|  | //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass converts selects to conditional jumps when profitable. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/SelectOptimize.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/ProfDataUtils.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/ScaledNumber.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Transforms/Utils/SizeOpts.h" | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <queue> | 
|  | #include <stack> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "select-optimize" | 
|  |  | 
|  | STATISTIC(NumSelectOptAnalyzed, | 
|  | "Number of select groups considered for conversion to branch"); | 
|  | STATISTIC(NumSelectConvertedExpColdOperand, | 
|  | "Number of select groups converted due to expensive cold operand"); | 
|  | STATISTIC(NumSelectConvertedHighPred, | 
|  | "Number of select groups converted due to high-predictability"); | 
|  | STATISTIC(NumSelectUnPred, | 
|  | "Number of select groups not converted due to unpredictability"); | 
|  | STATISTIC(NumSelectColdBB, | 
|  | "Number of select groups not converted due to cold basic block"); | 
|  | STATISTIC(NumSelectConvertedLoop, | 
|  | "Number of select groups converted due to loop-level analysis"); | 
|  | STATISTIC(NumSelectsConverted, "Number of selects converted"); | 
|  |  | 
|  | static cl::opt<unsigned> ColdOperandThreshold( | 
|  | "cold-operand-threshold", | 
|  | cl::desc("Maximum frequency of path for an operand to be considered cold."), | 
|  | cl::init(20), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> ColdOperandMaxCostMultiplier( | 
|  | "cold-operand-max-cost-multiplier", | 
|  | cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " | 
|  | "slice of a cold operand to be considered inexpensive."), | 
|  | cl::init(1), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | GainGradientThreshold("select-opti-loop-gradient-gain-threshold", | 
|  | cl::desc("Gradient gain threshold (%)."), | 
|  | cl::init(25), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | GainCycleThreshold("select-opti-loop-cycle-gain-threshold", | 
|  | cl::desc("Minimum gain per loop (in cycles) threshold."), | 
|  | cl::init(4), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> GainRelativeThreshold( | 
|  | "select-opti-loop-relative-gain-threshold", | 
|  | cl::desc( | 
|  | "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"), | 
|  | cl::init(8), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> MispredictDefaultRate( | 
|  | "mispredict-default-rate", cl::Hidden, cl::init(25), | 
|  | cl::desc("Default mispredict rate (initialized to 25%).")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden, | 
|  | cl::init(false), | 
|  | cl::desc("Disable loop-level heuristics.")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class SelectOptimizeImpl { | 
|  | const TargetMachine *TM = nullptr; | 
|  | const TargetSubtargetInfo *TSI = nullptr; | 
|  | const TargetLowering *TLI = nullptr; | 
|  | const TargetTransformInfo *TTI = nullptr; | 
|  | const LoopInfo *LI = nullptr; | 
|  | BlockFrequencyInfo *BFI; | 
|  | ProfileSummaryInfo *PSI = nullptr; | 
|  | OptimizationRemarkEmitter *ORE = nullptr; | 
|  | TargetSchedModel TSchedModel; | 
|  |  | 
|  | public: | 
|  | SelectOptimizeImpl() = default; | 
|  | SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){}; | 
|  | PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); | 
|  | bool runOnFunction(Function &F, Pass &P); | 
|  |  | 
|  | using Scaled64 = ScaledNumber<uint64_t>; | 
|  |  | 
|  | struct CostInfo { | 
|  | /// Predicated cost (with selects as conditional moves). | 
|  | Scaled64 PredCost; | 
|  | /// Non-predicated cost (with selects converted to branches). | 
|  | Scaled64 NonPredCost; | 
|  | }; | 
|  |  | 
|  | /// SelectLike is an abstraction over SelectInst and other operations that can | 
|  | /// act like selects. For example Or(Zext(icmp), X) can be treated like | 
|  | /// select(icmp, X|1, X). | 
|  | class SelectLike { | 
|  | SelectLike(Instruction *I) : I(I) {} | 
|  |  | 
|  | Instruction *I; | 
|  |  | 
|  | public: | 
|  | /// Match a select or select-like instruction, returning a SelectLike. | 
|  | static SelectLike match(Instruction *I) { | 
|  | // Select instruction are what we are usually looking for. | 
|  | if (isa<SelectInst>(I)) | 
|  | return SelectLike(I); | 
|  |  | 
|  | // An Or(zext(i1 X), Y) can also be treated like a select, with condition | 
|  | // C and values Y|1 and Y. | 
|  | Value *X; | 
|  | if (PatternMatch::match( | 
|  | I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) && | 
|  | X->getType()->isIntegerTy(1)) | 
|  | return SelectLike(I); | 
|  |  | 
|  | return SelectLike(nullptr); | 
|  | } | 
|  |  | 
|  | bool isValid() { return I; } | 
|  | operator bool() { return isValid(); } | 
|  |  | 
|  | Instruction *getI() { return I; } | 
|  | const Instruction *getI() const { return I; } | 
|  |  | 
|  | Type *getType() const { return I->getType(); } | 
|  |  | 
|  | /// Return the condition for the SelectLike instruction. For example the | 
|  | /// condition of a select or c in `or(zext(c), x)` | 
|  | Value *getCondition() const { | 
|  | if (auto *Sel = dyn_cast<SelectInst>(I)) | 
|  | return Sel->getCondition(); | 
|  | // Or(zext) case | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | Value *X; | 
|  | if (PatternMatch::match(BO->getOperand(0), | 
|  | m_OneUse(m_ZExt(m_Value(X))))) | 
|  | return X; | 
|  | if (PatternMatch::match(BO->getOperand(1), | 
|  | m_OneUse(m_ZExt(m_Value(X))))) | 
|  | return X; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled case in getCondition"); | 
|  | } | 
|  |  | 
|  | /// Return the true value for the SelectLike instruction. Note this may not | 
|  | /// exist for all SelectLike instructions. For example, for `or(zext(c), x)` | 
|  | /// the true value would be `or(x,1)`. As this value does not exist, nullptr | 
|  | /// is returned. | 
|  | Value *getTrueValue() const { | 
|  | if (auto *Sel = dyn_cast<SelectInst>(I)) | 
|  | return Sel->getTrueValue(); | 
|  | // Or(zext) case - The true value is Or(X), so return nullptr as the value | 
|  | // does not yet exist. | 
|  | if (isa<BinaryOperator>(I)) | 
|  | return nullptr; | 
|  |  | 
|  | llvm_unreachable("Unhandled case in getTrueValue"); | 
|  | } | 
|  |  | 
|  | /// Return the false value for the SelectLike instruction. For example the | 
|  | /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is | 
|  | /// `select(c, x|1, x)`) | 
|  | Value *getFalseValue() const { | 
|  | if (auto *Sel = dyn_cast<SelectInst>(I)) | 
|  | return Sel->getFalseValue(); | 
|  | // Or(zext) case - return the operand which is not the zext. | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(I)) { | 
|  | Value *X; | 
|  | if (PatternMatch::match(BO->getOperand(0), | 
|  | m_OneUse(m_ZExt(m_Value(X))))) | 
|  | return BO->getOperand(1); | 
|  | if (PatternMatch::match(BO->getOperand(1), | 
|  | m_OneUse(m_ZExt(m_Value(X))))) | 
|  | return BO->getOperand(0); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled case in getFalseValue"); | 
|  | } | 
|  |  | 
|  | /// Return the NonPredCost cost of the true op, given the costs in | 
|  | /// InstCostMap. This may need to be generated for select-like instructions. | 
|  | Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap, | 
|  | const TargetTransformInfo *TTI) { | 
|  | if (auto *Sel = dyn_cast<SelectInst>(I)) | 
|  | if (auto *I = dyn_cast<Instruction>(Sel->getTrueValue())) | 
|  | return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost | 
|  | : Scaled64::getZero(); | 
|  |  | 
|  | // Or case - add the cost of an extra Or to the cost of the False case. | 
|  | if (isa<BinaryOperator>(I)) | 
|  | if (auto I = dyn_cast<Instruction>(getFalseValue())) | 
|  | if (InstCostMap.contains(I)) { | 
|  | InstructionCost OrCost = TTI->getArithmeticInstrCost( | 
|  | Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency, | 
|  | {TargetTransformInfo::OK_AnyValue, | 
|  | TargetTransformInfo::OP_None}, | 
|  | {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2}); | 
|  | return InstCostMap[I].NonPredCost + | 
|  | Scaled64::get(*OrCost.getValue()); | 
|  | } | 
|  |  | 
|  | return Scaled64::getZero(); | 
|  | } | 
|  |  | 
|  | /// Return the NonPredCost cost of the false op, given the costs in | 
|  | /// InstCostMap. This may need to be generated for select-like instructions. | 
|  | Scaled64 | 
|  | getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap, | 
|  | const TargetTransformInfo *TTI) { | 
|  | if (auto *Sel = dyn_cast<SelectInst>(I)) | 
|  | if (auto *I = dyn_cast<Instruction>(Sel->getFalseValue())) | 
|  | return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost | 
|  | : Scaled64::getZero(); | 
|  |  | 
|  | // Or case - return the cost of the false case | 
|  | if (isa<BinaryOperator>(I)) | 
|  | if (auto I = dyn_cast<Instruction>(getFalseValue())) | 
|  | if (InstCostMap.contains(I)) | 
|  | return InstCostMap[I].NonPredCost; | 
|  |  | 
|  | return Scaled64::getZero(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | // Select groups consist of consecutive select instructions with the same | 
|  | // condition. | 
|  | using SelectGroup = SmallVector<SelectLike, 2>; | 
|  | using SelectGroups = SmallVector<SelectGroup, 2>; | 
|  |  | 
|  | // Converts select instructions of a function to conditional jumps when deemed | 
|  | // profitable. Returns true if at least one select was converted. | 
|  | bool optimizeSelects(Function &F); | 
|  |  | 
|  | // Heuristics for determining which select instructions can be profitably | 
|  | // conveted to branches. Separate heuristics for selects in inner-most loops | 
|  | // and the rest of code regions (base heuristics for non-inner-most loop | 
|  | // regions). | 
|  | void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); | 
|  | void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); | 
|  |  | 
|  | // Converts to branches the select groups that were deemed | 
|  | // profitable-to-convert. | 
|  | void convertProfitableSIGroups(SelectGroups &ProfSIGroups); | 
|  |  | 
|  | // Splits selects of a given basic block into select groups. | 
|  | void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); | 
|  |  | 
|  | // Determines for which select groups it is profitable converting to branches | 
|  | // (base and inner-most-loop heuristics). | 
|  | void findProfitableSIGroupsBase(SelectGroups &SIGroups, | 
|  | SelectGroups &ProfSIGroups); | 
|  | void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, | 
|  | SelectGroups &ProfSIGroups); | 
|  |  | 
|  | // Determines if a select group should be converted to a branch (base | 
|  | // heuristics). | 
|  | bool isConvertToBranchProfitableBase(const SelectGroup &ASI); | 
|  |  | 
|  | // Returns true if there are expensive instructions in the cold value | 
|  | // operand's (if any) dependence slice of any of the selects of the given | 
|  | // group. | 
|  | bool hasExpensiveColdOperand(const SelectGroup &ASI); | 
|  |  | 
|  | // For a given source instruction, collect its backwards dependence slice | 
|  | // consisting of instructions exclusively computed for producing the operands | 
|  | // of the source instruction. | 
|  | void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice, | 
|  | Instruction *SI, bool ForSinking = false); | 
|  |  | 
|  | // Returns true if the condition of the select is highly predictable. | 
|  | bool isSelectHighlyPredictable(const SelectLike SI); | 
|  |  | 
|  | // Loop-level checks to determine if a non-predicated version (with branches) | 
|  | // of the given loop is more profitable than its predicated version. | 
|  | bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); | 
|  |  | 
|  | // Computes instruction and loop-critical-path costs for both the predicated | 
|  | // and non-predicated version of the given loop. | 
|  | bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, | 
|  | DenseMap<const Instruction *, CostInfo> &InstCostMap, | 
|  | CostInfo *LoopCost); | 
|  |  | 
|  | // Returns a set of all the select instructions in the given select groups. | 
|  | SmallDenseMap<const Instruction *, SelectLike, 2> | 
|  | getSImap(const SelectGroups &SIGroups); | 
|  |  | 
|  | // Returns the latency cost of a given instruction. | 
|  | std::optional<uint64_t> computeInstCost(const Instruction *I); | 
|  |  | 
|  | // Returns the misprediction cost of a given select when converted to branch. | 
|  | Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost); | 
|  |  | 
|  | // Returns the cost of a branch when the prediction is correct. | 
|  | Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, | 
|  | const SelectLike SI); | 
|  |  | 
|  | // Returns true if the target architecture supports lowering a given select. | 
|  | bool isSelectKindSupported(const SelectLike SI); | 
|  | }; | 
|  |  | 
|  | class SelectOptimize : public FunctionPass { | 
|  | SelectOptimizeImpl Impl; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | SelectOptimize() : FunctionPass(ID) { | 
|  | initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | return Impl.runOnFunction(F, *this); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetPassConfig>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<BlockFrequencyInfoWrapperPass>(); | 
|  | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | PreservedAnalyses SelectOptimizePass::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | SelectOptimizeImpl Impl(TM); | 
|  | return Impl.run(F, FAM); | 
|  | } | 
|  |  | 
|  | char SelectOptimize::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) | 
|  | INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, | 
|  | false) | 
|  |  | 
|  | FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } | 
|  |  | 
|  | PreservedAnalyses SelectOptimizeImpl::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | TSI = TM->getSubtargetImpl(F); | 
|  | TLI = TSI->getTargetLowering(); | 
|  |  | 
|  | // If none of the select types are supported then skip this pass. | 
|  | // This is an optimization pass. Legality issues will be handled by | 
|  | // instruction selection. | 
|  | if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && | 
|  | !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && | 
|  | !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | TTI = &FAM.getResult<TargetIRAnalysis>(F); | 
|  | if (!TTI->enableSelectOptimize()) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F) | 
|  | .getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); | 
|  | assert(PSI && "This pass requires module analysis pass `profile-summary`!"); | 
|  | BFI = &FAM.getResult<BlockFrequencyAnalysis>(F); | 
|  |  | 
|  | // When optimizing for size, selects are preferable over branches. | 
|  | if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | LI = &FAM.getResult<LoopAnalysis>(F); | 
|  | ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); | 
|  | TSchedModel.init(TSI); | 
|  |  | 
|  | bool Changed = optimizeSelects(F); | 
|  | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) { | 
|  | TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); | 
|  | TSI = TM->getSubtargetImpl(F); | 
|  | TLI = TSI->getTargetLowering(); | 
|  |  | 
|  | // If none of the select types are supported then skip this pass. | 
|  | // This is an optimization pass. Legality issues will be handled by | 
|  | // instruction selection. | 
|  | if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && | 
|  | !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && | 
|  | !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) | 
|  | return false; | 
|  |  | 
|  | TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  |  | 
|  | if (!TTI->enableSelectOptimize()) | 
|  | return false; | 
|  |  | 
|  | LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); | 
|  | PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | 
|  | ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); | 
|  | TSchedModel.init(TSI); | 
|  |  | 
|  | // When optimizing for size, selects are preferable over branches. | 
|  | if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI)) | 
|  | return false; | 
|  |  | 
|  | return optimizeSelects(F); | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::optimizeSelects(Function &F) { | 
|  | // Determine for which select groups it is profitable converting to branches. | 
|  | SelectGroups ProfSIGroups; | 
|  | // Base heuristics apply only to non-loops and outer loops. | 
|  | optimizeSelectsBase(F, ProfSIGroups); | 
|  | // Separate heuristics for inner-most loops. | 
|  | optimizeSelectsInnerLoops(F, ProfSIGroups); | 
|  |  | 
|  | // Convert to branches the select groups that were deemed | 
|  | // profitable-to-convert. | 
|  | convertProfitableSIGroups(ProfSIGroups); | 
|  |  | 
|  | // Code modified if at least one select group was converted. | 
|  | return !ProfSIGroups.empty(); | 
|  | } | 
|  |  | 
|  | void SelectOptimizeImpl::optimizeSelectsBase(Function &F, | 
|  | SelectGroups &ProfSIGroups) { | 
|  | // Collect all the select groups. | 
|  | SelectGroups SIGroups; | 
|  | for (BasicBlock &BB : F) { | 
|  | // Base heuristics apply only to non-loops and outer loops. | 
|  | Loop *L = LI->getLoopFor(&BB); | 
|  | if (L && L->isInnermost()) | 
|  | continue; | 
|  | collectSelectGroups(BB, SIGroups); | 
|  | } | 
|  |  | 
|  | // Determine for which select groups it is profitable converting to branches. | 
|  | findProfitableSIGroupsBase(SIGroups, ProfSIGroups); | 
|  | } | 
|  |  | 
|  | void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F, | 
|  | SelectGroups &ProfSIGroups) { | 
|  | SmallVector<Loop *, 4> Loops(LI->begin(), LI->end()); | 
|  | // Need to check size on each iteration as we accumulate child loops. | 
|  | for (unsigned long i = 0; i < Loops.size(); ++i) | 
|  | for (Loop *ChildL : Loops[i]->getSubLoops()) | 
|  | Loops.push_back(ChildL); | 
|  |  | 
|  | for (Loop *L : Loops) { | 
|  | if (!L->isInnermost()) | 
|  | continue; | 
|  |  | 
|  | SelectGroups SIGroups; | 
|  | for (BasicBlock *BB : L->getBlocks()) | 
|  | collectSelectGroups(*BB, SIGroups); | 
|  |  | 
|  | findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If \p isTrue is true, return the true value of \p SI, otherwise return | 
|  | /// false value of \p SI. If the true/false value of \p SI is defined by any | 
|  | /// select instructions in \p Selects, look through the defining select | 
|  | /// instruction until the true/false value is not defined in \p Selects. | 
|  | static Value * | 
|  | getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue, | 
|  | const SmallPtrSet<const Instruction *, 2> &Selects, | 
|  | IRBuilder<> &IB) { | 
|  | Value *V = nullptr; | 
|  | for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI()); | 
|  | DefSI != nullptr && Selects.count(DefSI); | 
|  | DefSI = dyn_cast<SelectInst>(V)) { | 
|  | assert(DefSI->getCondition() == SI.getCondition() && | 
|  | "The condition of DefSI does not match with SI"); | 
|  | V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); | 
|  | } | 
|  |  | 
|  | if (isa<BinaryOperator>(SI.getI())) { | 
|  | assert(SI.getI()->getOpcode() == Instruction::Or && | 
|  | "Only currently handling Or instructions."); | 
|  | V = SI.getFalseValue(); | 
|  | if (isTrue) | 
|  | V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1)); | 
|  | } | 
|  |  | 
|  | assert(V && "Failed to get select true/false value"); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { | 
|  | for (SelectGroup &ASI : ProfSIGroups) { | 
|  | // The code transformation here is a modified version of the sinking | 
|  | // transformation in CodeGenPrepare::optimizeSelectInst with a more | 
|  | // aggressive strategy of which instructions to sink. | 
|  | // | 
|  | // TODO: eliminate the redundancy of logic transforming selects to branches | 
|  | // by removing CodeGenPrepare::optimizeSelectInst and optimizing here | 
|  | // selects for all cases (with and without profile information). | 
|  |  | 
|  | // Transform a sequence like this: | 
|  | //    start: | 
|  | //       %cmp = cmp uge i32 %a, %b | 
|  | //       %sel = select i1 %cmp, i32 %c, i32 %d | 
|  | // | 
|  | // Into: | 
|  | //    start: | 
|  | //       %cmp = cmp uge i32 %a, %b | 
|  | //       %cmp.frozen = freeze %cmp | 
|  | //       br i1 %cmp.frozen, label %select.true, label %select.false | 
|  | //    select.true: | 
|  | //       br label %select.end | 
|  | //    select.false: | 
|  | //       br label %select.end | 
|  | //    select.end: | 
|  | //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] | 
|  | // | 
|  | // %cmp should be frozen, otherwise it may introduce undefined behavior. | 
|  | // In addition, we may sink instructions that produce %c or %d into the | 
|  | // destination(s) of the new branch. | 
|  | // If the true or false blocks do not contain a sunken instruction, that | 
|  | // block and its branch may be optimized away. In that case, one side of the | 
|  | // first branch will point directly to select.end, and the corresponding PHI | 
|  | // predecessor block will be the start block. | 
|  |  | 
|  | // Find all the instructions that can be soundly sunk to the true/false | 
|  | // blocks. These are instructions that are computed solely for producing the | 
|  | // operands of the select instructions in the group and can be sunk without | 
|  | // breaking the semantics of the LLVM IR (e.g., cannot sink instructions | 
|  | // with side effects). | 
|  | SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices; | 
|  | typedef std::stack<Instruction *>::size_type StackSizeType; | 
|  | StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0; | 
|  | for (SelectLike SI : ASI) { | 
|  | // For each select, compute the sinkable dependence chains of the true and | 
|  | // false operands. | 
|  | if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) { | 
|  | std::stack<Instruction *> TrueSlice; | 
|  | getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true); | 
|  | maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size()); | 
|  | TrueSlices.push_back(TrueSlice); | 
|  | } | 
|  | if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) { | 
|  | if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) { | 
|  | std::stack<Instruction *> FalseSlice; | 
|  | getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true); | 
|  | maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size()); | 
|  | FalseSlices.push_back(FalseSlice); | 
|  | } | 
|  | } | 
|  | } | 
|  | // In the case of multiple select instructions in the same group, the order | 
|  | // of non-dependent instructions (instructions of different dependence | 
|  | // slices) in the true/false blocks appears to affect performance. | 
|  | // Interleaving the slices seems to experimentally be the optimal approach. | 
|  | // This interleaving scheduling allows for more ILP (with a natural downside | 
|  | // of increasing a bit register pressure) compared to a simple ordering of | 
|  | // one whole chain after another. One would expect that this ordering would | 
|  | // not matter since the scheduling in the backend of the compiler  would | 
|  | // take care of it, but apparently the scheduler fails to deliver optimal | 
|  | // ILP with a naive ordering here. | 
|  | SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved; | 
|  | for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) { | 
|  | for (auto &S : TrueSlices) { | 
|  | if (!S.empty()) { | 
|  | TrueSlicesInterleaved.push_back(S.top()); | 
|  | S.pop(); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) { | 
|  | for (auto &S : FalseSlices) { | 
|  | if (!S.empty()) { | 
|  | FalseSlicesInterleaved.push_back(S.top()); | 
|  | S.pop(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We split the block containing the select(s) into two blocks. | 
|  | SelectLike SI = ASI.front(); | 
|  | SelectLike LastSI = ASI.back(); | 
|  | BasicBlock *StartBlock = SI.getI()->getParent(); | 
|  | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI())); | 
|  | // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With | 
|  | // RemoveDIs turned on, SplitPt would instead point to the next | 
|  | // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs, | 
|  | // tell splitBasicBlock that we want to include any DbgVariableRecords | 
|  | // attached to SplitPt in the splice. | 
|  | SplitPt.setHeadBit(true); | 
|  | BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); | 
|  | BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); | 
|  | // Delete the unconditional branch that was just created by the split. | 
|  | StartBlock->getTerminator()->eraseFromParent(); | 
|  |  | 
|  | // Move any debug/pseudo instructions that were in-between the select | 
|  | // group to the newly-created end block. | 
|  | SmallVector<Instruction *, 2> DebugPseudoINS; | 
|  | auto DIt = SI.getI()->getIterator(); | 
|  | while (&*DIt != LastSI.getI()) { | 
|  | if (DIt->isDebugOrPseudoInst()) | 
|  | DebugPseudoINS.push_back(&*DIt); | 
|  | DIt++; | 
|  | } | 
|  | for (auto *DI : DebugPseudoINS) { | 
|  | DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt()); | 
|  | } | 
|  |  | 
|  | // Duplicate implementation for DbgRecords, the non-instruction debug-info | 
|  | // format. Helper lambda for moving DbgRecords to the end block. | 
|  | auto TransferDbgRecords = [&](Instruction &I) { | 
|  | for (auto &DbgRecord : | 
|  | llvm::make_early_inc_range(I.getDbgRecordRange())) { | 
|  | DbgRecord.removeFromParent(); | 
|  | EndBlock->insertDbgRecordBefore(&DbgRecord, | 
|  | EndBlock->getFirstInsertionPt()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Iterate over all instructions in between SI and LastSI, not including | 
|  | // SI itself. These are all the variable assignments that happen "in the | 
|  | // middle" of the select group. | 
|  | auto R = make_range(std::next(SI.getI()->getIterator()), | 
|  | std::next(LastSI.getI()->getIterator())); | 
|  | llvm::for_each(R, TransferDbgRecords); | 
|  |  | 
|  | // These are the new basic blocks for the conditional branch. | 
|  | // At least one will become an actual new basic block. | 
|  | BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; | 
|  | BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr; | 
|  | if (!TrueSlicesInterleaved.empty()) { | 
|  | TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | TrueBranch = BranchInst::Create(EndBlock, TrueBlock); | 
|  | TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); | 
|  | for (Instruction *TrueInst : TrueSlicesInterleaved) | 
|  | TrueInst->moveBefore(TrueBranch); | 
|  | } | 
|  | if (!FalseSlicesInterleaved.empty()) { | 
|  | FalseBlock = | 
|  | BasicBlock::Create(EndBlock->getContext(), "select.false.sink", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | 
|  | FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); | 
|  | for (Instruction *FalseInst : FalseSlicesInterleaved) | 
|  | FalseInst->moveBefore(FalseBranch); | 
|  | } | 
|  | // If there was nothing to sink, then arbitrarily choose the 'false' side | 
|  | // for a new input value to the PHI. | 
|  | if (TrueBlock == FalseBlock) { | 
|  | assert(TrueBlock == nullptr && | 
|  | "Unexpected basic block transform while optimizing select"); | 
|  |  | 
|  | FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false", | 
|  | EndBlock->getParent(), EndBlock); | 
|  | auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | 
|  | FalseBranch->setDebugLoc(SI.getI()->getDebugLoc()); | 
|  | } | 
|  |  | 
|  | // Insert the real conditional branch based on the original condition. | 
|  | // If we did not create a new block for one of the 'true' or 'false' paths | 
|  | // of the condition, it means that side of the branch goes to the end block | 
|  | // directly and the path originates from the start block from the point of | 
|  | // view of the new PHI. | 
|  | BasicBlock *TT, *FT; | 
|  | if (TrueBlock == nullptr) { | 
|  | TT = EndBlock; | 
|  | FT = FalseBlock; | 
|  | TrueBlock = StartBlock; | 
|  | } else if (FalseBlock == nullptr) { | 
|  | TT = TrueBlock; | 
|  | FT = EndBlock; | 
|  | FalseBlock = StartBlock; | 
|  | } else { | 
|  | TT = TrueBlock; | 
|  | FT = FalseBlock; | 
|  | } | 
|  | IRBuilder<> IB(SI.getI()); | 
|  | auto *CondFr = IB.CreateFreeze(SI.getCondition(), | 
|  | SI.getCondition()->getName() + ".frozen"); | 
|  |  | 
|  | SmallPtrSet<const Instruction *, 2> INS; | 
|  | for (auto SI : ASI) | 
|  | INS.insert(SI.getI()); | 
|  |  | 
|  | // Use reverse iterator because later select may use the value of the | 
|  | // earlier select, and we need to propagate value through earlier select | 
|  | // to get the PHI operand. | 
|  | for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { | 
|  | SelectLike SI = *It; | 
|  | // The select itself is replaced with a PHI Node. | 
|  | PHINode *PN = PHINode::Create(SI.getType(), 2, ""); | 
|  | PN->insertBefore(EndBlock->begin()); | 
|  | PN->takeName(SI.getI()); | 
|  | PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock); | 
|  | PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock); | 
|  | PN->setDebugLoc(SI.getI()->getDebugLoc()); | 
|  | SI.getI()->replaceAllUsesWith(PN); | 
|  | INS.erase(SI.getI()); | 
|  | ++NumSelectsConverted; | 
|  | } | 
|  | IB.CreateCondBr(CondFr, TT, FT, SI.getI()); | 
|  |  | 
|  | // Remove the old select instructions, now that they are not longer used. | 
|  | for (auto SI : ASI) | 
|  | SI.getI()->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB, | 
|  | SelectGroups &SIGroups) { | 
|  | BasicBlock::iterator BBIt = BB.begin(); | 
|  | while (BBIt != BB.end()) { | 
|  | Instruction *I = &*BBIt++; | 
|  | if (SelectLike SI = SelectLike::match(I)) { | 
|  | if (!TTI->shouldTreatInstructionLikeSelect(I)) | 
|  | continue; | 
|  |  | 
|  | SelectGroup SIGroup; | 
|  | SIGroup.push_back(SI); | 
|  | while (BBIt != BB.end()) { | 
|  | Instruction *NI = &*BBIt; | 
|  | // Debug/pseudo instructions should be skipped and not prevent the | 
|  | // formation of a select group. | 
|  | if (NI->isDebugOrPseudoInst()) { | 
|  | ++BBIt; | 
|  | continue; | 
|  | } | 
|  | // We only allow selects in the same group, not other select-like | 
|  | // instructions. | 
|  | if (!isa<SelectInst>(NI)) | 
|  | break; | 
|  |  | 
|  | SelectLike NSI = SelectLike::match(NI); | 
|  | if (NSI && SI.getCondition() == NSI.getCondition()) { | 
|  | SIGroup.push_back(NSI); | 
|  | } else | 
|  | break; | 
|  | ++BBIt; | 
|  | } | 
|  |  | 
|  | // If the select type is not supported, no point optimizing it. | 
|  | // Instruction selection will take care of it. | 
|  | if (!isSelectKindSupported(SI)) | 
|  | continue; | 
|  |  | 
|  | SIGroups.push_back(SIGroup); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectOptimizeImpl::findProfitableSIGroupsBase( | 
|  | SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { | 
|  | for (SelectGroup &ASI : SIGroups) { | 
|  | ++NumSelectOptAnalyzed; | 
|  | if (isConvertToBranchProfitableBase(ASI)) | 
|  | ProfSIGroups.push_back(ASI); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE, | 
|  | DiagnosticInfoOptimizationBase &Rem) { | 
|  | LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n"); | 
|  | ORE->emit(Rem); | 
|  | } | 
|  |  | 
|  | void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops( | 
|  | const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { | 
|  | NumSelectOptAnalyzed += SIGroups.size(); | 
|  | // For each select group in an inner-most loop, | 
|  | // a branch is more preferable than a select/conditional-move if: | 
|  | // i) conversion to branches for all the select groups of the loop satisfies | 
|  | //    loop-level heuristics including reducing the loop's critical path by | 
|  | //    some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and | 
|  | // ii) the total cost of the select group is cheaper with a branch compared | 
|  | //     to its predicated version. The cost is in terms of latency and the cost | 
|  | //     of a select group is the cost of its most expensive select instruction | 
|  | //     (assuming infinite resources and thus fully leveraging available ILP). | 
|  |  | 
|  | DenseMap<const Instruction *, CostInfo> InstCostMap; | 
|  | CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()}, | 
|  | {Scaled64::getZero(), Scaled64::getZero()}}; | 
|  | if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || | 
|  | !checkLoopHeuristics(L, LoopCost)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (SelectGroup &ASI : SIGroups) { | 
|  | // Assuming infinite resources, the cost of a group of instructions is the | 
|  | // cost of the most expensive instruction of the group. | 
|  | Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); | 
|  | for (SelectLike SI : ASI) { | 
|  | SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost); | 
|  | BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost); | 
|  | } | 
|  | if (BranchCost < SelectCost) { | 
|  | OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI()); | 
|  | OR << "Profitable to convert to branch (loop analysis). BranchCost=" | 
|  | << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() | 
|  | << ". "; | 
|  | EmitAndPrintRemark(ORE, OR); | 
|  | ++NumSelectConvertedLoop; | 
|  | ProfSIGroups.push_back(ASI); | 
|  | } else { | 
|  | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", | 
|  | ASI.front().getI()); | 
|  | ORmiss << "Select is more profitable (loop analysis). BranchCost=" | 
|  | << BranchCost.toString() | 
|  | << ", SelectCost=" << SelectCost.toString() << ". "; | 
|  | EmitAndPrintRemark(ORE, ORmiss); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::isConvertToBranchProfitableBase( | 
|  | const SelectGroup &ASI) { | 
|  | SelectLike SI = ASI.front(); | 
|  | LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI() | 
|  | << "\n"); | 
|  | OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI()); | 
|  | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI()); | 
|  |  | 
|  | // Skip cold basic blocks. Better to optimize for size for cold blocks. | 
|  | if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) { | 
|  | ++NumSelectColdBB; | 
|  | ORmiss << "Not converted to branch because of cold basic block. "; | 
|  | EmitAndPrintRemark(ORE, ORmiss); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If unpredictable, branch form is less profitable. | 
|  | if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) { | 
|  | ++NumSelectUnPred; | 
|  | ORmiss << "Not converted to branch because of unpredictable branch. "; | 
|  | EmitAndPrintRemark(ORE, ORmiss); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If highly predictable, branch form is more profitable, unless a | 
|  | // predictable select is inexpensive in the target architecture. | 
|  | if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { | 
|  | ++NumSelectConvertedHighPred; | 
|  | OR << "Converted to branch because of highly predictable branch. "; | 
|  | EmitAndPrintRemark(ORE, OR); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Look for expensive instructions in the cold operand's (if any) dependence | 
|  | // slice of any of the selects in the group. | 
|  | if (hasExpensiveColdOperand(ASI)) { | 
|  | ++NumSelectConvertedExpColdOperand; | 
|  | OR << "Converted to branch because of expensive cold operand."; | 
|  | EmitAndPrintRemark(ORE, OR); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ORmiss << "Not profitable to convert to branch (base heuristic)."; | 
|  | EmitAndPrintRemark(ORE, ORmiss); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static InstructionCost divideNearest(InstructionCost Numerator, | 
|  | uint64_t Denominator) { | 
|  | return (Numerator + (Denominator / 2)) / Denominator; | 
|  | } | 
|  |  | 
|  | static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI, | 
|  | uint64_t &TrueVal, uint64_t &FalseVal) { | 
|  | if (isa<SelectInst>(SI.getI())) | 
|  | return extractBranchWeights(*SI.getI(), TrueVal, FalseVal); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) { | 
|  | bool ColdOperand = false; | 
|  | uint64_t TrueWeight, FalseWeight, TotalWeight; | 
|  | if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) { | 
|  | uint64_t MinWeight = std::min(TrueWeight, FalseWeight); | 
|  | TotalWeight = TrueWeight + FalseWeight; | 
|  | // Is there a path with frequency <ColdOperandThreshold% (default:20%) ? | 
|  | ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight; | 
|  | } else if (PSI->hasProfileSummary()) { | 
|  | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", | 
|  | ASI.front().getI()); | 
|  | ORmiss << "Profile data available but missing branch-weights metadata for " | 
|  | "select instruction. "; | 
|  | EmitAndPrintRemark(ORE, ORmiss); | 
|  | } | 
|  | if (!ColdOperand) | 
|  | return false; | 
|  | // Check if the cold path's dependence slice is expensive for any of the | 
|  | // selects of the group. | 
|  | for (SelectLike SI : ASI) { | 
|  | Instruction *ColdI = nullptr; | 
|  | uint64_t HotWeight; | 
|  | if (TrueWeight < FalseWeight) { | 
|  | ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue()); | 
|  | HotWeight = FalseWeight; | 
|  | } else { | 
|  | ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue()); | 
|  | HotWeight = TrueWeight; | 
|  | } | 
|  | if (ColdI) { | 
|  | std::stack<Instruction *> ColdSlice; | 
|  | getExclBackwardsSlice(ColdI, ColdSlice, SI.getI()); | 
|  | InstructionCost SliceCost = 0; | 
|  | while (!ColdSlice.empty()) { | 
|  | SliceCost += TTI->getInstructionCost(ColdSlice.top(), | 
|  | TargetTransformInfo::TCK_Latency); | 
|  | ColdSlice.pop(); | 
|  | } | 
|  | // The colder the cold value operand of the select is the more expensive | 
|  | // the cmov becomes for computing the cold value operand every time. Thus, | 
|  | // the colder the cold operand is the more its cost counts. | 
|  | // Get nearest integer cost adjusted for coldness. | 
|  | InstructionCost AdjSliceCost = | 
|  | divideNearest(SliceCost * HotWeight, TotalWeight); | 
|  | if (AdjSliceCost >= | 
|  | ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if it is safe to move LoadI next to the SI. | 
|  | // Conservatively assume it is safe only if there is no instruction | 
|  | // modifying memory in-between the load and the select instruction. | 
|  | static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) { | 
|  | // Assume loads from different basic blocks are unsafe to move. | 
|  | if (LoadI->getParent() != SI->getParent()) | 
|  | return false; | 
|  | auto It = LoadI->getIterator(); | 
|  | while (&*It != SI) { | 
|  | if (It->mayWriteToMemory()) | 
|  | return false; | 
|  | It++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For a given source instruction, collect its backwards dependence slice | 
|  | // consisting of instructions exclusively computed for the purpose of producing | 
|  | // the operands of the source instruction. As an approximation | 
|  | // (sufficiently-accurate in practice), we populate this set with the | 
|  | // instructions of the backwards dependence slice that only have one-use and | 
|  | // form an one-use chain that leads to the source instruction. | 
|  | void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I, | 
|  | std::stack<Instruction *> &Slice, | 
|  | Instruction *SI, | 
|  | bool ForSinking) { | 
|  | SmallPtrSet<Instruction *, 2> Visited; | 
|  | std::queue<Instruction *> Worklist; | 
|  | Worklist.push(I); | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *II = Worklist.front(); | 
|  | Worklist.pop(); | 
|  |  | 
|  | // Avoid cycles. | 
|  | if (!Visited.insert(II).second) | 
|  | continue; | 
|  |  | 
|  | if (!II->hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | // Cannot soundly sink instructions with side-effects. | 
|  | // Terminator or phi instructions cannot be sunk. | 
|  | // Avoid sinking other select instructions (should be handled separetely). | 
|  | if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() || | 
|  | isa<SelectInst>(II) || isa<PHINode>(II))) | 
|  | continue; | 
|  |  | 
|  | // Avoid sinking loads in order not to skip state-modifying instructions, | 
|  | // that may alias with the loaded address. | 
|  | // Only allow sinking of loads within the same basic block that are | 
|  | // conservatively proven to be safe. | 
|  | if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI)) | 
|  | continue; | 
|  |  | 
|  | // Avoid considering instructions with less frequency than the source | 
|  | // instruction (i.e., avoid colder code regions of the dependence slice). | 
|  | if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent())) | 
|  | continue; | 
|  |  | 
|  | // Eligible one-use instruction added to the dependence slice. | 
|  | Slice.push(II); | 
|  |  | 
|  | // Explore all the operands of the current instruction to expand the slice. | 
|  | for (unsigned k = 0; k < II->getNumOperands(); ++k) | 
|  | if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k))) | 
|  | Worklist.push(OpI); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) { | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (extractBranchWeights(SI, TrueWeight, FalseWeight)) { | 
|  | uint64_t Max = std::max(TrueWeight, FalseWeight); | 
|  | uint64_t Sum = TrueWeight + FalseWeight; | 
|  | if (Sum != 0) { | 
|  | auto Probability = BranchProbability::getBranchProbability(Max, Sum); | 
|  | if (Probability > TTI->getPredictableBranchThreshold()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L, | 
|  | const CostInfo LoopCost[2]) { | 
|  | // Loop-level checks to determine if a non-predicated version (with branches) | 
|  | // of the loop is more profitable than its predicated version. | 
|  |  | 
|  | if (DisableLoopLevelHeuristics) | 
|  | return true; | 
|  |  | 
|  | OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", | 
|  | L->getHeader()->getFirstNonPHI()); | 
|  |  | 
|  | if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || | 
|  | LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { | 
|  | ORmissL << "No select conversion in the loop due to no reduction of loop's " | 
|  | "critical path. "; | 
|  | EmitAndPrintRemark(ORE, ORmissL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, | 
|  | LoopCost[1].PredCost - LoopCost[1].NonPredCost}; | 
|  |  | 
|  | // Profitably converting to branches need to reduce the loop's critical path | 
|  | // by at least some threshold (absolute gain of GainCycleThreshold cycles and | 
|  | // relative gain of 12.5%). | 
|  | if (Gain[1] < Scaled64::get(GainCycleThreshold) || | 
|  | Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) { | 
|  | Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost; | 
|  | ORmissL << "No select conversion in the loop due to small reduction of " | 
|  | "loop's critical path. Gain=" | 
|  | << Gain[1].toString() | 
|  | << ", RelativeGain=" << RelativeGain.toString() << "%. "; | 
|  | EmitAndPrintRemark(ORE, ORmissL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the loop's critical path involves loop-carried dependences, the gradient | 
|  | // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). | 
|  | // This check ensures that the latency reduction for the loop's critical path | 
|  | // keeps decreasing with sufficient rate beyond the two analyzed loop | 
|  | // iterations. | 
|  | if (Gain[1] > Gain[0]) { | 
|  | Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) / | 
|  | (LoopCost[1].PredCost - LoopCost[0].PredCost); | 
|  | if (GradientGain < Scaled64::get(GainGradientThreshold)) { | 
|  | ORmissL << "No select conversion in the loop due to small gradient gain. " | 
|  | "GradientGain=" | 
|  | << GradientGain.toString() << "%. "; | 
|  | EmitAndPrintRemark(ORE, ORmissL); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // If the gain decreases it is not profitable to convert. | 
|  | else if (Gain[1] < Gain[0]) { | 
|  | ORmissL | 
|  | << "No select conversion in the loop due to negative gradient gain. "; | 
|  | EmitAndPrintRemark(ORE, ORmissL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Non-predicated version of the loop is more profitable than its | 
|  | // predicated version. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Computes instruction and loop-critical-path costs for both the predicated | 
|  | // and non-predicated version of the given loop. | 
|  | // Returns false if unable to compute these costs due to invalid cost of loop | 
|  | // instruction(s). | 
|  | bool SelectOptimizeImpl::computeLoopCosts( | 
|  | const Loop *L, const SelectGroups &SIGroups, | 
|  | DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) { | 
|  | LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop " | 
|  | << L->getHeader()->getName() << "\n"); | 
|  | const auto &SImap = getSImap(SIGroups); | 
|  | // Compute instruction and loop-critical-path costs across two iterations for | 
|  | // both predicated and non-predicated version. | 
|  | const unsigned Iterations = 2; | 
|  | for (unsigned Iter = 0; Iter < Iterations; ++Iter) { | 
|  | // Cost of the loop's critical path. | 
|  | CostInfo &MaxCost = LoopCost[Iter]; | 
|  | for (BasicBlock *BB : L->getBlocks()) { | 
|  | for (const Instruction &I : *BB) { | 
|  | if (I.isDebugOrPseudoInst()) | 
|  | continue; | 
|  | // Compute the predicated and non-predicated cost of the instruction. | 
|  | Scaled64 IPredCost = Scaled64::getZero(), | 
|  | INonPredCost = Scaled64::getZero(); | 
|  |  | 
|  | // Assume infinite resources that allow to fully exploit the available | 
|  | // instruction-level parallelism. | 
|  | // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) | 
|  | for (const Use &U : I.operands()) { | 
|  | auto UI = dyn_cast<Instruction>(U.get()); | 
|  | if (!UI) | 
|  | continue; | 
|  | if (InstCostMap.count(UI)) { | 
|  | IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost); | 
|  | INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost); | 
|  | } | 
|  | } | 
|  | auto ILatency = computeInstCost(&I); | 
|  | if (!ILatency) { | 
|  | OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I); | 
|  | ORmissL << "Invalid instruction cost preventing analysis and " | 
|  | "optimization of the inner-most loop containing this " | 
|  | "instruction. "; | 
|  | EmitAndPrintRemark(ORE, ORmissL); | 
|  | return false; | 
|  | } | 
|  | IPredCost += Scaled64::get(*ILatency); | 
|  | INonPredCost += Scaled64::get(*ILatency); | 
|  |  | 
|  | // For a select that can be converted to branch, | 
|  | // compute its cost as a branch (non-predicated cost). | 
|  | // | 
|  | // BranchCost = PredictedPathCost + MispredictCost | 
|  | // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb | 
|  | // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate | 
|  | if (SImap.contains(&I)) { | 
|  | auto SI = SImap.at(&I); | 
|  | Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI); | 
|  | Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI); | 
|  | Scaled64 PredictedPathCost = | 
|  | getPredictedPathCost(TrueOpCost, FalseOpCost, SI); | 
|  |  | 
|  | Scaled64 CondCost = Scaled64::getZero(); | 
|  | if (auto *CI = dyn_cast<Instruction>(SI.getCondition())) | 
|  | if (InstCostMap.count(CI)) | 
|  | CondCost = InstCostMap[CI].NonPredCost; | 
|  | Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); | 
|  |  | 
|  | INonPredCost = PredictedPathCost + MispredictCost; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/" | 
|  | << INonPredCost << " for " << I << "\n"); | 
|  |  | 
|  | InstCostMap[&I] = {IPredCost, INonPredCost}; | 
|  | MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost); | 
|  | MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost); | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1 | 
|  | << " MaxCost = " << MaxCost.PredCost << " " | 
|  | << MaxCost.NonPredCost << "\n"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2> | 
|  | SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) { | 
|  | SmallDenseMap<const Instruction *, SelectLike, 2> SImap; | 
|  | for (const SelectGroup &ASI : SIGroups) | 
|  | for (SelectLike SI : ASI) | 
|  | SImap.try_emplace(SI.getI(), SI); | 
|  | return SImap; | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> | 
|  | SelectOptimizeImpl::computeInstCost(const Instruction *I) { | 
|  | InstructionCost ICost = | 
|  | TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency); | 
|  | if (auto OC = ICost.getValue()) | 
|  | return std::optional<uint64_t>(*OC); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | ScaledNumber<uint64_t> | 
|  | SelectOptimizeImpl::getMispredictionCost(const SelectLike SI, | 
|  | const Scaled64 CondCost) { | 
|  | uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; | 
|  |  | 
|  | // Account for the default misprediction rate when using a branch | 
|  | // (conservatively set to 25% by default). | 
|  | uint64_t MispredictRate = MispredictDefaultRate; | 
|  | // If the select condition is obviously predictable, then the misprediction | 
|  | // rate is zero. | 
|  | if (isSelectHighlyPredictable(SI)) | 
|  | MispredictRate = 0; | 
|  |  | 
|  | // CondCost is included to account for cases where the computation of the | 
|  | // condition is part of a long dependence chain (potentially loop-carried) | 
|  | // that would delay detection of a misprediction and increase its cost. | 
|  | Scaled64 MispredictCost = | 
|  | std::max(Scaled64::get(MispredictPenalty), CondCost) * | 
|  | Scaled64::get(MispredictRate); | 
|  | MispredictCost /= Scaled64::get(100); | 
|  |  | 
|  | return MispredictCost; | 
|  | } | 
|  |  | 
|  | // Returns the cost of a branch when the prediction is correct. | 
|  | // TrueCost * TrueProbability + FalseCost * FalseProbability. | 
|  | ScaledNumber<uint64_t> | 
|  | SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, | 
|  | const SelectLike SI) { | 
|  | Scaled64 PredPathCost; | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (extractBranchWeights(SI, TrueWeight, FalseWeight)) { | 
|  | uint64_t SumWeight = TrueWeight + FalseWeight; | 
|  | if (SumWeight != 0) { | 
|  | PredPathCost = TrueCost * Scaled64::get(TrueWeight) + | 
|  | FalseCost * Scaled64::get(FalseWeight); | 
|  | PredPathCost /= Scaled64::get(SumWeight); | 
|  | return PredPathCost; | 
|  | } | 
|  | } | 
|  | // Without branch weight metadata, we assume 75% for the one path and 25% for | 
|  | // the other, and pick the result with the biggest cost. | 
|  | PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost, | 
|  | FalseCost * Scaled64::get(3) + TrueCost); | 
|  | PredPathCost /= Scaled64::get(4); | 
|  | return PredPathCost; | 
|  | } | 
|  |  | 
|  | bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) { | 
|  | bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1); | 
|  | if (VectorCond) | 
|  | return false; | 
|  | TargetLowering::SelectSupportKind SelectKind; | 
|  | if (SI.getType()->isVectorTy()) | 
|  | SelectKind = TargetLowering::ScalarCondVectorVal; | 
|  | else | 
|  | SelectKind = TargetLowering::ScalarValSelect; | 
|  | return TLI->isSelectSupported(SelectKind); | 
|  | } |