|  | //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h" | 
|  | #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" | 
|  | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" | 
|  | #include "mlir/Dialect/Bufferization/IR/UnstructuredControlFlow.h" | 
|  | #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" | 
|  | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" | 
|  | #include "mlir/Dialect/Func/IR/FuncOps.h" | 
|  | #include "mlir/Dialect/MemRef/IR/MemRef.h" | 
|  | #include "mlir/IR/Dialect.h" | 
|  | #include "mlir/IR/Operation.h" | 
|  | #include <optional> | 
|  |  | 
|  | namespace mlir { | 
|  | namespace bufferization { | 
|  | namespace func_ext { | 
|  |  | 
|  | void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) { | 
|  | analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress; | 
|  | auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping()); | 
|  | auto createdAliasingResults = | 
|  | aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping()); | 
|  | auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet()); | 
|  | auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet()); | 
|  | (void)createdEquiv; | 
|  | (void)createdAliasingResults; | 
|  | (void)createdRead; | 
|  | (void)createdWritten; | 
|  | #ifndef NDEBUG | 
|  | assert(createdEquiv.second && "equivalence info exists already"); | 
|  | assert(createdAliasingResults.second && "aliasing info exists already"); | 
|  | assert(createdRead.second && "bbarg access info exists already"); | 
|  | assert(createdWritten.second && "bbarg access info exists already"); | 
|  | #endif // NDEBUG | 
|  | } | 
|  |  | 
|  | /// Return the unique ReturnOp that terminates `funcOp`. | 
|  | /// Return nullptr if there is no such unique ReturnOp. | 
|  | static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) { | 
|  | func::ReturnOp returnOp; | 
|  | for (Block &b : funcOp.getBody()) { | 
|  | if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) { | 
|  | if (returnOp) | 
|  | return nullptr; | 
|  | returnOp = candidateOp; | 
|  | } | 
|  | } | 
|  | return returnOp; | 
|  | } | 
|  |  | 
|  | /// Return the index-th bufferized function argument type. This assumes that the | 
|  | /// specified argument is a tensor. If the tensor is ranked, a layout map may be | 
|  | /// specified by the user (as per `options.functionArgTypeConverterFn`). | 
|  | static BaseMemRefType | 
|  | getBufferizedFunctionArgType(FuncOp funcOp, int64_t index, | 
|  | const BufferizationOptions &options) { | 
|  | auto tensorType = | 
|  | dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index)); | 
|  | assert(tensorType && "expected TensorType"); | 
|  |  | 
|  | BaseMemRefType memrefType = options.functionArgTypeConverterFn( | 
|  | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, options); | 
|  |  | 
|  | auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>( | 
|  | index, BufferizationDialect::kBufferLayoutAttrName); | 
|  | if (!layoutAttr) | 
|  | return memrefType; | 
|  |  | 
|  | auto rankedMemrefType = dyn_cast<MemRefType>(memrefType); | 
|  | assert(rankedMemrefType && "buffer layout not supported on unranked tensors"); | 
|  | return MemRefType::get( | 
|  | rankedMemrefType.getShape(), rankedMemrefType.getElementType(), | 
|  | layoutAttr.getValue(), rankedMemrefType.getMemorySpace()); | 
|  | } | 
|  |  | 
|  | /// Return the FuncOp called by `callOp`. | 
|  | static FuncOp getCalledFunction(CallOpInterface callOp) { | 
|  | SymbolRefAttr sym = llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee()); | 
|  | if (!sym) | 
|  | return nullptr; | 
|  | return dyn_cast_or_null<FuncOp>( | 
|  | SymbolTable::lookupNearestSymbolFrom(callOp, sym)); | 
|  | } | 
|  |  | 
|  | /// Get FuncAnalysisState. | 
|  | static const FuncAnalysisState & | 
|  | getFuncAnalysisState(const AnalysisState &state) { | 
|  | assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState"); | 
|  | auto *result = static_cast<const OneShotAnalysisState &>(state) | 
|  | .getExtension<FuncAnalysisState>(); | 
|  | assert(result && "FuncAnalysisState does not exist"); | 
|  | return *result; | 
|  | } | 
|  |  | 
|  | /// Return the state (phase) of analysis of the FuncOp. | 
|  | static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state, | 
|  | FuncOp funcOp) { | 
|  | if (!isa<OneShotAnalysisState>(state)) | 
|  | return FuncOpAnalysisState::NotAnalyzed; | 
|  | auto *funcState = static_cast<const OneShotAnalysisState &>(state) | 
|  | .getExtension<FuncAnalysisState>(); | 
|  | if (!funcState) | 
|  | return FuncOpAnalysisState::NotAnalyzed; | 
|  | const auto &analyzedFuncOps = funcState->analyzedFuncOps; | 
|  | auto it = analyzedFuncOps.find(funcOp); | 
|  | if (it == analyzedFuncOps.end()) | 
|  | return FuncOpAnalysisState::NotAnalyzed; | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | /// Return the index of the bbArg in the given FuncOp that is equivalent to the | 
|  | /// specified return value (if any). | 
|  | static std::optional<int64_t> | 
|  | getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state, | 
|  | int64_t returnValIdx) { | 
|  | auto funcOpIt = state.equivalentFuncArgs.find(funcOp); | 
|  | if (funcOpIt == state.equivalentFuncArgs.end()) | 
|  | // No equivalence info stores for funcOp. | 
|  | return std::nullopt; | 
|  |  | 
|  | auto retValIt = funcOpIt->getSecond().find(returnValIdx); | 
|  | if (retValIt == funcOpIt->getSecond().end()) | 
|  | // Return value has no equivalent bbArg. | 
|  | return std::nullopt; | 
|  |  | 
|  | return retValIt->getSecond(); | 
|  | } | 
|  |  | 
|  | struct CallOpInterface | 
|  | : public BufferizableOpInterface::ExternalModel<CallOpInterface, | 
|  | func::CallOp> { | 
|  | bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, | 
|  | const AnalysisState &state) const { | 
|  | func::CallOp callOp = cast<func::CallOp>(op); | 
|  | FuncOp funcOp = getCalledFunction(callOp); | 
|  | assert(funcOp && "expected CallOp to a FuncOp"); | 
|  |  | 
|  | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) | 
|  | // FuncOp not analyzed yet. Assume that OpOperand is read. | 
|  | return true; | 
|  |  | 
|  | const FuncAnalysisState &funcState = getFuncAnalysisState(state); | 
|  | return funcState.readBbArgs.lookup(funcOp).contains( | 
|  | opOperand.getOperandNumber()); | 
|  | } | 
|  |  | 
|  | bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, | 
|  | const AnalysisState &state) const { | 
|  | func::CallOp callOp = cast<func::CallOp>(op); | 
|  | FuncOp funcOp = getCalledFunction(callOp); | 
|  | assert(funcOp && "expected CallOp to a FuncOp"); | 
|  |  | 
|  | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) | 
|  | // FuncOp not analyzed yet. Assume that OpOperand is written. | 
|  | return true; | 
|  |  | 
|  | const FuncAnalysisState &funcState = getFuncAnalysisState(state); | 
|  | return funcState.writtenBbArgs.lookup(funcOp).contains( | 
|  | opOperand.getOperandNumber()); | 
|  | } | 
|  |  | 
|  | AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, | 
|  | const AnalysisState &state) const { | 
|  | func::CallOp callOp = cast<func::CallOp>(op); | 
|  | FuncOp funcOp = getCalledFunction(callOp); | 
|  | assert(funcOp && "expected CallOp to a FuncOp"); | 
|  | if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed) | 
|  | // FuncOp not analyzed yet. Any OpResult may be aliasing. | 
|  | return detail::unknownGetAliasingValues(opOperand); | 
|  |  | 
|  | // Get aliasing results from state. | 
|  | const FuncAnalysisState &funcState = getFuncAnalysisState(state); | 
|  | auto aliasingReturnVals = | 
|  | funcState.aliasingReturnVals.lookup(funcOp).lookup( | 
|  | opOperand.getOperandNumber()); | 
|  |  | 
|  | // Check if the aliasing OpResult is equivalent to the OpOperand. | 
|  | std::optional<int64_t> equivalent = {}; | 
|  | if (aliasingReturnVals.size() == 1) { | 
|  | equivalent = getEquivalentFuncArgIdx(funcOp, funcState, | 
|  | aliasingReturnVals.front()); | 
|  | assert((!equivalent.has_value() || | 
|  | *equivalent == opOperand.getOperandNumber()) && | 
|  | "inconsistent analysis state"); | 
|  | } | 
|  | AliasingValueList result; | 
|  | for (int64_t resultIdx : aliasingReturnVals) | 
|  | result.addAlias({callOp->getOpResult(resultIdx), | 
|  | equivalent.has_value() ? BufferRelation::Equivalent | 
|  | : BufferRelation::Unknown, | 
|  | /*isDefinite=*/equivalent.has_value()}); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | FailureOr<BaseMemRefType> | 
|  | getBufferType(Operation *op, Value value, const BufferizationOptions &options, | 
|  | SmallVector<Value> &invocationStack) const { | 
|  | auto callOp = cast<func::CallOp>(op); | 
|  | FuncOp funcOp = getCalledFunction(callOp); | 
|  | assert(funcOp && "expected CallOp to a FuncOp"); | 
|  |  | 
|  | // The callee was already bufferized, so we can directly take the type from | 
|  | // its signature. | 
|  | FunctionType funcType = funcOp.getFunctionType(); | 
|  | return cast<BaseMemRefType>( | 
|  | funcType.getResult(cast<OpResult>(value).getResultNumber())); | 
|  | } | 
|  |  | 
|  | /// All function arguments are writable. It is the responsibility of the | 
|  | /// CallOp to insert buffer copies where necessary. | 
|  | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, | 
|  | const BufferizationOptions &options) const { | 
|  | func::CallOp callOp = cast<func::CallOp>(op); | 
|  |  | 
|  | // 1. Compute the result types of the new CallOp. | 
|  | SmallVector<Type> resultTypes; | 
|  | for (Value result : callOp.getResults()) { | 
|  | Type returnType = result.getType(); | 
|  | if (!isa<TensorType>(returnType)) { | 
|  | // Non-tensor values are returned. | 
|  | resultTypes.push_back(returnType); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Returning a memref. | 
|  | FailureOr<BaseMemRefType> resultType = | 
|  | bufferization::getBufferType(result, options); | 
|  | if (failed(resultType)) | 
|  | return failure(); | 
|  | resultTypes.push_back(*resultType); | 
|  | } | 
|  |  | 
|  | // 2. Rewrite tensor operands as memrefs based on type of the already | 
|  | //    bufferized callee. | 
|  | SmallVector<Value> newOperands; | 
|  | FuncOp funcOp = getCalledFunction(callOp); | 
|  | assert(funcOp && "expected CallOp to a FuncOp"); | 
|  | FunctionType funcType = funcOp.getFunctionType(); | 
|  |  | 
|  | for (OpOperand &opOperand : callOp->getOpOperands()) { | 
|  | // Non-tensor operands are just copied. | 
|  | if (!isa<TensorType>(opOperand.get().getType())) { | 
|  | newOperands.push_back(opOperand.get()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Retrieve buffers for tensor operands. | 
|  | FailureOr<Value> maybeBuffer = | 
|  | getBuffer(rewriter, opOperand.get(), options); | 
|  | if (failed(maybeBuffer)) | 
|  | return failure(); | 
|  | Value buffer = *maybeBuffer; | 
|  |  | 
|  | // Caller / callee type mismatch is handled with a CastOp. | 
|  | auto memRefType = funcType.getInput(opOperand.getOperandNumber()); | 
|  | // Since we don't yet have a clear layout story, to_memref may | 
|  | // conservatively turn tensors into more dynamic memref than necessary. | 
|  | // If the memref type of the callee fails, introduce an extra memref.cast | 
|  | // that will either canonicalize away or fail compilation until we can do | 
|  | // something better. | 
|  | if (buffer.getType() != memRefType) { | 
|  | assert( | 
|  | memref::CastOp::areCastCompatible(buffer.getType(), memRefType) && | 
|  | "CallOp::bufferize: cast incompatible"); | 
|  | Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(), | 
|  | memRefType, buffer); | 
|  | buffer = castBuffer; | 
|  | } | 
|  | newOperands.push_back(buffer); | 
|  | } | 
|  |  | 
|  | // 3. Create the new CallOp. | 
|  | Operation *newCallOp = rewriter.create<func::CallOp>( | 
|  | callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands); | 
|  | newCallOp->setAttrs(callOp->getAttrs()); | 
|  |  | 
|  | // 4. Replace the old op with the new op. | 
|  | replaceOpWithBufferizedValues(rewriter, callOp, newCallOp->getResults()); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ReturnOpInterface | 
|  | : public BufferizableOpInterface::ExternalModel<ReturnOpInterface, | 
|  | func::ReturnOp> { | 
|  | bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, | 
|  | const AnalysisState &state) const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, | 
|  | const AnalysisState &state) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand, | 
|  | const AnalysisState &state) const { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, | 
|  | const BufferizationOptions &options) const { | 
|  | #ifndef NDEBUG | 
|  | auto returnOp = cast<func::ReturnOp>(op); | 
|  | assert(isa<FuncOp>(returnOp->getParentOp()) && | 
|  | "only support FuncOp parent for ReturnOp"); | 
|  | #endif // NDEBUG | 
|  |  | 
|  | // ReturnOps are bufferized as part of FuncOps. | 
|  | return success(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct FuncOpInterface | 
|  | : public OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel< | 
|  | FuncOpInterface, FuncOp> { | 
|  |  | 
|  | static bool supportsUnstructuredControlFlow() { return true; } | 
|  |  | 
|  | bool hasTensorSemantics(Operation *op) const { | 
|  | auto isaTensor = llvm::IsaPred<TensorType>; | 
|  |  | 
|  | // A function has tensor semantics if it has tensor arguments/results. | 
|  | auto funcOp = cast<FuncOp>(op); | 
|  | bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor); | 
|  | bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor); | 
|  | if (hasTensorArg || hasTensorResult) | 
|  | return true; | 
|  |  | 
|  | // It also has tensor semantics if it has tensor block arguments. | 
|  | // TODO: Decouple bufferization of unstructured control flow from | 
|  | // BufferizableOpInterface implementations. We should only care about | 
|  | // region entry block arguments here (which are already covered by the | 
|  | // argument types of the function). | 
|  | for (Block &block : funcOp.getBody()) | 
|  | if (any_of(block.getArgumentTypes(), isaTensor)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AliasingOpOperandList | 
|  | getAliasingOpOperands(Operation *op, Value value, | 
|  | const AnalysisState &state) const { | 
|  | return getAliasingBranchOpOperands(op, cast<BlockArgument>(value), state); | 
|  | } | 
|  |  | 
|  | FailureOr<BaseMemRefType> | 
|  | getBufferType(Operation *op, Value value, const BufferizationOptions &options, | 
|  | SmallVector<Value> &invocationStack) const { | 
|  | auto funcOp = cast<FuncOp>(op); | 
|  | auto bbArg = cast<BlockArgument>(value); | 
|  |  | 
|  | // Function arguments are special. | 
|  | if (bbArg.getOwner() == &funcOp.getBody().front()) | 
|  | return getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), | 
|  | options); | 
|  |  | 
|  | return OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel:: | 
|  | getBufferType(op, value, options, invocationStack); | 
|  | } | 
|  |  | 
|  | LogicalResult verifyAnalysis(Operation *op, | 
|  | const AnalysisState &state) const { | 
|  | auto funcOp = cast<func::FuncOp>(op); | 
|  | // TODO: func.func with multiple returns are not supported. | 
|  | if (!getAssumedUniqueReturnOp(funcOp) && !funcOp.isExternal()) | 
|  | return op->emitOpError("op without unique func.return is not supported"); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | /// Rewrite function bbArgs and return values into buffer form. This function | 
|  | /// bufferizes the function signature and the ReturnOp. When the entire | 
|  | /// function body has been bufferized, function return types can be switched | 
|  | /// to more concise memref types as part of `foldMemRefCasts`. | 
|  | /// | 
|  | /// All function bbArgs are writable unless they are explicitly marked as | 
|  | /// read-only. Callers must insert copies when needed. | 
|  | LogicalResult bufferize(Operation *op, RewriterBase &rewriter, | 
|  | const BufferizationOptions &options) const { | 
|  | auto funcOp = cast<FuncOp>(op); | 
|  | FunctionType funcType = funcOp.getFunctionType(); | 
|  |  | 
|  | // Construct the bufferized function type. | 
|  | SmallVector<Type> argTypes; | 
|  | for (const auto &it : llvm::enumerate(funcType.getInputs())) { | 
|  | Type argType = it.value(); | 
|  | if (dyn_cast<TensorType>(argType)) { | 
|  | argTypes.push_back( | 
|  | getBufferizedFunctionArgType(funcOp, it.index(), options)); | 
|  | continue; | 
|  | } | 
|  | argTypes.push_back(argType); | 
|  | } | 
|  |  | 
|  | // Bodiless functions are assumed opaque and we cannot know the | 
|  | // bufferization contract they want to enforce. As a consequence, only | 
|  | // support functions that don't return any tensors atm. | 
|  | if (funcOp.isExternal()) { | 
|  | SmallVector<Type> retTypes; | 
|  | for (Type resultType : funcType.getResults()) { | 
|  | if (isa<TensorType>(resultType)) | 
|  | return funcOp->emitError() << "cannot bufferize bodiless function " | 
|  | << "that returns a tensor"; | 
|  | retTypes.push_back(resultType); | 
|  | } | 
|  | funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes)); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | // TODO: Support functions with multiple returns. | 
|  | func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); | 
|  | assert(returnOp && "expected func with single return op"); | 
|  | Location loc = returnOp.getLoc(); | 
|  |  | 
|  | // 1. Bufferize every block. | 
|  | for (Block &block : funcOp.getBody()) | 
|  | if (failed(bufferization::bufferizeBlockSignature(&block, rewriter, | 
|  | options))) | 
|  | return failure(); | 
|  |  | 
|  | // 2. For each result, keep track of which inplace argument it reuses. | 
|  | SmallVector<Value> returnValues; | 
|  | for (OpOperand &returnOperand : returnOp->getOpOperands()) { | 
|  | Value returnVal = returnOperand.get(); | 
|  | auto tensorType = dyn_cast<TensorType>(returnVal.getType()); | 
|  | rewriter.setInsertionPoint(returnOp); | 
|  |  | 
|  | // If not a tensor type just forward it. | 
|  | if (!tensorType) { | 
|  | returnValues.push_back(returnVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Note: If `inferFunctionResultLayout = true`, cast are later folded | 
|  | // away. | 
|  | BaseMemRefType resultType = options.functionArgTypeConverterFn( | 
|  | tensorType, *options.defaultMemorySpaceFn(tensorType), funcOp, | 
|  | options); | 
|  | Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>( | 
|  | loc, resultType, returnVal); | 
|  | returnValues.push_back(toMemrefOp); | 
|  | } | 
|  |  | 
|  | // 3. Rewrite the terminator without the in-place bufferizable values. | 
|  | returnOp.getOperandsMutable().assign(returnValues); | 
|  |  | 
|  | // 4. Rewrite the FuncOp type to buffer form. | 
|  | funcOp.setType(FunctionType::get(op->getContext(), argTypes, | 
|  | ValueRange(returnValues).getTypes())); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | /// Return `true` if the given function argument is writable. | 
|  | bool isWritable(Operation *op, Value value, | 
|  | const AnalysisState &state) const { | 
|  | auto funcOp = cast<FuncOp>(op); | 
|  | BlockArgument bbArg = dyn_cast<BlockArgument>(value); | 
|  | assert(bbArg && "expected BlockArgument"); | 
|  |  | 
|  | // Non-entry block arguments are always writable. (They may alias with | 
|  | // values that are not writable, which will turn them into read-only.) | 
|  | if (bbArg.getOwner() != &funcOp.getBody().front()) | 
|  | return true; | 
|  |  | 
|  | // "bufferization.writable" overrides other writability decisions. This is | 
|  | // currently used for testing only. | 
|  | if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>( | 
|  | bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName)) | 
|  | return writable.getValue(); | 
|  |  | 
|  | // All function arguments are writable by default. | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace func_ext | 
|  | } // namespace bufferization | 
|  | } // namespace mlir | 
|  |  | 
|  | void mlir::bufferization::func_ext:: | 
|  | registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) { | 
|  | registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) { | 
|  | func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx); | 
|  | func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx); | 
|  | func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx); | 
|  | }); | 
|  | } |