| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/Utils/StaticValueUtils.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/OpDefinition.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Interfaces/InferTypeOpInterface.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "mlir/Interfaces/ViewLikeInterface.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| |
| using namespace mlir; |
| using namespace mlir::memref; |
| |
| /// Materialize a single constant operation from a given attribute value with |
| /// the desired resultant type. |
| Operation *MemRefDialect::materializeConstant(OpBuilder &builder, |
| Attribute value, Type type, |
| Location loc) { |
| return arith::ConstantOp::materialize(builder, value, type, loc); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Common canonicalization pattern support logic |
| //===----------------------------------------------------------------------===// |
| |
| /// This is a common class used for patterns of the form |
| /// "someop(memrefcast) -> someop". It folds the source of any memref.cast |
| /// into the root operation directly. |
| LogicalResult mlir::memref::foldMemRefCast(Operation *op, Value inner) { |
| bool folded = false; |
| for (OpOperand &operand : op->getOpOperands()) { |
| auto cast = operand.get().getDefiningOp<CastOp>(); |
| if (cast && operand.get() != inner && |
| !llvm::isa<UnrankedMemRefType>(cast.getOperand().getType())) { |
| operand.set(cast.getOperand()); |
| folded = true; |
| } |
| } |
| return success(folded); |
| } |
| |
| /// Return an unranked/ranked tensor type for the given unranked/ranked memref |
| /// type. |
| Type mlir::memref::getTensorTypeFromMemRefType(Type type) { |
| if (auto memref = llvm::dyn_cast<MemRefType>(type)) |
| return RankedTensorType::get(memref.getShape(), memref.getElementType()); |
| if (auto memref = llvm::dyn_cast<UnrankedMemRefType>(type)) |
| return UnrankedTensorType::get(memref.getElementType()); |
| return NoneType::get(type.getContext()); |
| } |
| |
| OpFoldResult memref::getMixedSize(OpBuilder &builder, Location loc, Value value, |
| int64_t dim) { |
| auto memrefType = llvm::cast<MemRefType>(value.getType()); |
| SmallVector<OpFoldResult> result; |
| if (memrefType.isDynamicDim(dim)) |
| return builder.createOrFold<memref::DimOp>(loc, value, dim); |
| |
| return builder.getIndexAttr(memrefType.getDimSize(dim)); |
| } |
| |
| SmallVector<OpFoldResult> memref::getMixedSizes(OpBuilder &builder, |
| Location loc, Value value) { |
| auto memrefType = llvm::cast<MemRefType>(value.getType()); |
| SmallVector<OpFoldResult> result; |
| for (int64_t i = 0; i < memrefType.getRank(); ++i) |
| result.push_back(getMixedSize(builder, loc, value, i)); |
| return result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility functions for propagating static information |
| //===----------------------------------------------------------------------===// |
| |
| /// Helper function that infers the constant values from a list of \p values, |
| /// a \p memRefTy, and another helper function \p getAttributes. |
| /// The inferred constant values replace the related `OpFoldResult` in |
| /// \p values. |
| /// |
| /// \note This function shouldn't be used directly, instead, use the |
| /// `getConstifiedMixedXXX` methods from the related operations. |
| /// |
| /// \p getAttributes retuns a list of potentially constant values, as determined |
| /// by \p isDynamic, from the given \p memRefTy. The returned list must have as |
| /// many elements as \p values or be empty. |
| /// |
| /// E.g., consider the following example: |
| /// ``` |
| /// memref.reinterpret_cast %base to <...> strides: [2, %dyn_stride] : |
| /// memref<f32> to memref<?x?xf32, strided<[?, 1], offset: ?>> |
| /// ``` |
| /// `ReinterpretCastOp::getMixedStrides()` will return `[2, %dyn_stride]`. |
| /// Now using this helper function with: |
| /// - `values == [2, %dyn_stride]`, |
| /// - `memRefTy == memref<?x?xf32, strided<[?, 1], offset: ?>>` |
| /// - `getAttributes == getConstantStrides` (i.e., a wrapper around |
| /// `getStridesAndOffset`), and |
| /// - `isDynamic == ShapedType::isDynamic` |
| /// Will yield: `values == [2, 1]` |
| static void constifyIndexValues( |
| SmallVectorImpl<OpFoldResult> &values, MemRefType memRefTy, |
| MLIRContext *ctxt, |
| llvm::function_ref<SmallVector<int64_t>(MemRefType)> getAttributes, |
| llvm::function_ref<bool(int64_t)> isDynamic) { |
| SmallVector<int64_t> constValues = getAttributes(memRefTy); |
| Builder builder(ctxt); |
| for (const auto &it : llvm::enumerate(constValues)) { |
| int64_t constValue = it.value(); |
| if (!isDynamic(constValue)) |
| values[it.index()] = builder.getIndexAttr(constValue); |
| } |
| for (OpFoldResult &ofr : values) { |
| if (ofr.is<Attribute>()) { |
| // FIXME: We shouldn't need to do that, but right now, the static indices |
| // are created with the wrong type: `i64` instead of `index`. |
| // As a result, if we were to keep the attribute as is, we may fail to see |
| // that two attributes are equal because one would have the i64 type and |
| // the other the index type. |
| // The alternative would be to create constant indices with getI64Attr in |
| // this and the previous loop, but it doesn't logically make sense (we are |
| // dealing with indices here) and would only strenghten the inconsistency |
| // around how static indices are created (some places use getI64Attr, |
| // others use getIndexAttr). |
| // The workaround here is to stick to the IndexAttr type for all the |
| // values, hence we recreate the attribute even when it is already static |
| // to make sure the type is consistent. |
| ofr = builder.getIndexAttr( |
| llvm::cast<IntegerAttr>(ofr.get<Attribute>()).getInt()); |
| continue; |
| } |
| std::optional<int64_t> maybeConstant = |
| getConstantIntValue(ofr.get<Value>()); |
| if (maybeConstant) |
| ofr = builder.getIndexAttr(*maybeConstant); |
| } |
| } |
| |
| /// Wrapper around `getShape` that conforms to the function signature |
| /// expected for `getAttributes` in `constifyIndexValues`. |
| static SmallVector<int64_t> getConstantSizes(MemRefType memRefTy) { |
| ArrayRef<int64_t> sizes = memRefTy.getShape(); |
| return SmallVector<int64_t>(sizes.begin(), sizes.end()); |
| } |
| |
| /// Wrapper around `getStridesAndOffset` that returns only the offset and |
| /// conforms to the function signature expected for `getAttributes` in |
| /// `constifyIndexValues`. |
| static SmallVector<int64_t> getConstantOffset(MemRefType memrefType) { |
| SmallVector<int64_t> strides; |
| int64_t offset; |
| LogicalResult hasStaticInformation = |
| getStridesAndOffset(memrefType, strides, offset); |
| if (failed(hasStaticInformation)) |
| return SmallVector<int64_t>(); |
| return SmallVector<int64_t>(1, offset); |
| } |
| |
| /// Wrapper around `getStridesAndOffset` that returns only the strides and |
| /// conforms to the function signature expected for `getAttributes` in |
| /// `constifyIndexValues`. |
| static SmallVector<int64_t> getConstantStrides(MemRefType memrefType) { |
| SmallVector<int64_t> strides; |
| int64_t offset; |
| LogicalResult hasStaticInformation = |
| getStridesAndOffset(memrefType, strides, offset); |
| if (failed(hasStaticInformation)) |
| return SmallVector<int64_t>(); |
| return strides; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocOp / AllocaOp |
| //===----------------------------------------------------------------------===// |
| |
| void AllocOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "alloc"); |
| } |
| |
| void AllocaOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "alloca"); |
| } |
| |
| template <typename AllocLikeOp> |
| static LogicalResult verifyAllocLikeOp(AllocLikeOp op) { |
| static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value, |
| "applies to only alloc or alloca"); |
| auto memRefType = llvm::dyn_cast<MemRefType>(op.getResult().getType()); |
| if (!memRefType) |
| return op.emitOpError("result must be a memref"); |
| |
| if (static_cast<int64_t>(op.getDynamicSizes().size()) != |
| memRefType.getNumDynamicDims()) |
| return op.emitOpError("dimension operand count does not equal memref " |
| "dynamic dimension count"); |
| |
| unsigned numSymbols = 0; |
| if (!memRefType.getLayout().isIdentity()) |
| numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); |
| if (op.getSymbolOperands().size() != numSymbols) |
| return op.emitOpError("symbol operand count does not equal memref symbol " |
| "count: expected ") |
| << numSymbols << ", got " << op.getSymbolOperands().size(); |
| |
| return success(); |
| } |
| |
| LogicalResult AllocOp::verify() { return verifyAllocLikeOp(*this); } |
| |
| LogicalResult AllocaOp::verify() { |
| // An alloca op needs to have an ancestor with an allocation scope trait. |
| if (!(*this)->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) |
| return emitOpError( |
| "requires an ancestor op with AutomaticAllocationScope trait"); |
| |
| return verifyAllocLikeOp(*this); |
| } |
| |
| namespace { |
| /// Fold constant dimensions into an alloc like operation. |
| template <typename AllocLikeOp> |
| struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> { |
| using OpRewritePattern<AllocLikeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocLikeOp alloc, |
| PatternRewriter &rewriter) const override { |
| // Check to see if any dimensions operands are constants. If so, we can |
| // substitute and drop them. |
| if (llvm::none_of(alloc.getDynamicSizes(), [](Value operand) { |
| APInt constSizeArg; |
| if (!matchPattern(operand, m_ConstantInt(&constSizeArg))) |
| return false; |
| return constSizeArg.isNonNegative(); |
| })) |
| return failure(); |
| |
| auto memrefType = alloc.getType(); |
| |
| // Ok, we have one or more constant operands. Collect the non-constant ones |
| // and keep track of the resultant memref type to build. |
| SmallVector<int64_t, 4> newShapeConstants; |
| newShapeConstants.reserve(memrefType.getRank()); |
| SmallVector<Value, 4> dynamicSizes; |
| |
| unsigned dynamicDimPos = 0; |
| for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { |
| int64_t dimSize = memrefType.getDimSize(dim); |
| // If this is already static dimension, keep it. |
| if (!ShapedType::isDynamic(dimSize)) { |
| newShapeConstants.push_back(dimSize); |
| continue; |
| } |
| auto dynamicSize = alloc.getDynamicSizes()[dynamicDimPos]; |
| APInt constSizeArg; |
| if (matchPattern(dynamicSize, m_ConstantInt(&constSizeArg)) && |
| constSizeArg.isNonNegative()) { |
| // Dynamic shape dimension will be folded. |
| newShapeConstants.push_back(constSizeArg.getZExtValue()); |
| } else { |
| // Dynamic shape dimension not folded; copy dynamicSize from old memref. |
| newShapeConstants.push_back(ShapedType::kDynamic); |
| dynamicSizes.push_back(dynamicSize); |
| } |
| dynamicDimPos++; |
| } |
| |
| // Create new memref type (which will have fewer dynamic dimensions). |
| MemRefType newMemRefType = |
| MemRefType::Builder(memrefType).setShape(newShapeConstants); |
| assert(static_cast<int64_t>(dynamicSizes.size()) == |
| newMemRefType.getNumDynamicDims()); |
| |
| // Create and insert the alloc op for the new memref. |
| auto newAlloc = rewriter.create<AllocLikeOp>( |
| alloc.getLoc(), newMemRefType, dynamicSizes, alloc.getSymbolOperands(), |
| alloc.getAlignmentAttr()); |
| // Insert a cast so we have the same type as the old alloc. |
| rewriter.replaceOpWithNewOp<CastOp>(alloc, alloc.getType(), newAlloc); |
| return success(); |
| } |
| }; |
| |
| /// Fold alloc operations with no users or only store and dealloc uses. |
| template <typename T> |
| struct SimplifyDeadAlloc : public OpRewritePattern<T> { |
| using OpRewritePattern<T>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(T alloc, |
| PatternRewriter &rewriter) const override { |
| if (llvm::any_of(alloc->getUsers(), [&](Operation *op) { |
| if (auto storeOp = dyn_cast<StoreOp>(op)) |
| return storeOp.getValue() == alloc; |
| return !isa<DeallocOp>(op); |
| })) |
| return failure(); |
| |
| for (Operation *user : llvm::make_early_inc_range(alloc->getUsers())) |
| rewriter.eraseOp(user); |
| |
| rewriter.eraseOp(alloc); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc<AllocOp>>(context); |
| } |
| |
| void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<SimplifyAllocConst<AllocaOp>, SimplifyDeadAlloc<AllocaOp>>( |
| context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReallocOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult ReallocOp::verify() { |
| auto sourceType = llvm::cast<MemRefType>(getOperand(0).getType()); |
| MemRefType resultType = getType(); |
| |
| // The source memref should have identity layout (or none). |
| if (!sourceType.getLayout().isIdentity()) |
| return emitError("unsupported layout for source memref type ") |
| << sourceType; |
| |
| // The result memref should have identity layout (or none). |
| if (!resultType.getLayout().isIdentity()) |
| return emitError("unsupported layout for result memref type ") |
| << resultType; |
| |
| // The source memref and the result memref should be in the same memory space. |
| if (sourceType.getMemorySpace() != resultType.getMemorySpace()) |
| return emitError("different memory spaces specified for source memref " |
| "type ") |
| << sourceType << " and result memref type " << resultType; |
| |
| // The source memref and the result memref should have the same element type. |
| if (sourceType.getElementType() != resultType.getElementType()) |
| return emitError("different element types specified for source memref " |
| "type ") |
| << sourceType << " and result memref type " << resultType; |
| |
| // Verify that we have the dynamic dimension operand when it is needed. |
| if (resultType.getNumDynamicDims() && !getDynamicResultSize()) |
| return emitError("missing dimension operand for result type ") |
| << resultType; |
| if (!resultType.getNumDynamicDims() && getDynamicResultSize()) |
| return emitError("unnecessary dimension operand for result type ") |
| << resultType; |
| |
| return success(); |
| } |
| |
| void ReallocOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<SimplifyDeadAlloc<ReallocOp>>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AllocaScopeOp |
| //===----------------------------------------------------------------------===// |
| |
| void AllocaScopeOp::print(OpAsmPrinter &p) { |
| bool printBlockTerminators = false; |
| |
| p << ' '; |
| if (!getResults().empty()) { |
| p << " -> (" << getResultTypes() << ")"; |
| printBlockTerminators = true; |
| } |
| p << ' '; |
| p.printRegion(getBodyRegion(), |
| /*printEntryBlockArgs=*/false, |
| /*printBlockTerminators=*/printBlockTerminators); |
| p.printOptionalAttrDict((*this)->getAttrs()); |
| } |
| |
| ParseResult AllocaScopeOp::parse(OpAsmParser &parser, OperationState &result) { |
| // Create a region for the body. |
| result.regions.reserve(1); |
| Region *bodyRegion = result.addRegion(); |
| |
| // Parse optional results type list. |
| if (parser.parseOptionalArrowTypeList(result.types)) |
| return failure(); |
| |
| // Parse the body region. |
| if (parser.parseRegion(*bodyRegion, /*arguments=*/{})) |
| return failure(); |
| AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(), |
| result.location); |
| |
| // Parse the optional attribute list. |
| if (parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| |
| return success(); |
| } |
| |
| void AllocaScopeOp::getSuccessorRegions( |
| RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> ®ions) { |
| if (!point.isParent()) { |
| regions.push_back(RegionSuccessor(getResults())); |
| return; |
| } |
| |
| regions.push_back(RegionSuccessor(&getBodyRegion())); |
| } |
| |
| /// Given an operation, return whether this op is guaranteed to |
| /// allocate an AutomaticAllocationScopeResource |
| static bool isGuaranteedAutomaticAllocation(Operation *op) { |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) |
| return false; |
| for (auto res : op->getResults()) { |
| if (auto effect = |
| interface.getEffectOnValue<MemoryEffects::Allocate>(res)) { |
| if (isa<SideEffects::AutomaticAllocationScopeResource>( |
| effect->getResource())) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Given an operation, return whether this op itself could |
| /// allocate an AutomaticAllocationScopeResource. Note that |
| /// this will not check whether an operation contained within |
| /// the op can allocate. |
| static bool isOpItselfPotentialAutomaticAllocation(Operation *op) { |
| // This op itself doesn't create a stack allocation, |
| // the inner allocation should be handled separately. |
| if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) |
| return false; |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) |
| return true; |
| for (auto res : op->getResults()) { |
| if (auto effect = |
| interface.getEffectOnValue<MemoryEffects::Allocate>(res)) { |
| if (isa<SideEffects::AutomaticAllocationScopeResource>( |
| effect->getResource())) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Return whether this op is the last non terminating op |
| /// in a region. That is to say, it is in a one-block region |
| /// and is only followed by a terminator. This prevents |
| /// extending the lifetime of allocations. |
| static bool lastNonTerminatorInRegion(Operation *op) { |
| return op->getNextNode() == op->getBlock()->getTerminator() && |
| op->getParentRegion()->getBlocks().size() == 1; |
| } |
| |
| /// Inline an AllocaScopeOp if either the direct parent is an allocation scope |
| /// or it contains no allocation. |
| struct AllocaScopeInliner : public OpRewritePattern<AllocaScopeOp> { |
| using OpRewritePattern<AllocaScopeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocaScopeOp op, |
| PatternRewriter &rewriter) const override { |
| bool hasPotentialAlloca = |
| op->walk<WalkOrder::PreOrder>([&](Operation *alloc) { |
| if (alloc == op) |
| return WalkResult::advance(); |
| if (isOpItselfPotentialAutomaticAllocation(alloc)) |
| return WalkResult::interrupt(); |
| if (alloc->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| return WalkResult::skip(); |
| return WalkResult::advance(); |
| }).wasInterrupted(); |
| |
| // If this contains no potential allocation, it is always legal to |
| // inline. Otherwise, consider two conditions: |
| if (hasPotentialAlloca) { |
| // If the parent isn't an allocation scope, or we are not the last |
| // non-terminator op in the parent, we will extend the lifetime. |
| if (!op->getParentOp()->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| return failure(); |
| if (!lastNonTerminatorInRegion(op)) |
| return failure(); |
| } |
| |
| Block *block = &op.getRegion().front(); |
| Operation *terminator = block->getTerminator(); |
| ValueRange results = terminator->getOperands(); |
| rewriter.inlineBlockBefore(block, op); |
| rewriter.replaceOp(op, results); |
| rewriter.eraseOp(terminator); |
| return success(); |
| } |
| }; |
| |
| /// Move allocations into an allocation scope, if it is legal to |
| /// move them (e.g. their operands are available at the location |
| /// the op would be moved to). |
| struct AllocaScopeHoister : public OpRewritePattern<AllocaScopeOp> { |
| using OpRewritePattern<AllocaScopeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AllocaScopeOp op, |
| PatternRewriter &rewriter) const override { |
| |
| if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) |
| return failure(); |
| |
| Operation *lastParentWithoutScope = op->getParentOp(); |
| |
| if (!lastParentWithoutScope || |
| lastParentWithoutScope->hasTrait<OpTrait::AutomaticAllocationScope>()) |
| return failure(); |
| |
| // Only apply to if this is this last non-terminator |
| // op in the block (lest lifetime be extended) of a one |
| // block region |
| if (!lastNonTerminatorInRegion(op) || |
| !lastNonTerminatorInRegion(lastParentWithoutScope)) |
| return failure(); |
| |
| while (!lastParentWithoutScope->getParentOp() |
| ->hasTrait<OpTrait::AutomaticAllocationScope>()) { |
| lastParentWithoutScope = lastParentWithoutScope->getParentOp(); |
| if (!lastParentWithoutScope || |
| !lastNonTerminatorInRegion(lastParentWithoutScope)) |
| return failure(); |
| } |
| assert(lastParentWithoutScope->getParentOp() |
| ->hasTrait<OpTrait::AutomaticAllocationScope>()); |
| |
| Region *containingRegion = nullptr; |
| for (auto &r : lastParentWithoutScope->getRegions()) { |
| if (r.isAncestor(op->getParentRegion())) { |
| assert(containingRegion == nullptr && |
| "only one region can contain the op"); |
| containingRegion = &r; |
| } |
| } |
| assert(containingRegion && "op must be contained in a region"); |
| |
| SmallVector<Operation *> toHoist; |
| op->walk([&](Operation *alloc) { |
| if (!isGuaranteedAutomaticAllocation(alloc)) |
| return WalkResult::skip(); |
| |
| // If any operand is not defined before the location of |
| // lastParentWithoutScope (i.e. where we would hoist to), skip. |
| if (llvm::any_of(alloc->getOperands(), [&](Value v) { |
| return containingRegion->isAncestor(v.getParentRegion()); |
| })) |
| return WalkResult::skip(); |
| toHoist.push_back(alloc); |
| return WalkResult::advance(); |
| }); |
| |
| if (toHoist.empty()) |
| return failure(); |
| rewriter.setInsertionPoint(lastParentWithoutScope); |
| for (auto *op : toHoist) { |
| auto *cloned = rewriter.clone(*op); |
| rewriter.replaceOp(op, cloned->getResults()); |
| } |
| return success(); |
| } |
| }; |
| |
| void AllocaScopeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<AllocaScopeInliner, AllocaScopeHoister>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AssumeAlignmentOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AssumeAlignmentOp::verify() { |
| if (!llvm::isPowerOf2_32(getAlignment())) |
| return emitOpError("alignment must be power of 2"); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CastOp |
| //===----------------------------------------------------------------------===// |
| |
| void CastOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "cast"); |
| } |
| |
| /// Determines whether MemRef_CastOp casts to a more dynamic version of the |
| /// source memref. This is useful to fold a memref.cast into a consuming op |
| /// and implement canonicalization patterns for ops in different dialects that |
| /// may consume the results of memref.cast operations. Such foldable memref.cast |
| /// operations are typically inserted as `view` and `subview` ops are |
| /// canonicalized, to preserve the type compatibility of their uses. |
| /// |
| /// Returns true when all conditions are met: |
| /// 1. source and result are ranked memrefs with strided semantics and same |
| /// element type and rank. |
| /// 2. each of the source's size, offset or stride has more static information |
| /// than the corresponding result's size, offset or stride. |
| /// |
| /// Example 1: |
| /// ```mlir |
| /// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32> |
| /// %2 = consumer %1 ... : memref<?x?xf32> ... |
| /// ``` |
| /// |
| /// may fold into: |
| /// |
| /// ```mlir |
| /// %2 = consumer %0 ... : memref<8x16xf32> ... |
| /// ``` |
| /// |
| /// Example 2: |
| /// ``` |
| /// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> |
| /// to memref<?x?xf32> |
| /// consumer %1 : memref<?x?xf32> ... |
| /// ``` |
| /// |
| /// may fold into: |
| /// |
| /// ``` |
| /// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> |
| /// ``` |
| bool CastOp::canFoldIntoConsumerOp(CastOp castOp) { |
| MemRefType sourceType = |
| llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| MemRefType resultType = llvm::dyn_cast<MemRefType>(castOp.getType()); |
| |
| // Requires ranked MemRefType. |
| if (!sourceType || !resultType) |
| return false; |
| |
| // Requires same elemental type. |
| if (sourceType.getElementType() != resultType.getElementType()) |
| return false; |
| |
| // Requires same rank. |
| if (sourceType.getRank() != resultType.getRank()) |
| return false; |
| |
| // Only fold casts between strided memref forms. |
| int64_t sourceOffset, resultOffset; |
| SmallVector<int64_t, 4> sourceStrides, resultStrides; |
| if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) || |
| failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) |
| return false; |
| |
| // If cast is towards more static sizes along any dimension, don't fold. |
| for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { |
| auto ss = std::get<0>(it), st = std::get<1>(it); |
| if (ss != st) |
| if (ShapedType::isDynamic(ss) && !ShapedType::isDynamic(st)) |
| return false; |
| } |
| |
| // If cast is towards more static offset along any dimension, don't fold. |
| if (sourceOffset != resultOffset) |
| if (ShapedType::isDynamic(sourceOffset) && |
| !ShapedType::isDynamic(resultOffset)) |
| return false; |
| |
| // If cast is towards more static strides along any dimension, don't fold. |
| for (auto it : llvm::zip(sourceStrides, resultStrides)) { |
| auto ss = std::get<0>(it), st = std::get<1>(it); |
| if (ss != st) |
| if (ShapedType::isDynamic(ss) && !ShapedType::isDynamic(st)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| if (inputs.size() != 1 || outputs.size() != 1) |
| return false; |
| Type a = inputs.front(), b = outputs.front(); |
| auto aT = llvm::dyn_cast<MemRefType>(a); |
| auto bT = llvm::dyn_cast<MemRefType>(b); |
| |
| auto uaT = llvm::dyn_cast<UnrankedMemRefType>(a); |
| auto ubT = llvm::dyn_cast<UnrankedMemRefType>(b); |
| |
| if (aT && bT) { |
| if (aT.getElementType() != bT.getElementType()) |
| return false; |
| if (aT.getLayout() != bT.getLayout()) { |
| int64_t aOffset, bOffset; |
| SmallVector<int64_t, 4> aStrides, bStrides; |
| if (failed(getStridesAndOffset(aT, aStrides, aOffset)) || |
| failed(getStridesAndOffset(bT, bStrides, bOffset)) || |
| aStrides.size() != bStrides.size()) |
| return false; |
| |
| // Strides along a dimension/offset are compatible if the value in the |
| // source memref is static and the value in the target memref is the |
| // same. They are also compatible if either one is dynamic (see |
| // description of MemRefCastOp for details). |
| auto checkCompatible = [](int64_t a, int64_t b) { |
| return (ShapedType::isDynamic(a) || ShapedType::isDynamic(b) || a == b); |
| }; |
| if (!checkCompatible(aOffset, bOffset)) |
| return false; |
| for (const auto &aStride : enumerate(aStrides)) |
| if (!checkCompatible(aStride.value(), bStrides[aStride.index()])) |
| return false; |
| } |
| if (aT.getMemorySpace() != bT.getMemorySpace()) |
| return false; |
| |
| // They must have the same rank, and any specified dimensions must match. |
| if (aT.getRank() != bT.getRank()) |
| return false; |
| |
| for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { |
| int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); |
| if (!ShapedType::isDynamic(aDim) && !ShapedType::isDynamic(bDim) && |
| aDim != bDim) |
| return false; |
| } |
| return true; |
| } else { |
| if (!aT && !uaT) |
| return false; |
| if (!bT && !ubT) |
| return false; |
| // Unranked to unranked casting is unsupported |
| if (uaT && ubT) |
| return false; |
| |
| auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType(); |
| auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType(); |
| if (aEltType != bEltType) |
| return false; |
| |
| auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace(); |
| auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace(); |
| return aMemSpace == bMemSpace; |
| } |
| |
| return false; |
| } |
| |
| OpFoldResult CastOp::fold(FoldAdaptor adaptor) { |
| return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CopyOp |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// If the source/target of a CopyOp is a CastOp that does not modify the shape |
| /// and element type, the cast can be skipped. Such CastOps only cast the layout |
| /// of the type. |
| struct FoldCopyOfCast : public OpRewritePattern<CopyOp> { |
| using OpRewritePattern<CopyOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CopyOp copyOp, |
| PatternRewriter &rewriter) const override { |
| bool modified = false; |
| |
| // Check source. |
| if (auto castOp = copyOp.getSource().getDefiningOp<CastOp>()) { |
| auto fromType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| auto toType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| |
| if (fromType && toType) { |
| if (fromType.getShape() == toType.getShape() && |
| fromType.getElementType() == toType.getElementType()) { |
| rewriter.modifyOpInPlace(copyOp, [&] { |
| copyOp.getSourceMutable().assign(castOp.getSource()); |
| }); |
| modified = true; |
| } |
| } |
| } |
| |
| // Check target. |
| if (auto castOp = copyOp.getTarget().getDefiningOp<CastOp>()) { |
| auto fromType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| auto toType = llvm::dyn_cast<MemRefType>(castOp.getSource().getType()); |
| |
| if (fromType && toType) { |
| if (fromType.getShape() == toType.getShape() && |
| fromType.getElementType() == toType.getElementType()) { |
| rewriter.modifyOpInPlace(copyOp, [&] { |
| copyOp.getTargetMutable().assign(castOp.getSource()); |
| }); |
| modified = true; |
| } |
| } |
| } |
| |
| return success(modified); |
| } |
| }; |
| |
| /// Fold memref.copy(%x, %x). |
| struct FoldSelfCopy : public OpRewritePattern<CopyOp> { |
| using OpRewritePattern<CopyOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CopyOp copyOp, |
| PatternRewriter &rewriter) const override { |
| if (copyOp.getSource() != copyOp.getTarget()) |
| return failure(); |
| |
| rewriter.eraseOp(copyOp); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void CopyOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<FoldCopyOfCast, FoldSelfCopy>(context); |
| } |
| |
| LogicalResult CopyOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// copy(memrefcast) -> copy |
| bool folded = false; |
| Operation *op = *this; |
| for (OpOperand &operand : op->getOpOperands()) { |
| auto castOp = operand.get().getDefiningOp<memref::CastOp>(); |
| if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { |
| operand.set(castOp.getOperand()); |
| folded = true; |
| } |
| } |
| return success(folded); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DeallocOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult DeallocOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// dealloc(memrefcast) -> dealloc |
| return foldMemRefCast(*this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DimOp |
| //===----------------------------------------------------------------------===// |
| |
| void DimOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "dim"); |
| } |
| |
| void DimOp::build(OpBuilder &builder, OperationState &result, Value source, |
| int64_t index) { |
| auto loc = result.location; |
| Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); |
| build(builder, result, source, indexValue); |
| } |
| |
| std::optional<int64_t> DimOp::getConstantIndex() { |
| return getConstantIntValue(getIndex()); |
| } |
| |
| Speculation::Speculatability DimOp::getSpeculatability() { |
| auto constantIndex = getConstantIndex(); |
| if (!constantIndex) |
| return Speculation::NotSpeculatable; |
| |
| auto rankedSourceType = dyn_cast<MemRefType>(getSource().getType()); |
| if (!rankedSourceType) |
| return Speculation::NotSpeculatable; |
| |
| if (rankedSourceType.getRank() <= constantIndex) |
| return Speculation::NotSpeculatable; |
| |
| return Speculation::Speculatable; |
| } |
| |
| /// Return a map with key being elements in `vals` and data being number of |
| /// occurences of it. Use std::map, since the `vals` here are strides and the |
| /// dynamic stride value is the same as the tombstone value for |
| /// `DenseMap<int64_t>`. |
| static std::map<int64_t, unsigned> getNumOccurences(ArrayRef<int64_t> vals) { |
| std::map<int64_t, unsigned> numOccurences; |
| for (auto val : vals) |
| numOccurences[val]++; |
| return numOccurences; |
| } |
| |
| /// Given the `originalType` and a `candidateReducedType` whose shape is assumed |
| /// to be a subset of `originalType` with some `1` entries erased, return the |
| /// set of indices that specifies which of the entries of `originalShape` are |
| /// dropped to obtain `reducedShape`. |
| /// This accounts for cases where there are multiple unit-dims, but only a |
| /// subset of those are dropped. For MemRefTypes these can be disambiguated |
| /// using the strides. If a dimension is dropped the stride must be dropped too. |
| static FailureOr<llvm::SmallBitVector> |
| computeMemRefRankReductionMask(MemRefType originalType, MemRefType reducedType, |
| ArrayRef<OpFoldResult> sizes) { |
| llvm::SmallBitVector unusedDims(originalType.getRank()); |
| if (originalType.getRank() == reducedType.getRank()) |
| return unusedDims; |
| |
| for (const auto &dim : llvm::enumerate(sizes)) |
| if (auto attr = llvm::dyn_cast_if_present<Attribute>(dim.value())) |
| if (llvm::cast<IntegerAttr>(attr).getInt() == 1) |
| unusedDims.set(dim.index()); |
| |
| // Early exit for the case where the number of unused dims matches the number |
| // of ranks reduced. |
| if (static_cast<int64_t>(unusedDims.count()) + reducedType.getRank() == |
| originalType.getRank()) |
| return unusedDims; |
| |
| SmallVector<int64_t> originalStrides, candidateStrides; |
| int64_t originalOffset, candidateOffset; |
| if (failed( |
| getStridesAndOffset(originalType, originalStrides, originalOffset)) || |
| failed( |
| getStridesAndOffset(reducedType, candidateStrides, candidateOffset))) |
| return failure(); |
| |
| // For memrefs, a dimension is truly dropped if its corresponding stride is |
| // also dropped. This is particularly important when more than one of the dims |
| // is 1. Track the number of occurences of the strides in the original type |
| // and the candidate type. For each unused dim that stride should not be |
| // present in the candidate type. Note that there could be multiple dimensions |
| // that have the same size. We dont need to exactly figure out which dim |
| // corresponds to which stride, we just need to verify that the number of |
| // reptitions of a stride in the original + number of unused dims with that |
| // stride == number of repititions of a stride in the candidate. |
| std::map<int64_t, unsigned> currUnaccountedStrides = |
| getNumOccurences(originalStrides); |
| std::map<int64_t, unsigned> candidateStridesNumOccurences = |
| getNumOccurences(candidateStrides); |
| for (size_t dim = 0, e = unusedDims.size(); dim != e; ++dim) { |
| if (!unusedDims.test(dim)) |
| continue; |
| int64_t originalStride = originalStrides[dim]; |
| if (currUnaccountedStrides[originalStride] > |
| candidateStridesNumOccurences[originalStride]) { |
| // This dim can be treated as dropped. |
| currUnaccountedStrides[originalStride]--; |
| continue; |
| } |
| if (currUnaccountedStrides[originalStride] == |
| candidateStridesNumOccurences[originalStride]) { |
| // The stride for this is not dropped. Keep as is. |
| unusedDims.reset(dim); |
| continue; |
| } |
| if (currUnaccountedStrides[originalStride] < |
| candidateStridesNumOccurences[originalStride]) { |
| // This should never happen. Cant have a stride in the reduced rank type |
| // that wasnt in the original one. |
| return failure(); |
| } |
| } |
| |
| if ((int64_t)unusedDims.count() + reducedType.getRank() != |
| originalType.getRank()) |
| return failure(); |
| return unusedDims; |
| } |
| |
| llvm::SmallBitVector SubViewOp::getDroppedDims() { |
| MemRefType sourceType = getSourceType(); |
| MemRefType resultType = getType(); |
| FailureOr<llvm::SmallBitVector> unusedDims = |
| computeMemRefRankReductionMask(sourceType, resultType, getMixedSizes()); |
| assert(succeeded(unusedDims) && "unable to find unused dims of subview"); |
| return *unusedDims; |
| } |
| |
| OpFoldResult DimOp::fold(FoldAdaptor adaptor) { |
| // All forms of folding require a known index. |
| auto index = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex()); |
| if (!index) |
| return {}; |
| |
| // Folding for unranked types (UnrankedMemRefType) is not supported. |
| auto memrefType = llvm::dyn_cast<MemRefType>(getSource().getType()); |
| if (!memrefType) |
| return {}; |
| |
| // Out of bound indices produce undefined behavior but are still valid IR. |
| // Don't choke on them. |
| int64_t indexVal = index.getInt(); |
| if (indexVal < 0 || indexVal >= memrefType.getRank()) |
| return {}; |
| |
| // Fold if the shape extent along the given index is known. |
| if (!memrefType.isDynamicDim(index.getInt())) { |
| Builder builder(getContext()); |
| return builder.getIndexAttr(memrefType.getShape()[index.getInt()]); |
| } |
| |
| // The size at the given index is now known to be a dynamic size. |
| unsigned unsignedIndex = index.getValue().getZExtValue(); |
| |
| // Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`. |
| Operation *definingOp = getSource().getDefiningOp(); |
| |
| if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp)) |
| return *(alloc.getDynamicSizes().begin() + |
| memrefType.getDynamicDimIndex(unsignedIndex)); |
| |
| if (auto alloca = dyn_cast_or_null<AllocaOp>(definingOp)) |
| return *(alloca.getDynamicSizes().begin() + |
| memrefType.getDynamicDimIndex(unsignedIndex)); |
| |
| if (auto view = dyn_cast_or_null<ViewOp>(definingOp)) |
| return *(view.getDynamicSizes().begin() + |
| memrefType.getDynamicDimIndex(unsignedIndex)); |
| |
| if (auto subview = dyn_cast_or_null<SubViewOp>(definingOp)) { |
| llvm::SmallBitVector unusedDims = subview.getDroppedDims(); |
| unsigned resultIndex = 0; |
| unsigned sourceRank = subview.getSourceType().getRank(); |
| unsigned sourceIndex = 0; |
| for (auto i : llvm::seq<unsigned>(0, sourceRank)) { |
| if (unusedDims.test(i)) |
| continue; |
| if (resultIndex == unsignedIndex) { |
| sourceIndex = i; |
| break; |
| } |
| resultIndex++; |
| } |
| assert(subview.isDynamicSize(sourceIndex) && |
| "expected dynamic subview size"); |
| return subview.getDynamicSize(sourceIndex); |
| } |
| |
| if (auto sizeInterface = |
| dyn_cast_or_null<OffsetSizeAndStrideOpInterface>(definingOp)) { |
| assert(sizeInterface.isDynamicSize(unsignedIndex) && |
| "Expected dynamic subview size"); |
| return sizeInterface.getDynamicSize(unsignedIndex); |
| } |
| |
| // dim(memrefcast) -> dim |
| if (succeeded(foldMemRefCast(*this))) |
| return getResult(); |
| |
| return {}; |
| } |
| |
| namespace { |
| /// Fold dim of a memref reshape operation to a load into the reshape's shape |
| /// operand. |
| struct DimOfMemRefReshape : public OpRewritePattern<DimOp> { |
| using OpRewritePattern<DimOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(DimOp dim, |
| PatternRewriter &rewriter) const override { |
| auto reshape = dim.getSource().getDefiningOp<ReshapeOp>(); |
| |
| if (!reshape) |
| return rewriter.notifyMatchFailure( |
| dim, "Dim op is not defined by a reshape op."); |
| |
| // dim of a memref reshape can be folded if dim.getIndex() dominates the |
| // reshape. Instead of using `DominanceInfo` (which is usually costly) we |
| // cheaply check that either of the following conditions hold: |
| // 1. dim.getIndex() is defined in the same block as reshape but before |
| // reshape. |
| // 2. dim.getIndex() is defined in a parent block of |
| // reshape. |
| |
| // Check condition 1 |
| if (dim.getIndex().getParentBlock() == reshape->getBlock()) { |
| if (auto *definingOp = dim.getIndex().getDefiningOp()) { |
| if (reshape->isBeforeInBlock(definingOp)) { |
| return rewriter.notifyMatchFailure( |
| dim, |
| "dim.getIndex is not defined before reshape in the same block."); |
| } |
| } // else dim.getIndex is a block argument to reshape->getBlock and |
| // dominates reshape |
| } // Check condition 2 |
| else if (dim->getBlock() != reshape->getBlock() && |
| !dim.getIndex().getParentRegion()->isProperAncestor( |
| reshape->getParentRegion())) { |
| // If dim and reshape are in the same block but dim.getIndex() isn't, we |
| // already know dim.getIndex() dominates reshape without calling |
| // `isProperAncestor` |
| return rewriter.notifyMatchFailure( |
| dim, "dim.getIndex does not dominate reshape."); |
| } |
| |
| // Place the load directly after the reshape to ensure that the shape memref |
| // was not mutated. |
| rewriter.setInsertionPointAfter(reshape); |
| Location loc = dim.getLoc(); |
| Value load = |
| rewriter.create<LoadOp>(loc, reshape.getShape(), dim.getIndex()); |
| if (load.getType() != dim.getType()) |
| load = rewriter.create<arith::IndexCastOp>(loc, dim.getType(), load); |
| rewriter.replaceOp(dim, load); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<DimOfMemRefReshape>(context); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // DmaStartOp |
| // --------------------------------------------------------------------------- |
| |
| void DmaStartOp::build(OpBuilder &builder, OperationState &result, |
| Value srcMemRef, ValueRange srcIndices, Value destMemRef, |
| ValueRange destIndices, Value numElements, |
| Value tagMemRef, ValueRange tagIndices, Value stride, |
| Value elementsPerStride) { |
| result.addOperands(srcMemRef); |
| result.addOperands(srcIndices); |
| result.addOperands(destMemRef); |
| result.addOperands(destIndices); |
| result.addOperands({numElements, tagMemRef}); |
| result.addOperands(tagIndices); |
| if (stride) |
| result.addOperands({stride, elementsPerStride}); |
| } |
| |
| void DmaStartOp::print(OpAsmPrinter &p) { |
| p << " " << getSrcMemRef() << '[' << getSrcIndices() << "], " |
| << getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements() |
| << ", " << getTagMemRef() << '[' << getTagIndices() << ']'; |
| if (isStrided()) |
| p << ", " << getStride() << ", " << getNumElementsPerStride(); |
| |
| p.printOptionalAttrDict((*this)->getAttrs()); |
| p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType() |
| << ", " << getTagMemRef().getType(); |
| } |
| |
| // Parse DmaStartOp. |
| // Ex: |
| // %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, |
| // %tag[%index], %stride, %num_elt_per_stride : |
| // : memref<3076 x f32, 0>, |
| // memref<1024 x f32, 2>, |
| // memref<1 x i32> |
| // |
| ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand srcMemRefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> srcIndexInfos; |
| OpAsmParser::UnresolvedOperand dstMemRefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> dstIndexInfos; |
| OpAsmParser::UnresolvedOperand numElementsInfo; |
| OpAsmParser::UnresolvedOperand tagMemrefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> tagIndexInfos; |
| SmallVector<OpAsmParser::UnresolvedOperand, 2> strideInfo; |
| |
| SmallVector<Type, 3> types; |
| auto indexType = parser.getBuilder().getIndexType(); |
| |
| // Parse and resolve the following list of operands: |
| // *) source memref followed by its indices (in square brackets). |
| // *) destination memref followed by its indices (in square brackets). |
| // *) dma size in KiB. |
| if (parser.parseOperand(srcMemRefInfo) || |
| parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || |
| parser.parseComma() || parser.parseOperand(dstMemRefInfo) || |
| parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || |
| parser.parseComma() || parser.parseOperand(numElementsInfo) || |
| parser.parseComma() || parser.parseOperand(tagMemrefInfo) || |
| parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) |
| return failure(); |
| |
| // Parse optional stride and elements per stride. |
| if (parser.parseTrailingOperandList(strideInfo)) |
| return failure(); |
| |
| bool isStrided = strideInfo.size() == 2; |
| if (!strideInfo.empty() && !isStrided) { |
| return parser.emitError(parser.getNameLoc(), |
| "expected two stride related operands"); |
| } |
| |
| if (parser.parseColonTypeList(types)) |
| return failure(); |
| if (types.size() != 3) |
| return parser.emitError(parser.getNameLoc(), "fewer/more types expected"); |
| |
| if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || |
| parser.resolveOperands(srcIndexInfos, indexType, result.operands) || |
| parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || |
| parser.resolveOperands(dstIndexInfos, indexType, result.operands) || |
| // size should be an index. |
| parser.resolveOperand(numElementsInfo, indexType, result.operands) || |
| parser.resolveOperand(tagMemrefInfo, types[2], result.operands) || |
| // tag indices should be index. |
| parser.resolveOperands(tagIndexInfos, indexType, result.operands)) |
| return failure(); |
| |
| if (isStrided) { |
| if (parser.resolveOperands(strideInfo, indexType, result.operands)) |
| return failure(); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult DmaStartOp::verify() { |
| unsigned numOperands = getNumOperands(); |
| |
| // Mandatory non-variadic operands are: src memref, dst memref, tag memref and |
| // the number of elements. |
| if (numOperands < 4) |
| return emitOpError("expected at least 4 operands"); |
| |
| // Check types of operands. The order of these calls is important: the later |
| // calls rely on some type properties to compute the operand position. |
| // 1. Source memref. |
| if (!llvm::isa<MemRefType>(getSrcMemRef().getType())) |
| return emitOpError("expected source to be of memref type"); |
| if (numOperands < getSrcMemRefRank() + 4) |
| return emitOpError() << "expected at least " << getSrcMemRefRank() + 4 |
| << " operands"; |
| if (!getSrcIndices().empty() && |
| !llvm::all_of(getSrcIndices().getTypes(), |
| [](Type t) { return t.isIndex(); })) |
| return emitOpError("expected source indices to be of index type"); |
| |
| // 2. Destination memref. |
| if (!llvm::isa<MemRefType>(getDstMemRef().getType())) |
| return emitOpError("expected destination to be of memref type"); |
| unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4; |
| if (numOperands < numExpectedOperands) |
| return emitOpError() << "expected at least " << numExpectedOperands |
| << " operands"; |
| if (!getDstIndices().empty() && |
| !llvm::all_of(getDstIndices().getTypes(), |
| [](Type t) { return t.isIndex(); })) |
| return emitOpError("expected destination indices to be of index type"); |
| |
| // 3. Number of elements. |
| if (!getNumElements().getType().isIndex()) |
| return emitOpError("expected num elements to be of index type"); |
| |
| // 4. Tag memref. |
| if (!llvm::isa<MemRefType>(getTagMemRef().getType())) |
| return emitOpError("expected tag to be of memref type"); |
| numExpectedOperands += getTagMemRefRank(); |
| if (numOperands < numExpectedOperands) |
| return emitOpError() << "expected at least " << numExpectedOperands |
| << " operands"; |
| if (!getTagIndices().empty() && |
| !llvm::all_of(getTagIndices().getTypes(), |
| [](Type t) { return t.isIndex(); })) |
| return emitOpError("expected tag indices to be of index type"); |
| |
| // Optional stride-related operands must be either both present or both |
| // absent. |
| if (numOperands != numExpectedOperands && |
| numOperands != numExpectedOperands + 2) |
| return emitOpError("incorrect number of operands"); |
| |
| // 5. Strides. |
| if (isStrided()) { |
| if (!getStride().getType().isIndex() || |
| !getNumElementsPerStride().getType().isIndex()) |
| return emitOpError( |
| "expected stride and num elements per stride to be of type index"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult DmaStartOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// dma_start(memrefcast) -> dma_start |
| return foldMemRefCast(*this); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // DmaWaitOp |
| // --------------------------------------------------------------------------- |
| |
| LogicalResult DmaWaitOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// dma_wait(memrefcast) -> dma_wait |
| return foldMemRefCast(*this); |
| } |
| |
| LogicalResult DmaWaitOp::verify() { |
| // Check that the number of tag indices matches the tagMemRef rank. |
| unsigned numTagIndices = getTagIndices().size(); |
| unsigned tagMemRefRank = getTagMemRefRank(); |
| if (numTagIndices != tagMemRefRank) |
| return emitOpError() << "expected tagIndices to have the same number of " |
| "elements as the tagMemRef rank, expected " |
| << tagMemRefRank << ", but got " << numTagIndices; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExtractAlignedPointerAsIndexOp |
| //===----------------------------------------------------------------------===// |
| |
| void ExtractAlignedPointerAsIndexOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "intptr"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExtractStridedMetadataOp |
| //===----------------------------------------------------------------------===// |
| |
| /// The number and type of the results are inferred from the |
| /// shape of the source. |
| LogicalResult ExtractStridedMetadataOp::inferReturnTypes( |
| MLIRContext *context, std::optional<Location> location, |
| ExtractStridedMetadataOp::Adaptor adaptor, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| auto sourceType = llvm::dyn_cast<MemRefType>(adaptor.getSource().getType()); |
| if (!sourceType) |
| return failure(); |
| |
| unsigned sourceRank = sourceType.getRank(); |
| IndexType indexType = IndexType::get(context); |
| auto memrefType = |
| MemRefType::get({}, sourceType.getElementType(), |
| MemRefLayoutAttrInterface{}, sourceType.getMemorySpace()); |
| // Base. |
| inferredReturnTypes.push_back(memrefType); |
| // Offset. |
| inferredReturnTypes.push_back(indexType); |
| // Sizes and strides. |
| for (unsigned i = 0; i < sourceRank * 2; ++i) |
| inferredReturnTypes.push_back(indexType); |
| return success(); |
| } |
| |
| void ExtractStridedMetadataOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getBaseBuffer(), "base_buffer"); |
| setNameFn(getOffset(), "offset"); |
| // For multi-result to work properly with pretty names and packed syntax `x:3` |
| // we can only give a pretty name to the first value in the pack. |
| if (!getSizes().empty()) { |
| setNameFn(getSizes().front(), "sizes"); |
| setNameFn(getStrides().front(), "strides"); |
| } |
| } |
| |
| /// Helper function to perform the replacement of all constant uses of `values` |
| /// by a materialized constant extracted from `maybeConstants`. |
| /// `values` and `maybeConstants` are expected to have the same size. |
| template <typename Container> |
| static bool replaceConstantUsesOf(OpBuilder &rewriter, Location loc, |
| Container values, |
| ArrayRef<OpFoldResult> maybeConstants) { |
| assert(values.size() == maybeConstants.size() && |
| " expected values and maybeConstants of the same size"); |
| bool atLeastOneReplacement = false; |
| for (auto [maybeConstant, result] : llvm::zip(maybeConstants, values)) { |
| // Don't materialize a constant if there are no uses: this would indice |
| // infinite loops in the driver. |
| if (result.use_empty() || maybeConstant == getAsOpFoldResult(result)) |
| continue; |
| assert(maybeConstant.template is<Attribute>() && |
| "The constified value should be either unchanged (i.e., == result) " |
| "or a constant"); |
| Value constantVal = rewriter.create<arith::ConstantIndexOp>( |
| loc, llvm::cast<IntegerAttr>(maybeConstant.template get<Attribute>()) |
| .getInt()); |
| for (Operation *op : llvm::make_early_inc_range(result.getUsers())) { |
| // modifyOpInPlace: lambda cannot capture structured bindings in C++17 |
| // yet. |
| op->replaceUsesOfWith(result, constantVal); |
| atLeastOneReplacement = true; |
| } |
| } |
| return atLeastOneReplacement; |
| } |
| |
| LogicalResult |
| ExtractStridedMetadataOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| OpBuilder builder(*this); |
| |
| bool atLeastOneReplacement = replaceConstantUsesOf( |
| builder, getLoc(), ArrayRef<TypedValue<IndexType>>(getOffset()), |
| getConstifiedMixedOffset()); |
| atLeastOneReplacement |= replaceConstantUsesOf(builder, getLoc(), getSizes(), |
| getConstifiedMixedSizes()); |
| atLeastOneReplacement |= replaceConstantUsesOf( |
| builder, getLoc(), getStrides(), getConstifiedMixedStrides()); |
| |
| return success(atLeastOneReplacement); |
| } |
| |
| SmallVector<OpFoldResult> ExtractStridedMetadataOp::getConstifiedMixedSizes() { |
| SmallVector<OpFoldResult> values = getAsOpFoldResult(getSizes()); |
| constifyIndexValues(values, getSource().getType(), getContext(), |
| getConstantSizes, ShapedType::isDynamic); |
| return values; |
| } |
| |
| SmallVector<OpFoldResult> |
| ExtractStridedMetadataOp::getConstifiedMixedStrides() { |
| SmallVector<OpFoldResult> values = getAsOpFoldResult(getStrides()); |
| constifyIndexValues(values, getSource().getType(), getContext(), |
| getConstantStrides, ShapedType::isDynamic); |
| return values; |
| } |
| |
| OpFoldResult ExtractStridedMetadataOp::getConstifiedMixedOffset() { |
| OpFoldResult offsetOfr = getAsOpFoldResult(getOffset()); |
| SmallVector<OpFoldResult> values(1, offsetOfr); |
| constifyIndexValues(values, getSource().getType(), getContext(), |
| getConstantOffset, ShapedType::isDynamic); |
| return values[0]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GenericAtomicRMWOp |
| //===----------------------------------------------------------------------===// |
| |
| void GenericAtomicRMWOp::build(OpBuilder &builder, OperationState &result, |
| Value memref, ValueRange ivs) { |
| OpBuilder::InsertionGuard g(builder); |
| result.addOperands(memref); |
| result.addOperands(ivs); |
| |
| if (auto memrefType = llvm::dyn_cast<MemRefType>(memref.getType())) { |
| Type elementType = memrefType.getElementType(); |
| result.addTypes(elementType); |
| |
| Region *bodyRegion = result.addRegion(); |
| builder.createBlock(bodyRegion); |
| bodyRegion->addArgument(elementType, memref.getLoc()); |
| } |
| } |
| |
| LogicalResult GenericAtomicRMWOp::verify() { |
| auto &body = getRegion(); |
| if (body.getNumArguments() != 1) |
| return emitOpError("expected single number of entry block arguments"); |
| |
| if (getResult().getType() != body.getArgument(0).getType()) |
| return emitOpError("expected block argument of the same type result type"); |
| |
| bool hasSideEffects = |
| body.walk([&](Operation *nestedOp) { |
| if (isMemoryEffectFree(nestedOp)) |
| return WalkResult::advance(); |
| nestedOp->emitError( |
| "body of 'memref.generic_atomic_rmw' should contain " |
| "only operations with no side effects"); |
| return WalkResult::interrupt(); |
| }) |
| .wasInterrupted(); |
| return hasSideEffects ? failure() : success(); |
| } |
| |
| ParseResult GenericAtomicRMWOp::parse(OpAsmParser &parser, |
| OperationState &result) { |
| OpAsmParser::UnresolvedOperand memref; |
| Type memrefType; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> ivs; |
| |
| Type indexType = parser.getBuilder().getIndexType(); |
| if (parser.parseOperand(memref) || |
| parser.parseOperandList(ivs, OpAsmParser::Delimiter::Square) || |
| parser.parseColonType(memrefType) || |
| parser.resolveOperand(memref, memrefType, result.operands) || |
| parser.resolveOperands(ivs, indexType, result.operands)) |
| return failure(); |
| |
| Region *body = result.addRegion(); |
| if (parser.parseRegion(*body, {}) || |
| parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| result.types.push_back(llvm::cast<MemRefType>(memrefType).getElementType()); |
| return success(); |
| } |
| |
| void GenericAtomicRMWOp::print(OpAsmPrinter &p) { |
| p << ' ' << getMemref() << "[" << getIndices() |
| << "] : " << getMemref().getType() << ' '; |
| p.printRegion(getRegion()); |
| p.printOptionalAttrDict((*this)->getAttrs()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicYieldOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AtomicYieldOp::verify() { |
| Type parentType = (*this)->getParentOp()->getResultTypes().front(); |
| Type resultType = getResult().getType(); |
| if (parentType != resultType) |
| return emitOpError() << "types mismatch between yield op: " << resultType |
| << " and its parent: " << parentType; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalOp |
| //===----------------------------------------------------------------------===// |
| |
| static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op, |
| TypeAttr type, |
| Attribute initialValue) { |
| p << type; |
| if (!op.isExternal()) { |
| p << " = "; |
| if (op.isUninitialized()) |
| p << "uninitialized"; |
| else |
| p.printAttributeWithoutType(initialValue); |
| } |
| } |
| |
| static ParseResult |
| parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, |
| Attribute &initialValue) { |
| Type type; |
| if (parser.parseType(type)) |
| return failure(); |
| |
| auto memrefType = llvm::dyn_cast<MemRefType>(type); |
| if (!memrefType || !memrefType.hasStaticShape()) |
| return parser.emitError(parser.getNameLoc()) |
| << "type should be static shaped memref, but got " << type; |
| typeAttr = TypeAttr::get(type); |
| |
| if (parser.parseOptionalEqual()) |
| return success(); |
| |
| if (succeeded(parser.parseOptionalKeyword("uninitialized"))) { |
| initialValue = UnitAttr::get(parser.getContext()); |
| return success(); |
| } |
| |
| Type tensorType = getTensorTypeFromMemRefType(memrefType); |
| if (parser.parseAttribute(initialValue, tensorType)) |
| return failure(); |
| if (!llvm::isa<ElementsAttr>(initialValue)) |
| return parser.emitError(parser.getNameLoc()) |
| << "initial value should be a unit or elements attribute"; |
| return success(); |
| } |
| |
| LogicalResult GlobalOp::verify() { |
| auto memrefType = llvm::dyn_cast<MemRefType>(getType()); |
| if (!memrefType || !memrefType.hasStaticShape()) |
| return emitOpError("type should be static shaped memref, but got ") |
| << getType(); |
| |
| // Verify that the initial value, if present, is either a unit attribute or |
| // an elements attribute. |
| if (getInitialValue().has_value()) { |
| Attribute initValue = getInitialValue().value(); |
| if (!llvm::isa<UnitAttr>(initValue) && !llvm::isa<ElementsAttr>(initValue)) |
| return emitOpError("initial value should be a unit or elements " |
| "attribute, but got ") |
| << initValue; |
| |
| // Check that the type of the initial value is compatible with the type of |
| // the global variable. |
| if (auto elementsAttr = llvm::dyn_cast<ElementsAttr>(initValue)) { |
| Type initType = elementsAttr.getType(); |
| Type tensorType = getTensorTypeFromMemRefType(memrefType); |
| if (initType != tensorType) |
| return emitOpError("initial value expected to be of type ") |
| << tensorType << ", but was of type " << initType; |
| } |
| } |
| |
| if (std::optional<uint64_t> alignAttr = getAlignment()) { |
| uint64_t alignment = *alignAttr; |
| |
| if (!llvm::isPowerOf2_64(alignment)) |
| return emitError() << "alignment attribute value " << alignment |
| << " is not a power of 2"; |
| } |
| |
| // TODO: verify visibility for declarations. |
| return success(); |
| } |
| |
| ElementsAttr GlobalOp::getConstantInitValue() { |
| auto initVal = getInitialValue(); |
| if (getConstant() && initVal.has_value()) |
| return llvm::cast<ElementsAttr>(initVal.value()); |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GetGlobalOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult |
| GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { |
| // Verify that the result type is same as the type of the referenced |
| // memref.global op. |
| auto global = |
| symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, getNameAttr()); |
| if (!global) |
| return emitOpError("'") |
| << getName() << "' does not reference a valid global memref"; |
| |
| Type resultType = getResult().getType(); |
| if (global.getType() != resultType) |
| return emitOpError("result type ") |
| << resultType << " does not match type " << global.getType() |
| << " of the global memref @" << getName(); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoadOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult LoadOp::verify() { |
| if (static_cast<int64_t>(getIndices().size()) != getMemRefType().getRank()) { |
| return emitOpError("incorrect number of indices for load, expected ") |
| << getMemRefType().getRank() << " but got " << getIndices().size(); |
| } |
| return success(); |
| } |
| |
| OpFoldResult LoadOp::fold(FoldAdaptor adaptor) { |
| /// load(memrefcast) -> load |
| if (succeeded(foldMemRefCast(*this))) |
| return getResult(); |
| return OpFoldResult(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MemorySpaceCastOp |
| //===----------------------------------------------------------------------===// |
| |
| void MemorySpaceCastOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "memspacecast"); |
| } |
| |
| bool MemorySpaceCastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { |
| if (inputs.size() != 1 || outputs.size() != 1) |
| return false; |
| Type a = inputs.front(), b = outputs.front(); |
| auto aT = llvm::dyn_cast<MemRefType>(a); |
| auto bT = llvm::dyn_cast<MemRefType>(b); |
| |
| auto uaT = llvm::dyn_cast<UnrankedMemRefType>(a); |
| auto ubT = llvm::dyn_cast<UnrankedMemRefType>(b); |
| |
| if (aT && bT) { |
| if (aT.getElementType() != bT.getElementType()) |
| return false; |
| if (aT.getLayout() != bT.getLayout()) |
| return false; |
| if (aT.getShape() != bT.getShape()) |
| return false; |
| return true; |
| } |
| if (uaT && ubT) { |
| return uaT.getElementType() == ubT.getElementType(); |
| } |
| return false; |
| } |
| |
| OpFoldResult MemorySpaceCastOp::fold(FoldAdaptor adaptor) { |
| // memory_space_cast(memory_space_cast(v, t1), t2) -> memory_space_cast(v, |
| // t2) |
| if (auto parentCast = getSource().getDefiningOp<MemorySpaceCastOp>()) { |
| getSourceMutable().assign(parentCast.getSource()); |
| return getResult(); |
| } |
| return Value{}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PrefetchOp |
| //===----------------------------------------------------------------------===// |
| |
| void PrefetchOp::print(OpAsmPrinter &p) { |
| p << " " << getMemref() << '['; |
| p.printOperands(getIndices()); |
| p << ']' << ", " << (getIsWrite() ? "write" : "read"); |
| p << ", locality<" << getLocalityHint(); |
| p << ">, " << (getIsDataCache() ? "data" : "instr"); |
| p.printOptionalAttrDict( |
| (*this)->getAttrs(), |
| /*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"}); |
| p << " : " << getMemRefType(); |
| } |
| |
| ParseResult PrefetchOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand memrefInfo; |
| SmallVector<OpAsmParser::UnresolvedOperand, 4> indexInfo; |
| IntegerAttr localityHint; |
| MemRefType type; |
| StringRef readOrWrite, cacheType; |
| |
| auto indexTy = parser.getBuilder().getIndexType(); |
| auto i32Type = parser.getBuilder().getIntegerType(32); |
| if (parser.parseOperand(memrefInfo) || |
| parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || |
| parser.parseComma() || parser.parseKeyword(&readOrWrite) || |
| parser.parseComma() || parser.parseKeyword("locality") || |
| parser.parseLess() || |
| parser.parseAttribute(localityHint, i32Type, "localityHint", |
| result.attributes) || |
| parser.parseGreater() || parser.parseComma() || |
| parser.parseKeyword(&cacheType) || parser.parseColonType(type) || |
| parser.resolveOperand(memrefInfo, type, result.operands) || |
| parser.resolveOperands(indexInfo, indexTy, result.operands)) |
| return failure(); |
| |
| if (!readOrWrite.equals("read") && !readOrWrite.equals("write")) |
| return parser.emitError(parser.getNameLoc(), |
| "rw specifier has to be 'read' or 'write'"); |
| result.addAttribute( |
| PrefetchOp::getIsWriteAttrStrName(), |
| parser.getBuilder().getBoolAttr(readOrWrite.equals("write"))); |
| |
| if (!cacheType.equals("data") && !cacheType.equals("instr")) |
| return parser.emitError(parser.getNameLoc(), |
| "cache type has to be 'data' or 'instr'"); |
| |
| result.addAttribute( |
| PrefetchOp::getIsDataCacheAttrStrName(), |
| parser.getBuilder().getBoolAttr(cacheType.equals("data"))); |
| |
| return success(); |
| } |
| |
| LogicalResult PrefetchOp::verify() { |
| if (getNumOperands() != 1 + getMemRefType().getRank()) |
| return emitOpError("too few indices"); |
| |
| return success(); |
| } |
| |
| LogicalResult PrefetchOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| // prefetch(memrefcast) -> prefetch |
| return foldMemRefCast(*this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RankOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult RankOp::fold(FoldAdaptor adaptor) { |
| // Constant fold rank when the rank of the operand is known. |
| auto type = getOperand().getType(); |
| auto shapedType = llvm::dyn_cast<ShapedType>(type); |
| if (shapedType && shapedType.hasRank()) |
| return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); |
| return IntegerAttr(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReinterpretCastOp |
| //===----------------------------------------------------------------------===// |
| |
| void ReinterpretCastOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "reinterpret_cast"); |
| } |
| |
| /// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`, |
| /// `staticSizes` and `staticStrides` are automatically filled with |
| /// source-memref-rank sentinel values that encode dynamic entries. |
| void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| OpFoldResult offset, ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| b.getDenseI64ArrayAttr(staticSizes), |
| b.getDenseI64ArrayAttr(staticStrides)); |
| result.addAttributes(attrs); |
| } |
| |
| void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| int64_t offset, ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> sizeValues = |
| llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues, |
| strideValues, attrs); |
| } |
| |
| void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, Value offset, |
| ValueRange sizes, ValueRange strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| build(b, result, resultType, source, offset, sizeValues, strideValues, attrs); |
| } |
| |
| // TODO: ponder whether we want to allow missing trailing sizes/strides that are |
| // completed automatically, like we have for subview and extract_slice. |
| LogicalResult ReinterpretCastOp::verify() { |
| // The source and result memrefs should be in the same memory space. |
| auto srcType = llvm::cast<BaseMemRefType>(getSource().getType()); |
| auto resultType = llvm::cast<MemRefType>(getType()); |
| if (srcType.getMemorySpace() != resultType.getMemorySpace()) |
| return emitError("different memory spaces specified for source type ") |
| << srcType << " and result memref type " << resultType; |
| if (srcType.getElementType() != resultType.getElementType()) |
| return emitError("different element types specified for source type ") |
| << srcType << " and result memref type " << resultType; |
| |
| // Match sizes in result memref type and in static_sizes attribute. |
| for (auto [idx, resultSize, expectedSize] : |
| llvm::enumerate(resultType.getShape(), getStaticSizes())) { |
| if (!ShapedType::isDynamic(resultSize) && |
| !ShapedType::isDynamic(expectedSize) && resultSize != expectedSize) |
| return emitError("expected result type with size = ") |
| << expectedSize << " instead of " << resultSize |
| << " in dim = " << idx; |
| } |
| |
| // Match offset and strides in static_offset and static_strides attributes. If |
| // result memref type has no affine map specified, this will assume an |
| // identity layout. |
| int64_t resultOffset; |
| SmallVector<int64_t, 4> resultStrides; |
| if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) |
| return emitError("expected result type to have strided layout but found ") |
| << resultType; |
| |
| // Match offset in result memref type and in static_offsets attribute. |
| int64_t expectedOffset = getStaticOffsets().front(); |
| if (!ShapedType::isDynamic(resultOffset) && |
| !ShapedType::isDynamic(expectedOffset) && resultOffset != expectedOffset) |
| return emitError("expected result type with offset = ") |
| << expectedOffset << " instead of " << resultOffset; |
| |
| // Match strides in result memref type and in static_strides attribute. |
| for (auto [idx, resultStride, expectedStride] : |
| llvm::enumerate(resultStrides, getStaticStrides())) { |
| if (!ShapedType::isDynamic(resultStride) && |
| !ShapedType::isDynamic(expectedStride) && |
| resultStride != expectedStride) |
| return emitError("expected result type with stride = ") |
| << expectedStride << " instead of " << resultStride |
| << " in dim = " << idx; |
| } |
| |
| return success(); |
| } |
| |
| OpFoldResult ReinterpretCastOp::fold(FoldAdaptor /*operands*/) { |
| Value src = getSource(); |
| auto getPrevSrc = [&]() -> Value { |
| // reinterpret_cast(reinterpret_cast(x)) -> reinterpret_cast(x). |
| if (auto prev = src.getDefiningOp<ReinterpretCastOp>()) |
| return prev.getSource(); |
| |
| // reinterpret_cast(cast(x)) -> reinterpret_cast(x). |
| if (auto prev = src.getDefiningOp<CastOp>()) |
| return prev.getSource(); |
| |
| // reinterpret_cast(subview(x)) -> reinterpret_cast(x) if subview offsets |
| // are 0. |
| if (auto prev = src.getDefiningOp<SubViewOp>()) |
| if (llvm::all_of(prev.getMixedOffsets(), [](OpFoldResult val) { |
| return isConstantIntValue(val, 0); |
| })) |
| return prev.getSource(); |
| |
| return nullptr; |
| }; |
| |
| if (auto prevSrc = getPrevSrc()) { |
| getSourceMutable().assign(prevSrc); |
| return getResult(); |
| } |
| |
| // reinterpret_cast(x) w/o offset/shape/stride changes -> x |
| if (!ShapedType::isDynamicShape(getType().getShape()) && |
| src.getType() == getType() && getStaticOffsets().front() == 0) { |
| return src; |
| } |
| |
| return nullptr; |
| } |
| |
| SmallVector<OpFoldResult> ReinterpretCastOp::getConstifiedMixedSizes() { |
| SmallVector<OpFoldResult> values = getMixedSizes(); |
| constifyIndexValues(values, getType(), getContext(), getConstantSizes, |
| ShapedType::isDynamic); |
| return values; |
| } |
| |
| SmallVector<OpFoldResult> ReinterpretCastOp::getConstifiedMixedStrides() { |
| SmallVector<OpFoldResult> values = getMixedStrides(); |
| constifyIndexValues(values, getType(), getContext(), getConstantStrides, |
| ShapedType::isDynamic); |
| return values; |
| } |
| |
| OpFoldResult ReinterpretCastOp::getConstifiedMixedOffset() { |
| SmallVector<OpFoldResult> values = getMixedOffsets(); |
| assert(values.size() == 1 && |
| "reinterpret_cast must have one and only one offset"); |
| constifyIndexValues(values, getType(), getContext(), getConstantOffset, |
| ShapedType::isDynamic); |
| return values[0]; |
| } |
| |
| namespace { |
| /// Replace the sequence: |
| /// ``` |
| /// base, offset, sizes, strides = extract_strided_metadata src |
| /// dst = reinterpret_cast base to offset, sizes, strides |
| /// ``` |
| /// With |
| /// |
| /// ``` |
| /// dst = memref.cast src |
| /// ``` |
| /// |
| /// Note: The cast operation is only inserted when the type of dst and src |
| /// are not the same. E.g., when going from <4xf32> to <?xf32>. |
| /// |
| /// This pattern also matches when the offset, sizes, and strides don't come |
| /// directly from the `extract_strided_metadata`'s results but it can be |
| /// statically proven that they would hold the same values. |
| /// |
| /// For instance, the following sequence would be replaced: |
| /// ``` |
| /// base, offset, sizes, strides = |
| /// extract_strided_metadata memref : memref<3x4xty> |
| /// dst = reinterpret_cast base to 0, [3, 4], strides |
| /// ``` |
| /// Because we know (thanks to the type of the input memref) that variable |
| /// `offset` and `sizes` will respectively hold 0 and [3, 4]. |
| /// |
| /// Similarly, the following sequence would be replaced: |
| /// ``` |
| /// c0 = arith.constant 0 |
| /// c4 = arith.constant 4 |
| /// base, offset, sizes, strides = |
| /// extract_strided_metadata memref : memref<3x4xty> |
| /// dst = reinterpret_cast base to c0, [3, c4], strides |
| /// ``` |
| /// Because we know that `offset`and `c0` will hold 0 |
| /// and `c4` will hold 4. |
| struct ReinterpretCastOpExtractStridedMetadataFolder |
| : public OpRewritePattern<ReinterpretCastOp> { |
| public: |
| using OpRewritePattern<ReinterpretCastOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ReinterpretCastOp op, |
| PatternRewriter &rewriter) const override { |
| auto extractStridedMetadata = |
| op.getSource().getDefiningOp<ExtractStridedMetadataOp>(); |
| if (!extractStridedMetadata) |
| return failure(); |
| // Check if the reinterpret cast reconstructs a memref with the exact same |
| // properties as the extract strided metadata. |
| |
| // First, check that the strides are the same. |
| SmallVector<OpFoldResult> extractStridesOfr = |
| extractStridedMetadata.getConstifiedMixedStrides(); |
| SmallVector<OpFoldResult> reinterpretStridesOfr = |
| op.getConstifiedMixedStrides(); |
| if (extractStridesOfr.size() != reinterpretStridesOfr.size()) |
| return failure(); |
| |
| unsigned rank = op.getType().getRank(); |
| for (unsigned i = 0; i < rank; ++i) { |
| if (extractStridesOfr[i] != reinterpretStridesOfr[i]) |
| return failure(); |
| } |
| |
| // Second, check the sizes. |
| assert(extractStridedMetadata.getSizes().size() == |
| op.getMixedSizes().size() && |
| "Strides and sizes rank must match"); |
| SmallVector<OpFoldResult> extractSizesOfr = |
| extractStridedMetadata.getConstifiedMixedSizes(); |
| SmallVector<OpFoldResult> reinterpretSizesOfr = |
| op.getConstifiedMixedSizes(); |
| for (unsigned i = 0; i < rank; ++i) { |
| if (extractSizesOfr[i] != reinterpretSizesOfr[i]) |
| return failure(); |
| } |
| // Finally, check the offset. |
| assert(op.getMixedOffsets().size() == 1 && |
| "reinterpret_cast with more than one offset should have been " |
| "rejected by the verifier"); |
| OpFoldResult extractOffsetOfr = |
| extractStridedMetadata.getConstifiedMixedOffset(); |
| OpFoldResult reinterpretOffsetOfr = op.getConstifiedMixedOffset(); |
| if (extractOffsetOfr != reinterpretOffsetOfr) |
| return failure(); |
| |
| // At this point, we know that the back and forth between extract strided |
| // metadata and reinterpret cast is a noop. However, the final type of the |
| // reinterpret cast may not be exactly the same as the original memref. |
| // E.g., it could be changing a dimension from static to dynamic. Check that |
| // here and add a cast if necessary. |
| Type srcTy = extractStridedMetadata.getSource().getType(); |
| if (srcTy == op.getResult().getType()) |
| rewriter.replaceOp(op, extractStridedMetadata.getSource()); |
| else |
| rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), |
| extractStridedMetadata.getSource()); |
| |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void ReinterpretCastOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ReinterpretCastOpExtractStridedMetadataFolder>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Reassociative reshape ops |
| //===----------------------------------------------------------------------===// |
| |
| void CollapseShapeOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "collapse_shape"); |
| } |
| |
| void ExpandShapeOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "expand_shape"); |
| } |
| |
| /// Helper function for verifying the shape of ExpandShapeOp and ResultShapeOp |
| /// result and operand. Layout maps are verified separately. |
| /// |
| /// If `allowMultipleDynamicDimsPerGroup`, multiple dynamic dimensions are |
| /// allowed in a reassocation group. |
| static LogicalResult |
| verifyCollapsedShape(Operation *op, ArrayRef<int64_t> collapsedShape, |
| ArrayRef<int64_t> expandedShape, |
| ArrayRef<ReassociationIndices> reassociation, |
| bool allowMultipleDynamicDimsPerGroup) { |
| // There must be one reassociation group per collapsed dimension. |
| if (collapsedShape.size() != reassociation.size()) |
| return op->emitOpError("invalid number of reassociation groups: found ") |
| << reassociation.size() << ", expected " << collapsedShape.size(); |
| |
| // The next expected expanded dimension index (while iterating over |
| // reassociation indices). |
| int64_t nextDim = 0; |
| for (const auto &it : llvm::enumerate(reassociation)) { |
| ReassociationIndices group = it.value(); |
| int64_t collapsedDim = it.index(); |
| |
| bool foundDynamic = false; |
| for (int64_t expandedDim : group) { |
| if (expandedDim != nextDim++) |
| return op->emitOpError("reassociation indices must be contiguous"); |
| |
| if (expandedDim >= static_cast<int64_t>(expandedShape.size())) |
| return op->emitOpError("reassociation index ") |
| << expandedDim << " is out of bounds"; |
| |
| // Check if there are multiple dynamic dims in a reassociation group. |
| if (ShapedType::isDynamic(expandedShape[expandedDim])) { |
| if (foundDynamic && !allowMultipleDynamicDimsPerGroup) |
| return op->emitOpError( |
| "at most one dimension in a reassociation group may be dynamic"); |
| foundDynamic = true; |
| } |
| } |
| |
| // ExpandShapeOp/CollapseShapeOp may not be used to cast dynamicity. |
| if (ShapedType::isDynamic(collapsedShape[collapsedDim]) != foundDynamic) |
| return op->emitOpError("collapsed dim (") |
| << collapsedDim |
| << ") must be dynamic if and only if reassociation group is " |
| "dynamic"; |
| |
| // If all dims in the reassociation group are static, the size of the |
| // collapsed dim can be verified. |
| if (!foundDynamic) { |
| int64_t groupSize = 1; |
| for (int64_t expandedDim : group) |
| groupSize *= expandedShape[expandedDim]; |
| if (groupSize != collapsedShape[collapsedDim]) |
| return op->emitOpError("collapsed dim size (") |
| << collapsedShape[collapsedDim] |
| << ") must equal reassociation group size (" << groupSize << ")"; |
| } |
| } |
| |
| if (collapsedShape.empty()) { |
| // Rank 0: All expanded dimensions must be 1. |
| for (int64_t d : expandedShape) |
| if (d != 1) |
| return op->emitOpError( |
| "rank 0 memrefs can only be extended/collapsed with/from ones"); |
| } else if (nextDim != static_cast<int64_t>(expandedShape.size())) { |
| // Rank >= 1: Number of dimensions among all reassociation groups must match |
| // the result memref rank. |
| return op->emitOpError("expanded rank (") |
| << expandedShape.size() |
| << ") inconsistent with number of reassociation indices (" << nextDim |
| << ")"; |
| } |
| |
| return success(); |
| } |
| |
| SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { |
| return getSymbolLessAffineMaps(getReassociationExprs()); |
| } |
| |
| SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { |
| return convertReassociationIndicesToExprs(getContext(), |
| getReassociationIndices()); |
| } |
| |
| SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { |
| return getSymbolLessAffineMaps(getReassociationExprs()); |
| } |
| |
| SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { |
| return convertReassociationIndicesToExprs(getContext(), |
| getReassociationIndices()); |
| } |
| |
| /// Compute the layout map after expanding a given source MemRef type with the |
| /// specified reassociation indices. |
| static FailureOr<StridedLayoutAttr> |
| computeExpandedLayoutMap(MemRefType srcType, ArrayRef<int64_t> resultShape, |
| ArrayRef<ReassociationIndices> reassociation) { |
| int64_t srcOffset; |
| SmallVector<int64_t> srcStrides; |
| if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) |
| return failure(); |
| assert(srcStrides.size() == reassociation.size() && "invalid reassociation"); |
| |
| // 1-1 mapping between srcStrides and reassociation packs. |
| // Each srcStride starts with the given value and gets expanded according to |
| // the proper entries in resultShape. |
| // Example: |
| // srcStrides = [10000, 1 , 100 ], |
| // reassociations = [ [0], [1], [2, 3, 4]], |
| // resultSizes = [2, 5, 4, 3, 2] = [ [2], [5], [4, 3, 2]] |
| // -> For the purpose of stride calculation, the useful sizes are: |
| // [x, x, x, 3, 2] = [ [x], [x], [x, 3, 2]]. |
| // resultStrides = [10000, 1, 600, 200, 100] |
| // Note that a stride does not get expanded along the first entry of each |
| // shape pack. |
| SmallVector<int64_t> reverseResultStrides; |
| reverseResultStrides.reserve(resultShape.size()); |
| unsigned shapeIndex = resultShape.size() - 1; |
| for (auto it : llvm::reverse(llvm::zip(reassociation, srcStrides))) { |
| ReassociationIndices reassoc = std::get<0>(it); |
| int64_t currentStrideToExpand = std::get<1>(it); |
| for (unsigned idx = 0, e = reassoc.size(); idx < e; ++idx) { |
| reverseResultStrides.push_back(currentStrideToExpand); |
| currentStrideToExpand = |
| (SaturatedInteger::wrap(currentStrideToExpand) * |
| SaturatedInteger::wrap(resultShape[shapeIndex--])) |
| .asInteger(); |
| } |
| } |
| auto resultStrides = llvm::to_vector<8>(llvm::reverse(reverseResultStrides)); |
| resultStrides.resize(resultShape.size(), 1); |
| return StridedLayoutAttr::get(srcType.getContext(), srcOffset, resultStrides); |
| } |
| |
| FailureOr<MemRefType> ExpandShapeOp::computeExpandedType( |
| MemRefType srcType, ArrayRef<int64_t> resultShape, |
| ArrayRef<ReassociationIndices> reassociation) { |
| if (srcType.getLayout().isIdentity()) { |
| // If the source is contiguous (i.e., no layout map specified), so is the |
| // result. |
| MemRefLayoutAttrInterface layout; |
| return MemRefType::get(resultShape, srcType.getElementType(), layout, |
| srcType.getMemorySpace()); |
| } |
| |
| // Source may not be contiguous. Compute the layout map. |
| FailureOr<StridedLayoutAttr> computedLayout = |
| computeExpandedLayoutMap(srcType, resultShape, reassociation); |
| if (failed(computedLayout)) |
| return failure(); |
| return MemRefType::get(resultShape, srcType.getElementType(), *computedLayout, |
| srcType.getMemorySpace()); |
| } |
| |
| void ExpandShapeOp::build(OpBuilder &builder, OperationState &result, |
| ArrayRef<int64_t> resultShape, Value src, |
| ArrayRef<ReassociationIndices> reassociation) { |
| // Only ranked memref source values are supported. |
| auto srcType = llvm::cast<MemRefType>(src.getType()); |
| FailureOr<MemRefType> resultType = |
| ExpandShapeOp::computeExpandedType(srcType, resultShape, reassociation); |
| // Failure of this assertion usually indicates a problem with the source |
| // type, e.g., could not get strides/offset. |
| assert(succeeded(resultType) && "could not compute layout"); |
| build(builder, result, *resultType, src, reassociation); |
| } |
| |
| LogicalResult ExpandShapeOp::verify() { |
| MemRefType srcType = getSrcType(); |
| MemRefType resultType = getResultType(); |
| |
| if (srcType.getRank() > resultType.getRank()) { |
| auto r0 = srcType.getRank(); |
| auto r1 = resultType.getRank(); |
| return emitOpError("has source rank ") |
| << r0 << " and result rank " << r1 << ". This is not an expansion (" |
| << r0 << " > " << r1 << ")."; |
| } |
| |
| // Verify result shape. |
| if (failed(verifyCollapsedShape(getOperation(), srcType.getShape(), |
| resultType.getShape(), |
| getReassociationIndices(), |
| /*allowMultipleDynamicDimsPerGroup=*/false))) |
| return failure(); |
| |
| // Compute expected result type (including layout map). |
| FailureOr<MemRefType> expectedResultType = ExpandShapeOp::computeExpandedType( |
| srcType, resultType.getShape(), getReassociationIndices()); |
| if (failed(expectedResultType)) |
| return emitOpError("invalid source layout map"); |
| |
| // Check actual result type. |
| if (*expectedResultType != resultType) |
| return emitOpError("expected expanded type to be ") |
| << *expectedResultType << " but found " << resultType; |
| |
| return success(); |
| } |
| |
| void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>, |
| ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>>( |
| context); |
| } |
| |
| /// Compute the layout map after collapsing a given source MemRef type with the |
| /// specified reassociation indices. |
| /// |
| /// Note: All collapsed dims in a reassociation group must be contiguous. It is |
| /// not possible to check this by inspecting a MemRefType in the general case. |
| /// If non-contiguity cannot be checked statically, the collapse is assumed to |
| /// be valid (and thus accepted by this function) unless `strict = true`. |
| static FailureOr<StridedLayoutAttr> |
| computeCollapsedLayoutMap(MemRefType srcType, |
| ArrayRef<ReassociationIndices> reassociation, |
| bool strict = false) { |
| int64_t srcOffset; |
| SmallVector<int64_t> srcStrides; |
| auto srcShape = srcType.getShape(); |
| if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) |
| return failure(); |
| |
| // The result stride of a reassociation group is the stride of the last entry |
| // of the reassociation. (TODO: Should be the minimum stride in the |
| // reassociation because strides are not necessarily sorted. E.g., when using |
| // memref.transpose.) Dimensions of size 1 should be skipped, because their |
| // strides are meaningless and could have any arbitrary value. |
| SmallVector<int64_t> resultStrides; |
| resultStrides.reserve(reassociation.size()); |
| for (const ReassociationIndices &reassoc : reassociation) { |
| ArrayRef<int64_t> ref = llvm::ArrayRef(reassoc); |
| while (srcShape[ref.back()] == 1 && ref.size() > 1) |
| ref = ref.drop_back(); |
| if (!ShapedType::isDynamic(srcShape[ref.back()]) || ref.size() == 1) { |
| resultStrides.push_back(srcStrides[ref.back()]); |
| } else { |
| // Dynamically-sized dims may turn out to be dims of size 1 at runtime, so |
| // the corresponding stride may have to be skipped. (See above comment.) |
| // Therefore, the result stride cannot be statically determined and must |
| // be dynamic. |
| resultStrides.push_back(ShapedType::kDynamic); |
| } |
| } |
| |
| // Validate that each reassociation group is contiguous. |
| unsigned resultStrideIndex = resultStrides.size() - 1; |
| for (const ReassociationIndices &reassoc : llvm::reverse(reassociation)) { |
| auto trailingReassocs = ArrayRef<int64_t>(reassoc).drop_front(); |
| auto stride = SaturatedInteger::wrap(resultStrides[resultStrideIndex--]); |
| for (int64_t idx : llvm::reverse(trailingReassocs)) { |
| stride = stride * SaturatedInteger::wrap(srcShape[idx]); |
| |
| // Both source and result stride must have the same static value. In that |
| // case, we can be sure, that the dimensions are collapsible (because they |
| // are contiguous). |
| // If `strict = false` (default during op verification), we accept cases |
| // where one or both strides are dynamic. This is best effort: We reject |
| // ops where obviously non-contiguous dims are collapsed, but accept ops |
| // where we cannot be sure statically. Such ops may fail at runtime. See |
| // the op documentation for details. |
| auto srcStride = SaturatedInteger::wrap(srcStrides[idx - 1]); |
| if (strict && (stride.saturated || srcStride.saturated)) |
| return failure(); |
| |
| if (!stride.saturated && !srcStride.saturated && stride != srcStride) |
| return failure(); |
| } |
| } |
| return StridedLayoutAttr::get(srcType.getContext(), srcOffset, resultStrides); |
| } |
| |
| bool CollapseShapeOp::isGuaranteedCollapsible( |
| MemRefType srcType, ArrayRef<ReassociationIndices> reassociation) { |
| // MemRefs with identity layout are always collapsible. |
| if (srcType.getLayout().isIdentity()) |
| return true; |
| |
| return succeeded(computeCollapsedLayoutMap(srcType, reassociation, |
| /*strict=*/true)); |
| } |
| |
| MemRefType CollapseShapeOp::computeCollapsedType( |
| MemRefType srcType, ArrayRef<ReassociationIndices> reassociation) { |
| SmallVector<int64_t> resultShape; |
| resultShape.reserve(reassociation.size()); |
| for (const ReassociationIndices &group : reassociation) { |
| auto groupSize = SaturatedInteger::wrap(1); |
| for (int64_t srcDim : group) |
| groupSize = |
| groupSize * SaturatedInteger::wrap(srcType.getDimSize(srcDim)); |
| resultShape.push_back(groupSize.asInteger()); |
| } |
| |
| if (srcType.getLayout().isIdentity()) { |
| // If the source is contiguous (i.e., no layout map specified), so is the |
| // result. |
| MemRefLayoutAttrInterface layout; |
| return MemRefType::get(resultShape, srcType.getElementType(), layout, |
| srcType.getMemorySpace()); |
| } |
| |
| // Source may not be fully contiguous. Compute the layout map. |
| // Note: Dimensions that are collapsed into a single dim are assumed to be |
| // contiguous. |
| FailureOr<StridedLayoutAttr> computedLayout = |
| computeCollapsedLayoutMap(srcType, reassociation); |
| assert(succeeded(computedLayout) && |
| "invalid source layout map or collapsing non-contiguous dims"); |
| return MemRefType::get(resultShape, srcType.getElementType(), *computedLayout, |
| srcType.getMemorySpace()); |
| } |
| |
| void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, |
| ArrayRef<ReassociationIndices> reassociation, |
| ArrayRef<NamedAttribute> attrs) { |
| auto srcType = llvm::cast<MemRefType>(src.getType()); |
| MemRefType resultType = |
| CollapseShapeOp::computeCollapsedType(srcType, reassociation); |
| build(b, result, resultType, src, attrs); |
| result.addAttribute(::mlir::getReassociationAttrName(), |
| getReassociationIndicesAttribute(b, reassociation)); |
| } |
| |
| LogicalResult CollapseShapeOp::verify() { |
| MemRefType srcType = getSrcType(); |
| MemRefType resultType = getResultType(); |
| |
| if (srcType.getRank() < resultType.getRank()) { |
| auto r0 = srcType.getRank(); |
| auto r1 = resultType.getRank(); |
| return emitOpError("has source rank ") |
| << r0 << " and result rank " << r1 << ". This is not a collapse (" |
| << r0 << " < " << r1 << ")."; |
| } |
| |
| // Verify result shape. |
| if (failed(verifyCollapsedShape(getOperation(), resultType.getShape(), |
| srcType.getShape(), getReassociationIndices(), |
| /*allowMultipleDynamicDimsPerGroup=*/true))) |
| return failure(); |
| |
| // Compute expected result type (including layout map). |
| MemRefType expectedResultType; |
| if (srcType.getLayout().isIdentity()) { |
| // If the source is contiguous (i.e., no layout map specified), so is the |
| // result. |
| MemRefLayoutAttrInterface layout; |
| expectedResultType = |
| MemRefType::get(resultType.getShape(), srcType.getElementType(), layout, |
| srcType.getMemorySpace()); |
| } else { |
| // Source may not be fully contiguous. Compute the layout map. |
| // Note: Dimensions that are collapsed into a single dim are assumed to be |
| // contiguous. |
| FailureOr<StridedLayoutAttr> computedLayout = |
| computeCollapsedLayoutMap(srcType, getReassociationIndices()); |
| if (failed(computedLayout)) |
| return emitOpError( |
| "invalid source layout map or collapsing non-contiguous dims"); |
| expectedResultType = |
| MemRefType::get(resultType.getShape(), srcType.getElementType(), |
| *computedLayout, srcType.getMemorySpace()); |
| } |
| |
| if (expectedResultType != resultType) |
| return emitOpError("expected collapsed type to be ") |
| << expectedResultType << " but found " << resultType; |
| |
| return success(); |
| } |
| |
| struct CollapseShapeOpMemRefCastFolder |
| : public OpRewritePattern<CollapseShapeOp> { |
| public: |
| using OpRewritePattern<CollapseShapeOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(CollapseShapeOp op, |
| PatternRewriter &rewriter) const override { |
| auto cast = op.getOperand().getDefiningOp<CastOp>(); |
| if (!cast) |
| return failure(); |
| |
| if (!CastOp::canFoldIntoConsumerOp(cast)) |
| return failure(); |
| |
| Type newResultType = CollapseShapeOp::computeCollapsedType( |
| llvm::cast<MemRefType>(cast.getOperand().getType()), |
| op.getReassociationIndices()); |
| |
| if (newResultType == op.getResultType()) { |
| rewriter.modifyOpInPlace( |
| op, [&]() { op.getSrcMutable().assign(cast.getSource()); }); |
| } else { |
| Value newOp = rewriter.create<CollapseShapeOp>( |
| op->getLoc(), cast.getSource(), op.getReassociationIndices()); |
| rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); |
| } |
| return success(); |
| } |
| }; |
| |
| void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ComposeReassociativeReshapeOps<CollapseShapeOp>, |
| ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp>, |
| CollapseShapeOpMemRefCastFolder>(context); |
| } |
| |
| OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) { |
| return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, |
| adaptor.getOperands()); |
| } |
| |
| OpFoldResult CollapseShapeOp::fold(FoldAdaptor adaptor) { |
| return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, |
| adaptor.getOperands()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReshapeOp |
| //===----------------------------------------------------------------------===// |
| |
| void ReshapeOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "reshape"); |
| } |
| |
| LogicalResult ReshapeOp::verify() { |
| Type operandType = getSource().getType(); |
| Type resultType = getResult().getType(); |
| |
| Type operandElementType = |
| llvm::cast<ShapedType>(operandType).getElementType(); |
| Type resultElementType = llvm::cast<ShapedType>(resultType).getElementType(); |
| if (operandElementType != resultElementType) |
| return emitOpError("element types of source and destination memref " |
| "types should be the same"); |
| |
| if (auto operandMemRefType = llvm::dyn_cast<MemRefType>(operandType)) |
| if (!operandMemRefType.getLayout().isIdentity()) |
| return emitOpError("source memref type should have identity affine map"); |
| |
| int64_t shapeSize = |
| llvm::cast<MemRefType>(getShape().getType()).getDimSize(0); |
| auto resultMemRefType = llvm::dyn_cast<MemRefType>(resultType); |
| if (resultMemRefType) { |
| if (!resultMemRefType.getLayout().isIdentity()) |
| return emitOpError("result memref type should have identity affine map"); |
| if (shapeSize == ShapedType::kDynamic) |
| return emitOpError("cannot use shape operand with dynamic length to " |
| "reshape to statically-ranked memref type"); |
| if (shapeSize != resultMemRefType.getRank()) |
| return emitOpError( |
| "length of shape operand differs from the result's memref rank"); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StoreOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult StoreOp::verify() { |
| if (getNumOperands() != 2 + getMemRefType().getRank()) |
| return emitOpError("store index operand count not equal to memref rank"); |
| |
| return success(); |
| } |
| |
| LogicalResult StoreOp::fold(FoldAdaptor adaptor, |
| SmallVectorImpl<OpFoldResult> &results) { |
| /// store(memrefcast) -> store |
| return foldMemRefCast(*this, getValueToStore()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SubViewOp |
| //===----------------------------------------------------------------------===// |
| |
| void SubViewOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "subview"); |
| } |
| |
| /// A subview result type can be fully inferred from the source type and the |
| /// static representation of offsets, sizes and strides. Special sentinels |
| /// encode the dynamic case. |
| Type SubViewOp::inferResultType(MemRefType sourceMemRefType, |
| ArrayRef<int64_t> staticOffsets, |
| ArrayRef<int64_t> staticSizes, |
| ArrayRef<int64_t> staticStrides) { |
| unsigned rank = sourceMemRefType.getRank(); |
| (void)rank; |
| assert(staticOffsets.size() == rank && "staticOffsets length mismatch"); |
| assert(staticSizes.size() == rank && "staticSizes length mismatch"); |
| assert(staticStrides.size() == rank && "staticStrides length mismatch"); |
| |
| // Extract source offset and strides. |
| auto [sourceStrides, sourceOffset] = getStridesAndOffset(sourceMemRefType); |
| |
| // Compute target offset whose value is: |
| // `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`. |
| int64_t targetOffset = sourceOffset; |
| for (auto it : llvm::zip(staticOffsets, sourceStrides)) { |
| auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it); |
| targetOffset = (SaturatedInteger::wrap(targetOffset) + |
| SaturatedInteger::wrap(staticOffset) * |
| SaturatedInteger::wrap(targetStride)) |
| .asInteger(); |
| } |
| |
| // Compute target stride whose value is: |
| // `sourceStrides_i * staticStrides_i`. |
| SmallVector<int64_t, 4> targetStrides; |
| targetStrides.reserve(staticOffsets.size()); |
| for (auto it : llvm::zip(sourceStrides, staticStrides)) { |
| auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it); |
| targetStrides.push_back((SaturatedInteger::wrap(sourceStride) * |
| SaturatedInteger::wrap(staticStride)) |
| .asInteger()); |
| } |
| |
| // The type is now known. |
| return MemRefType::get(staticSizes, sourceMemRefType.getElementType(), |
| StridedLayoutAttr::get(sourceMemRefType.getContext(), |
| targetOffset, targetStrides), |
| sourceMemRefType.getMemorySpace()); |
| } |
| |
| Type SubViewOp::inferResultType(MemRefType sourceMemRefType, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| if (!hasValidSizesOffsets(staticOffsets)) |
| return {}; |
| if (!hasValidSizesOffsets(staticSizes)) |
| return {}; |
| if (!hasValidStrides(staticStrides)) |
| return {}; |
| return SubViewOp::inferResultType(sourceMemRefType, staticOffsets, |
| staticSizes, staticStrides); |
| } |
| |
| Type SubViewOp::inferRankReducedResultType(ArrayRef<int64_t> resultShape, |
| MemRefType sourceRankedTensorType, |
| ArrayRef<int64_t> offsets, |
| ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides) { |
| auto inferredType = llvm::cast<MemRefType>( |
| inferResultType(sourceRankedTensorType, offsets, sizes, strides)); |
| assert(inferredType.getRank() >= static_cast<int64_t>(resultShape.size()) && |
| "expected "); |
| if (inferredType.getRank() == static_cast<int64_t>(resultShape.size())) |
| return inferredType; |
| |
| // Compute which dimensions are dropped. |
| std::optional<llvm::SmallDenseSet<unsigned>> dimsToProject = |
| computeRankReductionMask(inferredType.getShape(), resultShape); |
| assert(dimsToProject.has_value() && "invalid rank reduction"); |
| |
| // Compute the layout and result type. |
| auto inferredLayout = llvm::cast<StridedLayoutAttr>(inferredType.getLayout()); |
| SmallVector<int64_t> rankReducedStrides; |
| rankReducedStrides.reserve(resultShape.size()); |
| for (auto [idx, value] : llvm::enumerate(inferredLayout.getStrides())) { |
| if (!dimsToProject->contains(idx)) |
| rankReducedStrides.push_back(value); |
| } |
| return MemRefType::get(resultShape, inferredType.getElementType(), |
| StridedLayoutAttr::get(inferredLayout.getContext(), |
| inferredLayout.getOffset(), |
| rankReducedStrides), |
| inferredType.getMemorySpace()); |
| } |
| |
| Type SubViewOp::inferRankReducedResultType(ArrayRef<int64_t> resultShape, |
| MemRefType sourceRankedTensorType, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| return SubViewOp::inferRankReducedResultType( |
| resultShape, sourceRankedTensorType, staticOffsets, staticSizes, |
| staticStrides); |
| } |
| |
| // Build a SubViewOp with mixed static and dynamic entries and custom result |
| // type. If the type passed is nullptr, it is inferred. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; |
| SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; |
| dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); |
| dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes); |
| dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides); |
| auto sourceMemRefType = llvm::cast<MemRefType>(source.getType()); |
| // Structuring implementation this way avoids duplication between builders. |
| if (!resultType) { |
| resultType = llvm::cast<MemRefType>(SubViewOp::inferResultType( |
| sourceMemRefType, staticOffsets, staticSizes, staticStrides)); |
| } |
| build(b, result, resultType, source, dynamicOffsets, dynamicSizes, |
| dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets), |
| b.getDenseI64ArrayAttr(staticSizes), |
| b.getDenseI64ArrayAttr(staticStrides)); |
| result.addAttributes(attrs); |
| } |
| |
| // Build a SubViewOp with mixed static and dynamic entries and inferred result |
| // type. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| ArrayRef<OpFoldResult> offsets, |
| ArrayRef<OpFoldResult> sizes, |
| ArrayRef<OpFoldResult> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); |
| } |
| |
| // Build a SubViewOp with static entries and inferred result type. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> sizeValues = |
| llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| build(b, result, source, offsetValues, sizeValues, strideValues, attrs); |
| } |
| |
| // Build a SubViewOp with dynamic entries and custom result type. If the |
| // type passed is nullptr, it is inferred. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, |
| ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, |
| ArrayRef<int64_t> strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> sizeValues = |
| llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { |
| return b.getI64IntegerAttr(v); |
| })); |
| build(b, result, resultType, source, offsetValues, sizeValues, strideValues, |
| attrs); |
| } |
| |
| // Build a SubViewOp with dynamic entries and custom result type. If the type |
| // passed is nullptr, it is inferred. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, |
| MemRefType resultType, Value source, ValueRange offsets, |
| ValueRange sizes, ValueRange strides, |
| ArrayRef<NamedAttribute> attrs) { |
| SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( |
| llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); |
| SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( |
| llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); |
| SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( |
| llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); |
| build(b, result, resultType, source, offsetValues, sizeValues, strideValues); |
| } |
| |
| // Build a SubViewOp with dynamic entries and inferred result type. |
| void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, |
| ValueRange offsets, ValueRange sizes, ValueRange strides, |
| ArrayRef<NamedAttribute> attrs) { |
| build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); |
| } |
| |
| /// For ViewLikeOpInterface. |
| Value SubViewOp::getViewSource() { return getSource(); } |
| |
| /// Return true if `t1` and `t2` have equal offsets (both dynamic or of same |
| /// static value). |
| static bool haveCompatibleOffsets(MemRefType t1, MemRefType t2) { |
| int64_t t1Offset, t2Offset; |
| SmallVector<int64_t> t1Strides, t2Strides; |
| auto res1 = getStridesAndOffset(t1, t1Strides, t1Offset); |
| auto res2 = getStridesAndOffset(t2, t2Strides, t2Offset); |
| return succeeded(res1) && succeeded(res2) && t1Offset == t2Offset; |
| } |
| |
| /// Return true if `t1` and `t2` have equal strides (both dynamic or of same |
| /// static value). Dimensions of `t1` may be dropped in `t2`; these must be |
| /// marked as dropped in `droppedDims`. |
| static bool haveCompatibleStrides(MemRefType t1, MemRefType t2, |
| const llvm::SmallBitVector &droppedDims) { |
| assert(size_t(t1.getRank()) == droppedDims.size() && "incorrect number of bits"); |
| assert(size_t(t1.getRank() - t2.getRank()) == droppedDims.count() && |
| "incorrect number of dropped dims"); |
| int64_t t1Offset, t2Offset; |
| SmallVector<int64_t> t1Strides, t2Strides; |
| auto res1 = getStridesAndOffset(t1, t1Strides, t1Offset); |
| auto res2 = getStridesAndOffset(t2, t2Strides, t2Offset); |
| if (failed(res1) || failed(res2)) |
| return false; |
| for (int64_t i = 0, j = 0, e = t1.getRank(); i < e; ++i) { |
| if (droppedDims[i]) |
| continue; |
| if (t1Strides[i] != t2Strides[j]) |
| return false; |
| ++j; |
| } |
| return true; |
| } |
| |
| static LogicalResult produceSubViewErrorMsg(SliceVerificationResult result, |
| Operation *op, Type expectedType) { |
| auto memrefType = llvm::cast<ShapedType>(expectedType); |
| switch (result) { |
| case SliceVerificationResult::Success: |
| return success(); |
| case SliceVerificationResult::RankTooLarge: |
| return op->emitError("expected result rank to be smaller or equal to ") |
| << "the source rank. "; |
| case SliceVerificationResult::SizeMismatch: |
| return op->emitError("expected result type to be ") |
| << expectedType |
| << " or a rank-reduced version. (mismatch of result sizes) "; |
| case SliceVerificationResult::ElemTypeMismatch: |
| return op->emitError("expected result element type to be ") |
| << memrefType.getElementType(); |
| case SliceVerificationResult::MemSpaceMismatch: |
| return op->emitError("expected result and source memory spaces to match."); |
| case SliceVerificationResult::LayoutMismatch: |
| return op->emitError("expected result type to be ") |
| << expectedType |
| << " or a rank-reduced version. (mismatch of result layout) "; |
| } |
| llvm_unreachable("unexpected subview verification result"); |
| } |
| |
| /// Verifier for SubViewOp. |
| LogicalResult SubViewOp::verify() { |
| MemRefType baseType = getSourceType(); |
| MemRefType subViewType = getType(); |
| |
| // The base memref and the view memref should be in the same memory space. |
| if (baseType.getMemorySpace() != subViewType.getMemorySpace()) |
| return emitError("different memory spaces specified for base memref " |
| "type ") |
| << baseType << " and subview memref type " << subViewType; |
| |
| // Verify that the base memref type has a strided layout map. |
| if (!isStrided(baseType)) |
| return emitError("base type ") << baseType << " is not strided"; |
| |
| // Compute the expected result type, assuming that there are no rank |
| // reductions. |
| auto expectedType = cast<MemRefType>(SubViewOp::inferResultType( |
| baseType, getStaticOffsets(), getStaticSizes(), getStaticStrides())); |
| |
| // Verify all properties of a shaped type: rank, element type and dimension |
| // sizes. This takes into account potential rank reductions. |
| auto shapedTypeVerification = isRankReducedType( |
| /*originalType=*/expectedType, /*candidateReducedType=*/subViewType); |
| if (shapedTypeVerification != SliceVerificationResult::Success) |
| return produceSubViewErrorMsg(shapedTypeVerification, *this, expectedType); |
| |
| // Make sure that the memory space did not change. |
| if (expectedType.getMemorySpace() != subViewType.getMemorySpace()) |
| return produceSubViewErrorMsg(SliceVerificationResult::MemSpaceMismatch, |
| *this, expectedType); |
| |
| // Verify the offset of the layout map. |
| if (!haveCompatibleOffsets(expectedType, subViewType)) |
| return produceSubViewErrorMsg(SliceVerificationResult::LayoutMismatch, |
| *this, expectedType); |
| |
| // The only thing that's left to verify now are the strides. First, compute |
| // the unused dimensions due to rank reductions. We have to look at sizes and |
| // strides to decide which dimensions were dropped. This function also |
| // partially verifies strides in case of rank reductions. |
| auto unusedDims = computeMemRefRankReductionMask(expectedType, subViewType, |
| getMixedSizes()); |
| if (failed(unusedDims)) |
| return produceSubViewErrorMsg(SliceVerificationResult::LayoutMismatch, |
| *this, expectedType); |
| |
| // Strides must match. |
| if (!haveCompatibleStrides(expectedType, subViewType, *unusedDims)) |
| return produceSubViewErrorMsg(SliceVerificationResult::LayoutMismatch, |
| *this, expectedType); |
| |
| return success(); |
| } |
| |
| raw_ostream &mlir::operator<<(raw_ostream &os, const Range &range) { |
| return os << "range " << range.offset << ":" << range.size << ":" |
| << range.stride; |
| } |
| |
| /// Return the list of Range (i.e. offset, size, stride). Each Range |
| /// entry contains either the dynamic value or a ConstantIndexOp constructed |
| /// with `b` at location `loc`. |
| SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op, |
| OpBuilder &b, Location loc) { |
| std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks(); |
| assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks"); |
| assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks"); |
| SmallVector<Range, 8> res; |
| unsigned rank = ranks[0]; |
| res.reserve(rank); |
| for (unsigned idx = 0; idx < rank; ++idx) { |
| Value offset = |
| op.isDynamicOffset(idx) |
| ? op.getDynamicOffset(idx) |
| : b.create<arith::ConstantIndexOp>(loc, op.getStaticOffset(idx)); |
| Value size = |
| op.isDynamicSize(idx) |
| ? op.getDynamicSize(idx) |
| : b.create<arith::ConstantIndexOp>(loc, op.getStaticSize(idx)); |
| Value stride = |
| op.isDynamicStride(idx) |
| ? op.getDynamicStride(idx) |
| : b.create<arith::ConstantIndexOp>(loc, op.getStaticStride(idx)); |
| res.emplace_back(Range{offset, size, stride}); |
| } |
| return res; |
| } |
| |
| /// Compute the canonical result type of a SubViewOp. Call `inferResultType` |
| /// to deduce the result type for the given `sourceType`. Additionally, reduce |
| /// the rank of the inferred result type if `currentResultType` is lower rank |
| /// than `currentSourceType`. Use this signature if `sourceType` is updated |
| /// together with the result type. In this case, it is important to compute |
| /// the dropped dimensions using `currentSourceType` whose strides align with |
| /// `currentResultType`. |
| static MemRefType getCanonicalSubViewResultType( |
| MemRefType currentResultType, MemRefType currentSourceType, |
| MemRefType sourceType, ArrayRef<OpFoldResult> mixedOffsets, |
| ArrayRef<OpFoldResult> mixedSizes, ArrayRef<OpFoldResult> mixedStrides) { |
| auto nonRankReducedType = llvm::cast<MemRefType>(SubViewOp::inferResultType( |
| sourceType, mixedOffsets, mixedSizes, mixedStrides)); |
| FailureOr<llvm::SmallBitVector> unusedDims = computeMemRefRankReductionMask( |
| currentSourceType, currentResultType, mixedSizes); |
| if (failed(unusedDims)) |
| return nullptr; |
| |
| auto layout = llvm::cast<StridedLayoutAttr>(nonRankReducedType.getLayout()); |
| SmallVector<int64_t> shape, strides; |
| unsigned numDimsAfterReduction = |
| nonRankReducedType.getRank() - unusedDims->count(); |
| shape.reserve(numDimsAfterReduction); |
| strides.reserve(numDimsAfterReduction); |
| for (const auto &[idx, size, stride] : |
| llvm::zip(llvm::seq<unsigned>(0, nonRankReducedType.getRank()), |
| nonRankReducedType.getShape(), layout.getStrides())) { |
| if (unusedDims->test(idx)) |
| continue; |
| shape.push_back(size); |
| strides.push_back(stride); |
| } |
| |
| return MemRefType::get(shape, nonRankReducedType.getElementType(), |
| StridedLayoutAttr::get(sourceType.getContext(), |
| layout.getOffset(), strides), |
| nonRankReducedType.getMemorySpace()); |
| } |
| |
| Value mlir::memref::createCanonicalRankReducingSubViewOp( |
| OpBuilder &b, Location loc, Value memref, ArrayRef<int64_t> targetShape) { |
| auto memrefType = llvm::cast<MemRefType>(memref.getType()); |
| unsigned rank = memrefType.getRank(); |
| SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); |
| SmallVector<OpFoldResult> sizes = getMixedSizes(b, loc, memref); |
| SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); |
| auto targetType = |
| llvm::cast<MemRefType>(SubViewOp::inferRankReducedResultType( |
| targetShape, memrefType, offsets, sizes, strides)); |
| return b.createOrFold<memref::SubViewOp>(loc, targetType, memref, offsets, |
| sizes, strides); |
| } |
| |
| FailureOr<Value> SubViewOp::rankReduceIfNeeded(OpBuilder &b, Location loc, |
| Value value, |
| ArrayRef<int64_t> desiredShape) { |
| auto sourceMemrefType = llvm::dyn_cast<MemRefType>(value.getType()); |
| assert(sourceMemrefType && "not a ranked memref type"); |
| auto sourceShape = sourceMemrefType.getShape(); |
| if (sourceShape.equals(desiredShape)) |
| return value; |
| auto maybeRankReductionMask = |
| mlir::computeRankReductionMask(sourceShape, desiredShape); |
| if (!maybeRankReductionMask) |
| return failure(); |
| return createCanonicalRankReducingSubViewOp(b, loc, value, desiredShape); |
| } |
| |
| /// Helper method to check if a `subview` operation is trivially a no-op. This |
| /// is the case if the all offsets are zero, all strides are 1, and the source |
| /// shape is same as the size of the subview. In such cases, the subview can |
| /// be folded into its source. |
| static bool isTrivialSubViewOp(SubViewOp subViewOp) { |
| if (subViewOp.getSourceType().getRank() != subViewOp.getType().getRank()) |
| return false; |
| |
| auto mixedOffsets = subViewOp.getMixedOffsets(); |
| auto mixedSizes = subViewOp.getMixedSizes(); |
| auto mixedStrides = subViewOp.getMixedStrides(); |
| |
| // Check offsets are zero. |
| if (llvm::any_of(mixedOffsets, [](OpFoldResult ofr) { |
| std::optional<int64_t> intValue = getConstantIntValue(ofr); |
| return !intValue || intValue.value() != 0; |
| })) |
| return false; |
| |
| // Check strides are one. |
| if (llvm::any_of(mixedStrides, [](OpFoldResult ofr) { |
| std::optional<int64_t> intValue = getConstantIntValue(ofr); |
| return !intValue || intValue.value() != 1; |
| })) |
| return false; |
| |
| // Check all size values are static and matches the (static) source shape. |
| ArrayRef<int64_t> sourceShape = subViewOp.getSourceType().getShape(); |
| for (const auto &size : llvm::enumerate(mixedSizes)) { |
| std::optional<int64_t> intValue = getConstantIntValue(size.value()); |
| if (!intValue || *intValue != sourceShape[size.index()]) |
| return false; |
| } |
| // All conditions met. The `SubViewOp` is foldable as a no-op. |
| return true; |
| } |
| |
| namespace { |
| /// Pattern to rewrite a subview op with MemRefCast arguments. |
| /// This essentially pushes memref.cast past its consuming subview when |
| /// `canFoldIntoConsumerOp` is true. |
| /// |
| /// Example: |
| /// ``` |
| /// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32> |
| /// %1 = memref.subview %0[0, 0][3, 4][1, 1] : |
| /// memref<?x?xf32> to memref<3x4xf32, strided<[?, 1], offset: ?>> |
| /// ``` |
| /// is rewritten into: |
| /// ``` |
| /// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]> |
| /// %1 = memref.cast %0: memref<3x4xf32, strided<[16, 1], offset: 0>> to |
| /// memref<3x4xf32, strided<[?, 1], offset: ?>> |
| /// ``` |
| class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> { |
| public: |
| using OpRewritePattern<SubViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(SubViewOp subViewOp, |
| PatternRewriter &rewriter) const override { |
| // Any constant operand, just return to let SubViewOpConstantFolder kick |
| // in. |
| if (llvm::any_of(subViewOp.getOperands(), [](Value operand) { |
| return matchPattern(operand, matchConstantIndex()); |
| })) |
| return failure(); |
| |
| auto castOp = subViewOp.getSource().getDefiningOp<CastOp>(); |
| if (!castOp) |
| return failure(); |
| |
| if (!CastOp::canFoldIntoConsumerOp(castOp)) |
| return failure(); |
| |
| // Compute the SubViewOp result type after folding the MemRefCastOp. Use |
| // the MemRefCastOp source operand type to infer the result type and the |
| // current SubViewOp source operand type to compute the dropped dimensions |
| // if the operation is rank-reducing. |
| auto resultType = getCanonicalSubViewResultType( |
| subViewOp.getType(), subViewOp.getSourceType(), |
| llvm::cast<MemRefType>(castOp.getSource().getType()), |
| subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(), |
| subViewOp.getMixedStrides()); |
| if (!resultType) |
| return failure(); |
| |
| Value newSubView = rewriter.create<SubViewOp>( |
| subViewOp.getLoc(), resultType, castOp.getSource(), |
| subViewOp.getOffsets(), subViewOp.getSizes(), subViewOp.getStrides(), |
| subViewOp.getStaticOffsets(), subViewOp.getStaticSizes(), |
| subViewOp.getStaticStrides()); |
| rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), |
| newSubView); |
| return success(); |
| } |
| }; |
| |
| /// Canonicalize subview ops that are no-ops. When the source shape is not |
| /// same as a result shape due to use of `affine_map`. |
| class TrivialSubViewOpFolder final : public OpRewritePattern<SubViewOp> { |
| public: |
| using OpRewritePattern<SubViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(SubViewOp subViewOp, |
| PatternRewriter &rewriter) const override { |
| if (!isTrivialSubViewOp(subViewOp)) |
| return failure(); |
| if (subViewOp.getSourceType() == subViewOp.getType()) { |
| rewriter.replaceOp(subViewOp, subViewOp.getSource()); |
| return success(); |
| } |
| rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), |
| subViewOp.getSource()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| /// Return the canonical type of the result of a subview. |
| struct SubViewReturnTypeCanonicalizer { |
| MemRefType operator()(SubViewOp op, ArrayRef<OpFoldResult> mixedOffsets, |
| ArrayRef<OpFoldResult> mixedSizes, |
| ArrayRef<OpFoldResult> mixedStrides) { |
| // Infer a memref type without taking into account any rank reductions. |
| auto resTy = SubViewOp::inferResultType(op.getSourceType(), mixedOffsets, |
| mixedSizes, mixedStrides); |
| if (!resTy) |
| return {}; |
| MemRefType nonReducedType = cast<MemRefType>(resTy); |
| |
| // Directly return the non-rank reduced type if there are no dropped dims. |
| llvm::SmallBitVector droppedDims = op.getDroppedDims(); |
| if (droppedDims.none()) |
| return nonReducedType; |
| |
| // Take the strides and offset from the non-rank reduced type. |
| auto [nonReducedStrides, offset] = getStridesAndOffset(nonReducedType); |
| |
| // Drop dims from shape and strides. |
| SmallVector<int64_t> targetShape; |
| SmallVector<int64_t> targetStrides; |
| for (int64_t i = 0; i < static_cast<int64_t>(mixedSizes.size()); ++i) { |
| if (droppedDims.test(i)) |
| continue; |
| targetStrides.push_back(nonReducedStrides[i]); |
| targetShape.push_back(nonReducedType.getDimSize(i)); |
| } |
| |
| return MemRefType::get(targetShape, nonReducedType.getElementType(), |
| StridedLayoutAttr::get(nonReducedType.getContext(), |
| offset, targetStrides), |
| nonReducedType.getMemorySpace()); |
| } |
| }; |
| |
| /// A canonicalizer wrapper to replace SubViewOps. |
| struct SubViewCanonicalizer { |
| void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) { |
| rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); |
| } |
| }; |
| |
| void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results |
| .add<OpWithOffsetSizesAndStridesConstantArgumentFolder< |
| SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>, |
| SubViewOpMemRefCastFolder, TrivialSubViewOpFolder>(context); |
| } |
| |
| OpFoldResult SubViewOp::fold(FoldAdaptor adaptor) { |
| auto resultShapedType = llvm::cast<ShapedType>(getResult().getType()); |
| auto sourceShapedType = llvm::cast<ShapedType>(getSource().getType()); |
| |
| if (resultShapedType.hasStaticShape() && |
| resultShapedType == sourceShapedType) { |
| return getViewSource(); |
| } |
| |
| // Fold subview(subview(x)), where both subviews have the same size and the |
| // second subview's offsets are all zero. (I.e., the second subview is a |
| // no-op.) |
| if (auto srcSubview = getViewSource().getDefiningOp<SubViewOp>()) { |
| auto srcSizes = srcSubview.getMixedSizes(); |
| auto sizes = getMixedSizes(); |
| auto offsets = getMixedOffsets(); |
| bool allOffsetsZero = llvm::all_of( |
| offsets, [](OpFoldResult ofr) { return isConstantIntValue(ofr, 0); }); |
| auto strides = getMixedStrides(); |
| bool allStridesOne = llvm::all_of( |
| strides, [](OpFoldResult ofr) { return isConstantIntValue(ofr, 1); }); |
| bool allSizesSame = llvm::equal(sizes, srcSizes); |
| if (allOffsetsZero && allStridesOne && allSizesSame && |
| resultShapedType == sourceShapedType) |
| return getViewSource(); |
| } |
| |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TransposeOp |
| //===----------------------------------------------------------------------===// |
| |
| void TransposeOp::getAsmResultNames( |
| function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "transpose"); |
| } |
| |
| /// Build a strided memref type by applying `permutationMap` to `memRefType`. |
| static MemRefType inferTransposeResultType(MemRefType memRefType, |
| AffineMap permutationMap) { |
| auto originalSizes = memRefType.getShape(); |
| auto [originalStrides, offset] = getStridesAndOffset(memRefType); |
| assert(originalStrides.size() == static_cast<unsigned>(memRefType.getRank())); |
| |
| // Compute permuted sizes and strides. |
| auto sizes = applyPermutationMap<int64_t>(permutationMap, originalSizes); |
| auto strides = applyPermutationMap<int64_t>(permutationMap, originalStrides); |
| |
| return MemRefType::Builder(memRefType) |
| .setShape(sizes) |
| .setLayout( |
| StridedLayoutAttr::get(memRefType.getContext(), offset, strides)); |
| } |
| |
| void TransposeOp::build(OpBuilder &b, OperationState &result, Value in, |
| AffineMapAttr permutation, |
| ArrayRef<NamedAttribute> attrs) { |
| auto permutationMap = permutation.getValue(); |
| assert(permutationMap); |
| |
| auto memRefType = llvm::cast<MemRefType>(in.getType()); |
| // Compute result type. |
| MemRefType resultType = inferTransposeResultType(memRefType, permutationMap); |
| |
| build(b, result, resultType, in, attrs); |
| result.addAttribute(TransposeOp::getPermutationAttrStrName(), permutation); |
| } |
| |
| // transpose $in $permutation attr-dict : type($in) `to` type(results) |
| void TransposeOp::print(OpAsmPrinter &p) { |
| p << " " << getIn() << " " << getPermutation(); |
| p.printOptionalAttrDict((*this)->getAttrs(), {getPermutationAttrStrName()}); |
| p << " : " << getIn().getType() << " to " << getType(); |
| } |
| |
| ParseResult TransposeOp::parse(OpAsmParser &parser, OperationState &result) { |
| OpAsmParser::UnresolvedOperand in; |
| AffineMap permutation; |
| MemRefType srcType, dstType; |
| if (parser.parseOperand(in) || parser.parseAffineMap(permutation) || |
| parser.parseOptionalAttrDict(result.attributes) || |
| parser.parseColonType(srcType) || |
| parser.resolveOperand(in, srcType, result.operands) || |
| parser.parseKeywordType("to", dstType) || |
| parser.addTypeToList(dstType, result.types)) |
| return failure(); |
| |
| result.addAttribute(TransposeOp::getPermutationAttrStrName(), |
| AffineMapAttr::get(permutation)); |
| return success(); |
| } |
| |
| LogicalResult TransposeOp::verify() { |
| if (!getPermutation().isPermutation()) |
| return emitOpError("expected a permutation map"); |
| if (getPermutation().getNumDims() != getIn().getType().getRank()) |
| return emitOpError("expected a permutation map of same rank as the input"); |
| |
| auto srcType = llvm::cast<MemRefType>(getIn().getType()); |
| auto resultType = llvm::cast<MemRefType>(getType()); |
| auto canonicalResultType = canonicalizeStridedLayout( |
| inferTransposeResultType(srcType, getPermutation())); |
| |
| if (canonicalizeStridedLayout(resultType) != canonicalResultType) |
| return emitOpError("result type ") |
| << resultType |
| << " is not equivalent to the canonical transposed input type " |
| << canonicalResultType; |
| return success(); |
| } |
| |
| OpFoldResult TransposeOp::fold(FoldAdaptor) { |
| // First check for identity permutation, we can fold it away if input and |
| // result types are identical already. |
| if (getPermutation().isIdentity() && getType() == getIn().getType()) |
| return getIn(); |
| // Fold two consecutive memref.transpose Ops into one by composing their |
| // permutation maps. |
| if (auto otherTransposeOp = getIn().getDefiningOp<memref::TransposeOp>()) { |
| AffineMap composedPermutation = |
| getPermutation().compose(otherTransposeOp.getPermutation()); |
| getInMutable().assign(otherTransposeOp.getIn()); |
| setPermutation(composedPermutation); |
| return getResult(); |
| } |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ViewOp |
| //===----------------------------------------------------------------------===// |
| |
| void ViewOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) { |
| setNameFn(getResult(), "view"); |
| } |
| |
| LogicalResult ViewOp::verify() { |
| auto baseType = llvm::cast<MemRefType>(getOperand(0).getType()); |
| auto viewType = getType(); |
| |
| // The base memref should have identity layout map (or none). |
| if (!baseType.getLayout().isIdentity()) |
| return emitError("unsupported map for base memref type ") << baseType; |
| |
| // The result memref should have identity layout map (or none). |
| if (!viewType.getLayout().isIdentity()) |
| return emitError("unsupported map for result memref type ") << viewType; |
| |
| // The base memref and the view memref should be in the same memory space. |
| if (baseType.getMemorySpace() != viewType.getMemorySpace()) |
| return emitError("different memory spaces specified for base memref " |
| "type ") |
| << baseType << " and view memref type " << viewType; |
| |
| // Verify that we have the correct number of sizes for the result type. |
| unsigned numDynamicDims = viewType.getNumDynamicDims(); |
| if (getSizes().size() != numDynamicDims) |
| return emitError("incorrect number of size operands for type ") << viewType; |
| |
| return success(); |
| } |
| |
| Value ViewOp::getViewSource() { return getSource(); } |
| |
| namespace { |
| |
| struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> { |
| using OpRewritePattern<ViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ViewOp viewOp, |
| PatternRewriter &rewriter) const override { |
| // Return if none of the operands are constants. |
| if (llvm::none_of(viewOp.getOperands(), [](Value operand) { |
| return matchPattern(operand, matchConstantIndex()); |
| })) |
| return failure(); |
| |
| // Get result memref type. |
| auto memrefType = viewOp.getType(); |
| |
| // Get offset from old memref view type 'memRefType'. |
| int64_t oldOffset; |
| SmallVector<int64_t, 4> oldStrides; |
| if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset))) |
| return failure(); |
| assert(oldOffset == 0 && "Expected 0 offset"); |
| |
| SmallVector<Value, 4> newOperands; |
| |
| // Offset cannot be folded into result type. |
| |
| // Fold any dynamic dim operands which are produced by a constant. |
| SmallVector<int64_t, 4> newShapeConstants; |
| newShapeConstants.reserve(memrefType.getRank()); |
| |
| unsigned dynamicDimPos = 0; |
| unsigned rank = memrefType.getRank(); |
| for (unsigned dim = 0, e = rank; dim < e; ++dim) { |
| int64_t dimSize = memrefType.getDimSize(dim); |
| // If this is already static dimension, keep it. |
| if (!ShapedType::isDynamic(dimSize)) { |
| newShapeConstants.push_back(dimSize); |
| continue; |
| } |
| auto *defOp = viewOp.getSizes()[dynamicDimPos].getDefiningOp(); |
| if (auto constantIndexOp = |
| dyn_cast_or_null<arith::ConstantIndexOp>(defOp)) { |
| // Dynamic shape dimension will be folded. |
| newShapeConstants.push_back(constantIndexOp.value()); |
| } else { |
| // Dynamic shape dimension not folded; copy operand from old memref. |
| newShapeConstants.push_back(dimSize); |
| newOperands.push_back(viewOp.getSizes()[dynamicDimPos]); |
| } |
| dynamicDimPos++; |
| } |
| |
| // Create new memref type with constant folded dims. |
| MemRefType newMemRefType = |
| MemRefType::Builder(memrefType).setShape(newShapeConstants); |
| // Nothing new, don't fold. |
| if (newMemRefType == memrefType) |
| return failure(); |
| |
| // Create new ViewOp. |
| auto newViewOp = rewriter.create<ViewOp>( |
| viewOp.getLoc(), newMemRefType, viewOp.getOperand(0), |
| viewOp.getByteShift(), newOperands); |
| // Insert a cast so we have the same type as the old memref type. |
| rewriter.replaceOpWithNewOp<CastOp>(viewOp, viewOp.getType(), newViewOp); |
| return success(); |
| } |
| }; |
| |
| struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> { |
| using OpRewritePattern<ViewOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(ViewOp viewOp, |
| PatternRewriter &rewriter) const override { |
| Value memrefOperand = viewOp.getOperand(0); |
| CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>(); |
| if (!memrefCastOp) |
| return failure(); |
| Value allocOperand = memrefCastOp.getOperand(); |
| AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>(); |
| if (!allocOp) |
| return failure(); |
| rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand, |
| viewOp.getByteShift(), |
| viewOp.getSizes()); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| MLIRContext *context) { |
| results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicRMWOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult AtomicRMWOp::verify() { |
| if (getMemRefType().getRank() != getNumOperands() - 2) |
| return emitOpError( |
| "expects the number of subscripts to be equal to memref rank"); |
| switch (getKind()) { |
| case arith::AtomicRMWKind::addf: |
| case arith::AtomicRMWKind::maximumf: |
| case arith::AtomicRMWKind::minimumf: |
| case arith::AtomicRMWKind::mulf: |
| if (!llvm::isa<FloatType>(getValue().getType())) |
| return emitOpError() << "with kind '" |
| << arith::stringifyAtomicRMWKind(getKind()) |
| << "' expects a floating-point type"; |
| break; |
| case arith::AtomicRMWKind::addi: |
| case arith::AtomicRMWKind::maxs: |
| case arith::AtomicRMWKind::maxu: |
| case arith::AtomicRMWKind::mins: |
| case arith::AtomicRMWKind::minu: |
| case arith::AtomicRMWKind::muli: |
| case arith::AtomicRMWKind::ori: |
| case arith::AtomicRMWKind::andi: |
| if (!llvm::isa<IntegerType>(getValue().getType())) |
| return emitOpError() << "with kind '" |
| << arith::stringifyAtomicRMWKind(getKind()) |
| << "' expects an integer type"; |
| break; |
| default: |
| break; |
| } |
| return success(); |
| } |
| |
| OpFoldResult AtomicRMWOp::fold(FoldAdaptor adaptor) { |
| /// atomicrmw(memrefcast) -> atomicrmw |
| if (succeeded(foldMemRefCast(*this, getValue()))) |
| return getResult(); |
| return OpFoldResult(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TableGen'd op method definitions |
| //===----------------------------------------------------------------------===// |
| |
| #define GET_OP_CLASSES |
| #include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc" |