|  | //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. | 
|  | // | 
|  | // This SMS implementation is a target-independent back-end pass. When enabled, | 
|  | // the pass runs just prior to the register allocation pass, while the machine | 
|  | // IR is in SSA form. If software pipelining is successful, then the original | 
|  | // loop is replaced by the optimized loop. The optimized loop contains one or | 
|  | // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If | 
|  | // the instructions cannot be scheduled in a given MII, we increase the MII by | 
|  | // one and try again. | 
|  | // | 
|  | // The SMS implementation is an extension of the ScheduleDAGInstrs class. We | 
|  | // represent loop carried dependences in the DAG as order edges to the Phi | 
|  | // nodes. We also perform several passes over the DAG to eliminate unnecessary | 
|  | // edges that inhibit the ability to pipeline. The implementation uses the | 
|  | // DFAPacketizer class to compute the minimum initiation interval and the check | 
|  | // where an instruction may be inserted in the pipelined schedule. | 
|  | // | 
|  | // In order for the SMS pass to work, several target specific hooks need to be | 
|  | // implemented to get information about the loop structure and to rewrite | 
|  | // instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachinePipeliner.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/PriorityQueue.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/CycleAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/DFAPacketizer.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ModuloSchedule.h" | 
|  | #include "llvm/CodeGen/Register.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/RegisterPressure.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGMutation.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstdint> | 
|  | #include <deque> | 
|  | #include <functional> | 
|  | #include <iomanip> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <sstream> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "pipeliner" | 
|  |  | 
|  | STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); | 
|  | STATISTIC(NumPipelined, "Number of loops software pipelined"); | 
|  | STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); | 
|  | STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); | 
|  | STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); | 
|  | STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); | 
|  | STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); | 
|  | STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); | 
|  | STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); | 
|  | STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); | 
|  | STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); | 
|  |  | 
|  | /// A command line option to turn software pipelining on or off. | 
|  | static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), | 
|  | cl::desc("Enable Software Pipelining")); | 
|  |  | 
|  | /// A command line option to enable SWP at -Os. | 
|  | static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", | 
|  | cl::desc("Enable SWP at Os."), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | /// A command line argument to limit minimum initial interval for pipelining. | 
|  | static cl::opt<int> SwpMaxMii("pipeliner-max-mii", | 
|  | cl::desc("Size limit for the MII."), | 
|  | cl::Hidden, cl::init(27)); | 
|  |  | 
|  | /// A command line argument to force pipeliner to use specified initial | 
|  | /// interval. | 
|  | static cl::opt<int> SwpForceII("pipeliner-force-ii", | 
|  | cl::desc("Force pipeliner to use specified II."), | 
|  | cl::Hidden, cl::init(-1)); | 
|  |  | 
|  | /// A command line argument to limit the number of stages in the pipeline. | 
|  | static cl::opt<int> | 
|  | SwpMaxStages("pipeliner-max-stages", | 
|  | cl::desc("Maximum stages allowed in the generated scheduled."), | 
|  | cl::Hidden, cl::init(3)); | 
|  |  | 
|  | /// A command line option to disable the pruning of chain dependences due to | 
|  | /// an unrelated Phi. | 
|  | static cl::opt<bool> | 
|  | SwpPruneDeps("pipeliner-prune-deps", | 
|  | cl::desc("Prune dependences between unrelated Phi nodes."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | /// A command line option to disable the pruning of loop carried order | 
|  | /// dependences. | 
|  | static cl::opt<bool> | 
|  | SwpPruneLoopCarried("pipeliner-prune-loop-carried", | 
|  | cl::desc("Prune loop carried order dependences."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); | 
|  | #endif | 
|  |  | 
|  | static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", | 
|  | cl::ReallyHidden, | 
|  | cl::desc("Ignore RecMII")); | 
|  |  | 
|  | static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, | 
|  | cl::init(false)); | 
|  | static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> EmitTestAnnotations( | 
|  | "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), | 
|  | cl::desc("Instead of emitting the pipelined code, annotate instructions " | 
|  | "with the generated schedule for feeding into the " | 
|  | "-modulo-schedule-test pass")); | 
|  |  | 
|  | static cl::opt<bool> ExperimentalCodeGen( | 
|  | "pipeliner-experimental-cg", cl::Hidden, cl::init(false), | 
|  | cl::desc( | 
|  | "Use the experimental peeling code generator for software pipelining")); | 
|  |  | 
|  | static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", | 
|  | cl::desc("Range to search for II"), | 
|  | cl::Hidden, cl::init(10)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), | 
|  | cl::desc("Limit register pressure of scheduled loop")); | 
|  |  | 
|  | static cl::opt<int> | 
|  | RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, | 
|  | cl::init(5), | 
|  | cl::desc("Margin representing the unused percentage of " | 
|  | "the register pressure limit")); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | // A command line option to enable the CopyToPhi DAG mutation. | 
|  | cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, | 
|  | cl::init(true), | 
|  | cl::desc("Enable CopyToPhi DAG Mutation")); | 
|  |  | 
|  | /// A command line argument to force pipeliner to use specified issue | 
|  | /// width. | 
|  | cl::opt<int> SwpForceIssueWidth( | 
|  | "pipeliner-force-issue-width", | 
|  | cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, | 
|  | cl::init(-1)); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; | 
|  | char MachinePipeliner::ID = 0; | 
|  | #ifndef NDEBUG | 
|  | int MachinePipeliner::NumTries = 0; | 
|  | #endif | 
|  | char &llvm::MachinePipelinerID = MachinePipeliner::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, | 
|  | "Modulo Software Pipelining", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
|  | INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, | 
|  | "Modulo Software Pipelining", false, false) | 
|  |  | 
|  | /// The "main" function for implementing Swing Modulo Scheduling. | 
|  | bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { | 
|  | if (skipFunction(mf.getFunction())) | 
|  | return false; | 
|  |  | 
|  | if (!EnableSWP) | 
|  | return false; | 
|  |  | 
|  | if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && | 
|  | !EnableSWPOptSize.getPosition()) | 
|  | return false; | 
|  |  | 
|  | if (!mf.getSubtarget().enableMachinePipeliner()) | 
|  | return false; | 
|  |  | 
|  | // Cannot pipeline loops without instruction itineraries if we are using | 
|  | // DFA for the pipeliner. | 
|  | if (mf.getSubtarget().useDFAforSMS() && | 
|  | (!mf.getSubtarget().getInstrItineraryData() || | 
|  | mf.getSubtarget().getInstrItineraryData()->isEmpty())) | 
|  | return false; | 
|  |  | 
|  | MF = &mf; | 
|  | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | RegClassInfo.runOnMachineFunction(*MF); | 
|  |  | 
|  | for (const auto &L : *MLI) | 
|  | scheduleLoop(*L); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Attempt to perform the SMS algorithm on the specified loop. This function is | 
|  | /// the main entry point for the algorithm.  The function identifies candidate | 
|  | /// loops, calculates the minimum initiation interval, and attempts to schedule | 
|  | /// the loop. | 
|  | bool MachinePipeliner::scheduleLoop(MachineLoop &L) { | 
|  | bool Changed = false; | 
|  | for (const auto &InnerLoop : L) | 
|  | Changed |= scheduleLoop(*InnerLoop); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Stop trying after reaching the limit (if any). | 
|  | int Limit = SwpLoopLimit; | 
|  | if (Limit >= 0) { | 
|  | if (NumTries >= SwpLoopLimit) | 
|  | return Changed; | 
|  | NumTries++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | setPragmaPipelineOptions(L); | 
|  | if (!canPipelineLoop(L)) { | 
|  | LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); | 
|  | ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", | 
|  | L.getStartLoc(), L.getHeader()) | 
|  | << "Failed to pipeline loop"; | 
|  | }); | 
|  |  | 
|  | LI.LoopPipelinerInfo.reset(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | ++NumTrytoPipeline; | 
|  |  | 
|  | Changed = swingModuloScheduler(L); | 
|  |  | 
|  | LI.LoopPipelinerInfo.reset(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { | 
|  | // Reset the pragma for the next loop in iteration. | 
|  | disabledByPragma = false; | 
|  | II_setByPragma = 0; | 
|  |  | 
|  | MachineBasicBlock *LBLK = L.getTopBlock(); | 
|  |  | 
|  | if (LBLK == nullptr) | 
|  | return; | 
|  |  | 
|  | const BasicBlock *BBLK = LBLK->getBasicBlock(); | 
|  | if (BBLK == nullptr) | 
|  | return; | 
|  |  | 
|  | const Instruction *TI = BBLK->getTerminator(); | 
|  | if (TI == nullptr) | 
|  | return; | 
|  |  | 
|  | MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); | 
|  | if (LoopID == nullptr) | 
|  | return; | 
|  |  | 
|  | assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); | 
|  | assert(LoopID->getOperand(0) == LoopID && "invalid loop"); | 
|  |  | 
|  | for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { | 
|  | MDNode *MD = dyn_cast<MDNode>(MDO); | 
|  |  | 
|  | if (MD == nullptr) | 
|  | continue; | 
|  |  | 
|  | MDString *S = dyn_cast<MDString>(MD->getOperand(0)); | 
|  |  | 
|  | if (S == nullptr) | 
|  | continue; | 
|  |  | 
|  | if (S->getString() == "llvm.loop.pipeline.initiationinterval") { | 
|  | assert(MD->getNumOperands() == 2 && | 
|  | "Pipeline initiation interval hint metadata should have two operands."); | 
|  | II_setByPragma = | 
|  | mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); | 
|  | assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); | 
|  | } else if (S->getString() == "llvm.loop.pipeline.disable") { | 
|  | disabledByPragma = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the loop can be software pipelined.  The algorithm is | 
|  | /// restricted to loops with a single basic block.  Make sure that the | 
|  | /// branch in the loop can be analyzed. | 
|  | bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { | 
|  | if (L.getNumBlocks() != 1) { | 
|  | ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", | 
|  | L.getStartLoc(), L.getHeader()) | 
|  | << "Not a single basic block: " | 
|  | << ore::NV("NumBlocks", L.getNumBlocks()); | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (disabledByPragma) { | 
|  | ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", | 
|  | L.getStartLoc(), L.getHeader()) | 
|  | << "Disabled by Pragma."; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the branch can't be understood because we can't do pipelining | 
|  | // if that's the case. | 
|  | LI.TBB = nullptr; | 
|  | LI.FBB = nullptr; | 
|  | LI.BrCond.clear(); | 
|  | if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); | 
|  | NumFailBranch++; | 
|  | ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", | 
|  | L.getStartLoc(), L.getHeader()) | 
|  | << "The branch can't be understood"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LI.LoopInductionVar = nullptr; | 
|  | LI.LoopCompare = nullptr; | 
|  | LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); | 
|  | if (!LI.LoopPipelinerInfo) { | 
|  | LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); | 
|  | NumFailLoop++; | 
|  | ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", | 
|  | L.getStartLoc(), L.getHeader()) | 
|  | << "The loop structure is not supported"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!L.getLoopPreheader()) { | 
|  | LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); | 
|  | NumFailPreheader++; | 
|  | ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", | 
|  | L.getStartLoc(), L.getHeader()) | 
|  | << "No loop preheader found"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remove any subregisters from inputs to phi nodes. | 
|  | preprocessPhiNodes(*L.getHeader()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); | 
|  |  | 
|  | for (MachineInstr &PI : B.phis()) { | 
|  | MachineOperand &DefOp = PI.getOperand(0); | 
|  | assert(DefOp.getSubReg() == 0); | 
|  | auto *RC = MRI.getRegClass(DefOp.getReg()); | 
|  |  | 
|  | for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { | 
|  | MachineOperand &RegOp = PI.getOperand(i); | 
|  | if (RegOp.getSubReg() == 0) | 
|  | continue; | 
|  |  | 
|  | // If the operand uses a subregister, replace it with a new register | 
|  | // without subregisters, and generate a copy to the new register. | 
|  | Register NewReg = MRI.createVirtualRegister(RC); | 
|  | MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); | 
|  | MachineBasicBlock::iterator At = PredB.getFirstTerminator(); | 
|  | const DebugLoc &DL = PredB.findDebugLoc(At); | 
|  | auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) | 
|  | .addReg(RegOp.getReg(), getRegState(RegOp), | 
|  | RegOp.getSubReg()); | 
|  | Slots.insertMachineInstrInMaps(*Copy); | 
|  | RegOp.setReg(NewReg); | 
|  | RegOp.setSubReg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The SMS algorithm consists of the following main steps: | 
|  | /// 1. Computation and analysis of the dependence graph. | 
|  | /// 2. Ordering of the nodes (instructions). | 
|  | /// 3. Attempt to Schedule the loop. | 
|  | bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { | 
|  | assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); | 
|  |  | 
|  | SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, | 
|  | II_setByPragma, LI.LoopPipelinerInfo.get()); | 
|  |  | 
|  | MachineBasicBlock *MBB = L.getHeader(); | 
|  | // The kernel should not include any terminator instructions.  These | 
|  | // will be added back later. | 
|  | SMS.startBlock(MBB); | 
|  |  | 
|  | // Compute the number of 'real' instructions in the basic block by | 
|  | // ignoring terminators. | 
|  | unsigned size = MBB->size(); | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), | 
|  | E = MBB->instr_end(); | 
|  | I != E; ++I, --size) | 
|  | ; | 
|  |  | 
|  | SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); | 
|  | SMS.schedule(); | 
|  | SMS.exitRegion(); | 
|  |  | 
|  | SMS.finishBlock(); | 
|  | return SMS.hasNewSchedule(); | 
|  | } | 
|  |  | 
|  | void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addPreserved<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<LiveIntervals>(); | 
|  | AU.addRequired<MachineOptimizationRemarkEmitterPass>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { | 
|  | if (SwpForceII > 0) | 
|  | MII = SwpForceII; | 
|  | else if (II_setByPragma > 0) | 
|  | MII = II_setByPragma; | 
|  | else | 
|  | MII = std::max(ResMII, RecMII); | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::setMAX_II() { | 
|  | if (SwpForceII > 0) | 
|  | MAX_II = SwpForceII; | 
|  | else if (II_setByPragma > 0) | 
|  | MAX_II = II_setByPragma; | 
|  | else | 
|  | MAX_II = MII + SwpIISearchRange; | 
|  | } | 
|  |  | 
|  | /// We override the schedule function in ScheduleDAGInstrs to implement the | 
|  | /// scheduling part of the Swing Modulo Scheduling algorithm. | 
|  | void SwingSchedulerDAG::schedule() { | 
|  | AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | buildSchedGraph(AA); | 
|  | addLoopCarriedDependences(AA); | 
|  | updatePhiDependences(); | 
|  | Topo.InitDAGTopologicalSorting(); | 
|  | changeDependences(); | 
|  | postProcessDAG(); | 
|  | LLVM_DEBUG(dump()); | 
|  |  | 
|  | NodeSetType NodeSets; | 
|  | findCircuits(NodeSets); | 
|  | NodeSetType Circuits = NodeSets; | 
|  |  | 
|  | // Calculate the MII. | 
|  | unsigned ResMII = calculateResMII(); | 
|  | unsigned RecMII = calculateRecMII(NodeSets); | 
|  |  | 
|  | fuseRecs(NodeSets); | 
|  |  | 
|  | // This flag is used for testing and can cause correctness problems. | 
|  | if (SwpIgnoreRecMII) | 
|  | RecMII = 0; | 
|  |  | 
|  | setMII(ResMII, RecMII); | 
|  | setMAX_II(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II | 
|  | << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); | 
|  |  | 
|  | // Can't schedule a loop without a valid MII. | 
|  | if (MII == 0) { | 
|  | LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); | 
|  | NumFailZeroMII++; | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis( | 
|  | DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) | 
|  | << "Invalid Minimal Initiation Interval: 0"; | 
|  | }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't pipeline large loops. | 
|  | if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { | 
|  | LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii | 
|  | << ", we don't pipeline large loops\n"); | 
|  | NumFailLargeMaxMII++; | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis( | 
|  | DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) | 
|  | << "Minimal Initiation Interval too large: " | 
|  | << ore::NV("MII", (int)MII) << " > " | 
|  | << ore::NV("SwpMaxMii", SwpMaxMii) << "." | 
|  | << "Refer to -pipeliner-max-mii."; | 
|  | }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | computeNodeFunctions(NodeSets); | 
|  |  | 
|  | registerPressureFilter(NodeSets); | 
|  |  | 
|  | colocateNodeSets(NodeSets); | 
|  |  | 
|  | checkNodeSets(NodeSets); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (auto &I : NodeSets) { | 
|  | dbgs() << "  Rec NodeSet "; | 
|  | I.dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | llvm::stable_sort(NodeSets, std::greater<NodeSet>()); | 
|  |  | 
|  | groupRemainingNodes(NodeSets); | 
|  |  | 
|  | removeDuplicateNodes(NodeSets); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (auto &I : NodeSets) { | 
|  | dbgs() << "  NodeSet "; | 
|  | I.dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | computeNodeOrder(NodeSets); | 
|  |  | 
|  | // check for node order issues | 
|  | checkValidNodeOrder(Circuits); | 
|  |  | 
|  | SMSchedule Schedule(Pass.MF, this); | 
|  | Scheduled = schedulePipeline(Schedule); | 
|  |  | 
|  | if (!Scheduled){ | 
|  | LLVM_DEBUG(dbgs() << "No schedule found, return\n"); | 
|  | NumFailNoSchedule++; | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis( | 
|  | DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) | 
|  | << "Unable to find schedule"; | 
|  | }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned numStages = Schedule.getMaxStageCount(); | 
|  | // No need to generate pipeline if there are no overlapped iterations. | 
|  | if (numStages == 0) { | 
|  | LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); | 
|  | NumFailZeroStage++; | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis( | 
|  | DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) | 
|  | << "No need to pipeline - no overlapped iterations in schedule."; | 
|  | }); | 
|  | return; | 
|  | } | 
|  | // Check that the maximum stage count is less than user-defined limit. | 
|  | if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { | 
|  | LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages | 
|  | << " : too many stages, abort\n"); | 
|  | NumFailLargeMaxStage++; | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis( | 
|  | DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) | 
|  | << "Too many stages in schedule: " | 
|  | << ore::NV("numStages", (int)numStages) << " > " | 
|  | << ore::NV("SwpMaxStages", SwpMaxStages) | 
|  | << ". Refer to -pipeliner-max-stages."; | 
|  | }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), | 
|  | Loop.getHeader()) | 
|  | << "Pipelined succesfully!"; | 
|  | }); | 
|  |  | 
|  | // Generate the schedule as a ModuloSchedule. | 
|  | DenseMap<MachineInstr *, int> Cycles, Stages; | 
|  | std::vector<MachineInstr *> OrderedInsts; | 
|  | for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); | 
|  | ++Cycle) { | 
|  | for (SUnit *SU : Schedule.getInstructions(Cycle)) { | 
|  | OrderedInsts.push_back(SU->getInstr()); | 
|  | Cycles[SU->getInstr()] = Cycle; | 
|  | Stages[SU->getInstr()] = Schedule.stageScheduled(SU); | 
|  | } | 
|  | } | 
|  | DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; | 
|  | for (auto &KV : NewMIs) { | 
|  | Cycles[KV.first] = Cycles[KV.second]; | 
|  | Stages[KV.first] = Stages[KV.second]; | 
|  | NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; | 
|  | } | 
|  |  | 
|  | ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), | 
|  | std::move(Stages)); | 
|  | if (EmitTestAnnotations) { | 
|  | assert(NewInstrChanges.empty() && | 
|  | "Cannot serialize a schedule with InstrChanges!"); | 
|  | ModuloScheduleTestAnnotater MSTI(MF, MS); | 
|  | MSTI.annotate(); | 
|  | return; | 
|  | } | 
|  | // The experimental code generator can't work if there are InstChanges. | 
|  | if (ExperimentalCodeGen && NewInstrChanges.empty()) { | 
|  | PeelingModuloScheduleExpander MSE(MF, MS, &LIS); | 
|  | MSE.expand(); | 
|  | } else { | 
|  | ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); | 
|  | MSE.expand(); | 
|  | MSE.cleanup(); | 
|  | } | 
|  | ++NumPipelined; | 
|  | } | 
|  |  | 
|  | /// Clean up after the software pipeliner runs. | 
|  | void SwingSchedulerDAG::finishBlock() { | 
|  | for (auto &KV : NewMIs) | 
|  | MF.deleteMachineInstr(KV.second); | 
|  | NewMIs.clear(); | 
|  |  | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::finishBlock(); | 
|  | } | 
|  |  | 
|  | /// Return the register values for  the operands of a Phi instruction. | 
|  | /// This function assume the instruction is a Phi. | 
|  | static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, | 
|  | unsigned &InitVal, unsigned &LoopVal) { | 
|  | assert(Phi.isPHI() && "Expecting a Phi."); | 
|  |  | 
|  | InitVal = 0; | 
|  | LoopVal = 0; | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() != Loop) | 
|  | InitVal = Phi.getOperand(i).getReg(); | 
|  | else | 
|  | LoopVal = Phi.getOperand(i).getReg(); | 
|  |  | 
|  | assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); | 
|  | } | 
|  |  | 
|  | /// Return the Phi register value that comes the loop block. | 
|  | static unsigned getLoopPhiReg(const MachineInstr &Phi, | 
|  | const MachineBasicBlock *LoopBB) { | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() == LoopBB) | 
|  | return Phi.getOperand(i).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return true if SUb can be reached from SUa following the chain edges. | 
|  | static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SUnit *, 8> Worklist; | 
|  | Worklist.push_back(SUa); | 
|  | while (!Worklist.empty()) { | 
|  | const SUnit *SU = Worklist.pop_back_val(); | 
|  | for (const auto &SI : SU->Succs) { | 
|  | SUnit *SuccSU = SI.getSUnit(); | 
|  | if (SI.getKind() == SDep::Order) { | 
|  | if (Visited.count(SuccSU)) | 
|  | continue; | 
|  | if (SuccSU == SUb) | 
|  | return true; | 
|  | Worklist.push_back(SuccSU); | 
|  | Visited.insert(SuccSU); | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction causes a chain between memory | 
|  | /// references before and after it. | 
|  | static bool isDependenceBarrier(MachineInstr &MI) { | 
|  | return MI.isCall() || MI.mayRaiseFPException() || | 
|  | MI.hasUnmodeledSideEffects() || | 
|  | (MI.hasOrderedMemoryRef() && | 
|  | (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); | 
|  | } | 
|  |  | 
|  | /// Return the underlying objects for the memory references of an instruction. | 
|  | /// This function calls the code in ValueTracking, but first checks that the | 
|  | /// instruction has a memory operand. | 
|  | static void getUnderlyingObjects(const MachineInstr *MI, | 
|  | SmallVectorImpl<const Value *> &Objs) { | 
|  | if (!MI->hasOneMemOperand()) | 
|  | return; | 
|  | MachineMemOperand *MM = *MI->memoperands_begin(); | 
|  | if (!MM->getValue()) | 
|  | return; | 
|  | getUnderlyingObjects(MM->getValue(), Objs); | 
|  | for (const Value *V : Objs) { | 
|  | if (!isIdentifiedObject(V)) { | 
|  | Objs.clear(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add a chain edge between a load and store if the store can be an | 
|  | /// alias of the load on a subsequent iteration, i.e., a loop carried | 
|  | /// dependence. This code is very similar to the code in ScheduleDAGInstrs | 
|  | /// but that code doesn't create loop carried dependences. | 
|  | void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { | 
|  | MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; | 
|  | Value *UnknownValue = | 
|  | UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); | 
|  | for (auto &SU : SUnits) { | 
|  | MachineInstr &MI = *SU.getInstr(); | 
|  | if (isDependenceBarrier(MI)) | 
|  | PendingLoads.clear(); | 
|  | else if (MI.mayLoad()) { | 
|  | SmallVector<const Value *, 4> Objs; | 
|  | ::getUnderlyingObjects(&MI, Objs); | 
|  | if (Objs.empty()) | 
|  | Objs.push_back(UnknownValue); | 
|  | for (const auto *V : Objs) { | 
|  | SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; | 
|  | SUs.push_back(&SU); | 
|  | } | 
|  | } else if (MI.mayStore()) { | 
|  | SmallVector<const Value *, 4> Objs; | 
|  | ::getUnderlyingObjects(&MI, Objs); | 
|  | if (Objs.empty()) | 
|  | Objs.push_back(UnknownValue); | 
|  | for (const auto *V : Objs) { | 
|  | MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = | 
|  | PendingLoads.find(V); | 
|  | if (I == PendingLoads.end()) | 
|  | continue; | 
|  | for (auto *Load : I->second) { | 
|  | if (isSuccOrder(Load, &SU)) | 
|  | continue; | 
|  | MachineInstr &LdMI = *Load->getInstr(); | 
|  | // First, perform the cheaper check that compares the base register. | 
|  | // If they are the same and the load offset is less than the store | 
|  | // offset, then mark the dependence as loop carried potentially. | 
|  | const MachineOperand *BaseOp1, *BaseOp2; | 
|  | int64_t Offset1, Offset2; | 
|  | bool Offset1IsScalable, Offset2IsScalable; | 
|  | if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, | 
|  | Offset1IsScalable, TRI) && | 
|  | TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, | 
|  | Offset2IsScalable, TRI)) { | 
|  | if (BaseOp1->isIdenticalTo(*BaseOp2) && | 
|  | Offset1IsScalable == Offset2IsScalable && | 
|  | (int)Offset1 < (int)Offset2) { | 
|  | assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && | 
|  | "What happened to the chain edge?"); | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // Second, the more expensive check that uses alias analysis on the | 
|  | // base registers. If they alias, and the load offset is less than | 
|  | // the store offset, the mark the dependence as loop carried. | 
|  | if (!AA) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); | 
|  | MachineMemOperand *MMO2 = *MI.memoperands_begin(); | 
|  | if (!MMO1->getValue() || !MMO2->getValue()) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | if (MMO1->getValue() == MMO2->getValue() && | 
|  | MMO1->getOffset() <= MMO2->getOffset()) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | if (!AA->isNoAlias( | 
|  | MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), | 
|  | MemoryLocation::getAfter(MMO2->getValue(), | 
|  | MMO2->getAAInfo()))) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer | 
|  | /// processes dependences for PHIs. This function adds true dependences | 
|  | /// from a PHI to a use, and a loop carried dependence from the use to the | 
|  | /// PHI. The loop carried dependence is represented as an anti dependence | 
|  | /// edge. This function also removes chain dependences between unrelated | 
|  | /// PHIs. | 
|  | void SwingSchedulerDAG::updatePhiDependences() { | 
|  | SmallVector<SDep, 4> RemoveDeps; | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); | 
|  |  | 
|  | // Iterate over each DAG node. | 
|  | for (SUnit &I : SUnits) { | 
|  | RemoveDeps.clear(); | 
|  | // Set to true if the instruction has an operand defined by a Phi. | 
|  | unsigned HasPhiUse = 0; | 
|  | unsigned HasPhiDef = 0; | 
|  | MachineInstr *MI = I.getInstr(); | 
|  | // Iterate over each operand, and we process the definitions. | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (MO.isDef()) { | 
|  | // If the register is used by a Phi, then create an anti dependence. | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | UI = MRI.use_instr_begin(Reg), | 
|  | UE = MRI.use_instr_end(); | 
|  | UI != UE; ++UI) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | SUnit *SU = getSUnit(UseMI); | 
|  | if (SU != nullptr && UseMI->isPHI()) { | 
|  | if (!MI->isPHI()) { | 
|  | SDep Dep(SU, SDep::Anti, Reg); | 
|  | Dep.setLatency(1); | 
|  | I.addPred(Dep); | 
|  | } else { | 
|  | HasPhiDef = Reg; | 
|  | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | // predecessor. | 
|  | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (MO.isUse()) { | 
|  | // If the register is defined by a Phi, then create a true dependence. | 
|  | MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); | 
|  | if (DefMI == nullptr) | 
|  | continue; | 
|  | SUnit *SU = getSUnit(DefMI); | 
|  | if (SU != nullptr && DefMI->isPHI()) { | 
|  | if (!MI->isPHI()) { | 
|  | SDep Dep(SU, SDep::Data, Reg); | 
|  | Dep.setLatency(0); | 
|  | ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, | 
|  | &SchedModel); | 
|  | I.addPred(Dep); | 
|  | } else { | 
|  | HasPhiUse = Reg; | 
|  | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | // predecessor. | 
|  | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Remove order dependences from an unrelated Phi. | 
|  | if (!SwpPruneDeps) | 
|  | continue; | 
|  | for (auto &PI : I.Preds) { | 
|  | MachineInstr *PMI = PI.getSUnit()->getInstr(); | 
|  | if (PMI->isPHI() && PI.getKind() == SDep::Order) { | 
|  | if (I.getInstr()->isPHI()) { | 
|  | if (PMI->getOperand(0).getReg() == HasPhiUse) | 
|  | continue; | 
|  | if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) | 
|  | continue; | 
|  | } | 
|  | RemoveDeps.push_back(PI); | 
|  | } | 
|  | } | 
|  | for (int i = 0, e = RemoveDeps.size(); i != e; ++i) | 
|  | I.removePred(RemoveDeps[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Iterate over each DAG node and see if we can change any dependences | 
|  | /// in order to reduce the recurrence MII. | 
|  | void SwingSchedulerDAG::changeDependences() { | 
|  | // See if an instruction can use a value from the previous iteration. | 
|  | // If so, we update the base and offset of the instruction and change | 
|  | // the dependences. | 
|  | for (SUnit &I : SUnits) { | 
|  | unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; | 
|  | int64_t NewOffset = 0; | 
|  | if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, | 
|  | NewOffset)) | 
|  | continue; | 
|  |  | 
|  | // Get the MI and SUnit for the instruction that defines the original base. | 
|  | Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); | 
|  | MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); | 
|  | if (!DefMI) | 
|  | continue; | 
|  | SUnit *DefSU = getSUnit(DefMI); | 
|  | if (!DefSU) | 
|  | continue; | 
|  | // Get the MI and SUnit for the instruction that defins the new base. | 
|  | MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); | 
|  | if (!LastMI) | 
|  | continue; | 
|  | SUnit *LastSU = getSUnit(LastMI); | 
|  | if (!LastSU) | 
|  | continue; | 
|  |  | 
|  | if (Topo.IsReachable(&I, LastSU)) | 
|  | continue; | 
|  |  | 
|  | // Remove the dependence. The value now depends on a prior iteration. | 
|  | SmallVector<SDep, 4> Deps; | 
|  | for (const SDep &P : I.Preds) | 
|  | if (P.getSUnit() == DefSU) | 
|  | Deps.push_back(P); | 
|  | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | Topo.RemovePred(&I, Deps[i].getSUnit()); | 
|  | I.removePred(Deps[i]); | 
|  | } | 
|  | // Remove the chain dependence between the instructions. | 
|  | Deps.clear(); | 
|  | for (auto &P : LastSU->Preds) | 
|  | if (P.getSUnit() == &I && P.getKind() == SDep::Order) | 
|  | Deps.push_back(P); | 
|  | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | Topo.RemovePred(LastSU, Deps[i].getSUnit()); | 
|  | LastSU->removePred(Deps[i]); | 
|  | } | 
|  |  | 
|  | // Add a dependence between the new instruction and the instruction | 
|  | // that defines the new base. | 
|  | SDep Dep(&I, SDep::Anti, NewBase); | 
|  | Topo.AddPred(LastSU, &I); | 
|  | LastSU->addPred(Dep); | 
|  |  | 
|  | // Remember the base and offset information so that we can update the | 
|  | // instruction during code generation. | 
|  | InstrChanges[&I] = std::make_pair(NewBase, NewOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create an instruction stream that represents a single iteration and stage of | 
|  | /// each instruction. This function differs from SMSchedule::finalizeSchedule in | 
|  | /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this | 
|  | /// function is an approximation of SMSchedule::finalizeSchedule with all | 
|  | /// non-const operations removed. | 
|  | static void computeScheduledInsts(const SwingSchedulerDAG *SSD, | 
|  | SMSchedule &Schedule, | 
|  | std::vector<MachineInstr *> &OrderedInsts, | 
|  | DenseMap<MachineInstr *, unsigned> &Stages) { | 
|  | DenseMap<int, std::deque<SUnit *>> Instrs; | 
|  |  | 
|  | // Move all instructions to the first stage from the later stages. | 
|  | for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); | 
|  | ++Cycle) { | 
|  | for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); | 
|  | Stage <= LastStage; ++Stage) { | 
|  | for (SUnit *SU : llvm::reverse(Schedule.getInstructions( | 
|  | Cycle + Stage * Schedule.getInitiationInterval()))) { | 
|  | Instrs[Cycle].push_front(SU); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); | 
|  | ++Cycle) { | 
|  | std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; | 
|  | CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); | 
|  | for (SUnit *SU : CycleInstrs) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | OrderedInsts.push_back(MI); | 
|  | Stages[MI] = Schedule.stageScheduled(SU); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // FuncUnitSorter - Comparison operator used to sort instructions by | 
|  | // the number of functional unit choices. | 
|  | struct FuncUnitSorter { | 
|  | const InstrItineraryData *InstrItins; | 
|  | const MCSubtargetInfo *STI; | 
|  | DenseMap<InstrStage::FuncUnits, unsigned> Resources; | 
|  |  | 
|  | FuncUnitSorter(const TargetSubtargetInfo &TSI) | 
|  | : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} | 
|  |  | 
|  | // Compute the number of functional unit alternatives needed | 
|  | // at each stage, and take the minimum value. We prioritize the | 
|  | // instructions by the least number of choices first. | 
|  | unsigned minFuncUnits(const MachineInstr *Inst, | 
|  | InstrStage::FuncUnits &F) const { | 
|  | unsigned SchedClass = Inst->getDesc().getSchedClass(); | 
|  | unsigned min = UINT_MAX; | 
|  | if (InstrItins && !InstrItins->isEmpty()) { | 
|  | for (const InstrStage &IS : | 
|  | make_range(InstrItins->beginStage(SchedClass), | 
|  | InstrItins->endStage(SchedClass))) { | 
|  | InstrStage::FuncUnits funcUnits = IS.getUnits(); | 
|  | unsigned numAlternatives = llvm::popcount(funcUnits); | 
|  | if (numAlternatives < min) { | 
|  | min = numAlternatives; | 
|  | F = funcUnits; | 
|  | } | 
|  | } | 
|  | return min; | 
|  | } | 
|  | if (STI && STI->getSchedModel().hasInstrSchedModel()) { | 
|  | const MCSchedClassDesc *SCDesc = | 
|  | STI->getSchedModel().getSchedClassDesc(SchedClass); | 
|  | if (!SCDesc->isValid()) | 
|  | // No valid Schedule Class Desc for schedClass, should be | 
|  | // Pseudo/PostRAPseudo | 
|  | return min; | 
|  |  | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(STI->getWriteProcResBegin(SCDesc), | 
|  | STI->getWriteProcResEnd(SCDesc))) { | 
|  | if (!PRE.ReleaseAtCycle) | 
|  | continue; | 
|  | const MCProcResourceDesc *ProcResource = | 
|  | STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); | 
|  | unsigned NumUnits = ProcResource->NumUnits; | 
|  | if (NumUnits < min) { | 
|  | min = NumUnits; | 
|  | F = PRE.ProcResourceIdx; | 
|  | } | 
|  | } | 
|  | return min; | 
|  | } | 
|  | llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); | 
|  | } | 
|  |  | 
|  | // Compute the critical resources needed by the instruction. This | 
|  | // function records the functional units needed by instructions that | 
|  | // must use only one functional unit. We use this as a tie breaker | 
|  | // for computing the resource MII. The instrutions that require | 
|  | // the same, highly used, functional unit have high priority. | 
|  | void calcCriticalResources(MachineInstr &MI) { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | if (InstrItins && !InstrItins->isEmpty()) { | 
|  | for (const InstrStage &IS : | 
|  | make_range(InstrItins->beginStage(SchedClass), | 
|  | InstrItins->endStage(SchedClass))) { | 
|  | InstrStage::FuncUnits FuncUnits = IS.getUnits(); | 
|  | if (llvm::popcount(FuncUnits) == 1) | 
|  | Resources[FuncUnits]++; | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (STI && STI->getSchedModel().hasInstrSchedModel()) { | 
|  | const MCSchedClassDesc *SCDesc = | 
|  | STI->getSchedModel().getSchedClassDesc(SchedClass); | 
|  | if (!SCDesc->isValid()) | 
|  | // No valid Schedule Class Desc for schedClass, should be | 
|  | // Pseudo/PostRAPseudo | 
|  | return; | 
|  |  | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(STI->getWriteProcResBegin(SCDesc), | 
|  | STI->getWriteProcResEnd(SCDesc))) { | 
|  | if (!PRE.ReleaseAtCycle) | 
|  | continue; | 
|  | Resources[PRE.ProcResourceIdx]++; | 
|  | } | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); | 
|  | } | 
|  |  | 
|  | /// Return true if IS1 has less priority than IS2. | 
|  | bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { | 
|  | InstrStage::FuncUnits F1 = 0, F2 = 0; | 
|  | unsigned MFUs1 = minFuncUnits(IS1, F1); | 
|  | unsigned MFUs2 = minFuncUnits(IS2, F2); | 
|  | if (MFUs1 == MFUs2) | 
|  | return Resources.lookup(F1) < Resources.lookup(F2); | 
|  | return MFUs1 > MFUs2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Calculate the maximum register pressure of the scheduled instructions stream | 
|  | class HighRegisterPressureDetector { | 
|  | MachineBasicBlock *OrigMBB; | 
|  | const MachineFunction &MF; | 
|  | const MachineRegisterInfo &MRI; | 
|  | const TargetRegisterInfo *TRI; | 
|  |  | 
|  | const unsigned PSetNum; | 
|  |  | 
|  | // Indexed by PSet ID | 
|  | // InitSetPressure takes into account the register pressure of live-in | 
|  | // registers. It's not depend on how the loop is scheduled, so it's enough to | 
|  | // calculate them once at the beginning. | 
|  | std::vector<unsigned> InitSetPressure; | 
|  |  | 
|  | // Indexed by PSet ID | 
|  | // Upper limit for each register pressure set | 
|  | std::vector<unsigned> PressureSetLimit; | 
|  |  | 
|  | DenseMap<MachineInstr *, RegisterOperands> ROMap; | 
|  |  | 
|  | using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; | 
|  |  | 
|  | public: | 
|  | using OrderedInstsTy = std::vector<MachineInstr *>; | 
|  | using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; | 
|  |  | 
|  | private: | 
|  | static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { | 
|  | if (Pressures.size() == 0) { | 
|  | dbgs() << "[]"; | 
|  | } else { | 
|  | char Prefix = '['; | 
|  | for (unsigned P : Pressures) { | 
|  | dbgs() << Prefix << P; | 
|  | Prefix = ' '; | 
|  | } | 
|  | dbgs() << ']'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void dumpPSet(Register Reg) const { | 
|  | dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; | 
|  | for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); | 
|  | ++PSetIter) { | 
|  | dbgs() << *PSetIter << ' '; | 
|  | } | 
|  | dbgs() << '\n'; | 
|  | } | 
|  |  | 
|  | void increaseRegisterPressure(std::vector<unsigned> &Pressure, | 
|  | Register Reg) const { | 
|  | auto PSetIter = MRI.getPressureSets(Reg); | 
|  | unsigned Weight = PSetIter.getWeight(); | 
|  | for (; PSetIter.isValid(); ++PSetIter) | 
|  | Pressure[*PSetIter] += Weight; | 
|  | } | 
|  |  | 
|  | void decreaseRegisterPressure(std::vector<unsigned> &Pressure, | 
|  | Register Reg) const { | 
|  | auto PSetIter = MRI.getPressureSets(Reg); | 
|  | unsigned Weight = PSetIter.getWeight(); | 
|  | for (; PSetIter.isValid(); ++PSetIter) { | 
|  | auto &P = Pressure[*PSetIter]; | 
|  | assert(P >= Weight && | 
|  | "register pressure must be greater than or equal weight"); | 
|  | P -= Weight; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if Reg is fixed one, for example, stack pointer | 
|  | bool isFixedRegister(Register Reg) const { | 
|  | return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); | 
|  | } | 
|  |  | 
|  | bool isDefinedInThisLoop(Register Reg) const { | 
|  | return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; | 
|  | } | 
|  |  | 
|  | // Search for live-in variables. They are factored into the register pressure | 
|  | // from the begining. Live-in variables used by every iteration should be | 
|  | // considered as alive throughout the loop. For example, the variable `c` in | 
|  | // following code. \code | 
|  | //   int c = ...; | 
|  | //   for (int i = 0; i < n; i++) | 
|  | //     a[i] += b[i] + c; | 
|  | // \endcode | 
|  | void computeLiveIn() { | 
|  | DenseSet<Register> Used; | 
|  | for (auto &MI : *OrigMBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  | for (auto &Use : ROMap[&MI].Uses) { | 
|  | auto Reg = Use.RegUnit; | 
|  | // Ignore the variable that appears only on one side of phi instruction | 
|  | // because it's used only at the first iteration. | 
|  | if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) | 
|  | continue; | 
|  | if (isFixedRegister(Reg)) | 
|  | continue; | 
|  | if (isDefinedInThisLoop(Reg)) | 
|  | continue; | 
|  | Used.insert(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto LiveIn : Used) | 
|  | increaseRegisterPressure(InitSetPressure, LiveIn); | 
|  | } | 
|  |  | 
|  | // Calculate the upper limit of each pressure set | 
|  | void computePressureSetLimit(const RegisterClassInfo &RCI) { | 
|  | for (unsigned PSet = 0; PSet < PSetNum; PSet++) | 
|  | PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); | 
|  |  | 
|  | // We assume fixed registers, such as stack pointer, are already in use. | 
|  | // Therefore subtracting the weight of the fixed registers from the limit of | 
|  | // each pressure set in advance. | 
|  | SmallDenseSet<Register, 8> FixedRegs; | 
|  | for (const TargetRegisterClass *TRC : TRI->regclasses()) { | 
|  | for (const MCPhysReg Reg : *TRC) | 
|  | if (isFixedRegister(Reg)) | 
|  | FixedRegs.insert(Reg); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (auto Reg : FixedRegs) { | 
|  | dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; | 
|  | const int *Sets = TRI->getRegUnitPressureSets(Reg); | 
|  | for (; *Sets != -1; Sets++) { | 
|  | dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; | 
|  | } | 
|  | dbgs() << "]\n"; | 
|  | } | 
|  | }); | 
|  |  | 
|  | for (auto Reg : FixedRegs) { | 
|  | LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) | 
|  | << "\n"); | 
|  | auto PSetIter = MRI.getPressureSets(Reg); | 
|  | unsigned Weight = PSetIter.getWeight(); | 
|  | for (; PSetIter.isValid(); ++PSetIter) { | 
|  | unsigned &Limit = PressureSetLimit[*PSetIter]; | 
|  | assert(Limit >= Weight && | 
|  | "register pressure limit must be greater than or equal weight"); | 
|  | Limit -= Weight; | 
|  | LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit | 
|  | << " (decreased by " << Weight << ")\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // There are two patterns of last-use. | 
|  | //   - by an instruction of the current iteration | 
|  | //   - by a phi instruction of the next iteration (loop carried value) | 
|  | // | 
|  | // Furthermore, following two groups of instructions are executed | 
|  | // simultaneously | 
|  | //   - next iteration's phi instructions in i-th stage | 
|  | //   - current iteration's instructions in i+1-th stage | 
|  | // | 
|  | // This function calculates the last-use of each register while taking into | 
|  | // account the above two patterns. | 
|  | Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, | 
|  | Instr2StageTy &Stages) const { | 
|  | // We treat virtual registers that are defined and used in this loop. | 
|  | // Following virtual register will be ignored | 
|  | //   - live-in one | 
|  | //   - defined but not used in the loop (potentially live-out) | 
|  | DenseSet<Register> TargetRegs; | 
|  | const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { | 
|  | if (isDefinedInThisLoop(Reg)) | 
|  | TargetRegs.insert(Reg); | 
|  | }; | 
|  | for (MachineInstr *MI : OrderedInsts) { | 
|  | if (MI->isPHI()) { | 
|  | Register Reg = getLoopPhiReg(*MI, OrigMBB); | 
|  | UpdateTargetRegs(Reg); | 
|  | } else { | 
|  | for (auto &Use : ROMap.find(MI)->getSecond().Uses) | 
|  | UpdateTargetRegs(Use.RegUnit); | 
|  | } | 
|  | } | 
|  |  | 
|  | const auto InstrScore = [&Stages](MachineInstr *MI) { | 
|  | return Stages[MI] + MI->isPHI(); | 
|  | }; | 
|  |  | 
|  | DenseMap<Register, MachineInstr *> LastUseMI; | 
|  | for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { | 
|  | for (auto &Use : ROMap.find(MI)->getSecond().Uses) { | 
|  | auto Reg = Use.RegUnit; | 
|  | if (!TargetRegs.contains(Reg)) | 
|  | continue; | 
|  | auto Ite = LastUseMI.find(Reg); | 
|  | if (Ite == LastUseMI.end()) { | 
|  | LastUseMI[Reg] = MI; | 
|  | } else { | 
|  | MachineInstr *Orig = Ite->second; | 
|  | MachineInstr *New = MI; | 
|  | if (InstrScore(Orig) < InstrScore(New)) | 
|  | LastUseMI[Reg] = New; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Instr2LastUsesTy LastUses; | 
|  | for (auto &Entry : LastUseMI) | 
|  | LastUses[Entry.second].insert(Entry.first); | 
|  | return LastUses; | 
|  | } | 
|  |  | 
|  | // Compute the maximum register pressure of the kernel. We'll simulate #Stage | 
|  | // iterations and check the register pressure at the point where all stages | 
|  | // overlapping. | 
|  | // | 
|  | // An example of unrolled loop where #Stage is 4.. | 
|  | // Iter   i+0 i+1 i+2 i+3 | 
|  | // ------------------------ | 
|  | // Stage   0 | 
|  | // Stage   1   0 | 
|  | // Stage   2   1   0 | 
|  | // Stage   3   2   1   0  <- All stages overlap | 
|  | // | 
|  | std::vector<unsigned> | 
|  | computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, | 
|  | Instr2StageTy &Stages, | 
|  | const unsigned StageCount) const { | 
|  | using RegSetTy = SmallDenseSet<Register, 16>; | 
|  |  | 
|  | // Indexed by #Iter. To treat "local" variables of each stage separately, we | 
|  | // manage the liveness of the registers independently by iterations. | 
|  | SmallVector<RegSetTy> LiveRegSets(StageCount); | 
|  |  | 
|  | auto CurSetPressure = InitSetPressure; | 
|  | auto MaxSetPressure = InitSetPressure; | 
|  | auto LastUses = computeLastUses(OrderedInsts, Stages); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Ordered instructions:\n"; | 
|  | for (MachineInstr *MI : OrderedInsts) { | 
|  | dbgs() << "Stage " << Stages[MI] << ": "; | 
|  | MI->dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, | 
|  | Register Reg) { | 
|  | if (!Reg.isValid() || isFixedRegister(Reg)) | 
|  | return; | 
|  |  | 
|  | bool Inserted = RegSet.insert(Reg).second; | 
|  | if (!Inserted) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); | 
|  | increaseRegisterPressure(CurSetPressure, Reg); | 
|  | LLVM_DEBUG(dumpPSet(Reg)); | 
|  | }; | 
|  |  | 
|  | const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, | 
|  | Register Reg) { | 
|  | if (!Reg.isValid() || isFixedRegister(Reg)) | 
|  | return; | 
|  |  | 
|  | // live-in register | 
|  | if (!RegSet.contains(Reg)) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); | 
|  | RegSet.erase(Reg); | 
|  | decreaseRegisterPressure(CurSetPressure, Reg); | 
|  | LLVM_DEBUG(dumpPSet(Reg)); | 
|  | }; | 
|  |  | 
|  | for (unsigned I = 0; I < StageCount; I++) { | 
|  | for (MachineInstr *MI : OrderedInsts) { | 
|  | const auto Stage = Stages[MI]; | 
|  | if (I < Stage) | 
|  | continue; | 
|  |  | 
|  | const unsigned Iter = I - Stage; | 
|  |  | 
|  | for (auto &Def : ROMap.find(MI)->getSecond().Defs) | 
|  | InsertReg(LiveRegSets[Iter], Def.RegUnit); | 
|  |  | 
|  | for (auto LastUse : LastUses[MI]) { | 
|  | if (MI->isPHI()) { | 
|  | if (Iter != 0) | 
|  | EraseReg(LiveRegSets[Iter - 1], LastUse); | 
|  | } else { | 
|  | EraseReg(LiveRegSets[Iter], LastUse); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned PSet = 0; PSet < PSetNum; PSet++) | 
|  | MaxSetPressure[PSet] = | 
|  | std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "CurSetPressure="; | 
|  | dumpRegisterPressures(CurSetPressure); | 
|  | dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; | 
|  | MI->dump(); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | return MaxSetPressure; | 
|  | } | 
|  |  | 
|  | public: | 
|  | HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, | 
|  | const MachineFunction &MF) | 
|  | : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), | 
|  | TRI(MF.getSubtarget().getRegisterInfo()), | 
|  | PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), | 
|  | PressureSetLimit(PSetNum, 0) {} | 
|  |  | 
|  | // Used to calculate register pressure, which is independent of loop | 
|  | // scheduling. | 
|  | void init(const RegisterClassInfo &RCI) { | 
|  | for (MachineInstr &MI : *OrigMBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  | ROMap[&MI].collect(MI, *TRI, MRI, false, true); | 
|  | } | 
|  |  | 
|  | computeLiveIn(); | 
|  | computePressureSetLimit(RCI); | 
|  | } | 
|  |  | 
|  | // Calculate the maximum register pressures of the loop and check if they | 
|  | // exceed the limit | 
|  | bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, | 
|  | const unsigned MaxStage) const { | 
|  | assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && | 
|  | "the percentage of the margin must be between 0 to 100"); | 
|  |  | 
|  | OrderedInstsTy OrderedInsts; | 
|  | Instr2StageTy Stages; | 
|  | computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); | 
|  | const auto MaxSetPressure = | 
|  | computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Dump MaxSetPressure:\n"; | 
|  | for (unsigned I = 0; I < MaxSetPressure.size(); I++) { | 
|  | dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); | 
|  | } | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  |  | 
|  | for (unsigned PSet = 0; PSet < PSetNum; PSet++) { | 
|  | unsigned Limit = PressureSetLimit[PSet]; | 
|  | unsigned Margin = Limit * RegPressureMargin / 100; | 
|  | LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit | 
|  | << " Margin=" << Margin << "\n"); | 
|  | if (Limit < MaxSetPressure[PSet] + Margin) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "Rejected the schedule because of too high register pressure\n"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Calculate the resource constrained minimum initiation interval for the | 
|  | /// specified loop. We use the DFA to model the resources needed for | 
|  | /// each instruction, and we ignore dependences. A different DFA is created | 
|  | /// for each cycle that is required. When adding a new instruction, we attempt | 
|  | /// to add it to each existing DFA, until a legal space is found. If the | 
|  | /// instruction cannot be reserved in an existing DFA, we create a new one. | 
|  | unsigned SwingSchedulerDAG::calculateResMII() { | 
|  | LLVM_DEBUG(dbgs() << "calculateResMII:\n"); | 
|  | ResourceManager RM(&MF.getSubtarget(), this); | 
|  | return RM.calculateResMII(); | 
|  | } | 
|  |  | 
|  | /// Calculate the recurrence-constrainted minimum initiation interval. | 
|  | /// Iterate over each circuit.  Compute the delay(c) and distance(c) | 
|  | /// for each circuit. The II needs to satisfy the inequality | 
|  | /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest | 
|  | /// II that satisfies the inequality, and the RecMII is the maximum | 
|  | /// of those values. | 
|  | unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { | 
|  | unsigned RecMII = 0; | 
|  |  | 
|  | for (NodeSet &Nodes : NodeSets) { | 
|  | if (Nodes.empty()) | 
|  | continue; | 
|  |  | 
|  | unsigned Delay = Nodes.getLatency(); | 
|  | unsigned Distance = 1; | 
|  |  | 
|  | // ii = ceil(delay / distance) | 
|  | unsigned CurMII = (Delay + Distance - 1) / Distance; | 
|  | Nodes.setRecMII(CurMII); | 
|  | if (CurMII > RecMII) | 
|  | RecMII = CurMII; | 
|  | } | 
|  |  | 
|  | return RecMII; | 
|  | } | 
|  |  | 
|  | /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | /// but we do this to find the circuits, and then change them back. | 
|  | static void swapAntiDependences(std::vector<SUnit> &SUnits) { | 
|  | SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; | 
|  | for (SUnit &SU : SUnits) { | 
|  | for (SDep &Pred : SU.Preds) | 
|  | if (Pred.getKind() == SDep::Anti) | 
|  | DepsAdded.push_back(std::make_pair(&SU, Pred)); | 
|  | } | 
|  | for (std::pair<SUnit *, SDep> &P : DepsAdded) { | 
|  | // Remove this anti dependency and add one in the reverse direction. | 
|  | SUnit *SU = P.first; | 
|  | SDep &D = P.second; | 
|  | SUnit *TargetSU = D.getSUnit(); | 
|  | unsigned Reg = D.getReg(); | 
|  | unsigned Lat = D.getLatency(); | 
|  | SU->removePred(D); | 
|  | SDep Dep(SU, SDep::Anti, Reg); | 
|  | Dep.setLatency(Lat); | 
|  | TargetSU->addPred(Dep); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create the adjacency structure of the nodes in the graph. | 
|  | void SwingSchedulerDAG::Circuits::createAdjacencyStructure( | 
|  | SwingSchedulerDAG *DAG) { | 
|  | BitVector Added(SUnits.size()); | 
|  | DenseMap<int, int> OutputDeps; | 
|  | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | Added.reset(); | 
|  | // Add any successor to the adjacency matrix and exclude duplicates. | 
|  | for (auto &SI : SUnits[i].Succs) { | 
|  | // Only create a back-edge on the first and last nodes of a dependence | 
|  | // chain. This records any chains and adds them later. | 
|  | if (SI.getKind() == SDep::Output) { | 
|  | int N = SI.getSUnit()->NodeNum; | 
|  | int BackEdge = i; | 
|  | auto Dep = OutputDeps.find(BackEdge); | 
|  | if (Dep != OutputDeps.end()) { | 
|  | BackEdge = Dep->second; | 
|  | OutputDeps.erase(Dep); | 
|  | } | 
|  | OutputDeps[N] = BackEdge; | 
|  | } | 
|  | // Do not process a boundary node, an artificial node. | 
|  | // A back-edge is processed only if it goes to a Phi. | 
|  | if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || | 
|  | (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) | 
|  | continue; | 
|  | int N = SI.getSUnit()->NodeNum; | 
|  | if (!Added.test(N)) { | 
|  | AdjK[i].push_back(N); | 
|  | Added.set(N); | 
|  | } | 
|  | } | 
|  | // A chain edge between a store and a load is treated as a back-edge in the | 
|  | // adjacency matrix. | 
|  | for (auto &PI : SUnits[i].Preds) { | 
|  | if (!SUnits[i].getInstr()->mayStore() || | 
|  | !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) | 
|  | continue; | 
|  | if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { | 
|  | int N = PI.getSUnit()->NodeNum; | 
|  | if (!Added.test(N)) { | 
|  | AdjK[i].push_back(N); | 
|  | Added.set(N); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Add back-edges in the adjacency matrix for the output dependences. | 
|  | for (auto &OD : OutputDeps) | 
|  | if (!Added.test(OD.second)) { | 
|  | AdjK[OD.first].push_back(OD.second); | 
|  | Added.set(OD.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify an elementary circuit in the dependence graph starting at the | 
|  | /// specified node. | 
|  | bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, | 
|  | bool HasBackedge) { | 
|  | SUnit *SV = &SUnits[V]; | 
|  | bool F = false; | 
|  | Stack.insert(SV); | 
|  | Blocked.set(V); | 
|  |  | 
|  | for (auto W : AdjK[V]) { | 
|  | if (NumPaths > MaxPaths) | 
|  | break; | 
|  | if (W < S) | 
|  | continue; | 
|  | if (W == S) { | 
|  | if (!HasBackedge) | 
|  | NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); | 
|  | F = true; | 
|  | ++NumPaths; | 
|  | break; | 
|  | } else if (!Blocked.test(W)) { | 
|  | if (circuit(W, S, NodeSets, | 
|  | Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) | 
|  | F = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (F) | 
|  | unblock(V); | 
|  | else { | 
|  | for (auto W : AdjK[V]) { | 
|  | if (W < S) | 
|  | continue; | 
|  | B[W].insert(SV); | 
|  | } | 
|  | } | 
|  | Stack.pop_back(); | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /// Unblock a node in the circuit finding algorithm. | 
|  | void SwingSchedulerDAG::Circuits::unblock(int U) { | 
|  | Blocked.reset(U); | 
|  | SmallPtrSet<SUnit *, 4> &BU = B[U]; | 
|  | while (!BU.empty()) { | 
|  | SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); | 
|  | assert(SI != BU.end() && "Invalid B set."); | 
|  | SUnit *W = *SI; | 
|  | BU.erase(W); | 
|  | if (Blocked.test(W->NodeNum)) | 
|  | unblock(W->NodeNum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify all the elementary circuits in the dependence graph using | 
|  | /// Johnson's circuit algorithm. | 
|  | void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { | 
|  | // Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | // but we do this to find the circuits, and then change them back. | 
|  | swapAntiDependences(SUnits); | 
|  |  | 
|  | Circuits Cir(SUnits, Topo); | 
|  | // Create the adjacency structure. | 
|  | Cir.createAdjacencyStructure(this); | 
|  | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | Cir.reset(); | 
|  | Cir.circuit(i, i, NodeSets); | 
|  | } | 
|  |  | 
|  | // Change the dependences back so that we've created a DAG again. | 
|  | swapAntiDependences(SUnits); | 
|  | } | 
|  |  | 
|  | // Create artificial dependencies between the source of COPY/REG_SEQUENCE that | 
|  | // is loop-carried to the USE in next iteration. This will help pipeliner avoid | 
|  | // additional copies that are needed across iterations. An artificial dependence | 
|  | // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. | 
|  |  | 
|  | // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) | 
|  | // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE | 
|  | // PHI-------True-Dep------> USEOfPhi | 
|  |  | 
|  | // The mutation creates | 
|  | // USEOfPHI -------Artificial-Dep---> SRCOfCopy | 
|  |  | 
|  | // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy | 
|  | // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled | 
|  | // late  to avoid additional copies across iterations. The possible scheduling | 
|  | // order would be | 
|  | // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE. | 
|  |  | 
|  | void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | for (SUnit &SU : DAG->SUnits) { | 
|  | // Find the COPY/REG_SEQUENCE instruction. | 
|  | if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) | 
|  | continue; | 
|  |  | 
|  | // Record the loop carried PHIs. | 
|  | SmallVector<SUnit *, 4> PHISUs; | 
|  | // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. | 
|  | SmallVector<SUnit *, 4> SrcSUs; | 
|  |  | 
|  | for (auto &Dep : SU.Preds) { | 
|  | SUnit *TmpSU = Dep.getSUnit(); | 
|  | MachineInstr *TmpMI = TmpSU->getInstr(); | 
|  | SDep::Kind DepKind = Dep.getKind(); | 
|  | // Save the loop carried PHI. | 
|  | if (DepKind == SDep::Anti && TmpMI->isPHI()) | 
|  | PHISUs.push_back(TmpSU); | 
|  | // Save the source of COPY/REG_SEQUENCE. | 
|  | // If the source has no pre-decessors, we will end up creating cycles. | 
|  | else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) | 
|  | SrcSUs.push_back(TmpSU); | 
|  | } | 
|  |  | 
|  | if (PHISUs.size() == 0 || SrcSUs.size() == 0) | 
|  | continue; | 
|  |  | 
|  | // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this | 
|  | // SUnit to the container. | 
|  | SmallVector<SUnit *, 8> UseSUs; | 
|  | // Do not use iterator based loop here as we are updating the container. | 
|  | for (size_t Index = 0; Index < PHISUs.size(); ++Index) { | 
|  | for (auto &Dep : PHISUs[Index]->Succs) { | 
|  | if (Dep.getKind() != SDep::Data) | 
|  | continue; | 
|  |  | 
|  | SUnit *TmpSU = Dep.getSUnit(); | 
|  | MachineInstr *TmpMI = TmpSU->getInstr(); | 
|  | if (TmpMI->isPHI() || TmpMI->isRegSequence()) { | 
|  | PHISUs.push_back(TmpSU); | 
|  | continue; | 
|  | } | 
|  | UseSUs.push_back(TmpSU); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UseSUs.size() == 0) | 
|  | continue; | 
|  |  | 
|  | SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); | 
|  | // Add the artificial dependencies if it does not form a cycle. | 
|  | for (auto *I : UseSUs) { | 
|  | for (auto *Src : SrcSUs) { | 
|  | if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { | 
|  | Src->addPred(SDep(I, SDep::Artificial)); | 
|  | SDAG->Topo.AddPred(Src, I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true for DAG nodes that we ignore when computing the cost functions. | 
|  | /// We ignore the back-edge recurrence in order to avoid unbounded recursion | 
|  | /// in the calculation of the ASAP, ALAP, etc functions. | 
|  | static bool ignoreDependence(const SDep &D, bool isPred) { | 
|  | if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) | 
|  | return true; | 
|  | return D.getKind() == SDep::Anti && isPred; | 
|  | } | 
|  |  | 
|  | /// Compute several functions need to order the nodes for scheduling. | 
|  | ///  ASAP - Earliest time to schedule a node. | 
|  | ///  ALAP - Latest time to schedule a node. | 
|  | ///  MOV - Mobility function, difference between ALAP and ASAP. | 
|  | ///  D - Depth of each node. | 
|  | ///  H - Height of each node. | 
|  | void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { | 
|  | ScheduleInfo.resize(SUnits.size()); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (int I : Topo) { | 
|  | const SUnit &SU = SUnits[I]; | 
|  | dumpNode(SU); | 
|  | } | 
|  | }); | 
|  |  | 
|  | int maxASAP = 0; | 
|  | // Compute ASAP and ZeroLatencyDepth. | 
|  | for (int I : Topo) { | 
|  | int asap = 0; | 
|  | int zeroLatencyDepth = 0; | 
|  | SUnit *SU = &SUnits[I]; | 
|  | for (const SDep &P : SU->Preds) { | 
|  | SUnit *pred = P.getSUnit(); | 
|  | if (P.getLatency() == 0) | 
|  | zeroLatencyDepth = | 
|  | std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); | 
|  | if (ignoreDependence(P, true)) | 
|  | continue; | 
|  | asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - | 
|  | getDistance(pred, SU, P) * MII)); | 
|  | } | 
|  | maxASAP = std::max(maxASAP, asap); | 
|  | ScheduleInfo[I].ASAP = asap; | 
|  | ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; | 
|  | } | 
|  |  | 
|  | // Compute ALAP, ZeroLatencyHeight, and MOV. | 
|  | for (int I : llvm::reverse(Topo)) { | 
|  | int alap = maxASAP; | 
|  | int zeroLatencyHeight = 0; | 
|  | SUnit *SU = &SUnits[I]; | 
|  | for (const SDep &S : SU->Succs) { | 
|  | SUnit *succ = S.getSUnit(); | 
|  | if (succ->isBoundaryNode()) | 
|  | continue; | 
|  | if (S.getLatency() == 0) | 
|  | zeroLatencyHeight = | 
|  | std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); | 
|  | if (ignoreDependence(S, true)) | 
|  | continue; | 
|  | alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + | 
|  | getDistance(SU, succ, S) * MII)); | 
|  | } | 
|  |  | 
|  | ScheduleInfo[I].ALAP = alap; | 
|  | ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; | 
|  | } | 
|  |  | 
|  | // After computing the node functions, compute the summary for each node set. | 
|  | for (NodeSet &I : NodeSets) | 
|  | I.computeNodeSetInfo(this); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (unsigned i = 0; i < SUnits.size(); i++) { | 
|  | dbgs() << "\tNode " << i << ":\n"; | 
|  | dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Compute the Pred_L(O) set, as defined in the paper. The set is defined | 
|  | /// as the predecessors of the elements of NodeOrder that are not also in | 
|  | /// NodeOrder. | 
|  | static bool pred_L(SetVector<SUnit *> &NodeOrder, | 
|  | SmallSetVector<SUnit *, 8> &Preds, | 
|  | const NodeSet *S = nullptr) { | 
|  | Preds.clear(); | 
|  | for (const SUnit *SU : NodeOrder) { | 
|  | for (const SDep &Pred : SU->Preds) { | 
|  | if (S && S->count(Pred.getSUnit()) == 0) | 
|  | continue; | 
|  | if (ignoreDependence(Pred, true)) | 
|  | continue; | 
|  | if (NodeOrder.count(Pred.getSUnit()) == 0) | 
|  | Preds.insert(Pred.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const SDep &Succ : SU->Succs) { | 
|  | if (Succ.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (S && S->count(Succ.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(Succ.getSUnit()) == 0) | 
|  | Preds.insert(Succ.getSUnit()); | 
|  | } | 
|  | } | 
|  | return !Preds.empty(); | 
|  | } | 
|  |  | 
|  | /// Compute the Succ_L(O) set, as defined in the paper. The set is defined | 
|  | /// as the successors of the elements of NodeOrder that are not also in | 
|  | /// NodeOrder. | 
|  | static bool succ_L(SetVector<SUnit *> &NodeOrder, | 
|  | SmallSetVector<SUnit *, 8> &Succs, | 
|  | const NodeSet *S = nullptr) { | 
|  | Succs.clear(); | 
|  | for (const SUnit *SU : NodeOrder) { | 
|  | for (const SDep &Succ : SU->Succs) { | 
|  | if (S && S->count(Succ.getSUnit()) == 0) | 
|  | continue; | 
|  | if (ignoreDependence(Succ, false)) | 
|  | continue; | 
|  | if (NodeOrder.count(Succ.getSUnit()) == 0) | 
|  | Succs.insert(Succ.getSUnit()); | 
|  | } | 
|  | for (const SDep &Pred : SU->Preds) { | 
|  | if (Pred.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (S && S->count(Pred.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(Pred.getSUnit()) == 0) | 
|  | Succs.insert(Pred.getSUnit()); | 
|  | } | 
|  | } | 
|  | return !Succs.empty(); | 
|  | } | 
|  |  | 
|  | /// Return true if there is a path from the specified node to any of the nodes | 
|  | /// in DestNodes. Keep track and return the nodes in any path. | 
|  | static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, | 
|  | SetVector<SUnit *> &DestNodes, | 
|  | SetVector<SUnit *> &Exclude, | 
|  | SmallPtrSet<SUnit *, 8> &Visited) { | 
|  | if (Cur->isBoundaryNode()) | 
|  | return false; | 
|  | if (Exclude.contains(Cur)) | 
|  | return false; | 
|  | if (DestNodes.contains(Cur)) | 
|  | return true; | 
|  | if (!Visited.insert(Cur).second) | 
|  | return Path.contains(Cur); | 
|  | bool FoundPath = false; | 
|  | for (auto &SI : Cur->Succs) | 
|  | if (!ignoreDependence(SI, false)) | 
|  | FoundPath |= | 
|  | computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | for (auto &PI : Cur->Preds) | 
|  | if (PI.getKind() == SDep::Anti) | 
|  | FoundPath |= | 
|  | computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | if (FoundPath) | 
|  | Path.insert(Cur); | 
|  | return FoundPath; | 
|  | } | 
|  |  | 
|  | /// Compute the live-out registers for the instructions in a node-set. | 
|  | /// The live-out registers are those that are defined in the node-set, | 
|  | /// but not used. Except for use operands of Phis. | 
|  | static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, | 
|  | NodeSet &NS) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SmallVector<RegisterMaskPair, 8> LiveOutRegs; | 
|  | SmallSet<unsigned, 4> Uses; | 
|  | for (SUnit *SU : NS) { | 
|  | const MachineInstr *MI = SU->getInstr(); | 
|  | if (MI->isPHI()) | 
|  | continue; | 
|  | for (const MachineOperand &MO : MI->all_uses()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg.isVirtual()) | 
|  | Uses.insert(Reg); | 
|  | else if (MRI.isAllocatable(Reg)) | 
|  | for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) | 
|  | Uses.insert(Unit); | 
|  | } | 
|  | } | 
|  | for (SUnit *SU : NS) | 
|  | for (const MachineOperand &MO : SU->getInstr()->all_defs()) | 
|  | if (!MO.isDead()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg.isVirtual()) { | 
|  | if (!Uses.count(Reg)) | 
|  | LiveOutRegs.push_back(RegisterMaskPair(Reg, | 
|  | LaneBitmask::getNone())); | 
|  | } else if (MRI.isAllocatable(Reg)) { | 
|  | for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) | 
|  | if (!Uses.count(Unit)) | 
|  | LiveOutRegs.push_back( | 
|  | RegisterMaskPair(Unit, LaneBitmask::getNone())); | 
|  | } | 
|  | } | 
|  | RPTracker.addLiveRegs(LiveOutRegs); | 
|  | } | 
|  |  | 
|  | /// A heuristic to filter nodes in recurrent node-sets if the register | 
|  | /// pressure of a set is too high. | 
|  | void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { | 
|  | for (auto &NS : NodeSets) { | 
|  | // Skip small node-sets since they won't cause register pressure problems. | 
|  | if (NS.size() <= 2) | 
|  | continue; | 
|  | IntervalPressure RecRegPressure; | 
|  | RegPressureTracker RecRPTracker(RecRegPressure); | 
|  | RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); | 
|  | computeLiveOuts(MF, RecRPTracker, NS); | 
|  | RecRPTracker.closeBottom(); | 
|  |  | 
|  | std::vector<SUnit *> SUnits(NS.begin(), NS.end()); | 
|  | llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { | 
|  | return A->NodeNum > B->NodeNum; | 
|  | }); | 
|  |  | 
|  | for (auto &SU : SUnits) { | 
|  | // Since we're computing the register pressure for a subset of the | 
|  | // instructions in a block, we need to set the tracker for each | 
|  | // instruction in the node-set. The tracker is set to the instruction | 
|  | // just after the one we're interested in. | 
|  | MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); | 
|  | RecRPTracker.setPos(std::next(CurInstI)); | 
|  |  | 
|  | RegPressureDelta RPDelta; | 
|  | ArrayRef<PressureChange> CriticalPSets; | 
|  | RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, | 
|  | CriticalPSets, | 
|  | RecRegPressure.MaxSetPressure); | 
|  | if (RPDelta.Excess.isValid()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " | 
|  | << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) | 
|  | << ":" << RPDelta.Excess.getUnitInc() << "\n"); | 
|  | NS.setExceedPressure(SU); | 
|  | break; | 
|  | } | 
|  | RecRPTracker.recede(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A heuristic to colocate node sets that have the same set of | 
|  | /// successors. | 
|  | void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { | 
|  | unsigned Colocate = 0; | 
|  | for (int i = 0, e = NodeSets.size(); i < e; ++i) { | 
|  | NodeSet &N1 = NodeSets[i]; | 
|  | SmallSetVector<SUnit *, 8> S1; | 
|  | if (N1.empty() || !succ_L(N1, S1)) | 
|  | continue; | 
|  | for (int j = i + 1; j < e; ++j) { | 
|  | NodeSet &N2 = NodeSets[j]; | 
|  | if (N1.compareRecMII(N2) != 0) | 
|  | continue; | 
|  | SmallSetVector<SUnit *, 8> S2; | 
|  | if (N2.empty() || !succ_L(N2, S2)) | 
|  | continue; | 
|  | if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { | 
|  | N1.setColocate(++Colocate); | 
|  | N2.setColocate(Colocate); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if the existing node-sets are profitable. If not, then ignore the | 
|  | /// recurrent node-sets, and attempt to schedule all nodes together. This is | 
|  | /// a heuristic. If the MII is large and all the recurrent node-sets are small, | 
|  | /// then it's best to try to schedule all instructions together instead of | 
|  | /// starting with the recurrent node-sets. | 
|  | void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { | 
|  | // Look for loops with a large MII. | 
|  | if (MII < 17) | 
|  | return; | 
|  | // Check if the node-set contains only a simple add recurrence. | 
|  | for (auto &NS : NodeSets) { | 
|  | if (NS.getRecMII() > 2) | 
|  | return; | 
|  | if (NS.getMaxDepth() > MII) | 
|  | return; | 
|  | } | 
|  | NodeSets.clear(); | 
|  | LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); | 
|  | } | 
|  |  | 
|  | /// Add the nodes that do not belong to a recurrence set into groups | 
|  | /// based upon connected components. | 
|  | void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { | 
|  | SetVector<SUnit *> NodesAdded; | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | // Add the nodes that are on a path between the previous node sets and | 
|  | // the current node set. | 
|  | for (NodeSet &I : NodeSets) { | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | // Add the nodes from the current node set to the previous node set. | 
|  | if (succ_L(I, N)) { | 
|  | SetVector<SUnit *> Path; | 
|  | for (SUnit *NI : N) { | 
|  | Visited.clear(); | 
|  | computePath(NI, Path, NodesAdded, I, Visited); | 
|  | } | 
|  | if (!Path.empty()) | 
|  | I.insert(Path.begin(), Path.end()); | 
|  | } | 
|  | // Add the nodes from the previous node set to the current node set. | 
|  | N.clear(); | 
|  | if (succ_L(NodesAdded, N)) { | 
|  | SetVector<SUnit *> Path; | 
|  | for (SUnit *NI : N) { | 
|  | Visited.clear(); | 
|  | computePath(NI, Path, I, NodesAdded, Visited); | 
|  | } | 
|  | if (!Path.empty()) | 
|  | I.insert(Path.begin(), Path.end()); | 
|  | } | 
|  | NodesAdded.insert(I.begin(), I.end()); | 
|  | } | 
|  |  | 
|  | // Create a new node set with the connected nodes of any successor of a node | 
|  | // in a recurrent set. | 
|  | NodeSet NewSet; | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (succ_L(NodesAdded, N)) | 
|  | for (SUnit *I : N) | 
|  | addConnectedNodes(I, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  |  | 
|  | // Create a new node set with the connected nodes of any predecessor of a node | 
|  | // in a recurrent set. | 
|  | NewSet.clear(); | 
|  | if (pred_L(NodesAdded, N)) | 
|  | for (SUnit *I : N) | 
|  | addConnectedNodes(I, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  |  | 
|  | // Create new nodes sets with the connected nodes any remaining node that | 
|  | // has no predecessor. | 
|  | for (SUnit &SU : SUnits) { | 
|  | if (NodesAdded.count(&SU) == 0) { | 
|  | NewSet.clear(); | 
|  | addConnectedNodes(&SU, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add the node to the set, and add all of its connected nodes to the set. | 
|  | void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, | 
|  | SetVector<SUnit *> &NodesAdded) { | 
|  | NewSet.insert(SU); | 
|  | NodesAdded.insert(SU); | 
|  | for (auto &SI : SU->Succs) { | 
|  | SUnit *Successor = SI.getSUnit(); | 
|  | if (!SI.isArtificial() && !Successor->isBoundaryNode() && | 
|  | NodesAdded.count(Successor) == 0) | 
|  | addConnectedNodes(Successor, NewSet, NodesAdded); | 
|  | } | 
|  | for (auto &PI : SU->Preds) { | 
|  | SUnit *Predecessor = PI.getSUnit(); | 
|  | if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) | 
|  | addConnectedNodes(Predecessor, NewSet, NodesAdded); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if Set1 contains elements in Set2. The elements in common | 
|  | /// are returned in a different container. | 
|  | static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, | 
|  | SmallSetVector<SUnit *, 8> &Result) { | 
|  | Result.clear(); | 
|  | for (SUnit *SU : Set1) { | 
|  | if (Set2.count(SU) != 0) | 
|  | Result.insert(SU); | 
|  | } | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | /// Merge the recurrence node sets that have the same initial node. | 
|  | void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { | 
|  | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | ++I) { | 
|  | NodeSet &NI = *I; | 
|  | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | NodeSet &NJ = *J; | 
|  | if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { | 
|  | if (NJ.compareRecMII(NI) > 0) | 
|  | NI.setRecMII(NJ.getRecMII()); | 
|  | for (SUnit *SU : *J) | 
|  | I->insert(SU); | 
|  | NodeSets.erase(J); | 
|  | E = NodeSets.end(); | 
|  | } else { | 
|  | ++J; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove nodes that have been scheduled in previous NodeSets. | 
|  | void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { | 
|  | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | ++I) | 
|  | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); | 
|  |  | 
|  | if (J->empty()) { | 
|  | NodeSets.erase(J); | 
|  | E = NodeSets.end(); | 
|  | } else { | 
|  | ++J; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compute an ordered list of the dependence graph nodes, which | 
|  | /// indicates the order that the nodes will be scheduled.  This is a | 
|  | /// two-level algorithm. First, a partial order is created, which | 
|  | /// consists of a list of sets ordered from highest to lowest priority. | 
|  | void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { | 
|  | SmallSetVector<SUnit *, 8> R; | 
|  | NodeOrder.clear(); | 
|  |  | 
|  | for (auto &Nodes : NodeSets) { | 
|  | LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); | 
|  | OrderKind Order; | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { | 
|  | R.insert(N.begin(), N.end()); | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "  Bottom up (preds) "); | 
|  | } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { | 
|  | R.insert(N.begin(), N.end()); | 
|  | Order = TopDown; | 
|  | LLVM_DEBUG(dbgs() << "  Top down (succs) "); | 
|  | } else if (isIntersect(N, Nodes, R)) { | 
|  | // If some of the successors are in the existing node-set, then use the | 
|  | // top-down ordering. | 
|  | Order = TopDown; | 
|  | LLVM_DEBUG(dbgs() << "  Top down (intersect) "); | 
|  | } else if (NodeSets.size() == 1) { | 
|  | for (const auto &N : Nodes) | 
|  | if (N->Succs.size() == 0) | 
|  | R.insert(N); | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "  Bottom up (all) "); | 
|  | } else { | 
|  | // Find the node with the highest ASAP. | 
|  | SUnit *maxASAP = nullptr; | 
|  | for (SUnit *SU : Nodes) { | 
|  | if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || | 
|  | (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) | 
|  | maxASAP = SU; | 
|  | } | 
|  | R.insert(maxASAP); | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "  Bottom up (default) "); | 
|  | } | 
|  |  | 
|  | while (!R.empty()) { | 
|  | if (Order == TopDown) { | 
|  | // Choose the node with the maximum height.  If more than one, choose | 
|  | // the node wiTH the maximum ZeroLatencyHeight. If still more than one, | 
|  | // choose the node with the lowest MOV. | 
|  | while (!R.empty()) { | 
|  | SUnit *maxHeight = nullptr; | 
|  | for (SUnit *I : R) { | 
|  | if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) | 
|  | maxHeight = I; | 
|  | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) | 
|  | maxHeight = I; | 
|  | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | getZeroLatencyHeight(I) == | 
|  | getZeroLatencyHeight(maxHeight) && | 
|  | getMOV(I) < getMOV(maxHeight)) | 
|  | maxHeight = I; | 
|  | } | 
|  | NodeOrder.insert(maxHeight); | 
|  | LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); | 
|  | R.remove(maxHeight); | 
|  | for (const auto &I : maxHeight->Succs) { | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.contains(I.getSUnit())) | 
|  | continue; | 
|  | if (ignoreDependence(I, false)) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const auto &I : maxHeight->Preds) { | 
|  | if (I.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.contains(I.getSUnit())) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | } | 
|  | Order = BottomUp; | 
|  | LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up "); | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (pred_L(NodeOrder, N, &Nodes)) | 
|  | R.insert(N.begin(), N.end()); | 
|  | } else { | 
|  | // Choose the node with the maximum depth.  If more than one, choose | 
|  | // the node with the maximum ZeroLatencyDepth. If still more than one, | 
|  | // choose the node with the lowest MOV. | 
|  | while (!R.empty()) { | 
|  | SUnit *maxDepth = nullptr; | 
|  | for (SUnit *I : R) { | 
|  | if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) | 
|  | maxDepth = I; | 
|  | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) | 
|  | maxDepth = I; | 
|  | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && | 
|  | getMOV(I) < getMOV(maxDepth)) | 
|  | maxDepth = I; | 
|  | } | 
|  | NodeOrder.insert(maxDepth); | 
|  | LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); | 
|  | R.remove(maxDepth); | 
|  | if (Nodes.isExceedSU(maxDepth)) { | 
|  | Order = TopDown; | 
|  | R.clear(); | 
|  | R.insert(Nodes.getNode(0)); | 
|  | break; | 
|  | } | 
|  | for (const auto &I : maxDepth->Preds) { | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.contains(I.getSUnit())) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const auto &I : maxDepth->Succs) { | 
|  | if (I.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.contains(I.getSUnit())) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | } | 
|  | Order = TopDown; | 
|  | LLVM_DEBUG(dbgs() << "\n   Switching order to top down "); | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (succ_L(NodeOrder, N, &Nodes)) | 
|  | R.insert(N.begin(), N.end()); | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Node order: "; | 
|  | for (SUnit *I : NodeOrder) | 
|  | dbgs() << " " << I->NodeNum << " "; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Process the nodes in the computed order and create the pipelined schedule | 
|  | /// of the instructions, if possible. Return true if a schedule is found. | 
|  | bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { | 
|  |  | 
|  | if (NodeOrder.empty()){ | 
|  | LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool scheduleFound = false; | 
|  | std::unique_ptr<HighRegisterPressureDetector> HRPDetector; | 
|  | if (LimitRegPressure) { | 
|  | HRPDetector = | 
|  | std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); | 
|  | HRPDetector->init(RegClassInfo); | 
|  | } | 
|  | // Keep increasing II until a valid schedule is found. | 
|  | for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { | 
|  | Schedule.reset(); | 
|  | Schedule.setInitiationInterval(II); | 
|  | LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); | 
|  |  | 
|  | SetVector<SUnit *>::iterator NI = NodeOrder.begin(); | 
|  | SetVector<SUnit *>::iterator NE = NodeOrder.end(); | 
|  | do { | 
|  | SUnit *SU = *NI; | 
|  |  | 
|  | // Compute the schedule time for the instruction, which is based | 
|  | // upon the scheduled time for any predecessors/successors. | 
|  | int EarlyStart = INT_MIN; | 
|  | int LateStart = INT_MAX; | 
|  | // These values are set when the size of the schedule window is limited | 
|  | // due to chain dependences. | 
|  | int SchedEnd = INT_MAX; | 
|  | int SchedStart = INT_MIN; | 
|  | Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, | 
|  | II, this); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\n"; | 
|  | dbgs() << "Inst (" << SU->NodeNum << ") "; | 
|  | SU->getInstr()->dump(); | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, | 
|  | LateStart, SchedEnd, SchedStart); | 
|  | }); | 
|  |  | 
|  | if (EarlyStart > LateStart || SchedEnd < EarlyStart || | 
|  | SchedStart > LateStart) | 
|  | scheduleFound = false; | 
|  | else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { | 
|  | SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); | 
|  | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { | 
|  | SchedStart = std::max(SchedStart, LateStart - (int)II + 1); | 
|  | scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); | 
|  | } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { | 
|  | SchedEnd = | 
|  | std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); | 
|  | // When scheduling a Phi it is better to start at the late cycle and go | 
|  | // backwards. The default order may insert the Phi too far away from | 
|  | // its first dependence. | 
|  | if (SU->getInstr()->isPHI()) | 
|  | scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); | 
|  | else | 
|  | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | } else { | 
|  | int FirstCycle = Schedule.getFirstCycle(); | 
|  | scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), | 
|  | FirstCycle + getASAP(SU) + II - 1, II); | 
|  | } | 
|  | // Even if we find a schedule, make sure the schedule doesn't exceed the | 
|  | // allowable number of stages. We keep trying if this happens. | 
|  | if (scheduleFound) | 
|  | if (SwpMaxStages > -1 && | 
|  | Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) | 
|  | scheduleFound = false; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (!scheduleFound) | 
|  | dbgs() << "\tCan't schedule\n"; | 
|  | }); | 
|  | } while (++NI != NE && scheduleFound); | 
|  |  | 
|  | // If a schedule is found, ensure non-pipelined instructions are in stage 0 | 
|  | if (scheduleFound) | 
|  | scheduleFound = | 
|  | Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); | 
|  |  | 
|  | // If a schedule is found, check if it is a valid schedule too. | 
|  | if (scheduleFound) | 
|  | scheduleFound = Schedule.isValidSchedule(this); | 
|  |  | 
|  | // If a schedule was found and the option is enabled, check if the schedule | 
|  | // might generate additional register spills/fills. | 
|  | if (scheduleFound && LimitRegPressure) | 
|  | scheduleFound = | 
|  | !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound | 
|  | << " (II=" << Schedule.getInitiationInterval() | 
|  | << ")\n"); | 
|  |  | 
|  | if (scheduleFound) { | 
|  | scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); | 
|  | if (!scheduleFound) | 
|  | LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); | 
|  | } | 
|  |  | 
|  | if (scheduleFound) { | 
|  | Schedule.finalizeSchedule(this); | 
|  | Pass.ORE->emit([&]() { | 
|  | return MachineOptimizationRemarkAnalysis( | 
|  | DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) | 
|  | << "Schedule found with Initiation Interval: " | 
|  | << ore::NV("II", Schedule.getInitiationInterval()) | 
|  | << ", MaxStageCount: " | 
|  | << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); | 
|  | }); | 
|  | } else | 
|  | Schedule.reset(); | 
|  |  | 
|  | return scheduleFound && Schedule.getMaxStageCount() > 0; | 
|  | } | 
|  |  | 
|  | /// Return true if we can compute the amount the instruction changes | 
|  | /// during each iteration. Set Delta to the amount of the change. | 
|  | bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | const MachineOperand *BaseOp; | 
|  | int64_t Offset; | 
|  | bool OffsetIsScalable; | 
|  | if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: This algorithm assumes instructions have fixed-size offsets. | 
|  | if (OffsetIsScalable) | 
|  | return false; | 
|  |  | 
|  | if (!BaseOp->isReg()) | 
|  | return false; | 
|  |  | 
|  | Register BaseReg = BaseOp->getReg(); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | // Check if there is a Phi. If so, get the definition in the loop. | 
|  | MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); | 
|  | if (BaseDef && BaseDef->isPHI()) { | 
|  | BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); | 
|  | BaseDef = MRI.getVRegDef(BaseReg); | 
|  | } | 
|  | if (!BaseDef) | 
|  | return false; | 
|  |  | 
|  | int D = 0; | 
|  | if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) | 
|  | return false; | 
|  |  | 
|  | Delta = D; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if we can change the instruction to use an offset value from the | 
|  | /// previous iteration. If so, return true and set the base and offset values | 
|  | /// so that we can rewrite the load, if necessary. | 
|  | ///   v1 = Phi(v0, v3) | 
|  | ///   v2 = load v1, 0 | 
|  | ///   v3 = post_store v1, 4, x | 
|  | /// This function enables the load to be rewritten as v2 = load v3, 4. | 
|  | bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, | 
|  | unsigned &BasePos, | 
|  | unsigned &OffsetPos, | 
|  | unsigned &NewBase, | 
|  | int64_t &Offset) { | 
|  | // Get the load instruction. | 
|  | if (TII->isPostIncrement(*MI)) | 
|  | return false; | 
|  | unsigned BasePosLd, OffsetPosLd; | 
|  | if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) | 
|  | return false; | 
|  | Register BaseReg = MI->getOperand(BasePosLd).getReg(); | 
|  |  | 
|  | // Look for the Phi instruction. | 
|  | MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); | 
|  | MachineInstr *Phi = MRI.getVRegDef(BaseReg); | 
|  | if (!Phi || !Phi->isPHI()) | 
|  | return false; | 
|  | // Get the register defined in the loop block. | 
|  | unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); | 
|  | if (!PrevReg) | 
|  | return false; | 
|  |  | 
|  | // Check for the post-increment load/store instruction. | 
|  | MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); | 
|  | if (!PrevDef || PrevDef == MI) | 
|  | return false; | 
|  |  | 
|  | if (!TII->isPostIncrement(*PrevDef)) | 
|  | return false; | 
|  |  | 
|  | unsigned BasePos1 = 0, OffsetPos1 = 0; | 
|  | if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the instructions do not access the same memory location in | 
|  | // the next iteration. | 
|  | int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); | 
|  | int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); | 
|  | bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); | 
|  | MF.deleteMachineInstr(NewMI); | 
|  | if (!Disjoint) | 
|  | return false; | 
|  |  | 
|  | // Set the return value once we determine that we return true. | 
|  | BasePos = BasePosLd; | 
|  | OffsetPos = OffsetPosLd; | 
|  | NewBase = PrevReg; | 
|  | Offset = StoreOffset; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Apply changes to the instruction if needed. The changes are need | 
|  | /// to improve the scheduling and depend up on the final schedule. | 
|  | void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, | 
|  | SMSchedule &Schedule) { | 
|  | SUnit *SU = getSUnit(MI); | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) { | 
|  | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
|  | return; | 
|  | Register BaseReg = MI->getOperand(BasePos).getReg(); | 
|  | MachineInstr *LoopDef = findDefInLoop(BaseReg); | 
|  | int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); | 
|  | int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); | 
|  | int BaseStageNum = Schedule.stageScheduled(SU); | 
|  | int BaseCycleNum = Schedule.cycleScheduled(SU); | 
|  | if (BaseStageNum < DefStageNum) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | int OffsetDiff = DefStageNum - BaseStageNum; | 
|  | if (DefCycleNum < BaseCycleNum) { | 
|  | NewMI->getOperand(BasePos).setReg(RegAndOffset.first); | 
|  | if (OffsetDiff > 0) | 
|  | --OffsetDiff; | 
|  | } | 
|  | int64_t NewOffset = | 
|  | MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | SU->setInstr(NewMI); | 
|  | MISUnitMap[NewMI] = SU; | 
|  | NewMIs[MI] = NewMI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the instruction in the loop that defines the register. | 
|  | /// If the definition is a Phi, then follow the Phi operand to | 
|  | /// the instruction in the loop. | 
|  | MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { | 
|  | SmallPtrSet<MachineInstr *, 8> Visited; | 
|  | MachineInstr *Def = MRI.getVRegDef(Reg); | 
|  | while (Def->isPHI()) { | 
|  | if (!Visited.insert(Def).second) | 
|  | break; | 
|  | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) | 
|  | if (Def->getOperand(i + 1).getMBB() == BB) { | 
|  | Def = MRI.getVRegDef(Def->getOperand(i).getReg()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | /// Return true for an order or output dependence that is loop carried | 
|  | /// potentially. A dependence is loop carried if the destination defines a value | 
|  | /// that may be used or defined by the source in a subsequent iteration. | 
|  | bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, | 
|  | bool isSucc) { | 
|  | if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || | 
|  | Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) | 
|  | return false; | 
|  |  | 
|  | if (!SwpPruneLoopCarried) | 
|  | return true; | 
|  |  | 
|  | if (Dep.getKind() == SDep::Output) | 
|  | return true; | 
|  |  | 
|  | MachineInstr *SI = Source->getInstr(); | 
|  | MachineInstr *DI = Dep.getSUnit()->getInstr(); | 
|  | if (!isSucc) | 
|  | std::swap(SI, DI); | 
|  | assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); | 
|  |  | 
|  | // Assume ordered loads and stores may have a loop carried dependence. | 
|  | if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || | 
|  | SI->mayRaiseFPException() || DI->mayRaiseFPException() || | 
|  | SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) | 
|  | return true; | 
|  |  | 
|  | if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) | 
|  | return false; | 
|  |  | 
|  | // The conservative assumption is that a dependence between memory operations | 
|  | // may be loop carried. The following code checks when it can be proved that | 
|  | // there is no loop carried dependence. | 
|  | unsigned DeltaS, DeltaD; | 
|  | if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) | 
|  | return true; | 
|  |  | 
|  | const MachineOperand *BaseOpS, *BaseOpD; | 
|  | int64_t OffsetS, OffsetD; | 
|  | bool OffsetSIsScalable, OffsetDIsScalable; | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, | 
|  | TRI) || | 
|  | !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, | 
|  | TRI)) | 
|  | return true; | 
|  |  | 
|  | assert(!OffsetSIsScalable && !OffsetDIsScalable && | 
|  | "Expected offsets to be byte offsets"); | 
|  |  | 
|  | MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); | 
|  | MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); | 
|  | if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) | 
|  | return true; | 
|  |  | 
|  | unsigned InitValS = 0; | 
|  | unsigned LoopValS = 0; | 
|  | unsigned InitValD = 0; | 
|  | unsigned LoopValD = 0; | 
|  | getPhiRegs(*DefS, BB, InitValS, LoopValS); | 
|  | getPhiRegs(*DefD, BB, InitValD, LoopValD); | 
|  | MachineInstr *InitDefS = MRI.getVRegDef(InitValS); | 
|  | MachineInstr *InitDefD = MRI.getVRegDef(InitValD); | 
|  |  | 
|  | if (!InitDefS->isIdenticalTo(*InitDefD)) | 
|  | return true; | 
|  |  | 
|  | // Check that the base register is incremented by a constant value for each | 
|  | // iteration. | 
|  | MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); | 
|  | int D = 0; | 
|  | if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) | 
|  | return true; | 
|  |  | 
|  | LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); | 
|  | LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); | 
|  |  | 
|  | // This is the main test, which checks the offset values and the loop | 
|  | // increment value to determine if the accesses may be loop carried. | 
|  | if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) | 
|  | return true; | 
|  |  | 
|  | if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || | 
|  | DeltaD < AccessSizeD.getValue()) | 
|  | return true; | 
|  |  | 
|  | return (OffsetS + (int64_t)AccessSizeS.getValue() < | 
|  | OffsetD + (int64_t)AccessSizeD.getValue()); | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::postProcessDAG() { | 
|  | for (auto &M : Mutations) | 
|  | M->apply(this); | 
|  | } | 
|  |  | 
|  | /// Try to schedule the node at the specified StartCycle and continue | 
|  | /// until the node is schedule or the EndCycle is reached.  This function | 
|  | /// returns true if the node is scheduled.  This routine may search either | 
|  | /// forward or backward for a place to insert the instruction based upon | 
|  | /// the relative values of StartCycle and EndCycle. | 
|  | bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { | 
|  | bool forward = true; | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Trying to insert node between " << StartCycle << " and " | 
|  | << EndCycle << " II: " << II << "\n"; | 
|  | }); | 
|  | if (StartCycle > EndCycle) | 
|  | forward = false; | 
|  |  | 
|  | // The terminating condition depends on the direction. | 
|  | int termCycle = forward ? EndCycle + 1 : EndCycle - 1; | 
|  | for (int curCycle = StartCycle; curCycle != termCycle; | 
|  | forward ? ++curCycle : --curCycle) { | 
|  |  | 
|  | if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || | 
|  | ProcItinResources.canReserveResources(*SU, curCycle)) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\tinsert at cycle " << curCycle << " "; | 
|  | SU->getInstr()->dump(); | 
|  | }); | 
|  |  | 
|  | if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) | 
|  | ProcItinResources.reserveResources(*SU, curCycle); | 
|  | ScheduledInstrs[curCycle].push_back(SU); | 
|  | InstrToCycle.insert(std::make_pair(SU, curCycle)); | 
|  | if (curCycle > LastCycle) | 
|  | LastCycle = curCycle; | 
|  | if (curCycle < FirstCycle) | 
|  | FirstCycle = curCycle; | 
|  | return true; | 
|  | } | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\tfailed to insert at cycle " << curCycle << " "; | 
|  | SU->getInstr()->dump(); | 
|  | }); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return the cycle of the earliest scheduled instruction in the chain. | 
|  | int SMSchedule::earliestCycleInChain(const SDep &Dep) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SDep, 8> Worklist; | 
|  | Worklist.push_back(Dep); | 
|  | int EarlyCycle = INT_MAX; | 
|  | while (!Worklist.empty()) { | 
|  | const SDep &Cur = Worklist.pop_back_val(); | 
|  | SUnit *PrevSU = Cur.getSUnit(); | 
|  | if (Visited.count(PrevSU)) | 
|  | continue; | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); | 
|  | if (it == InstrToCycle.end()) | 
|  | continue; | 
|  | EarlyCycle = std::min(EarlyCycle, it->second); | 
|  | for (const auto &PI : PrevSU->Preds) | 
|  | if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) | 
|  | Worklist.push_back(PI); | 
|  | Visited.insert(PrevSU); | 
|  | } | 
|  | return EarlyCycle; | 
|  | } | 
|  |  | 
|  | // Return the cycle of the latest scheduled instruction in the chain. | 
|  | int SMSchedule::latestCycleInChain(const SDep &Dep) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SDep, 8> Worklist; | 
|  | Worklist.push_back(Dep); | 
|  | int LateCycle = INT_MIN; | 
|  | while (!Worklist.empty()) { | 
|  | const SDep &Cur = Worklist.pop_back_val(); | 
|  | SUnit *SuccSU = Cur.getSUnit(); | 
|  | if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) | 
|  | continue; | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); | 
|  | if (it == InstrToCycle.end()) | 
|  | continue; | 
|  | LateCycle = std::max(LateCycle, it->second); | 
|  | for (const auto &SI : SuccSU->Succs) | 
|  | if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) | 
|  | Worklist.push_back(SI); | 
|  | Visited.insert(SuccSU); | 
|  | } | 
|  | return LateCycle; | 
|  | } | 
|  |  | 
|  | /// If an instruction has a use that spans multiple iterations, then | 
|  | /// return true. These instructions are characterized by having a back-ege | 
|  | /// to a Phi, which contains a reference to another Phi. | 
|  | static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { | 
|  | for (auto &P : SU->Preds) | 
|  | if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) | 
|  | for (auto &S : P.getSUnit()->Succs) | 
|  | if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) | 
|  | return P.getSUnit(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Compute the scheduling start slot for the instruction.  The start slot | 
|  | /// depends on any predecessor or successor nodes scheduled already. | 
|  | void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, | 
|  | int *MinEnd, int *MaxStart, int II, | 
|  | SwingSchedulerDAG *DAG) { | 
|  | // Iterate over each instruction that has been scheduled already.  The start | 
|  | // slot computation depends on whether the previously scheduled instruction | 
|  | // is a predecessor or successor of the specified instruction. | 
|  | for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { | 
|  |  | 
|  | // Iterate over each instruction in the current cycle. | 
|  | for (SUnit *I : getInstructions(cycle)) { | 
|  | // Because we're processing a DAG for the dependences, we recognize | 
|  | // the back-edge in recurrences by anti dependences. | 
|  | for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { | 
|  | const SDep &Dep = SU->Preds[i]; | 
|  | if (Dep.getSUnit() == I) { | 
|  | if (!DAG->isBackedge(SU, Dep)) { | 
|  | int EarlyStart = cycle + Dep.getLatency() - | 
|  | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | if (DAG->isLoopCarriedDep(SU, Dep, false)) { | 
|  | int End = earliestCycleInChain(Dep) + (II - 1); | 
|  | *MinEnd = std::min(*MinEnd, End); | 
|  | } | 
|  | } else { | 
|  | int LateStart = cycle - Dep.getLatency() + | 
|  | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | } | 
|  | } | 
|  | // For instruction that requires multiple iterations, make sure that | 
|  | // the dependent instruction is not scheduled past the definition. | 
|  | SUnit *BE = multipleIterations(I, DAG); | 
|  | if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && | 
|  | !SU->isPred(I)) | 
|  | *MinLateStart = std::min(*MinLateStart, cycle); | 
|  | } | 
|  | for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { | 
|  | if (SU->Succs[i].getSUnit() == I) { | 
|  | const SDep &Dep = SU->Succs[i]; | 
|  | if (!DAG->isBackedge(SU, Dep)) { | 
|  | int LateStart = cycle - Dep.getLatency() + | 
|  | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | if (DAG->isLoopCarriedDep(SU, Dep)) { | 
|  | int Start = latestCycleInChain(Dep) + 1 - II; | 
|  | *MaxStart = std::max(*MaxStart, Start); | 
|  | } | 
|  | } else { | 
|  | int EarlyStart = cycle + Dep.getLatency() - | 
|  | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Order the instructions within a cycle so that the definitions occur | 
|  | /// before the uses. Returns true if the instruction is added to the start | 
|  | /// of the list, or false if added to the end. | 
|  | void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, | 
|  | std::deque<SUnit *> &Insts) const { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | bool OrderBeforeUse = false; | 
|  | bool OrderAfterDef = false; | 
|  | bool OrderBeforeDef = false; | 
|  | unsigned MoveDef = 0; | 
|  | unsigned MoveUse = 0; | 
|  | int StageInst1 = stageScheduled(SU); | 
|  |  | 
|  | unsigned Pos = 0; | 
|  | for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; | 
|  | ++I, ++Pos) { | 
|  | for (MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.getReg().isVirtual()) | 
|  | continue; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
|  | if (MI->getOperand(BasePos).getReg() == Reg) | 
|  | if (unsigned NewReg = SSD->getInstrBaseReg(SU)) | 
|  | Reg = NewReg; | 
|  | bool Reads, Writes; | 
|  | std::tie(Reads, Writes) = | 
|  | (*I)->getInstr()->readsWritesVirtualRegister(Reg); | 
|  | if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { | 
|  | // Add the instruction after the scheduled instruction. | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { | 
|  | if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | if (MoveUse != 0) { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos - 1; | 
|  | } | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { | 
|  | // Add the instruction before the scheduled instruction. | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && | 
|  | isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { | 
|  | if (MoveUse == 0) { | 
|  | OrderBeforeDef = true; | 
|  | MoveUse = Pos; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Check for order dependences between instructions. Make sure the source | 
|  | // is ordered before the destination. | 
|  | for (auto &S : SU->Succs) { | 
|  | if (S.getSUnit() != *I) | 
|  | continue; | 
|  | if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (Pos < MoveUse) | 
|  | MoveUse = Pos; | 
|  | } | 
|  | // We did not handle HW dependences in previous for loop, | 
|  | // and we normally set Latency = 0 for Anti deps, | 
|  | // so may have nodes in same cycle with Anti denpendent on HW regs. | 
|  | else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if ((MoveUse == 0) || (Pos < MoveUse)) | 
|  | MoveUse = Pos; | 
|  | } | 
|  | } | 
|  | for (auto &P : SU->Preds) { | 
|  | if (P.getSUnit() != *I) | 
|  | continue; | 
|  | if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // A circular dependence. | 
|  | if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) | 
|  | OrderBeforeUse = false; | 
|  |  | 
|  | // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due | 
|  | // to a loop-carried dependence. | 
|  | if (OrderBeforeDef) | 
|  | OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); | 
|  |  | 
|  | // The uncommon case when the instruction order needs to be updated because | 
|  | // there is both a use and def. | 
|  | if (OrderBeforeUse && OrderAfterDef) { | 
|  | SUnit *UseSU = Insts.at(MoveUse); | 
|  | SUnit *DefSU = Insts.at(MoveDef); | 
|  | if (MoveUse > MoveDef) { | 
|  | Insts.erase(Insts.begin() + MoveUse); | 
|  | Insts.erase(Insts.begin() + MoveDef); | 
|  | } else { | 
|  | Insts.erase(Insts.begin() + MoveDef); | 
|  | Insts.erase(Insts.begin() + MoveUse); | 
|  | } | 
|  | orderDependence(SSD, UseSU, Insts); | 
|  | orderDependence(SSD, SU, Insts); | 
|  | orderDependence(SSD, DefSU, Insts); | 
|  | return; | 
|  | } | 
|  | // Put the new instruction first if there is a use in the list. Otherwise, | 
|  | // put it at the end of the list. | 
|  | if (OrderBeforeUse) | 
|  | Insts.push_front(SU); | 
|  | else | 
|  | Insts.push_back(SU); | 
|  | } | 
|  |  | 
|  | /// Return true if the scheduled Phi has a loop carried operand. | 
|  | bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, | 
|  | MachineInstr &Phi) const { | 
|  | if (!Phi.isPHI()) | 
|  | return false; | 
|  | assert(Phi.isPHI() && "Expecting a Phi."); | 
|  | SUnit *DefSU = SSD->getSUnit(&Phi); | 
|  | unsigned DefCycle = cycleScheduled(DefSU); | 
|  | int DefStage = stageScheduled(DefSU); | 
|  |  | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); | 
|  | SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); | 
|  | if (!UseSU) | 
|  | return true; | 
|  | if (UseSU->getInstr()->isPHI()) | 
|  | return true; | 
|  | unsigned LoopCycle = cycleScheduled(UseSU); | 
|  | int LoopStage = stageScheduled(UseSU); | 
|  | return (LoopCycle > DefCycle) || (LoopStage <= DefStage); | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction is a definition that is loop carried | 
|  | /// and defines the use on the next iteration. | 
|  | ///        v1 = phi(v2, v3) | 
|  | ///  (Def) v3 = op v1 | 
|  | ///  (MO)   = v1 | 
|  | /// If MO appears before Def, then v1 and v3 may get assigned to the same | 
|  | /// register. | 
|  | bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, | 
|  | MachineInstr *Def, | 
|  | MachineOperand &MO) const { | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  | if (Def->isPHI()) | 
|  | return false; | 
|  | MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); | 
|  | if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) | 
|  | return false; | 
|  | if (!isLoopCarried(SSD, *Phi)) | 
|  | return false; | 
|  | unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); | 
|  | for (MachineOperand &DMO : Def->all_defs()) { | 
|  | if (DMO.getReg() == LoopReg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine transitive dependences of unpipelineable instructions | 
|  | SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( | 
|  | SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { | 
|  | SmallSet<SUnit *, 8> DoNotPipeline; | 
|  | SmallVector<SUnit *, 8> Worklist; | 
|  |  | 
|  | for (auto &SU : SSD->SUnits) | 
|  | if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) | 
|  | Worklist.push_back(&SU); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | auto SU = Worklist.pop_back_val(); | 
|  | if (DoNotPipeline.count(SU)) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); | 
|  | DoNotPipeline.insert(SU); | 
|  | for (auto &Dep : SU->Preds) | 
|  | Worklist.push_back(Dep.getSUnit()); | 
|  | if (SU->getInstr()->isPHI()) | 
|  | for (auto &Dep : SU->Succs) | 
|  | if (Dep.getKind() == SDep::Anti) | 
|  | Worklist.push_back(Dep.getSUnit()); | 
|  | } | 
|  | return DoNotPipeline; | 
|  | } | 
|  |  | 
|  | // Determine all instructions upon which any unpipelineable instruction depends | 
|  | // and ensure that they are in stage 0.  If unable to do so, return false. | 
|  | bool SMSchedule::normalizeNonPipelinedInstructions( | 
|  | SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { | 
|  | SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); | 
|  |  | 
|  | int NewLastCycle = INT_MIN; | 
|  | for (SUnit &SU : SSD->SUnits) { | 
|  | if (!SU.isInstr()) | 
|  | continue; | 
|  | if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { | 
|  | NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Put the non-pipelined instruction as early as possible in the schedule | 
|  | int NewCycle = getFirstCycle(); | 
|  | for (auto &Dep : SU.Preds) | 
|  | NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); | 
|  |  | 
|  | int OldCycle = InstrToCycle[&SU]; | 
|  | if (OldCycle != NewCycle) { | 
|  | InstrToCycle[&SU] = NewCycle; | 
|  | auto &OldS = getInstructions(OldCycle); | 
|  | llvm::erase(OldS, &SU); | 
|  | getInstructions(NewCycle).emplace_back(&SU); | 
|  | LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum | 
|  | << ") is not pipelined; moving from cycle " << OldCycle | 
|  | << " to " << NewCycle << " Instr:" << *SU.getInstr()); | 
|  | } | 
|  | NewLastCycle = std::max(NewLastCycle, NewCycle); | 
|  | } | 
|  | LastCycle = NewLastCycle; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the generated schedule is valid. This function checks if | 
|  | // an instruction that uses a physical register is scheduled in a | 
|  | // different stage than the definition. The pipeliner does not handle | 
|  | // physical register values that may cross a basic block boundary. | 
|  | // Furthermore, if a physical def/use pair is assigned to the same | 
|  | // cycle, orderDependence does not guarantee def/use ordering, so that | 
|  | // case should be considered invalid.  (The test checks for both | 
|  | // earlier and same-cycle use to be more robust.) | 
|  | bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { | 
|  | for (SUnit &SU : SSD->SUnits) { | 
|  | if (!SU.hasPhysRegDefs) | 
|  | continue; | 
|  | int StageDef = stageScheduled(&SU); | 
|  | int CycleDef = InstrToCycle[&SU]; | 
|  | assert(StageDef != -1 && "Instruction should have been scheduled."); | 
|  | for (auto &SI : SU.Succs) | 
|  | if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) | 
|  | if (Register::isPhysicalRegister(SI.getReg())) { | 
|  | if (stageScheduled(SI.getSUnit()) != StageDef) | 
|  | return false; | 
|  | if (InstrToCycle[SI.getSUnit()] <= CycleDef) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// A property of the node order in swing-modulo-scheduling is | 
|  | /// that for nodes outside circuits the following holds: | 
|  | /// none of them is scheduled after both a successor and a | 
|  | /// predecessor. | 
|  | /// The method below checks whether the property is met. | 
|  | /// If not, debug information is printed and statistics information updated. | 
|  | /// Note that we do not use an assert statement. | 
|  | /// The reason is that although an invalid node oder may prevent | 
|  | /// the pipeliner from finding a pipelined schedule for arbitrary II, | 
|  | /// it does not lead to the generation of incorrect code. | 
|  | void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { | 
|  |  | 
|  | // a sorted vector that maps each SUnit to its index in the NodeOrder | 
|  | typedef std::pair<SUnit *, unsigned> UnitIndex; | 
|  | std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); | 
|  |  | 
|  | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) | 
|  | Indices.push_back(std::make_pair(NodeOrder[i], i)); | 
|  |  | 
|  | auto CompareKey = [](UnitIndex i1, UnitIndex i2) { | 
|  | return std::get<0>(i1) < std::get<0>(i2); | 
|  | }; | 
|  |  | 
|  | // sort, so that we can perform a binary search | 
|  | llvm::sort(Indices, CompareKey); | 
|  |  | 
|  | bool Valid = true; | 
|  | (void)Valid; | 
|  | // for each SUnit in the NodeOrder, check whether | 
|  | // it appears after both a successor and a predecessor | 
|  | // of the SUnit. If this is the case, and the SUnit | 
|  | // is not part of circuit, then the NodeOrder is not | 
|  | // valid. | 
|  | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { | 
|  | SUnit *SU = NodeOrder[i]; | 
|  | unsigned Index = i; | 
|  |  | 
|  | bool PredBefore = false; | 
|  | bool SuccBefore = false; | 
|  |  | 
|  | SUnit *Succ; | 
|  | SUnit *Pred; | 
|  | (void)Succ; | 
|  | (void)Pred; | 
|  |  | 
|  | for (SDep &PredEdge : SU->Preds) { | 
|  | SUnit *PredSU = PredEdge.getSUnit(); | 
|  | unsigned PredIndex = std::get<1>( | 
|  | *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); | 
|  | if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { | 
|  | PredBefore = true; | 
|  | Pred = PredSU; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (SDep &SuccEdge : SU->Succs) { | 
|  | SUnit *SuccSU = SuccEdge.getSUnit(); | 
|  | // Do not process a boundary node, it was not included in NodeOrder, | 
|  | // hence not in Indices either, call to std::lower_bound() below will | 
|  | // return Indices.end(). | 
|  | if (SuccSU->isBoundaryNode()) | 
|  | continue; | 
|  | unsigned SuccIndex = std::get<1>( | 
|  | *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); | 
|  | if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { | 
|  | SuccBefore = true; | 
|  | Succ = SuccSU; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { | 
|  | // instructions in circuits are allowed to be scheduled | 
|  | // after both a successor and predecessor. | 
|  | bool InCircuit = llvm::any_of( | 
|  | Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); | 
|  | if (InCircuit) | 
|  | LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); | 
|  | else { | 
|  | Valid = false; | 
|  | NumNodeOrderIssues++; | 
|  | LLVM_DEBUG(dbgs() << "Predecessor ";); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum | 
|  | << " are scheduled before node " << SU->NodeNum | 
|  | << "\n";); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (!Valid) | 
|  | dbgs() << "Invalid node order found!\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Attempt to fix the degenerate cases when the instruction serialization | 
|  | /// causes the register lifetimes to overlap. For example, | 
|  | ///   p' = store_pi(p, b) | 
|  | ///      = load p, offset | 
|  | /// In this case p and p' overlap, which means that two registers are needed. | 
|  | /// Instead, this function changes the load to use p' and updates the offset. | 
|  | void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { | 
|  | unsigned OverlapReg = 0; | 
|  | unsigned NewBaseReg = 0; | 
|  | for (SUnit *SU : Instrs) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | // Look for an instruction that uses p. The instruction occurs in the | 
|  | // same cycle but occurs later in the serialized order. | 
|  | if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { | 
|  | // Check that the instruction appears in the InstrChanges structure, | 
|  | // which contains instructions that can have the offset updated. | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) { | 
|  | unsigned BasePos, OffsetPos; | 
|  | // Update the base register and adjust the offset. | 
|  | if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | NewMI->getOperand(BasePos).setReg(NewBaseReg); | 
|  | int64_t NewOffset = | 
|  | MI->getOperand(OffsetPos).getImm() - It->second.second; | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | SU->setInstr(NewMI); | 
|  | MISUnitMap[NewMI] = SU; | 
|  | NewMIs[MI] = NewMI; | 
|  | } | 
|  | } | 
|  | OverlapReg = 0; | 
|  | NewBaseReg = 0; | 
|  | break; | 
|  | } | 
|  | // Look for an instruction of the form p' = op(p), which uses and defines | 
|  | // two virtual registers that get allocated to the same physical register. | 
|  | unsigned TiedUseIdx = 0; | 
|  | if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { | 
|  | // OverlapReg is p in the example above. | 
|  | OverlapReg = MI->getOperand(TiedUseIdx).getReg(); | 
|  | // NewBaseReg is p' in the example above. | 
|  | NewBaseReg = MI->getOperand(i).getReg(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::deque<SUnit *> | 
|  | SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, | 
|  | const std::deque<SUnit *> &Instrs) const { | 
|  | std::deque<SUnit *> NewOrderPhi; | 
|  | for (SUnit *SU : Instrs) { | 
|  | if (SU->getInstr()->isPHI()) | 
|  | NewOrderPhi.push_back(SU); | 
|  | } | 
|  | std::deque<SUnit *> NewOrderI; | 
|  | for (SUnit *SU : Instrs) { | 
|  | if (!SU->getInstr()->isPHI()) | 
|  | orderDependence(SSD, SU, NewOrderI); | 
|  | } | 
|  | llvm::append_range(NewOrderPhi, NewOrderI); | 
|  | return NewOrderPhi; | 
|  | } | 
|  |  | 
|  | /// After the schedule has been formed, call this function to combine | 
|  | /// the instructions from the different stages/cycles.  That is, this | 
|  | /// function creates a schedule that represents a single iteration. | 
|  | void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { | 
|  | // Move all instructions to the first stage from later stages. | 
|  | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; | 
|  | ++stage) { | 
|  | std::deque<SUnit *> &cycleInstrs = | 
|  | ScheduledInstrs[cycle + (stage * InitiationInterval)]; | 
|  | for (SUnit *SU : llvm::reverse(cycleInstrs)) | 
|  | ScheduledInstrs[cycle].push_front(SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Erase all the elements in the later stages. Only one iteration should | 
|  | // remain in the scheduled list, and it contains all the instructions. | 
|  | for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) | 
|  | ScheduledInstrs.erase(cycle); | 
|  |  | 
|  | // Change the registers in instruction as specified in the InstrChanges | 
|  | // map. We need to use the new registers to create the correct order. | 
|  | for (const SUnit &SU : SSD->SUnits) | 
|  | SSD->applyInstrChange(SU.getInstr(), *this); | 
|  |  | 
|  | // Reorder the instructions in each cycle to fix and improve the | 
|  | // generated code. | 
|  | for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { | 
|  | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; | 
|  | cycleInstrs = reorderInstructions(SSD, cycleInstrs); | 
|  | SSD->fixupRegisterOverlaps(cycleInstrs); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dump();); | 
|  | } | 
|  |  | 
|  | void NodeSet::print(raw_ostream &os) const { | 
|  | os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV | 
|  | << " depth " << MaxDepth << " col " << Colocate << "\n"; | 
|  | for (const auto &I : Nodes) | 
|  | os << "   SU(" << I->NodeNum << ") " << *(I->getInstr()); | 
|  | os << "\n"; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | /// Print the schedule information to the given output. | 
|  | void SMSchedule::print(raw_ostream &os) const { | 
|  | // Iterate over each cycle. | 
|  | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | // Iterate over each instruction in the cycle. | 
|  | const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); | 
|  | for (SUnit *CI : cycleInstrs->second) { | 
|  | os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; | 
|  | os << "(" << CI->NodeNum << ") "; | 
|  | CI->getInstr()->print(os); | 
|  | os << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Utility function used for debugging to print the schedule. | 
|  | LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } | 
|  | LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } | 
|  |  | 
|  | void ResourceManager::dumpMRT() const { | 
|  | LLVM_DEBUG({ | 
|  | if (UseDFA) | 
|  | return; | 
|  | std::stringstream SS; | 
|  | SS << "MRT:\n"; | 
|  | SS << std::setw(4) << "Slot"; | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) | 
|  | SS << std::setw(3) << I; | 
|  | SS << std::setw(7) << "#Mops" | 
|  | << "\n"; | 
|  | for (int Slot = 0; Slot < InitiationInterval; ++Slot) { | 
|  | SS << std::setw(4) << Slot; | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) | 
|  | SS << std::setw(3) << MRT[Slot][I]; | 
|  | SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; | 
|  | } | 
|  | dbgs() << SS.str(); | 
|  | }); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void ResourceManager::initProcResourceVectors( | 
|  | const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { | 
|  | unsigned ProcResourceID = 0; | 
|  |  | 
|  | // We currently limit the resource kinds to 64 and below so that we can use | 
|  | // uint64_t for Masks | 
|  | assert(SM.getNumProcResourceKinds() < 64 && | 
|  | "Too many kinds of resources, unsupported"); | 
|  | // Create a unique bitmask for every processor resource unit. | 
|  | // Skip resource at index 0, since it always references 'InvalidUnit'. | 
|  | Masks.resize(SM.getNumProcResourceKinds()); | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc &Desc = *SM.getProcResource(I); | 
|  | if (Desc.SubUnitsIdxBegin) | 
|  | continue; | 
|  | Masks[I] = 1ULL << ProcResourceID; | 
|  | ProcResourceID++; | 
|  | } | 
|  | // Create a unique bitmask for every processor resource group. | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc &Desc = *SM.getProcResource(I); | 
|  | if (!Desc.SubUnitsIdxBegin) | 
|  | continue; | 
|  | Masks[I] = 1ULL << ProcResourceID; | 
|  | for (unsigned U = 0; U < Desc.NumUnits; ++U) | 
|  | Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; | 
|  | ProcResourceID++; | 
|  | } | 
|  | LLVM_DEBUG({ | 
|  | if (SwpShowResMask) { | 
|  | dbgs() << "ProcResourceDesc:\n"; | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc *ProcResource = SM.getProcResource(I); | 
|  | dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", | 
|  | ProcResource->Name, I, Masks[I], | 
|  | ProcResource->NumUnits); | 
|  | } | 
|  | dbgs() << " -----------------\n"; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) | 
|  | dbgs() << "canReserveResources:\n"; | 
|  | }); | 
|  | if (UseDFA) | 
|  | return DFAResources[positiveModulo(Cycle, InitiationInterval)] | 
|  | ->canReserveResources(&SU.getInstr()->getDesc()); | 
|  |  | 
|  | const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); | 
|  | if (!SCDesc->isValid()) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "No valid Schedule Class Desc for schedClass!\n"; | 
|  | dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; | 
|  | }); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | reserveResources(SCDesc, Cycle); | 
|  | bool Result = !isOverbooked(); | 
|  | unreserveResources(SCDesc, Cycle); | 
|  |  | 
|  | LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void ResourceManager::reserveResources(SUnit &SU, int Cycle) { | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) | 
|  | dbgs() << "reserveResources:\n"; | 
|  | }); | 
|  | if (UseDFA) | 
|  | return DFAResources[positiveModulo(Cycle, InitiationInterval)] | 
|  | ->reserveResources(&SU.getInstr()->getDesc()); | 
|  |  | 
|  | const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); | 
|  | if (!SCDesc->isValid()) { | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "No valid Schedule Class Desc for schedClass!\n"; | 
|  | dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; | 
|  | }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | reserveResources(SCDesc, Cycle); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) { | 
|  | dumpMRT(); | 
|  | dbgs() << "reserveResources: done!\n\n"; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, | 
|  | int Cycle) { | 
|  | assert(!UseDFA); | 
|  | for (const MCWriteProcResEntry &PRE : make_range( | 
|  | STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) | 
|  | for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) | 
|  | ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; | 
|  |  | 
|  | for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) | 
|  | ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; | 
|  | } | 
|  |  | 
|  | void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, | 
|  | int Cycle) { | 
|  | assert(!UseDFA); | 
|  | for (const MCWriteProcResEntry &PRE : make_range( | 
|  | STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) | 
|  | for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) | 
|  | --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; | 
|  |  | 
|  | for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) | 
|  | --NumScheduledMops[positiveModulo(C, InitiationInterval)]; | 
|  | } | 
|  |  | 
|  | bool ResourceManager::isOverbooked() const { | 
|  | assert(!UseDFA); | 
|  | for (int Slot = 0; Slot < InitiationInterval; ++Slot) { | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc *Desc = SM.getProcResource(I); | 
|  | if (MRT[Slot][I] > Desc->NumUnits) | 
|  | return true; | 
|  | } | 
|  | if (NumScheduledMops[Slot] > IssueWidth) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ResourceManager::calculateResMIIDFA() const { | 
|  | assert(UseDFA); | 
|  |  | 
|  | // Sort the instructions by the number of available choices for scheduling, | 
|  | // least to most. Use the number of critical resources as the tie breaker. | 
|  | FuncUnitSorter FUS = FuncUnitSorter(*ST); | 
|  | for (SUnit &SU : DAG->SUnits) | 
|  | FUS.calcCriticalResources(*SU.getInstr()); | 
|  | PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> | 
|  | FuncUnitOrder(FUS); | 
|  |  | 
|  | for (SUnit &SU : DAG->SUnits) | 
|  | FuncUnitOrder.push(SU.getInstr()); | 
|  |  | 
|  | SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; | 
|  | Resources.push_back( | 
|  | std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); | 
|  |  | 
|  | while (!FuncUnitOrder.empty()) { | 
|  | MachineInstr *MI = FuncUnitOrder.top(); | 
|  | FuncUnitOrder.pop(); | 
|  | if (TII->isZeroCost(MI->getOpcode())) | 
|  | continue; | 
|  |  | 
|  | // Attempt to reserve the instruction in an existing DFA. At least one | 
|  | // DFA is needed for each cycle. | 
|  | unsigned NumCycles = DAG->getSUnit(MI)->Latency; | 
|  | unsigned ReservedCycles = 0; | 
|  | auto *RI = Resources.begin(); | 
|  | auto *RE = Resources.end(); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Trying to reserve resource for " << NumCycles | 
|  | << " cycles for \n"; | 
|  | MI->dump(); | 
|  | }); | 
|  | for (unsigned C = 0; C < NumCycles; ++C) | 
|  | while (RI != RE) { | 
|  | if ((*RI)->canReserveResources(*MI)) { | 
|  | (*RI)->reserveResources(*MI); | 
|  | ++ReservedCycles; | 
|  | break; | 
|  | } | 
|  | RI++; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles | 
|  | << ", NumCycles:" << NumCycles << "\n"); | 
|  | // Add new DFAs, if needed, to reserve resources. | 
|  | for (unsigned C = ReservedCycles; C < NumCycles; ++C) { | 
|  | LLVM_DEBUG(if (SwpDebugResource) dbgs() | 
|  | << "NewResource created to reserve resources" | 
|  | << "\n"); | 
|  | auto *NewResource = TII->CreateTargetScheduleState(*ST); | 
|  | assert(NewResource->canReserveResources(*MI) && "Reserve error."); | 
|  | NewResource->reserveResources(*MI); | 
|  | Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int Resmii = Resources.size(); | 
|  | LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); | 
|  | return Resmii; | 
|  | } | 
|  |  | 
|  | int ResourceManager::calculateResMII() const { | 
|  | if (UseDFA) | 
|  | return calculateResMIIDFA(); | 
|  |  | 
|  | // Count each resource consumption and divide it by the number of units. | 
|  | // ResMII is the max value among them. | 
|  |  | 
|  | int NumMops = 0; | 
|  | SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); | 
|  | for (SUnit &SU : DAG->SUnits) { | 
|  | if (TII->isZeroCost(SU.getInstr()->getOpcode())) | 
|  | continue; | 
|  |  | 
|  | const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); | 
|  | if (!SCDesc->isValid()) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) { | 
|  | DAG->dumpNode(SU); | 
|  | dbgs() << "  #Mops: " << SCDesc->NumMicroOps << "\n" | 
|  | << "  WriteProcRes: "; | 
|  | } | 
|  | }); | 
|  | NumMops += SCDesc->NumMicroOps; | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(STI->getWriteProcResBegin(SCDesc), | 
|  | STI->getWriteProcResEnd(SCDesc))) { | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) { | 
|  | const MCProcResourceDesc *Desc = | 
|  | SM.getProcResource(PRE.ProcResourceIdx); | 
|  | dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; | 
|  | } | 
|  | }); | 
|  | ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; | 
|  | } | 
|  | LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  | int Result = (NumMops + IssueWidth - 1) / IssueWidth; | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) | 
|  | dbgs() << "#Mops: " << NumMops << ", " | 
|  | << "IssueWidth: " << IssueWidth << ", " | 
|  | << "Cycles: " << Result << "\n"; | 
|  | }); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) { | 
|  | std::stringstream SS; | 
|  | SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) | 
|  | << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" | 
|  | << "\n"; | 
|  | dbgs() << SS.str(); | 
|  | } | 
|  | }); | 
|  | for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | const MCProcResourceDesc *Desc = SM.getProcResource(I); | 
|  | int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; | 
|  | LLVM_DEBUG({ | 
|  | if (SwpDebugResource) { | 
|  | std::stringstream SS; | 
|  | SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) | 
|  | << Desc->NumUnits << std::setw(10) << ResourceCount[I] | 
|  | << std::setw(10) << Cycles << "\n"; | 
|  | dbgs() << SS.str(); | 
|  | } | 
|  | }); | 
|  | if (Cycles > Result) | 
|  | Result = Cycles; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void ResourceManager::init(int II) { | 
|  | InitiationInterval = II; | 
|  | DFAResources.clear(); | 
|  | DFAResources.resize(II); | 
|  | for (auto &I : DFAResources) | 
|  | I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); | 
|  | MRT.clear(); | 
|  | MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); | 
|  | NumScheduledMops.clear(); | 
|  | NumScheduledMops.resize(II); | 
|  | } |