| //===- ExpandPatterns.cpp - Code to expand various math operations. -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements expansion of various math operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Math/IR/Math.h" |
| #include "mlir/Dialect/Math/Transforms/Passes.h" |
| #include "mlir/Dialect/SCF/IR/SCF.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/ImplicitLocOpBuilder.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| |
| using namespace mlir; |
| |
| /// Create a float constant. |
| static Value createFloatConst(Location loc, Type type, APFloat value, |
| OpBuilder &b) { |
| bool losesInfo = false; |
| auto eltType = getElementTypeOrSelf(type); |
| // Convert double to the given `FloatType` with round-to-nearest-ties-to-even. |
| value.convert(cast<FloatType>(eltType).getFloatSemantics(), |
| APFloat::rmNearestTiesToEven, &losesInfo); |
| auto attr = b.getFloatAttr(eltType, value); |
| if (auto shapedTy = dyn_cast<ShapedType>(type)) { |
| return b.create<arith::ConstantOp>(loc, |
| DenseElementsAttr::get(shapedTy, attr)); |
| } |
| |
| return b.create<arith::ConstantOp>(loc, attr); |
| } |
| |
| static Value createFloatConst(Location loc, Type type, double value, |
| OpBuilder &b) { |
| return createFloatConst(loc, type, APFloat(value), b); |
| } |
| |
| /// Create an integer constant. |
| static Value createIntConst(Location loc, Type type, int64_t value, |
| OpBuilder &b) { |
| auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value); |
| if (auto shapedTy = dyn_cast<ShapedType>(type)) { |
| return b.create<arith::ConstantOp>(loc, |
| DenseElementsAttr::get(shapedTy, attr)); |
| } |
| |
| return b.create<arith::ConstantOp>(loc, attr); |
| } |
| |
| static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) { |
| Type opType = operand.getType(); |
| Type i64Ty = b.getI64Type(); |
| if (auto shapedTy = dyn_cast<ShapedType>(opType)) |
| i64Ty = shapedTy.clone(i64Ty); |
| Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand); |
| Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert); |
| // The truncation does not preserve the sign when the truncated |
| // value is -0. So here the sign is copied again. |
| return b.create<math::CopySignOp>(fpFixedConvert, operand); |
| } |
| |
| // sinhf(float x) -> (exp(x) - exp(-x)) / 2 |
| static LogicalResult convertSinhOp(math::SinhOp op, PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operand = op.getOperand(); |
| Type opType = operand.getType(); |
| Value exp = b.create<math::ExpOp>(operand); |
| |
| Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter); |
| Value nexp = b.create<arith::DivFOp>(one, exp); |
| Value sub = b.create<arith::SubFOp>(exp, nexp); |
| Value two = createFloatConst(op->getLoc(), opType, 2.0, rewriter); |
| Value div = b.create<arith::DivFOp>(sub, two); |
| rewriter.replaceOp(op, div); |
| return success(); |
| } |
| |
| // coshf(float x) -> (exp(x) + exp(-x)) / 2 |
| static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operand = op.getOperand(); |
| Type opType = operand.getType(); |
| Value exp = b.create<math::ExpOp>(operand); |
| |
| Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter); |
| Value nexp = b.create<arith::DivFOp>(one, exp); |
| Value add = b.create<arith::AddFOp>(exp, nexp); |
| Value two = createFloatConst(op->getLoc(), opType, 2.0, rewriter); |
| Value div = b.create<arith::DivFOp>(add, two); |
| rewriter.replaceOp(op, div); |
| return success(); |
| } |
| |
| /// Expands tanh op into |
| /// 1-exp^{-2x} / 1+exp^{-2x} |
| /// To avoid overflow we exploit the reflection symmetry `tanh(-x) = -tanh(x)`. |
| /// We compute a "signs" value which is -1 if input is negative and +1 if input |
| /// is positive. Then multiply the input by this value, guaranteeing that the |
| /// result is positive, which also guarantees `exp^{-2x * sign(x)}` is in (0, |
| /// 1]. Expand the computation on the input `x * sign(x)`, then multiply the |
| /// result by `sign(x)` to retain sign of the real result. |
| static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) { |
| auto floatType = op.getOperand().getType(); |
| Location loc = op.getLoc(); |
| Value zero = createFloatConst(loc, floatType, 0.0, rewriter); |
| Value one = createFloatConst(loc, floatType, 1.0, rewriter); |
| Value negTwo = createFloatConst(loc, floatType, -2.0, rewriter); |
| |
| // Compute sign(x) = cast<float_type>(x < 0) * (-2) + 1 |
| Value isNegative = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OLT, op.getOperand(), zero); |
| Value isNegativeFloat = |
| rewriter.create<arith::UIToFPOp>(loc, floatType, isNegative); |
| Value isNegativeTimesNegTwo = |
| rewriter.create<arith::MulFOp>(loc, isNegativeFloat, negTwo); |
| Value sign = rewriter.create<arith::AddFOp>(loc, isNegativeTimesNegTwo, one); |
| |
| // Normalize input to positive value: y = sign(x) * x |
| Value positiveX = rewriter.create<arith::MulFOp>(loc, sign, op.getOperand()); |
| |
| // Decompose on normalized input |
| Value negDoubledX = rewriter.create<arith::MulFOp>(loc, negTwo, positiveX); |
| Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX); |
| Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x); |
| Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x); |
| Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor); |
| |
| // Multiply result by sign(x) to retain signs from negative inputs |
| rewriter.replaceOpWithNewOp<arith::MulFOp>(op, sign, positiveRes); |
| |
| return success(); |
| } |
| |
| // Converts math.tan to math.sin, math.cos, and arith.divf. |
| static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operand = op.getOperand(); |
| Type type = operand.getType(); |
| Value sin = b.create<math::SinOp>(type, operand); |
| Value cos = b.create<math::CosOp>(type, operand); |
| Value div = b.create<arith::DivFOp>(type, sin, cos); |
| rewriter.replaceOp(op, div); |
| return success(); |
| } |
| |
| static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operandA = op.getOperand(0); |
| Value operandB = op.getOperand(1); |
| Value operandC = op.getOperand(2); |
| Type type = op.getType(); |
| Value mult = b.create<arith::MulFOp>(type, operandA, operandB); |
| Value add = b.create<arith::AddFOp>(type, mult, operandC); |
| rewriter.replaceOp(op, add); |
| return success(); |
| } |
| |
| // Converts a floorf() function to the following: |
| // floorf(float x) -> |
| // y = (float)(int) x |
| // if (x < 0) then incr = -1 else incr = 0 |
| // y = y + incr <= replace this op with the floorf op. |
| static LogicalResult convertFloorOp(math::FloorOp op, |
| PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operand = op.getOperand(); |
| Type opType = operand.getType(); |
| Value fpFixedConvert = createTruncatedFPValue(operand, b); |
| |
| // Creating constants for later use. |
| Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); |
| Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter); |
| |
| Value negCheck = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero); |
| Value incrValue = |
| b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero); |
| Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue); |
| rewriter.replaceOp(op, ret); |
| return success(); |
| } |
| |
| // Converts a ceilf() function to the following: |
| // ceilf(float x) -> |
| // y = (float)(int) x |
| // if (x > y) then incr = 1 else incr = 0 |
| // y = y + incr <= replace this op with the ceilf op. |
| static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operand = op.getOperand(); |
| Type opType = operand.getType(); |
| Value fpFixedConvert = createTruncatedFPValue(operand, b); |
| |
| // Creating constants for later use. |
| Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); |
| Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter); |
| |
| Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand, |
| fpFixedConvert); |
| Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero); |
| |
| Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue); |
| rewriter.replaceOp(op, ret); |
| return success(); |
| } |
| |
| // Convert `math.fpowi` to a series of `arith.mulf` operations. |
| // If the power is negative, we divide one by the result. |
| // If both the base and power are zero, the result is 1. |
| // In the case of non constant power, we convert the operation to `math.powf`. |
| static LogicalResult convertFPowIOp(math::FPowIOp op, |
| PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value base = op.getOperand(0); |
| Value power = op.getOperand(1); |
| Type baseType = base.getType(); |
| |
| auto convertFPowItoPowf = [&]() -> LogicalResult { |
| Value castPowerToFp = |
| rewriter.create<arith::SIToFPOp>(op.getLoc(), baseType, power); |
| Value res = rewriter.create<math::PowFOp>(op.getLoc(), baseType, base, |
| castPowerToFp); |
| rewriter.replaceOp(op, res); |
| return success(); |
| }; |
| |
| Attribute cstAttr; |
| if (!matchPattern(power, m_Constant(&cstAttr))) |
| return convertFPowItoPowf(); |
| |
| APInt value; |
| if (!matchPattern(cstAttr, m_ConstantInt(&value))) |
| return convertFPowItoPowf(); |
| |
| int64_t powerInt = value.getSExtValue(); |
| bool isNegative = powerInt < 0; |
| int64_t absPower = std::abs(powerInt); |
| Value one = createFloatConst(op->getLoc(), baseType, 1.00, rewriter); |
| Value res = createFloatConst(op->getLoc(), baseType, 1.00, rewriter); |
| |
| while (absPower > 0) { |
| if (absPower & 1) |
| res = b.create<arith::MulFOp>(baseType, base, res); |
| absPower >>= 1; |
| base = b.create<arith::MulFOp>(baseType, base, base); |
| } |
| |
| // Make sure not to introduce UB in case of negative power. |
| if (isNegative) { |
| auto &sem = dyn_cast<mlir::FloatType>(getElementTypeOrSelf(baseType)) |
| .getFloatSemantics(); |
| Value zero = |
| createFloatConst(op->getLoc(), baseType, |
| APFloat::getZero(sem, /*Negative=*/false), rewriter); |
| Value negZero = |
| createFloatConst(op->getLoc(), baseType, |
| APFloat::getZero(sem, /*Negative=*/true), rewriter); |
| Value posInfinity = |
| createFloatConst(op->getLoc(), baseType, |
| APFloat::getInf(sem, /*Negative=*/false), rewriter); |
| Value negInfinity = |
| createFloatConst(op->getLoc(), baseType, |
| APFloat::getInf(sem, /*Negative=*/true), rewriter); |
| Value zeroEqCheck = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, zero); |
| Value negZeroEqCheck = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, negZero); |
| res = b.create<arith::DivFOp>(baseType, one, res); |
| res = |
| b.create<arith::SelectOp>(op->getLoc(), zeroEqCheck, posInfinity, res); |
| res = b.create<arith::SelectOp>(op->getLoc(), negZeroEqCheck, negInfinity, |
| res); |
| } |
| |
| rewriter.replaceOp(op, res); |
| return success(); |
| } |
| |
| // Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a)) |
| static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operandA = op.getOperand(0); |
| Value operandB = op.getOperand(1); |
| Type opType = operandA.getType(); |
| Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); |
| Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter); |
| Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter); |
| Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA); |
| Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two); |
| |
| Value logA = b.create<math::LogOp>(opType, opASquared); |
| Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA); |
| Value expResult = b.create<math::ExpOp>(opType, mult); |
| Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne); |
| Value remainder = b.create<arith::RemFOp>(opType, operandB, two); |
| Value negCheck = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero); |
| Value oddPower = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero); |
| Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck); |
| |
| Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult, |
| expResult); |
| rewriter.replaceOp(op, res); |
| return success(); |
| } |
| |
| // exp2f(float x) -> exp(x * ln(2)) |
| // Proof: Let's say 2^x = y |
| // ln(2^x) = ln(y) |
| // x * ln(2) = ln(y) => e ^(x*ln(2)) = y |
| static LogicalResult convertExp2fOp(math::Exp2Op op, |
| PatternRewriter &rewriter) { |
| ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| Value operand = op.getOperand(); |
| Type opType = operand.getType(); |
| Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b); |
| Value mult = b.create<arith::MulFOp>(opType, operand, ln2); |
| Value exp = b.create<math::ExpOp>(op->getLoc(), mult); |
| rewriter.replaceOp(op, exp); |
| return success(); |
| } |
| |
| static LogicalResult convertRoundOp(math::RoundOp op, |
| PatternRewriter &rewriter) { |
| Location loc = op.getLoc(); |
| ImplicitLocOpBuilder b(loc, rewriter); |
| Value operand = op.getOperand(); |
| Type opType = operand.getType(); |
| Type opEType = getElementTypeOrSelf(opType); |
| |
| if (!opEType.isF32()) { |
| return rewriter.notifyMatchFailure(op, "not a round of f32."); |
| } |
| |
| Type i32Ty = b.getI32Type(); |
| if (auto shapedTy = dyn_cast<ShapedType>(opType)) |
| i32Ty = shapedTy.clone(i32Ty); |
| |
| Value half = createFloatConst(loc, opType, 0.5, b); |
| Value c23 = createIntConst(loc, i32Ty, 23, b); |
| Value c127 = createIntConst(loc, i32Ty, 127, b); |
| Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b); |
| |
| Value incrValue = b.create<math::CopySignOp>(half, operand); |
| Value add = b.create<arith::AddFOp>(opType, operand, incrValue); |
| Value fpFixedConvert = createTruncatedFPValue(add, b); |
| |
| // There are three cases where adding 0.5 to the value and truncating by |
| // converting to an i64 does not result in the correct behavior: |
| // |
| // 1. Special values: +-inf and +-nan |
| // Casting these special values to i64 has undefined behavior. To identify |
| // these values, we use the fact that these values are the only float |
| // values with the maximum possible biased exponent. |
| // |
| // 2. Large values: 2^23 <= |x| <= INT_64_MAX |
| // Adding 0.5 to a float larger than or equal to 2^23 results in precision |
| // errors that sometimes round the value up and sometimes round the value |
| // down. For example: |
| // 8388608.0 + 0.5 = 8388608.0 |
| // 8388609.0 + 0.5 = 8388610.0 |
| // |
| // 3. Very large values: |x| > INT_64_MAX |
| // Casting to i64 a value greater than the max i64 value will overflow the |
| // i64 leading to wrong outputs. |
| // |
| // All three cases satisfy the property `biasedExp >= 23`. |
| Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand); |
| Value operandExp = b.create<arith::AndIOp>( |
| b.create<arith::ShRUIOp>(operandBitcast, c23), expMask); |
| Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127); |
| Value isSpecialValOrLargeVal = |
| b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23); |
| |
| Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand, |
| fpFixedConvert); |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| |
| // Converts math.ctlz to scf and arith operations. This is done |
| // by performing a binary search on the bits. |
| static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op, |
| PatternRewriter &rewriter) { |
| auto operand = op.getOperand(); |
| auto operandTy = operand.getType(); |
| auto eTy = getElementTypeOrSelf(operandTy); |
| Location loc = op.getLoc(); |
| |
| int32_t bitwidth = eTy.getIntOrFloatBitWidth(); |
| if (bitwidth > 64) |
| return failure(); |
| |
| uint64_t allbits = -1; |
| if (bitwidth < 64) { |
| allbits = allbits >> (64 - bitwidth); |
| } |
| |
| Value x = operand; |
| Value count = createIntConst(loc, operandTy, 0, rewriter); |
| for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) { |
| auto half = bw / 2; |
| auto bits = createIntConst(loc, operandTy, half, rewriter); |
| auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter); |
| |
| Value pred = |
| rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask); |
| Value add = rewriter.create<arith::AddIOp>(loc, count, bits); |
| Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits); |
| |
| x = rewriter.create<arith::SelectOp>(loc, pred, shift, x); |
| count = rewriter.create<arith::SelectOp>(loc, pred, add, count); |
| } |
| |
| Value zero = createIntConst(loc, operandTy, 0, rewriter); |
| Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, |
| operand, zero); |
| |
| Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter); |
| Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count); |
| rewriter.replaceOp(op, sel); |
| return success(); |
| } |
| |
| // Convert `math.roundeven` into `math.round` + arith ops |
| static LogicalResult convertRoundEvenOp(math::RoundEvenOp op, |
| PatternRewriter &rewriter) { |
| Location loc = op.getLoc(); |
| ImplicitLocOpBuilder b(loc, rewriter); |
| auto operand = op.getOperand(); |
| Type operandTy = operand.getType(); |
| Type resultTy = op.getType(); |
| Type operandETy = getElementTypeOrSelf(operandTy); |
| Type resultETy = getElementTypeOrSelf(resultTy); |
| |
| if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) { |
| return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32."); |
| } |
| |
| Type fTy = operandTy; |
| Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth()); |
| if (auto shapedTy = dyn_cast<ShapedType>(fTy)) { |
| iTy = shapedTy.clone(iTy); |
| } |
| |
| unsigned bitWidth = operandETy.getIntOrFloatBitWidth(); |
| // The width returned by getFPMantissaWidth includes the integer bit. |
| unsigned mantissaWidth = |
| llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1; |
| unsigned exponentWidth = bitWidth - mantissaWidth - 1; |
| |
| // The names of the variables correspond to f32. |
| // f64: 1 bit sign | 11 bits exponent | 52 bits mantissa. |
| // f32: 1 bit sign | 8 bits exponent | 23 bits mantissa. |
| // f16: 1 bit sign | 5 bits exponent | 10 bits mantissa. |
| Value c1Float = createFloatConst(loc, fTy, 1.0, b); |
| Value c0 = createIntConst(loc, iTy, 0, b); |
| Value c1 = createIntConst(loc, iTy, 1, b); |
| Value cNeg1 = createIntConst(loc, iTy, -1, b); |
| Value c23 = createIntConst(loc, iTy, mantissaWidth, b); |
| Value c31 = createIntConst(loc, iTy, bitWidth - 1, b); |
| Value c127 = createIntConst(loc, iTy, (1ull << (exponentWidth - 1)) - 1, b); |
| Value c2To22 = createIntConst(loc, iTy, 1ull << (mantissaWidth - 1), b); |
| Value c23Mask = createIntConst(loc, iTy, (1ull << mantissaWidth) - 1, b); |
| Value expMask = createIntConst(loc, iTy, (1ull << exponentWidth) - 1, b); |
| |
| Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand); |
| Value round = b.create<math::RoundOp>(operand); |
| Value roundBitcast = b.create<arith::BitcastOp>(iTy, round); |
| |
| // Get biased exponents for operand and round(operand) |
| Value operandExp = b.create<arith::AndIOp>( |
| b.create<arith::ShRUIOp>(operandBitcast, c23), expMask); |
| Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127); |
| Value roundExp = b.create<arith::AndIOp>( |
| b.create<arith::ShRUIOp>(roundBitcast, c23), expMask); |
| Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127); |
| |
| auto safeShiftRight = [&](Value x, Value shift) -> Value { |
| // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior |
| Value clampedShift = b.create<arith::MaxSIOp>(shift, c0); |
| clampedShift = b.create<arith::MinSIOp>(clampedShift, c31); |
| return b.create<arith::ShRUIOp>(x, clampedShift); |
| }; |
| |
| auto maskMantissa = [&](Value mantissa, |
| Value mantissaMaskRightShift) -> Value { |
| Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift); |
| return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask); |
| }; |
| |
| // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring |
| // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers |
| // with `biasedExp > 23` (numbers where there is not enough precision to store |
| // decimals) are always even, and they satisfy the even condition trivially |
| // since the mantissa without all its bits is zero. The even condition |
| // is also true for +-0, since they have `biasedExp = -127` and the entire |
| // mantissa is zero. The case of +-1 has to be handled separately. Here |
| // we identify these values by noting that +-1 are the only whole numbers with |
| // `biasedExp == 0`. |
| // |
| // The special values +-inf and +-nan also satisfy the same property that |
| // whole non-unit even numbers satisfy. In particular, the special values have |
| // `biasedExp > 23`, so they get treated as large numbers with no room for |
| // decimals, which are always even. |
| Value roundBiasedExpEq0 = |
| b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0); |
| Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1); |
| Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1); |
| Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>( |
| arith::CmpIPredicate::ne, roundMaskedMantissa, c0); |
| roundIsNotEvenOrSpecialVal = |
| b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0); |
| |
| // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive |
| // integers if the bit at index `biasedExp` starting from the left in the |
| // mantissa is 1 and all the bits to the right are zero. Values with |
| // `biasedExp >= 23` don't have decimals, so they are never halfway. The |
| // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`, |
| // so these are handled separately. In particular, if `biasedExp == -1`, the |
| // value is halfway if the entire mantissa is zero. |
| Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>( |
| arith::CmpIPredicate::eq, operandBiasedExp, cNeg1); |
| Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>( |
| operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp)); |
| Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp); |
| Value operandIsHalfway = |
| b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa, |
| expectedOperandMaskedMantissa); |
| // Ensure `biasedExp` is in the valid range for half values. |
| Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>( |
| arith::CmpIPredicate::sge, operandBiasedExp, cNeg1); |
| Value operandBiasedExpLt23 = |
| b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23); |
| operandIsHalfway = |
| b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23); |
| operandIsHalfway = |
| b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1); |
| |
| // Adjust rounded operand with `round(operand) - sign(operand)` to correct the |
| // case where `round` rounded in the opposite direction of `roundeven`. |
| Value sign = b.create<math::CopySignOp>(c1Float, operand); |
| Value roundShifted = b.create<arith::SubFOp>(round, sign); |
| // If the rounded value is even or a special value, we default to the behavior |
| // of `math.round`. |
| Value needsShift = |
| b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway); |
| Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round); |
| // The `x - sign` adjustment does not preserve the sign when we are adjusting |
| // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is |
| // rounded to -0.0. |
| result = b.create<math::CopySignOp>(result, operand); |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| |
| void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) { |
| patterns.add(convertCtlzOp); |
| } |
| |
| void mlir::populateExpandSinhPattern(RewritePatternSet &patterns) { |
| patterns.add(convertSinhOp); |
| } |
| |
| void mlir::populateExpandCoshPattern(RewritePatternSet &patterns) { |
| patterns.add(convertCoshOp); |
| } |
| |
| void mlir::populateExpandTanPattern(RewritePatternSet &patterns) { |
| patterns.add(convertTanOp); |
| } |
| |
| void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) { |
| patterns.add(convertTanhOp); |
| } |
| |
| void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) { |
| patterns.add(convertFmaFOp); |
| } |
| |
| void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) { |
| patterns.add(convertCeilOp); |
| } |
| |
| void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) { |
| patterns.add(convertExp2fOp); |
| } |
| |
| void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) { |
| patterns.add(convertPowfOp); |
| } |
| |
| void mlir::populateExpandFPowIPattern(RewritePatternSet &patterns) { |
| patterns.add(convertFPowIOp); |
| } |
| |
| void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) { |
| patterns.add(convertRoundOp); |
| } |
| |
| void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) { |
| patterns.add(convertFloorOp); |
| } |
| |
| void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) { |
| patterns.add(convertRoundEvenOp); |
| } |