blob: dd04a5996558945abdc1d20b0b8d1a8557225de9 [file] [log] [blame]
//===- ExpandOps.cpp - Pass to legalize Arith ops for LLVM lowering --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
namespace arith {
#define GEN_PASS_DEF_ARITHEXPANDOPSPASS
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace arith
} // namespace mlir
using namespace mlir;
/// Create an integer or index constant.
static Value createConst(Location loc, Type type, int value,
PatternRewriter &rewriter) {
auto attr = rewriter.getIntegerAttr(getElementTypeOrSelf(type), value);
if (auto shapedTy = dyn_cast<ShapedType>(type)) {
return rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(shapedTy, attr));
}
return rewriter.create<arith::ConstantOp>(loc, attr);
}
namespace {
/// Expands CeilDivUIOp (n, m) into
/// n == 0 ? 0 : ((n-1) / m) + 1
struct CeilDivUIOpConverter : public OpRewritePattern<arith::CeilDivUIOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::CeilDivUIOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Value a = op.getLhs();
Value b = op.getRhs();
Value zero = createConst(loc, a.getType(), 0, rewriter);
Value compare =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, a, zero);
Value one = createConst(loc, a.getType(), 1, rewriter);
Value minusOne = rewriter.create<arith::SubIOp>(loc, a, one);
Value quotient = rewriter.create<arith::DivUIOp>(loc, minusOne, b);
Value plusOne = rewriter.create<arith::AddIOp>(loc, quotient, one);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compare, zero, plusOne);
return success();
}
};
/// Expands CeilDivSIOp (n, m) into
/// 1) x = (m > 0) ? -1 : 1
/// 2) (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
struct CeilDivSIOpConverter : public OpRewritePattern<arith::CeilDivSIOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::CeilDivSIOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Type type = op.getType();
Value a = op.getLhs();
Value b = op.getRhs();
Value plusOne = createConst(loc, type, 1, rewriter);
Value zero = createConst(loc, type, 0, rewriter);
Value minusOne = createConst(loc, type, -1, rewriter);
// Compute x = (b>0) ? -1 : 1.
Value compare =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
Value x = rewriter.create<arith::SelectOp>(loc, compare, minusOne, plusOne);
// Compute positive res: 1 + ((x+a)/b).
Value xPlusA = rewriter.create<arith::AddIOp>(loc, x, a);
Value xPlusADivB = rewriter.create<arith::DivSIOp>(loc, xPlusA, b);
Value posRes = rewriter.create<arith::AddIOp>(loc, plusOne, xPlusADivB);
// Compute negative res: - ((-a)/b).
Value minusA = rewriter.create<arith::SubIOp>(loc, zero, a);
Value minusADivB = rewriter.create<arith::DivSIOp>(loc, minusA, b);
Value negRes = rewriter.create<arith::SubIOp>(loc, zero, minusADivB);
// Result is (a*b>0) ? pos result : neg result.
// Note, we want to avoid using a*b because of possible overflow.
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
// not particuliarly care if a*b<0 is true or false when b is zero
// as this will result in an illegal divide. So `a*b<0` can be reformulated
// as `(a<0 && b<0) || (a>0 && b>0)' or `(a<0 && b<0) || (a>0 && b>=0)'.
// We pick the first expression here.
Value aNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
Value aPos =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
Value bNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
Value bPos =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bNeg);
Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bPos);
Value compareRes =
rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
// Perform substitution and return success.
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compareRes, posRes,
negRes);
return success();
}
};
/// Expands FloorDivSIOp (x, y) into
/// z = x / y
/// if (z * y != x && (x < 0) != (y < 0)) {
/// return z - 1;
/// } else {
/// return z;
/// }
struct FloorDivSIOpConverter : public OpRewritePattern<arith::FloorDivSIOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::FloorDivSIOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Type type = op.getType();
Value a = op.getLhs();
Value b = op.getRhs();
Value quotient = rewriter.create<arith::DivSIOp>(loc, a, b);
Value product = rewriter.create<arith::MulIOp>(loc, quotient, b);
Value notEqualDivisor = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ne, a, product);
Value zero = createConst(loc, type, 0, rewriter);
Value aNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
Value bNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
Value signOpposite = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ne, aNeg, bNeg);
Value cond =
rewriter.create<arith::AndIOp>(loc, notEqualDivisor, signOpposite);
Value minusOne = createConst(loc, type, -1, rewriter);
Value quotientMinusOne =
rewriter.create<arith::AddIOp>(loc, quotient, minusOne);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cond, quotientMinusOne,
quotient);
return success();
}
};
template <typename OpTy, arith::CmpFPredicate pred>
struct MaximumMinimumFOpConverter : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const final {
Value lhs = op.getLhs();
Value rhs = op.getRhs();
Location loc = op.getLoc();
// If any operand is NaN, 'cmp' will be true (and 'select' returns 'lhs').
static_assert(pred == arith::CmpFPredicate::UGT ||
pred == arith::CmpFPredicate::ULT,
"pred must be either UGT or ULT");
Value cmp = rewriter.create<arith::CmpFOp>(loc, pred, lhs, rhs);
Value select = rewriter.create<arith::SelectOp>(loc, cmp, lhs, rhs);
// Handle the case where rhs is NaN: 'isNaN(rhs) ? rhs : select'.
Value isNaN = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNO,
rhs, rhs);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNaN, rhs, select);
return success();
}
};
template <typename OpTy, arith::CmpFPredicate pred>
struct MaxNumMinNumFOpConverter : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const final {
Value lhs = op.getLhs();
Value rhs = op.getRhs();
Location loc = op.getLoc();
// If any operand is NaN, 'cmp' will be true (and 'select' returns 'lhs').
static_assert(pred == arith::CmpFPredicate::UGT ||
pred == arith::CmpFPredicate::ULT,
"pred must be either UGT or ULT");
Value cmp = rewriter.create<arith::CmpFOp>(loc, pred, lhs, rhs);
Value select = rewriter.create<arith::SelectOp>(loc, cmp, lhs, rhs);
// Handle the case where lhs is NaN: 'isNaN(lhs) ? rhs : select'.
Value isNaN = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNO,
lhs, lhs);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNaN, rhs, select);
return success();
}
};
struct BFloat16ExtFOpConverter : public OpRewritePattern<arith::ExtFOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::ExtFOp op,
PatternRewriter &rewriter) const final {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto operand = op.getOperand();
Type operandTy = operand.getType();
Type resultTy = op.getType();
Type operandETy = getElementTypeOrSelf(operandTy);
Type resultETy = getElementTypeOrSelf(resultTy);
if (!operandETy.isBF16() || !resultETy.isF32()) {
return rewriter.notifyMatchFailure(op, "not a ext of bf16 to f32.");
}
Type i16Ty = b.getI16Type();
Type i32Ty = b.getI32Type();
if (auto shapedTy = dyn_cast<ShapedType>(operandTy)) {
i16Ty = shapedTy.clone(i16Ty);
i32Ty = shapedTy.clone(i32Ty);
}
Value bitcast = b.create<arith::BitcastOp>(i16Ty, operand);
Value exti = b.create<arith::ExtUIOp>(i32Ty, bitcast);
Value c16 = createConst(op.getLoc(), i32Ty, 16, rewriter);
Value shl = b.create<arith::ShLIOp>(exti, c16);
Value result = b.create<arith::BitcastOp>(resultTy, shl);
rewriter.replaceOp(op, result);
return success();
}
};
struct BFloat16TruncFOpConverter : public OpRewritePattern<arith::TruncFOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::TruncFOp op,
PatternRewriter &rewriter) const final {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto operand = op.getOperand();
Type operandTy = operand.getType();
Type resultTy = op.getType();
Type operandETy = getElementTypeOrSelf(operandTy);
Type resultETy = getElementTypeOrSelf(resultTy);
if (!operandETy.isF32() || !resultETy.isBF16()) {
return rewriter.notifyMatchFailure(op, "not a trunc of f32 to bf16.");
}
if (op.getRoundingmodeAttr()) {
return rewriter.notifyMatchFailure(
op, "only applicable to default rounding mode.");
}
Type i16Ty = b.getI16Type();
Type i32Ty = b.getI32Type();
Type f32Ty = b.getF32Type();
if (auto shapedTy = dyn_cast<ShapedType>(operandTy)) {
i16Ty = shapedTy.clone(i16Ty);
i32Ty = shapedTy.clone(i32Ty);
f32Ty = shapedTy.clone(f32Ty);
}
// Algorithm borrowed from this excellent code:
// https://github.com/pytorch/pytorch/blob/e1502c0cdbfd17548c612f25d5a65b1e4b86224d/c10/util/BFloat16.h#L60-L79
// There is a magic idea there, to let the addition of the rounding_bias to
// the mantissa simply overflow into the exponent bits. It's a bit of an
// aggressive, obfuscating optimization, but it is well-tested code, and it
// results in more concise and efficient IR.
// The case of NaN is handled separately (see isNaN and the final select).
// The case of infinities is NOT handled separately, which deserves an
// explanation. As the encoding of infinities has zero mantissa, the
// rounding-bias addition never carries into the exponent so that just gets
// truncated away, and as bfloat16 and float32 have the same number of
// exponent bits, that simple truncation is the desired outcome for
// infinities.
Value isNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNE, operand, operand);
// Constant used to make the rounding bias.
Value c7FFF = createConst(op.getLoc(), i32Ty, 0x7fff, rewriter);
// Constant used to generate a quiet NaN.
Value c7FC0_i16 = createConst(op.getLoc(), i16Ty, 0x7fc0, rewriter);
// Small constants used to address bits.
Value c16 = createConst(op.getLoc(), i32Ty, 16, rewriter);
Value c1 = createConst(op.getLoc(), i32Ty, 1, rewriter);
// Reinterpret the input f32 value as bits.
Value bitcast = b.create<arith::BitcastOp>(i32Ty, operand);
// Read bit 16 as a value in {0,1}.
Value bit16 =
b.create<arith::AndIOp>(b.create<arith::ShRUIOp>(bitcast, c16), c1);
// Determine the rounding bias to add as either 0x7fff or 0x8000 depending
// on bit 16, implementing the tie-breaking "to nearest even".
Value roundingBias = b.create<arith::AddIOp>(bit16, c7FFF);
// Add the rounding bias. Generally we want this to be added to the
// mantissa, but nothing prevents this to from carrying into the exponent
// bits, which would feel like a bug, but this is the magic trick here:
// when that happens, the mantissa gets reset to zero and the exponent
// gets incremented by the carry... which is actually exactly what we
// want.
Value biased = b.create<arith::AddIOp>(bitcast, roundingBias);
// Now that the rounding-bias has been added, truncating the low bits
// yields the correctly rounded result.
Value biasedAndShifted = b.create<arith::ShRUIOp>(biased, c16);
Value normalCaseResult_i16 =
b.create<arith::TruncIOp>(i16Ty, biasedAndShifted);
// Select either the above-computed result, or a quiet NaN constant
// if the input was NaN.
Value select =
b.create<arith::SelectOp>(isNan, c7FC0_i16, normalCaseResult_i16);
Value result = b.create<arith::BitcastOp>(resultTy, select);
rewriter.replaceOp(op, result);
return success();
}
};
struct ArithExpandOpsPass
: public arith::impl::ArithExpandOpsPassBase<ArithExpandOpsPass> {
using ArithExpandOpsPassBase::ArithExpandOpsPassBase;
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
ConversionTarget target(getContext());
arith::populateArithExpandOpsPatterns(patterns);
target.addLegalDialect<arith::ArithDialect>();
// clang-format off
target.addIllegalOp<
arith::CeilDivSIOp,
arith::CeilDivUIOp,
arith::FloorDivSIOp,
arith::MaximumFOp,
arith::MinimumFOp,
arith::MaxNumFOp,
arith::MinNumFOp
>();
if (includeBf16) {
arith::populateExpandBFloat16Patterns(patterns);
target.addDynamicallyLegalOp<arith::ExtFOp>(
[](arith::ExtFOp op) {
Type inETy = getElementTypeOrSelf(op.getOperand().getType());
Type outETy = getElementTypeOrSelf(op.getType());
return !(inETy.isBF16() && outETy.isF32());
});
target.addDynamicallyLegalOp<arith::TruncFOp>(
[](arith::TruncFOp op) {
Type inETy = getElementTypeOrSelf(op.getOperand().getType());
Type outETy = getElementTypeOrSelf(op.getType());
return !(inETy.isF32() && outETy.isBF16());
});
}
// clang-format on
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::arith::populateCeilFloorDivExpandOpsPatterns(
RewritePatternSet &patterns) {
patterns
.add<CeilDivSIOpConverter, CeilDivUIOpConverter, FloorDivSIOpConverter>(
patterns.getContext());
}
void mlir::arith::populateExpandBFloat16Patterns(RewritePatternSet &patterns) {
patterns.add<BFloat16ExtFOpConverter, BFloat16TruncFOpConverter>(
patterns.getContext());
}
void mlir::arith::populateArithExpandOpsPatterns(RewritePatternSet &patterns) {
populateCeilFloorDivExpandOpsPatterns(patterns);
// clang-format off
patterns.add<
MaximumMinimumFOpConverter<MaximumFOp, arith::CmpFPredicate::UGT>,
MaximumMinimumFOpConverter<MinimumFOp, arith::CmpFPredicate::ULT>,
MaxNumMinNumFOpConverter<MaxNumFOp, arith::CmpFPredicate::UGT>,
MaxNumMinNumFOpConverter<MinNumFOp, arith::CmpFPredicate::ULT>
>(patterns.getContext());
// clang-format on
}