *fusedOp,
std::deque<tensor::ExtractSliceOp> &candidates) {
for (Value operand : fusedOp->getOperands())
if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
candidates.push_back(sliceOp);
};
std::deque<tensor::ExtractSliceOp> candidates;
addCandidateSlices(tiledAndFusedOps.back(), candidates);
OpBuilder::InsertionGuard g(rewriter);
while (!candidates.empty()) {
// Traverse the slices in BFS fashion.
tensor::ExtractSliceOp candidateSliceOp = candidates.front();
candidates.pop_front();
// Find the original producer of the slice.
auto [fusableProducer, destinationInitArg] =
getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable(),
loops);
if (!fusableProducer)
continue;
auto [fuseSlice, yieldReplacement] = options.fusionControlFn(
candidateSliceOp, fusableProducer, destinationInitArg.has_value());
if (!fuseSlice)
continue;
// The operands of the fused producer might themselved be slices of
// values produced by operations that implement the `TilingInterface`.
// Add these operations to the worklist.
std::optional<scf::SCFFuseProducerOfSliceResult> fusedResult =
tileAndFuseProducerOfSlice(rewriter, candidateSliceOp, loops);
if (!fusedResult)
continue;
if (yieldReplacement) {
if (failed(yieldReplacementForFusedProducer(
rewriter, candidateSliceOp, fusedResult.value(), loops))) {
return rewriter.notifyMatchFailure(
fusableProducer.getOwner(), "failed to replacement value for this "
"oepration from within the tiled loop");
}
origValToResultNumber[fusableProducer] =
loops.front()->getNumResults() - 1;
}
if (Operation *tiledAndFusedOp =
fusedResult->tiledAndFusedProducer.getDefiningOp()) {
fusedProducers.insert(fusedResult->origProducer.getDefiningOp());
tiledAndFusedOps.insert(tiledAndFusedOp);
addCandidateSlices(tiledAndFusedOp, candidates);
}
}
DenseMap<Value, Value> replacements;
for (auto [origVal, resultNumber] : origValToResultNumber) {
replacements[origVal] = loops.front()->getResult(resultNumber);
}
return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, loops,
replacements};
}
//===----------------------------------------------------------------------===//
// lowerToLoopsUsingSCFForOp implementation.
//===----------------------------------------------------------------------===//
FailureOr<SmallVector<scf::ForOp>>
mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter,
TilingInterface op) {
// TODO: Handle cases where the op has results if needed.
if (op->getNumResults() > 0) {
return rewriter.notifyMatchFailure(
op, "unable to lower to loops operations with return values");
}
SmallVector<Range> domain = op.getIterationDomain(rewriter);
SmallVector<Value> ivs;
SmallVector<scf::ForOp> loops;
Location loc = op.getLoc();
for (auto loopRange : domain) {
Value offsetVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
Value sizeVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
Value strideVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal,
strideVal, ValueRange{});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPoint(loop.getBody()->getTerminator());
}
if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
return failure();
}
return loops;
}