| //===- LoopCanonicalization.cpp - Cross-dialect canonicalization patterns -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains cross-dialect canonicalization patterns that cannot be |
| // actual canonicalization patterns due to undesired additional dependencies. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/SCF/Transforms/Passes.h" |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/SCF/IR/SCF.h" |
| #include "mlir/Dialect/SCF/Transforms/Patterns.h" |
| #include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_SCFFORLOOPCANONICALIZATION |
| #include "mlir/Dialect/SCF/Transforms/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| using namespace mlir::scf; |
| |
| /// A simple, conservative analysis to determine if the loop is shape |
| /// conserving. I.e., the type of the arg-th yielded value is the same as the |
| /// type of the corresponding basic block argument of the loop. |
| /// Note: This function handles only simple cases. Expand as needed. |
| static bool isShapePreserving(ForOp forOp, int64_t arg) { |
| assert(arg < static_cast<int64_t>(forOp.getNumResults()) && |
| "arg is out of bounds"); |
| Value value = forOp.getYieldedValues()[arg]; |
| while (value) { |
| if (value == forOp.getRegionIterArgs()[arg]) |
| return true; |
| OpResult opResult = dyn_cast<OpResult>(value); |
| if (!opResult) |
| return false; |
| |
| using tensor::InsertSliceOp; |
| value = llvm::TypeSwitch<Operation *, Value>(opResult.getOwner()) |
| .template Case<InsertSliceOp>( |
| [&](InsertSliceOp op) { return op.getDest(); }) |
| .template Case<ForOp>([&](ForOp forOp) { |
| return isShapePreserving(forOp, opResult.getResultNumber()) |
| ? forOp.getInitArgs()[opResult.getResultNumber()] |
| : Value(); |
| }) |
| .Default([&](auto op) { return Value(); }); |
| } |
| return false; |
| } |
| |
| namespace { |
| /// Fold dim ops of iter_args to dim ops of their respective init args. E.g.: |
| /// |
| /// ``` |
| /// %0 = ... : tensor<?x?xf32> |
| /// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) { |
| /// %1 = tensor.dim %arg0, %c0 : tensor<?x?xf32> |
| /// ... |
| /// } |
| /// ``` |
| /// |
| /// is folded to: |
| /// |
| /// ``` |
| /// %0 = ... : tensor<?x?xf32> |
| /// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) { |
| /// %1 = tensor.dim %0, %c0 : tensor<?x?xf32> |
| /// ... |
| /// } |
| /// ``` |
| /// |
| /// Note: Dim ops are folded only if it can be proven that the runtime type of |
| /// the iter arg does not change with loop iterations. |
| template <typename OpTy> |
| struct DimOfIterArgFolder : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy dimOp, |
| PatternRewriter &rewriter) const override { |
| auto blockArg = dyn_cast<BlockArgument>(dimOp.getSource()); |
| if (!blockArg) |
| return failure(); |
| auto forOp = dyn_cast<ForOp>(blockArg.getParentBlock()->getParentOp()); |
| if (!forOp) |
| return failure(); |
| if (!isShapePreserving(forOp, blockArg.getArgNumber() - 1)) |
| return failure(); |
| |
| Value initArg = forOp.getTiedLoopInit(blockArg)->get(); |
| rewriter.modifyOpInPlace( |
| dimOp, [&]() { dimOp.getSourceMutable().assign(initArg); }); |
| |
| return success(); |
| }; |
| }; |
| |
| /// Fold dim ops of loop results to dim ops of their respective init args. E.g.: |
| /// |
| /// ``` |
| /// %0 = ... : tensor<?x?xf32> |
| /// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) { |
| /// ... |
| /// } |
| /// %1 = tensor.dim %r, %c0 : tensor<?x?xf32> |
| /// ``` |
| /// |
| /// is folded to: |
| /// |
| /// ``` |
| /// %0 = ... : tensor<?x?xf32> |
| /// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) { |
| /// ... |
| /// } |
| /// %1 = tensor.dim %0, %c0 : tensor<?x?xf32> |
| /// ``` |
| /// |
| /// Note: Dim ops are folded only if it can be proven that the runtime type of |
| /// the iter arg does not change with loop iterations. |
| template <typename OpTy> |
| struct DimOfLoopResultFolder : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy dimOp, |
| PatternRewriter &rewriter) const override { |
| auto forOp = dimOp.getSource().template getDefiningOp<scf::ForOp>(); |
| if (!forOp) |
| return failure(); |
| auto opResult = cast<OpResult>(dimOp.getSource()); |
| unsigned resultNumber = opResult.getResultNumber(); |
| if (!isShapePreserving(forOp, resultNumber)) |
| return failure(); |
| rewriter.modifyOpInPlace(dimOp, [&]() { |
| dimOp.getSourceMutable().assign(forOp.getInitArgs()[resultNumber]); |
| }); |
| return success(); |
| } |
| }; |
| |
| /// Canonicalize AffineMinOp/AffineMaxOp operations in the context of scf.for |
| /// and scf.parallel loops with a known range. |
| template <typename OpTy> |
| struct AffineOpSCFCanonicalizationPattern : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy op, |
| PatternRewriter &rewriter) const override { |
| return scf::canonicalizeMinMaxOpInLoop(rewriter, op, scf::matchForLikeLoop); |
| } |
| }; |
| |
| struct SCFForLoopCanonicalization |
| : public impl::SCFForLoopCanonicalizationBase<SCFForLoopCanonicalization> { |
| void runOnOperation() override { |
| auto *parentOp = getOperation(); |
| MLIRContext *ctx = parentOp->getContext(); |
| RewritePatternSet patterns(ctx); |
| scf::populateSCFForLoopCanonicalizationPatterns(patterns); |
| if (failed(applyPatternsAndFoldGreedily(parentOp, std::move(patterns)))) |
| signalPassFailure(); |
| } |
| }; |
| } // namespace |
| |
| void mlir::scf::populateSCFForLoopCanonicalizationPatterns( |
| RewritePatternSet &patterns) { |
| MLIRContext *ctx = patterns.getContext(); |
| patterns |
| .add<AffineOpSCFCanonicalizationPattern<affine::AffineMinOp>, |
| AffineOpSCFCanonicalizationPattern<affine::AffineMaxOp>, |
| DimOfIterArgFolder<tensor::DimOp>, DimOfIterArgFolder<memref::DimOp>, |
| DimOfLoopResultFolder<tensor::DimOp>, |
| DimOfLoopResultFolder<memref::DimOp>>(ctx); |
| } |
| |
| std::unique_ptr<Pass> mlir::createSCFForLoopCanonicalizationPass() { |
| return std::make_unique<SCFForLoopCanonicalization>(); |
| } |