| //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the AsmPrinter class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/AsmPrinter.h" | 
 | #include "CodeViewDebug.h" | 
 | #include "DwarfDebug.h" | 
 | #include "DwarfException.h" | 
 | #include "PseudoProbePrinter.h" | 
 | #include "WasmException.h" | 
 | #include "WinCFGuard.h" | 
 | #include "WinException.h" | 
 | #include "llvm/ADT/APFloat.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/TinyPtrVector.h" | 
 | #include "llvm/ADT/Twine.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
 | #include "llvm/BinaryFormat/COFF.h" | 
 | #include "llvm/BinaryFormat/Dwarf.h" | 
 | #include "llvm/BinaryFormat/ELF.h" | 
 | #include "llvm/CodeGen/GCMetadata.h" | 
 | #include "llvm/CodeGen/GCMetadataPrinter.h" | 
 | #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
 | #include "llvm/CodeGen/MachineConstantPool.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBundle.h" | 
 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | 
 | #include "llvm/CodeGen/StackMaps.h" | 
 | #include "llvm/CodeGen/TargetFrameLowering.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetOpcodes.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/Config/config.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Comdat.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DebugInfoMetadata.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/EHPersonalities.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GCStrategy.h" | 
 | #include "llvm/IR/GlobalAlias.h" | 
 | #include "llvm/IR/GlobalIFunc.h" | 
 | #include "llvm/IR/GlobalObject.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Mangler.h" | 
 | #include "llvm/IR/Metadata.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/IR/PseudoProbe.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/IR/ValueHandle.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCContext.h" | 
 | #include "llvm/MC/MCDirectives.h" | 
 | #include "llvm/MC/MCExpr.h" | 
 | #include "llvm/MC/MCInst.h" | 
 | #include "llvm/MC/MCSection.h" | 
 | #include "llvm/MC/MCSectionCOFF.h" | 
 | #include "llvm/MC/MCSectionELF.h" | 
 | #include "llvm/MC/MCSectionMachO.h" | 
 | #include "llvm/MC/MCSectionXCOFF.h" | 
 | #include "llvm/MC/MCStreamer.h" | 
 | #include "llvm/MC/MCSubtargetInfo.h" | 
 | #include "llvm/MC/MCSymbol.h" | 
 | #include "llvm/MC/MCSymbolELF.h" | 
 | #include "llvm/MC/MCTargetOptions.h" | 
 | #include "llvm/MC/MCValue.h" | 
 | #include "llvm/MC/SectionKind.h" | 
 | #include "llvm/Object/ELFTypes.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Remarks/RemarkStreamer.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/FileSystem.h" | 
 | #include "llvm/Support/Format.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/Path.h" | 
 | #include "llvm/Support/Timer.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetLoweringObjectFile.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/TargetParser/Triple.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cinttypes> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <memory> | 
 | #include <optional> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "asm-printer" | 
 |  | 
 | // This is a replication of fields of object::PGOAnalysisMap::Features. It | 
 | // should match the order of the fields so that | 
 | // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())` | 
 | // succeeds. | 
 | enum class PGOMapFeaturesEnum { | 
 |   FuncEntryCount, | 
 |   BBFreq, | 
 |   BrProb, | 
 | }; | 
 | static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures( | 
 |     "pgo-analysis-map", cl::Hidden, cl::CommaSeparated, | 
 |     cl::values(clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, | 
 |                           "func-entry-count", "Function Entry Count"), | 
 |                clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", | 
 |                           "Basic Block Frequency"), | 
 |                clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", | 
 |                           "Branch Probability")), | 
 |     cl::desc( | 
 |         "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " | 
 |         "extracted from PGO related analysis.")); | 
 |  | 
 | const char DWARFGroupName[] = "dwarf"; | 
 | const char DWARFGroupDescription[] = "DWARF Emission"; | 
 | const char DbgTimerName[] = "emit"; | 
 | const char DbgTimerDescription[] = "Debug Info Emission"; | 
 | const char EHTimerName[] = "write_exception"; | 
 | const char EHTimerDescription[] = "DWARF Exception Writer"; | 
 | const char CFGuardName[] = "Control Flow Guard"; | 
 | const char CFGuardDescription[] = "Control Flow Guard"; | 
 | const char CodeViewLineTablesGroupName[] = "linetables"; | 
 | const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; | 
 | const char PPTimerName[] = "emit"; | 
 | const char PPTimerDescription[] = "Pseudo Probe Emission"; | 
 | const char PPGroupName[] = "pseudo probe"; | 
 | const char PPGroupDescription[] = "Pseudo Probe Emission"; | 
 |  | 
 | STATISTIC(EmittedInsts, "Number of machine instrs printed"); | 
 |  | 
 | char AsmPrinter::ID = 0; | 
 |  | 
 | namespace { | 
 | class AddrLabelMapCallbackPtr final : CallbackVH { | 
 |   AddrLabelMap *Map = nullptr; | 
 |  | 
 | public: | 
 |   AddrLabelMapCallbackPtr() = default; | 
 |   AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} | 
 |  | 
 |   void setPtr(BasicBlock *BB) { | 
 |     ValueHandleBase::operator=(BB); | 
 |   } | 
 |  | 
 |   void setMap(AddrLabelMap *map) { Map = map; } | 
 |  | 
 |   void deleted() override; | 
 |   void allUsesReplacedWith(Value *V2) override; | 
 | }; | 
 | } // namespace | 
 |  | 
 | class llvm::AddrLabelMap { | 
 |   MCContext &Context; | 
 |   struct AddrLabelSymEntry { | 
 |     /// The symbols for the label. | 
 |     TinyPtrVector<MCSymbol *> Symbols; | 
 |  | 
 |     Function *Fn;   // The containing function of the BasicBlock. | 
 |     unsigned Index; // The index in BBCallbacks for the BasicBlock. | 
 |   }; | 
 |  | 
 |   DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; | 
 |  | 
 |   /// Callbacks for the BasicBlock's that we have entries for.  We use this so | 
 |   /// we get notified if a block is deleted or RAUWd. | 
 |   std::vector<AddrLabelMapCallbackPtr> BBCallbacks; | 
 |  | 
 |   /// This is a per-function list of symbols whose corresponding BasicBlock got | 
 |   /// deleted.  These symbols need to be emitted at some point in the file, so | 
 |   /// AsmPrinter emits them after the function body. | 
 |   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> | 
 |       DeletedAddrLabelsNeedingEmission; | 
 |  | 
 | public: | 
 |   AddrLabelMap(MCContext &context) : Context(context) {} | 
 |  | 
 |   ~AddrLabelMap() { | 
 |     assert(DeletedAddrLabelsNeedingEmission.empty() && | 
 |            "Some labels for deleted blocks never got emitted"); | 
 |   } | 
 |  | 
 |   ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); | 
 |  | 
 |   void takeDeletedSymbolsForFunction(Function *F, | 
 |                                      std::vector<MCSymbol *> &Result); | 
 |  | 
 |   void UpdateForDeletedBlock(BasicBlock *BB); | 
 |   void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); | 
 | }; | 
 |  | 
 | ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { | 
 |   assert(BB->hasAddressTaken() && | 
 |          "Shouldn't get label for block without address taken"); | 
 |   AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; | 
 |  | 
 |   // If we already had an entry for this block, just return it. | 
 |   if (!Entry.Symbols.empty()) { | 
 |     assert(BB->getParent() == Entry.Fn && "Parent changed"); | 
 |     return Entry.Symbols; | 
 |   } | 
 |  | 
 |   // Otherwise, this is a new entry, create a new symbol for it and add an | 
 |   // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. | 
 |   BBCallbacks.emplace_back(BB); | 
 |   BBCallbacks.back().setMap(this); | 
 |   Entry.Index = BBCallbacks.size() - 1; | 
 |   Entry.Fn = BB->getParent(); | 
 |   MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() | 
 |                                         : Context.createTempSymbol(); | 
 |   Entry.Symbols.push_back(Sym); | 
 |   return Entry.Symbols; | 
 | } | 
 |  | 
 | /// If we have any deleted symbols for F, return them. | 
 | void AddrLabelMap::takeDeletedSymbolsForFunction( | 
 |     Function *F, std::vector<MCSymbol *> &Result) { | 
 |   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = | 
 |       DeletedAddrLabelsNeedingEmission.find(F); | 
 |  | 
 |   // If there are no entries for the function, just return. | 
 |   if (I == DeletedAddrLabelsNeedingEmission.end()) | 
 |     return; | 
 |  | 
 |   // Otherwise, take the list. | 
 |   std::swap(Result, I->second); | 
 |   DeletedAddrLabelsNeedingEmission.erase(I); | 
 | } | 
 |  | 
 | //===- Address of Block Management ----------------------------------------===// | 
 |  | 
 | ArrayRef<MCSymbol *> | 
 | AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { | 
 |   // Lazily create AddrLabelSymbols. | 
 |   if (!AddrLabelSymbols) | 
 |     AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext); | 
 |   return AddrLabelSymbols->getAddrLabelSymbolToEmit( | 
 |       const_cast<BasicBlock *>(BB)); | 
 | } | 
 |  | 
 | void AsmPrinter::takeDeletedSymbolsForFunction( | 
 |     const Function *F, std::vector<MCSymbol *> &Result) { | 
 |   // If no blocks have had their addresses taken, we're done. | 
 |   if (!AddrLabelSymbols) | 
 |     return; | 
 |   return AddrLabelSymbols->takeDeletedSymbolsForFunction( | 
 |       const_cast<Function *>(F), Result); | 
 | } | 
 |  | 
 | void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { | 
 |   // If the block got deleted, there is no need for the symbol.  If the symbol | 
 |   // was already emitted, we can just forget about it, otherwise we need to | 
 |   // queue it up for later emission when the function is output. | 
 |   AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); | 
 |   AddrLabelSymbols.erase(BB); | 
 |   assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?"); | 
 |   BBCallbacks[Entry.Index] = nullptr; // Clear the callback. | 
 |  | 
 | #if !LLVM_MEMORY_SANITIZER_BUILD | 
 |   // BasicBlock is destroyed already, so this access is UB detectable by msan. | 
 |   assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && | 
 |          "Block/parent mismatch"); | 
 | #endif | 
 |  | 
 |   for (MCSymbol *Sym : Entry.Symbols) { | 
 |     if (Sym->isDefined()) | 
 |       return; | 
 |  | 
 |     // If the block is not yet defined, we need to emit it at the end of the | 
 |     // function.  Add the symbol to the DeletedAddrLabelsNeedingEmission list | 
 |     // for the containing Function.  Since the block is being deleted, its | 
 |     // parent may already be removed, we have to get the function from 'Entry'. | 
 |     DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym); | 
 |   } | 
 | } | 
 |  | 
 | void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { | 
 |   // Get the entry for the RAUW'd block and remove it from our map. | 
 |   AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); | 
 |   AddrLabelSymbols.erase(Old); | 
 |   assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?"); | 
 |  | 
 |   AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; | 
 |  | 
 |   // If New is not address taken, just move our symbol over to it. | 
 |   if (NewEntry.Symbols.empty()) { | 
 |     BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. | 
 |     NewEntry = std::move(OldEntry);          // Set New's entry. | 
 |     return; | 
 |   } | 
 |  | 
 |   BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. | 
 |  | 
 |   // Otherwise, we need to add the old symbols to the new block's set. | 
 |   llvm::append_range(NewEntry.Symbols, OldEntry.Symbols); | 
 | } | 
 |  | 
 | void AddrLabelMapCallbackPtr::deleted() { | 
 |   Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr())); | 
 | } | 
 |  | 
 | void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { | 
 |   Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2)); | 
 | } | 
 |  | 
 | /// getGVAlignment - Return the alignment to use for the specified global | 
 | /// value.  This rounds up to the preferred alignment if possible and legal. | 
 | Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, | 
 |                                  Align InAlign) { | 
 |   Align Alignment; | 
 |   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) | 
 |     Alignment = DL.getPreferredAlign(GVar); | 
 |  | 
 |   // If InAlign is specified, round it to it. | 
 |   if (InAlign > Alignment) | 
 |     Alignment = InAlign; | 
 |  | 
 |   // If the GV has a specified alignment, take it into account. | 
 |   const MaybeAlign GVAlign(GV->getAlign()); | 
 |   if (!GVAlign) | 
 |     return Alignment; | 
 |  | 
 |   assert(GVAlign && "GVAlign must be set"); | 
 |  | 
 |   // If the GVAlign is larger than NumBits, or if we are required to obey | 
 |   // NumBits because the GV has an assigned section, obey it. | 
 |   if (*GVAlign > Alignment || GV->hasSection()) | 
 |     Alignment = *GVAlign; | 
 |   return Alignment; | 
 | } | 
 |  | 
 | AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) | 
 |     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), | 
 |       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), | 
 |       SM(*this) { | 
 |   VerboseAsm = OutStreamer->isVerboseAsm(); | 
 |   DwarfUsesRelocationsAcrossSections = | 
 |       MAI->doesDwarfUseRelocationsAcrossSections(); | 
 | } | 
 |  | 
 | AsmPrinter::~AsmPrinter() { | 
 |   assert(!DD && Handlers.size() == NumUserHandlers && | 
 |          "Debug/EH info didn't get finalized"); | 
 | } | 
 |  | 
 | bool AsmPrinter::isPositionIndependent() const { | 
 |   return TM.isPositionIndependent(); | 
 | } | 
 |  | 
 | /// getFunctionNumber - Return a unique ID for the current function. | 
 | unsigned AsmPrinter::getFunctionNumber() const { | 
 |   return MF->getFunctionNumber(); | 
 | } | 
 |  | 
 | const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { | 
 |   return *TM.getObjFileLowering(); | 
 | } | 
 |  | 
 | const DataLayout &AsmPrinter::getDataLayout() const { | 
 |   assert(MMI && "MMI could not be nullptr!"); | 
 |   return MMI->getModule()->getDataLayout(); | 
 | } | 
 |  | 
 | // Do not use the cached DataLayout because some client use it without a Module | 
 | // (dsymutil, llvm-dwarfdump). | 
 | unsigned AsmPrinter::getPointerSize() const { | 
 |   return TM.getPointerSize(0); // FIXME: Default address space | 
 | } | 
 |  | 
 | const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { | 
 |   assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); | 
 |   return MF->getSubtarget<MCSubtargetInfo>(); | 
 | } | 
 |  | 
 | void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { | 
 |   S.emitInstruction(Inst, getSubtargetInfo()); | 
 | } | 
 |  | 
 | void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { | 
 |   if (DD) { | 
 |     assert(OutStreamer->hasRawTextSupport() && | 
 |            "Expected assembly output mode."); | 
 |     // This is NVPTX specific and it's unclear why. | 
 |     // PR51079: If we have code without debug information we need to give up. | 
 |     DISubprogram *MFSP = MF.getFunction().getSubprogram(); | 
 |     if (!MFSP) | 
 |       return; | 
 |     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); | 
 |   } | 
 | } | 
 |  | 
 | /// getCurrentSection() - Return the current section we are emitting to. | 
 | const MCSection *AsmPrinter::getCurrentSection() const { | 
 |   return OutStreamer->getCurrentSectionOnly(); | 
 | } | 
 |  | 
 | void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   MachineFunctionPass::getAnalysisUsage(AU); | 
 |   AU.addRequired<MachineOptimizationRemarkEmitterPass>(); | 
 |   AU.addRequired<GCModuleInfo>(); | 
 |   AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); | 
 |   AU.addRequired<MachineBranchProbabilityInfo>(); | 
 | } | 
 |  | 
 | bool AsmPrinter::doInitialization(Module &M) { | 
 |   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); | 
 |   MMI = MMIWP ? &MMIWP->getMMI() : nullptr; | 
 |   HasSplitStack = false; | 
 |   HasNoSplitStack = false; | 
 |  | 
 |   AddrLabelSymbols = nullptr; | 
 |  | 
 |   // Initialize TargetLoweringObjectFile. | 
 |   const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) | 
 |     .Initialize(OutContext, TM); | 
 |  | 
 |   const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) | 
 |       .getModuleMetadata(M); | 
 |  | 
 |   // On AIX, we delay emitting any section information until | 
 |   // after emitting the .file pseudo-op. This allows additional | 
 |   // information (such as the embedded command line) to be associated | 
 |   // with all sections in the object file rather than a single section. | 
 |   if (!TM.getTargetTriple().isOSBinFormatXCOFF()) | 
 |     OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); | 
 |  | 
 |   // Emit the version-min deployment target directive if needed. | 
 |   // | 
 |   // FIXME: If we end up with a collection of these sorts of Darwin-specific | 
 |   // or ELF-specific things, it may make sense to have a platform helper class | 
 |   // that will work with the target helper class. For now keep it here, as the | 
 |   // alternative is duplicated code in each of the target asm printers that | 
 |   // use the directive, where it would need the same conditionalization | 
 |   // anyway. | 
 |   const Triple &Target = TM.getTargetTriple(); | 
 |   Triple TVT(M.getDarwinTargetVariantTriple()); | 
 |   OutStreamer->emitVersionForTarget( | 
 |       Target, M.getSDKVersion(), | 
 |       M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, | 
 |       M.getDarwinTargetVariantSDKVersion()); | 
 |  | 
 |   // Allow the target to emit any magic that it wants at the start of the file. | 
 |   emitStartOfAsmFile(M); | 
 |  | 
 |   // Very minimal debug info. It is ignored if we emit actual debug info. If we | 
 |   // don't, this at least helps the user find where a global came from. | 
 |   if (MAI->hasSingleParameterDotFile()) { | 
 |     // .file "foo.c" | 
 |  | 
 |     SmallString<128> FileName; | 
 |     if (MAI->hasBasenameOnlyForFileDirective()) | 
 |       FileName = llvm::sys::path::filename(M.getSourceFileName()); | 
 |     else | 
 |       FileName = M.getSourceFileName(); | 
 |     if (MAI->hasFourStringsDotFile()) { | 
 | #ifdef PACKAGE_VENDOR | 
 |       const char VerStr[] = | 
 |           PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; | 
 | #else | 
 |       const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; | 
 | #endif | 
 |       // TODO: Add timestamp and description. | 
 |       OutStreamer->emitFileDirective(FileName, VerStr, "", ""); | 
 |     } else { | 
 |       OutStreamer->emitFileDirective(FileName); | 
 |     } | 
 |   } | 
 |  | 
 |   // On AIX, emit bytes for llvm.commandline metadata after .file so that the | 
 |   // C_INFO symbol is preserved if any csect is kept by the linker. | 
 |   if (TM.getTargetTriple().isOSBinFormatXCOFF()) { | 
 |     emitModuleCommandLines(M); | 
 |     // Now we can generate section information. | 
 |     OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); | 
 |  | 
 |     // To work around an AIX assembler and/or linker bug, generate | 
 |     // a rename for the default text-section symbol name.  This call has | 
 |     // no effect when generating object code directly. | 
 |     MCSection *TextSection = | 
 |         OutStreamer->getContext().getObjectFileInfo()->getTextSection(); | 
 |     MCSymbolXCOFF *XSym = | 
 |         static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); | 
 |     if (XSym->hasRename()) | 
 |       OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName()); | 
 |   } | 
 |  | 
 |   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); | 
 |   assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
 |   for (const auto &I : *MI) | 
 |     if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) | 
 |       MP->beginAssembly(M, *MI, *this); | 
 |  | 
 |   // Emit module-level inline asm if it exists. | 
 |   if (!M.getModuleInlineAsm().empty()) { | 
 |     OutStreamer->AddComment("Start of file scope inline assembly"); | 
 |     OutStreamer->addBlankLine(); | 
 |     emitInlineAsm( | 
 |         M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), | 
 |         TM.Options.MCOptions, nullptr, | 
 |         InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect())); | 
 |     OutStreamer->AddComment("End of file scope inline assembly"); | 
 |     OutStreamer->addBlankLine(); | 
 |   } | 
 |  | 
 |   if (MAI->doesSupportDebugInformation()) { | 
 |     bool EmitCodeView = M.getCodeViewFlag(); | 
 |     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { | 
 |       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), | 
 |                             DbgTimerName, DbgTimerDescription, | 
 |                             CodeViewLineTablesGroupName, | 
 |                             CodeViewLineTablesGroupDescription); | 
 |     } | 
 |     if (!EmitCodeView || M.getDwarfVersion()) { | 
 |       assert(MMI && "MMI could not be nullptr here!"); | 
 |       if (MMI->hasDebugInfo()) { | 
 |         DD = new DwarfDebug(this); | 
 |         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, | 
 |                               DbgTimerDescription, DWARFGroupName, | 
 |                               DWARFGroupDescription); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { | 
 |     PP = new PseudoProbeHandler(this); | 
 |     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, | 
 |                           PPTimerDescription, PPGroupName, PPGroupDescription); | 
 |   } | 
 |  | 
 |   switch (MAI->getExceptionHandlingType()) { | 
 |   case ExceptionHandling::None: | 
 |     // We may want to emit CFI for debug. | 
 |     [[fallthrough]]; | 
 |   case ExceptionHandling::SjLj: | 
 |   case ExceptionHandling::DwarfCFI: | 
 |   case ExceptionHandling::ARM: | 
 |     for (auto &F : M.getFunctionList()) { | 
 |       if (getFunctionCFISectionType(F) != CFISection::None) | 
 |         ModuleCFISection = getFunctionCFISectionType(F); | 
 |       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence | 
 |       // the module needs .eh_frame. If we have found that case, we are done. | 
 |       if (ModuleCFISection == CFISection::EH) | 
 |         break; | 
 |     } | 
 |     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || | 
 |            usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); | 
 |     break; | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   EHStreamer *ES = nullptr; | 
 |   switch (MAI->getExceptionHandlingType()) { | 
 |   case ExceptionHandling::None: | 
 |     if (!usesCFIWithoutEH()) | 
 |       break; | 
 |     [[fallthrough]]; | 
 |   case ExceptionHandling::SjLj: | 
 |   case ExceptionHandling::DwarfCFI: | 
 |   case ExceptionHandling::ZOS: | 
 |     ES = new DwarfCFIException(this); | 
 |     break; | 
 |   case ExceptionHandling::ARM: | 
 |     ES = new ARMException(this); | 
 |     break; | 
 |   case ExceptionHandling::WinEH: | 
 |     switch (MAI->getWinEHEncodingType()) { | 
 |     default: llvm_unreachable("unsupported unwinding information encoding"); | 
 |     case WinEH::EncodingType::Invalid: | 
 |       break; | 
 |     case WinEH::EncodingType::X86: | 
 |     case WinEH::EncodingType::Itanium: | 
 |       ES = new WinException(this); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   case ExceptionHandling::Wasm: | 
 |     ES = new WasmException(this); | 
 |     break; | 
 |   case ExceptionHandling::AIX: | 
 |     ES = new AIXException(this); | 
 |     break; | 
 |   } | 
 |   if (ES) | 
 |     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, | 
 |                           EHTimerDescription, DWARFGroupName, | 
 |                           DWARFGroupDescription); | 
 |  | 
 |   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). | 
 |   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) | 
 |     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, | 
 |                           CFGuardDescription, DWARFGroupName, | 
 |                           DWARFGroupDescription); | 
 |  | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                        HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |     HI.Handler->beginModule(&M); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { | 
 |   if (!MAI.hasWeakDefCanBeHiddenDirective()) | 
 |     return false; | 
 |  | 
 |   return GV->canBeOmittedFromSymbolTable(); | 
 | } | 
 |  | 
 | void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { | 
 |   GlobalValue::LinkageTypes Linkage = GV->getLinkage(); | 
 |   switch (Linkage) { | 
 |   case GlobalValue::CommonLinkage: | 
 |   case GlobalValue::LinkOnceAnyLinkage: | 
 |   case GlobalValue::LinkOnceODRLinkage: | 
 |   case GlobalValue::WeakAnyLinkage: | 
 |   case GlobalValue::WeakODRLinkage: | 
 |     if (MAI->hasWeakDefDirective()) { | 
 |       // .globl _foo | 
 |       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); | 
 |  | 
 |       if (!canBeHidden(GV, *MAI)) | 
 |         // .weak_definition _foo | 
 |         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); | 
 |       else | 
 |         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); | 
 |     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { | 
 |       // .globl _foo | 
 |       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); | 
 |       //NOTE: linkonce is handled by the section the symbol was assigned to. | 
 |     } else { | 
 |       // .weak _foo | 
 |       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); | 
 |     } | 
 |     return; | 
 |   case GlobalValue::ExternalLinkage: | 
 |     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); | 
 |     return; | 
 |   case GlobalValue::PrivateLinkage: | 
 |   case GlobalValue::InternalLinkage: | 
 |     return; | 
 |   case GlobalValue::ExternalWeakLinkage: | 
 |   case GlobalValue::AvailableExternallyLinkage: | 
 |   case GlobalValue::AppendingLinkage: | 
 |     llvm_unreachable("Should never emit this"); | 
 |   } | 
 |   llvm_unreachable("Unknown linkage type!"); | 
 | } | 
 |  | 
 | void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, | 
 |                                    const GlobalValue *GV) const { | 
 |   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); | 
 | } | 
 |  | 
 | MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { | 
 |   return TM.getSymbol(GV); | 
 | } | 
 |  | 
 | MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { | 
 |   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an | 
 |   // exact definion (intersection of GlobalValue::hasExactDefinition() and | 
 |   // !isInterposable()). These linkages include: external, appending, internal, | 
 |   // private. It may be profitable to use a local alias for external. The | 
 |   // assembler would otherwise be conservative and assume a global default | 
 |   // visibility symbol can be interposable, even if the code generator already | 
 |   // assumed it. | 
 |   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { | 
 |     const Module &M = *GV.getParent(); | 
 |     if (TM.getRelocationModel() != Reloc::Static && | 
 |         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) | 
 |       return getSymbolWithGlobalValueBase(&GV, "$local"); | 
 |   } | 
 |   return TM.getSymbol(&GV); | 
 | } | 
 |  | 
 | /// EmitGlobalVariable - Emit the specified global variable to the .s file. | 
 | void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { | 
 |   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); | 
 |   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && | 
 |          "No emulated TLS variables in the common section"); | 
 |  | 
 |   // Never emit TLS variable xyz in emulated TLS model. | 
 |   // The initialization value is in __emutls_t.xyz instead of xyz. | 
 |   if (IsEmuTLSVar) | 
 |     return; | 
 |  | 
 |   if (GV->hasInitializer()) { | 
 |     // Check to see if this is a special global used by LLVM, if so, emit it. | 
 |     if (emitSpecialLLVMGlobal(GV)) | 
 |       return; | 
 |  | 
 |     // Skip the emission of global equivalents. The symbol can be emitted later | 
 |     // on by emitGlobalGOTEquivs in case it turns out to be needed. | 
 |     if (GlobalGOTEquivs.count(getSymbol(GV))) | 
 |       return; | 
 |  | 
 |     if (isVerbose()) { | 
 |       // When printing the control variable __emutls_v.*, | 
 |       // we don't need to print the original TLS variable name. | 
 |       GV->printAsOperand(OutStreamer->getCommentOS(), | 
 |                          /*PrintType=*/false, GV->getParent()); | 
 |       OutStreamer->getCommentOS() << '\n'; | 
 |     } | 
 |   } | 
 |  | 
 |   MCSymbol *GVSym = getSymbol(GV); | 
 |   MCSymbol *EmittedSym = GVSym; | 
 |  | 
 |   // getOrCreateEmuTLSControlSym only creates the symbol with name and default | 
 |   // attributes. | 
 |   // GV's or GVSym's attributes will be used for the EmittedSym. | 
 |   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); | 
 |  | 
 |   if (GV->isTagged()) { | 
 |     Triple T = TM.getTargetTriple(); | 
 |  | 
 |     if (T.getArch() != Triple::aarch64 || !T.isAndroid()) | 
 |       OutContext.reportError(SMLoc(), | 
 |                              "tagged symbols (-fsanitize=memtag-globals) are " | 
 |                              "only supported on AArch64 Android"); | 
 |     OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr()); | 
 |   } | 
 |  | 
 |   if (!GV->hasInitializer())   // External globals require no extra code. | 
 |     return; | 
 |  | 
 |   GVSym->redefineIfPossible(); | 
 |   if (GVSym->isDefined() || GVSym->isVariable()) | 
 |     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + | 
 |                                         "' is already defined"); | 
 |  | 
 |   if (MAI->hasDotTypeDotSizeDirective()) | 
 |     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); | 
 |  | 
 |   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); | 
 |  | 
 |   const DataLayout &DL = GV->getParent()->getDataLayout(); | 
 |   uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); | 
 |  | 
 |   // If the alignment is specified, we *must* obey it.  Overaligning a global | 
 |   // with a specified alignment is a prompt way to break globals emitted to | 
 |   // sections and expected to be contiguous (e.g. ObjC metadata). | 
 |   const Align Alignment = getGVAlignment(GV, DL); | 
 |  | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, | 
 |                        HI.TimerGroupName, HI.TimerGroupDescription, | 
 |                        TimePassesIsEnabled); | 
 |     HI.Handler->setSymbolSize(GVSym, Size); | 
 |   } | 
 |  | 
 |   // Handle common symbols | 
 |   if (GVKind.isCommon()) { | 
 |     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it. | 
 |     // .comm _foo, 42, 4 | 
 |     OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Determine to which section this global should be emitted. | 
 |   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); | 
 |  | 
 |   // If we have a bss global going to a section that supports the | 
 |   // zerofill directive, do so here. | 
 |   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && | 
 |       TheSection->isVirtualSection()) { | 
 |     if (Size == 0) | 
 |       Size = 1; // zerofill of 0 bytes is undefined. | 
 |     emitLinkage(GV, GVSym); | 
 |     // .zerofill __DATA, __bss, _foo, 400, 5 | 
 |     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If this is a BSS local symbol and we are emitting in the BSS | 
 |   // section use .lcomm/.comm directive. | 
 |   if (GVKind.isBSSLocal() && | 
 |       getObjFileLowering().getBSSSection() == TheSection) { | 
 |     if (Size == 0) | 
 |       Size = 1; // .comm Foo, 0 is undefined, avoid it. | 
 |  | 
 |     // Use .lcomm only if it supports user-specified alignment. | 
 |     // Otherwise, while it would still be correct to use .lcomm in some | 
 |     // cases (e.g. when Align == 1), the external assembler might enfore | 
 |     // some -unknown- default alignment behavior, which could cause | 
 |     // spurious differences between external and integrated assembler. | 
 |     // Prefer to simply fall back to .local / .comm in this case. | 
 |     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { | 
 |       // .lcomm _foo, 42 | 
 |       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment); | 
 |       return; | 
 |     } | 
 |  | 
 |     // .local _foo | 
 |     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); | 
 |     // .comm _foo, 42, 4 | 
 |     OutStreamer->emitCommonSymbol(GVSym, Size, Alignment); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle thread local data for mach-o which requires us to output an | 
 |   // additional structure of data and mangle the original symbol so that we | 
 |   // can reference it later. | 
 |   // | 
 |   // TODO: This should become an "emit thread local global" method on TLOF. | 
 |   // All of this macho specific stuff should be sunk down into TLOFMachO and | 
 |   // stuff like "TLSExtraDataSection" should no longer be part of the parent | 
 |   // TLOF class.  This will also make it more obvious that stuff like | 
 |   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho | 
 |   // specific code. | 
 |   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { | 
 |     // Emit the .tbss symbol | 
 |     MCSymbol *MangSym = | 
 |         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); | 
 |  | 
 |     if (GVKind.isThreadBSS()) { | 
 |       TheSection = getObjFileLowering().getTLSBSSSection(); | 
 |       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment); | 
 |     } else if (GVKind.isThreadData()) { | 
 |       OutStreamer->switchSection(TheSection); | 
 |  | 
 |       emitAlignment(Alignment, GV); | 
 |       OutStreamer->emitLabel(MangSym); | 
 |  | 
 |       emitGlobalConstant(GV->getParent()->getDataLayout(), | 
 |                          GV->getInitializer()); | 
 |     } | 
 |  | 
 |     OutStreamer->addBlankLine(); | 
 |  | 
 |     // Emit the variable struct for the runtime. | 
 |     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); | 
 |  | 
 |     OutStreamer->switchSection(TLVSect); | 
 |     // Emit the linkage here. | 
 |     emitLinkage(GV, GVSym); | 
 |     OutStreamer->emitLabel(GVSym); | 
 |  | 
 |     // Three pointers in size: | 
 |     //   - __tlv_bootstrap - used to make sure support exists | 
 |     //   - spare pointer, used when mapped by the runtime | 
 |     //   - pointer to mangled symbol above with initializer | 
 |     unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); | 
 |     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), | 
 |                                 PtrSize); | 
 |     OutStreamer->emitIntValue(0, PtrSize); | 
 |     OutStreamer->emitSymbolValue(MangSym, PtrSize); | 
 |  | 
 |     OutStreamer->addBlankLine(); | 
 |     return; | 
 |   } | 
 |  | 
 |   MCSymbol *EmittedInitSym = GVSym; | 
 |  | 
 |   OutStreamer->switchSection(TheSection); | 
 |  | 
 |   emitLinkage(GV, EmittedInitSym); | 
 |   emitAlignment(Alignment, GV); | 
 |  | 
 |   OutStreamer->emitLabel(EmittedInitSym); | 
 |   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); | 
 |   if (LocalAlias != EmittedInitSym) | 
 |     OutStreamer->emitLabel(LocalAlias); | 
 |  | 
 |   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); | 
 |  | 
 |   if (MAI->hasDotTypeDotSizeDirective()) | 
 |     // .size foo, 42 | 
 |     OutStreamer->emitELFSize(EmittedInitSym, | 
 |                              MCConstantExpr::create(Size, OutContext)); | 
 |  | 
 |   OutStreamer->addBlankLine(); | 
 | } | 
 |  | 
 | /// Emit the directive and value for debug thread local expression | 
 | /// | 
 | /// \p Value - The value to emit. | 
 | /// \p Size - The size of the integer (in bytes) to emit. | 
 | void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { | 
 |   OutStreamer->emitValue(Value, Size); | 
 | } | 
 |  | 
 | void AsmPrinter::emitFunctionHeaderComment() {} | 
 |  | 
 | void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) { | 
 |   const Function &F = MF->getFunction(); | 
 |   if (!MAI->hasSubsectionsViaSymbols()) { | 
 |     for (auto &C : Prefix) | 
 |       emitGlobalConstant(F.getParent()->getDataLayout(), C); | 
 |     return; | 
 |   } | 
 |   // Preserving prefix-like data on platforms which use subsections-via-symbols | 
 |   // is a bit tricky. Here we introduce a symbol for the prefix-like data | 
 |   // and use the .alt_entry attribute to mark the function's real entry point | 
 |   // as an alternative entry point to the symbol that precedes the function.. | 
 |   OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol()); | 
 |  | 
 |   for (auto &C : Prefix) { | 
 |     emitGlobalConstant(F.getParent()->getDataLayout(), C); | 
 |   } | 
 |  | 
 |   // Emit an .alt_entry directive for the actual function symbol. | 
 |   OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); | 
 | } | 
 |  | 
 | /// EmitFunctionHeader - This method emits the header for the current | 
 | /// function. | 
 | void AsmPrinter::emitFunctionHeader() { | 
 |   const Function &F = MF->getFunction(); | 
 |  | 
 |   if (isVerbose()) | 
 |     OutStreamer->getCommentOS() | 
 |         << "-- Begin function " | 
 |         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; | 
 |  | 
 |   // Print out constants referenced by the function | 
 |   emitConstantPool(); | 
 |  | 
 |   // Print the 'header' of function. | 
 |   // If basic block sections are desired, explicitly request a unique section | 
 |   // for this function's entry block. | 
 |   if (MF->front().isBeginSection()) | 
 |     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); | 
 |   else | 
 |     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); | 
 |   OutStreamer->switchSection(MF->getSection()); | 
 |  | 
 |   if (!MAI->hasVisibilityOnlyWithLinkage()) | 
 |     emitVisibility(CurrentFnSym, F.getVisibility()); | 
 |  | 
 |   if (MAI->needsFunctionDescriptors()) | 
 |     emitLinkage(&F, CurrentFnDescSym); | 
 |  | 
 |   emitLinkage(&F, CurrentFnSym); | 
 |   if (MAI->hasFunctionAlignment()) | 
 |     emitAlignment(MF->getAlignment(), &F); | 
 |  | 
 |   if (MAI->hasDotTypeDotSizeDirective()) | 
 |     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); | 
 |  | 
 |   if (F.hasFnAttribute(Attribute::Cold)) | 
 |     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); | 
 |  | 
 |   // Emit the prefix data. | 
 |   if (F.hasPrefixData()) | 
 |     emitFunctionPrefix({F.getPrefixData()}); | 
 |  | 
 |   // Emit KCFI type information before patchable-function-prefix nops. | 
 |   emitKCFITypeId(*MF); | 
 |  | 
 |   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily | 
 |   // place prefix data before NOPs. | 
 |   unsigned PatchableFunctionPrefix = 0; | 
 |   unsigned PatchableFunctionEntry = 0; | 
 |   (void)F.getFnAttribute("patchable-function-prefix") | 
 |       .getValueAsString() | 
 |       .getAsInteger(10, PatchableFunctionPrefix); | 
 |   (void)F.getFnAttribute("patchable-function-entry") | 
 |       .getValueAsString() | 
 |       .getAsInteger(10, PatchableFunctionEntry); | 
 |   if (PatchableFunctionPrefix) { | 
 |     CurrentPatchableFunctionEntrySym = | 
 |         OutContext.createLinkerPrivateTempSymbol(); | 
 |     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); | 
 |     emitNops(PatchableFunctionPrefix); | 
 |   } else if (PatchableFunctionEntry) { | 
 |     // May be reassigned when emitting the body, to reference the label after | 
 |     // the initial BTI (AArch64) or endbr32/endbr64 (x86). | 
 |     CurrentPatchableFunctionEntrySym = CurrentFnBegin; | 
 |   } | 
 |  | 
 |   // Emit the function prologue data for the indirect call sanitizer. | 
 |   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) { | 
 |     assert(MD->getNumOperands() == 2); | 
 |  | 
 |     auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0)); | 
 |     auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1)); | 
 |     emitFunctionPrefix({PrologueSig, TypeHash}); | 
 |   } | 
 |  | 
 |   if (isVerbose()) { | 
 |     F.printAsOperand(OutStreamer->getCommentOS(), | 
 |                      /*PrintType=*/false, F.getParent()); | 
 |     emitFunctionHeaderComment(); | 
 |     OutStreamer->getCommentOS() << '\n'; | 
 |   } | 
 |  | 
 |   // Emit the function descriptor. This is a virtual function to allow targets | 
 |   // to emit their specific function descriptor. Right now it is only used by | 
 |   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function | 
 |   // descriptors and should be converted to use this hook as well. | 
 |   if (MAI->needsFunctionDescriptors()) | 
 |     emitFunctionDescriptor(); | 
 |  | 
 |   // Emit the CurrentFnSym. This is a virtual function to allow targets to do | 
 |   // their wild and crazy things as required. | 
 |   emitFunctionEntryLabel(); | 
 |  | 
 |   // If the function had address-taken blocks that got deleted, then we have | 
 |   // references to the dangling symbols.  Emit them at the start of the function | 
 |   // so that we don't get references to undefined symbols. | 
 |   std::vector<MCSymbol*> DeadBlockSyms; | 
 |   takeDeletedSymbolsForFunction(&F, DeadBlockSyms); | 
 |   for (MCSymbol *DeadBlockSym : DeadBlockSyms) { | 
 |     OutStreamer->AddComment("Address taken block that was later removed"); | 
 |     OutStreamer->emitLabel(DeadBlockSym); | 
 |   } | 
 |  | 
 |   if (CurrentFnBegin) { | 
 |     if (MAI->useAssignmentForEHBegin()) { | 
 |       MCSymbol *CurPos = OutContext.createTempSymbol(); | 
 |       OutStreamer->emitLabel(CurPos); | 
 |       OutStreamer->emitAssignment(CurrentFnBegin, | 
 |                                  MCSymbolRefExpr::create(CurPos, OutContext)); | 
 |     } else { | 
 |       OutStreamer->emitLabel(CurrentFnBegin); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit pre-function debug and/or EH information. | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                        HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |     HI.Handler->beginFunction(MF); | 
 |   } | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                        HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |     HI.Handler->beginBasicBlockSection(MF->front()); | 
 |   } | 
 |  | 
 |   // Emit the prologue data. | 
 |   if (F.hasPrologueData()) | 
 |     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); | 
 | } | 
 |  | 
 | /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the | 
 | /// function.  This can be overridden by targets as required to do custom stuff. | 
 | void AsmPrinter::emitFunctionEntryLabel() { | 
 |   CurrentFnSym->redefineIfPossible(); | 
 |  | 
 |   // The function label could have already been emitted if two symbols end up | 
 |   // conflicting due to asm renaming.  Detect this and emit an error. | 
 |   if (CurrentFnSym->isVariable()) | 
 |     report_fatal_error("'" + Twine(CurrentFnSym->getName()) + | 
 |                        "' is a protected alias"); | 
 |  | 
 |   OutStreamer->emitLabel(CurrentFnSym); | 
 |  | 
 |   if (TM.getTargetTriple().isOSBinFormatELF()) { | 
 |     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); | 
 |     if (Sym != CurrentFnSym) { | 
 |       cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC); | 
 |       CurrentFnBeginLocal = Sym; | 
 |       OutStreamer->emitLabel(Sym); | 
 |       if (MAI->hasDotTypeDotSizeDirective()) | 
 |         OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// emitComments - Pretty-print comments for instructions. | 
 | static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { | 
 |   const MachineFunction *MF = MI.getMF(); | 
 |   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
 |  | 
 |   // Check for spills and reloads | 
 |  | 
 |   // We assume a single instruction only has a spill or reload, not | 
 |   // both. | 
 |   std::optional<LocationSize> Size; | 
 |   if ((Size = MI.getRestoreSize(TII))) { | 
 |     CommentOS << Size->getValue() << "-byte Reload\n"; | 
 |   } else if ((Size = MI.getFoldedRestoreSize(TII))) { | 
 |     if (!Size->hasValue()) | 
 |       CommentOS << "Unknown-size Folded Reload\n"; | 
 |     else if (Size->getValue()) | 
 |       CommentOS << Size->getValue() << "-byte Folded Reload\n"; | 
 |   } else if ((Size = MI.getSpillSize(TII))) { | 
 |     CommentOS << Size->getValue() << "-byte Spill\n"; | 
 |   } else if ((Size = MI.getFoldedSpillSize(TII))) { | 
 |     if (!Size->hasValue()) | 
 |       CommentOS << "Unknown-size Folded Spill\n"; | 
 |     else if (Size->getValue()) | 
 |       CommentOS << Size->getValue() << "-byte Folded Spill\n"; | 
 |   } | 
 |  | 
 |   // Check for spill-induced copies | 
 |   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) | 
 |     CommentOS << " Reload Reuse\n"; | 
 | } | 
 |  | 
 | /// emitImplicitDef - This method emits the specified machine instruction | 
 | /// that is an implicit def. | 
 | void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { | 
 |   Register RegNo = MI->getOperand(0).getReg(); | 
 |  | 
 |   SmallString<128> Str; | 
 |   raw_svector_ostream OS(Str); | 
 |   OS << "implicit-def: " | 
 |      << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); | 
 |  | 
 |   OutStreamer->AddComment(OS.str()); | 
 |   OutStreamer->addBlankLine(); | 
 | } | 
 |  | 
 | static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { | 
 |   std::string Str; | 
 |   raw_string_ostream OS(Str); | 
 |   OS << "kill:"; | 
 |   for (const MachineOperand &Op : MI->operands()) { | 
 |     assert(Op.isReg() && "KILL instruction must have only register operands"); | 
 |     OS << ' ' << (Op.isDef() ? "def " : "killed ") | 
 |        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); | 
 |   } | 
 |   AP.OutStreamer->AddComment(OS.str()); | 
 |   AP.OutStreamer->addBlankLine(); | 
 | } | 
 |  | 
 | /// emitDebugValueComment - This method handles the target-independent form | 
 | /// of DBG_VALUE, returning true if it was able to do so.  A false return | 
 | /// means the target will need to handle MI in EmitInstruction. | 
 | static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { | 
 |   // This code handles only the 4-operand target-independent form. | 
 |   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) | 
 |     return false; | 
 |  | 
 |   SmallString<128> Str; | 
 |   raw_svector_ostream OS(Str); | 
 |   OS << "DEBUG_VALUE: "; | 
 |  | 
 |   const DILocalVariable *V = MI->getDebugVariable(); | 
 |   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { | 
 |     StringRef Name = SP->getName(); | 
 |     if (!Name.empty()) | 
 |       OS << Name << ":"; | 
 |   } | 
 |   OS << V->getName(); | 
 |   OS << " <- "; | 
 |  | 
 |   const DIExpression *Expr = MI->getDebugExpression(); | 
 |   // First convert this to a non-variadic expression if possible, to simplify | 
 |   // the output. | 
 |   if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) | 
 |     Expr = *NonVariadicExpr; | 
 |   // Then, output the possibly-simplified expression. | 
 |   if (Expr->getNumElements()) { | 
 |     OS << '['; | 
 |     ListSeparator LS; | 
 |     for (auto &Op : Expr->expr_ops()) { | 
 |       OS << LS << dwarf::OperationEncodingString(Op.getOp()); | 
 |       for (unsigned I = 0; I < Op.getNumArgs(); ++I) | 
 |         OS << ' ' << Op.getArg(I); | 
 |     } | 
 |     OS << "] "; | 
 |   } | 
 |  | 
 |   // Register or immediate value. Register 0 means undef. | 
 |   for (const MachineOperand &Op : MI->debug_operands()) { | 
 |     if (&Op != MI->debug_operands().begin()) | 
 |       OS << ", "; | 
 |     switch (Op.getType()) { | 
 |     case MachineOperand::MO_FPImmediate: { | 
 |       APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); | 
 |       Type *ImmTy = Op.getFPImm()->getType(); | 
 |       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || | 
 |           ImmTy->isDoubleTy()) { | 
 |         OS << APF.convertToDouble(); | 
 |       } else { | 
 |         // There is no good way to print long double.  Convert a copy to | 
 |         // double.  Ah well, it's only a comment. | 
 |         bool ignored; | 
 |         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, | 
 |                     &ignored); | 
 |         OS << "(long double) " << APF.convertToDouble(); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case MachineOperand::MO_Immediate: { | 
 |       OS << Op.getImm(); | 
 |       break; | 
 |     } | 
 |     case MachineOperand::MO_CImmediate: { | 
 |       Op.getCImm()->getValue().print(OS, false /*isSigned*/); | 
 |       break; | 
 |     } | 
 |     case MachineOperand::MO_TargetIndex: { | 
 |       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; | 
 |       break; | 
 |     } | 
 |     case MachineOperand::MO_Register: | 
 |     case MachineOperand::MO_FrameIndex: { | 
 |       Register Reg; | 
 |       std::optional<StackOffset> Offset; | 
 |       if (Op.isReg()) { | 
 |         Reg = Op.getReg(); | 
 |       } else { | 
 |         const TargetFrameLowering *TFI = | 
 |             AP.MF->getSubtarget().getFrameLowering(); | 
 |         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); | 
 |       } | 
 |       if (!Reg) { | 
 |         // Suppress offset, it is not meaningful here. | 
 |         OS << "undef"; | 
 |         break; | 
 |       } | 
 |       // The second operand is only an offset if it's an immediate. | 
 |       if (MI->isIndirectDebugValue()) | 
 |         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); | 
 |       if (Offset) | 
 |         OS << '['; | 
 |       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); | 
 |       if (Offset) | 
 |         OS << '+' << Offset->getFixed() << ']'; | 
 |       break; | 
 |     } | 
 |     default: | 
 |       llvm_unreachable("Unknown operand type"); | 
 |     } | 
 |   } | 
 |  | 
 |   // NOTE: Want this comment at start of line, don't emit with AddComment. | 
 |   AP.OutStreamer->emitRawComment(OS.str()); | 
 |   return true; | 
 | } | 
 |  | 
 | /// This method handles the target-independent form of DBG_LABEL, returning | 
 | /// true if it was able to do so.  A false return means the target will need | 
 | /// to handle MI in EmitInstruction. | 
 | static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { | 
 |   if (MI->getNumOperands() != 1) | 
 |     return false; | 
 |  | 
 |   SmallString<128> Str; | 
 |   raw_svector_ostream OS(Str); | 
 |   OS << "DEBUG_LABEL: "; | 
 |  | 
 |   const DILabel *V = MI->getDebugLabel(); | 
 |   if (auto *SP = dyn_cast<DISubprogram>( | 
 |           V->getScope()->getNonLexicalBlockFileScope())) { | 
 |     StringRef Name = SP->getName(); | 
 |     if (!Name.empty()) | 
 |       OS << Name << ":"; | 
 |   } | 
 |   OS << V->getName(); | 
 |  | 
 |   // NOTE: Want this comment at start of line, don't emit with AddComment. | 
 |   AP.OutStreamer->emitRawComment(OS.str()); | 
 |   return true; | 
 | } | 
 |  | 
 | AsmPrinter::CFISection | 
 | AsmPrinter::getFunctionCFISectionType(const Function &F) const { | 
 |   // Ignore functions that won't get emitted. | 
 |   if (F.isDeclarationForLinker()) | 
 |     return CFISection::None; | 
 |  | 
 |   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && | 
 |       F.needsUnwindTableEntry()) | 
 |     return CFISection::EH; | 
 |  | 
 |   if (MAI->usesCFIWithoutEH() && F.hasUWTable()) | 
 |     return CFISection::EH; | 
 |  | 
 |   assert(MMI != nullptr && "Invalid machine module info"); | 
 |   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) | 
 |     return CFISection::Debug; | 
 |  | 
 |   return CFISection::None; | 
 | } | 
 |  | 
 | AsmPrinter::CFISection | 
 | AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { | 
 |   return getFunctionCFISectionType(MF.getFunction()); | 
 | } | 
 |  | 
 | bool AsmPrinter::needsSEHMoves() { | 
 |   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); | 
 | } | 
 |  | 
 | bool AsmPrinter::usesCFIWithoutEH() const { | 
 |   return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; | 
 | } | 
 |  | 
 | void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { | 
 |   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); | 
 |   if (!usesCFIWithoutEH() && | 
 |       ExceptionHandlingType != ExceptionHandling::DwarfCFI && | 
 |       ExceptionHandlingType != ExceptionHandling::ARM) | 
 |     return; | 
 |  | 
 |   if (getFunctionCFISectionType(*MF) == CFISection::None) | 
 |     return; | 
 |  | 
 |   // If there is no "real" instruction following this CFI instruction, skip | 
 |   // emitting it; it would be beyond the end of the function's FDE range. | 
 |   auto *MBB = MI.getParent(); | 
 |   auto I = std::next(MI.getIterator()); | 
 |   while (I != MBB->end() && I->isTransient()) | 
 |     ++I; | 
 |   if (I == MBB->instr_end() && | 
 |       MBB->getReverseIterator() == MBB->getParent()->rbegin()) | 
 |     return; | 
 |  | 
 |   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); | 
 |   unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); | 
 |   const MCCFIInstruction &CFI = Instrs[CFIIndex]; | 
 |   emitCFIInstruction(CFI); | 
 | } | 
 |  | 
 | void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { | 
 |   // The operands are the MCSymbol and the frame offset of the allocation. | 
 |   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); | 
 |   int FrameOffset = MI.getOperand(1).getImm(); | 
 |  | 
 |   // Emit a symbol assignment. | 
 |   OutStreamer->emitAssignment(FrameAllocSym, | 
 |                              MCConstantExpr::create(FrameOffset, OutContext)); | 
 | } | 
 |  | 
 | /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section | 
 | /// for a given basic block. This can be used to capture more precise profile | 
 | /// information. | 
 | static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { | 
 |   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); | 
 |   return object::BBAddrMap::BBEntry::Metadata{ | 
 |       MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()), | 
 |       MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(), | 
 |       !MBB.empty() && MBB.rbegin()->isIndirectBranch()} | 
 |       .encode(); | 
 | } | 
 |  | 
 | static llvm::object::BBAddrMap::Features | 
 | getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges) { | 
 |   return {PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::FuncEntryCount), | 
 |           PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq), | 
 |           PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb), | 
 |           MF.hasBBSections() && NumMBBSectionRanges > 1}; | 
 | } | 
 |  | 
 | void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { | 
 |   MCSection *BBAddrMapSection = | 
 |       getObjFileLowering().getBBAddrMapSection(*MF.getSection()); | 
 |   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); | 
 |  | 
 |   const MCSymbol *FunctionSymbol = getFunctionBegin(); | 
 |  | 
 |   OutStreamer->pushSection(); | 
 |   OutStreamer->switchSection(BBAddrMapSection); | 
 |   OutStreamer->AddComment("version"); | 
 |   uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); | 
 |   OutStreamer->emitInt8(BBAddrMapVersion); | 
 |   OutStreamer->AddComment("feature"); | 
 |   auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size()); | 
 |   OutStreamer->emitInt8(Features.encode()); | 
 |   // Emit BB Information for each basic block in the function. | 
 |   if (Features.MultiBBRange) { | 
 |     OutStreamer->AddComment("number of basic block ranges"); | 
 |     OutStreamer->emitULEB128IntValue(MBBSectionRanges.size()); | 
 |   } | 
 |   // Number of blocks in each MBB section. | 
 |   MapVector<unsigned, unsigned> MBBSectionNumBlocks; | 
 |   const MCSymbol *PrevMBBEndSymbol = nullptr; | 
 |   if (!Features.MultiBBRange) { | 
 |     OutStreamer->AddComment("function address"); | 
 |     OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); | 
 |     OutStreamer->AddComment("number of basic blocks"); | 
 |     OutStreamer->emitULEB128IntValue(MF.size()); | 
 |     PrevMBBEndSymbol = FunctionSymbol; | 
 |   } else { | 
 |     unsigned BBCount = 0; | 
 |     for (const MachineBasicBlock &MBB : MF) { | 
 |       BBCount++; | 
 |       if (MBB.isEndSection()) { | 
 |         // Store each section's basic block count when it ends. | 
 |         MBBSectionNumBlocks[MBB.getSectionIDNum()] = BBCount; | 
 |         // Reset the count for the next section. | 
 |         BBCount = 0; | 
 |       } | 
 |     } | 
 |   } | 
 |   // Emit the BB entry for each basic block in the function. | 
 |   for (const MachineBasicBlock &MBB : MF) { | 
 |     const MCSymbol *MBBSymbol = | 
 |         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); | 
 |     bool IsBeginSection = | 
 |         Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock()); | 
 |     if (IsBeginSection) { | 
 |       OutStreamer->AddComment("base address"); | 
 |       OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize()); | 
 |       OutStreamer->AddComment("number of basic blocks"); | 
 |       OutStreamer->emitULEB128IntValue( | 
 |           MBBSectionNumBlocks[MBB.getSectionIDNum()]); | 
 |       PrevMBBEndSymbol = MBBSymbol; | 
 |     } | 
 |     // TODO: Remove this check when version 1 is deprecated. | 
 |     if (BBAddrMapVersion > 1) { | 
 |       OutStreamer->AddComment("BB id"); | 
 |       // Emit the BB ID for this basic block. | 
 |       // We only emit BaseID since CloneID is unset for | 
 |       // basic-block-sections=labels. | 
 |       // TODO: Emit the full BBID when labels and sections can be mixed | 
 |       // together. | 
 |       OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID); | 
 |     } | 
 |     // Emit the basic block offset relative to the end of the previous block. | 
 |     // This is zero unless the block is padded due to alignment. | 
 |     emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol); | 
 |     // Emit the basic block size. When BBs have alignments, their size cannot | 
 |     // always be computed from their offsets. | 
 |     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); | 
 |     // Emit the Metadata. | 
 |     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); | 
 |     PrevMBBEndSymbol = MBB.getEndSymbol(); | 
 |   } | 
 |  | 
 |   if (Features.hasPGOAnalysis()) { | 
 |     assert(BBAddrMapVersion >= 2 && | 
 |            "PGOAnalysisMap only supports version 2 or later"); | 
 |  | 
 |     if (Features.FuncEntryCount) { | 
 |       OutStreamer->AddComment("function entry count"); | 
 |       auto MaybeEntryCount = MF.getFunction().getEntryCount(); | 
 |       OutStreamer->emitULEB128IntValue( | 
 |           MaybeEntryCount ? MaybeEntryCount->getCount() : 0); | 
 |     } | 
 |     const MachineBlockFrequencyInfo *MBFI = | 
 |         Features.BBFreq | 
 |             ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() | 
 |             : nullptr; | 
 |     const MachineBranchProbabilityInfo *MBPI = | 
 |         Features.BrProb ? &getAnalysis<MachineBranchProbabilityInfo>() | 
 |                         : nullptr; | 
 |  | 
 |     if (Features.BBFreq || Features.BrProb) { | 
 |       for (const MachineBasicBlock &MBB : MF) { | 
 |         if (Features.BBFreq) { | 
 |           OutStreamer->AddComment("basic block frequency"); | 
 |           OutStreamer->emitULEB128IntValue( | 
 |               MBFI->getBlockFreq(&MBB).getFrequency()); | 
 |         } | 
 |         if (Features.BrProb) { | 
 |           unsigned SuccCount = MBB.succ_size(); | 
 |           OutStreamer->AddComment("basic block successor count"); | 
 |           OutStreamer->emitULEB128IntValue(SuccCount); | 
 |           for (const MachineBasicBlock *SuccMBB : MBB.successors()) { | 
 |             OutStreamer->AddComment("successor BB ID"); | 
 |             OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID); | 
 |             OutStreamer->AddComment("successor branch probability"); | 
 |             OutStreamer->emitULEB128IntValue( | 
 |                 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator()); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   OutStreamer->popSection(); | 
 | } | 
 |  | 
 | void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, | 
 |                                    const MCSymbol *Symbol) { | 
 |   MCSection *Section = | 
 |       getObjFileLowering().getKCFITrapSection(*MF.getSection()); | 
 |   if (!Section) | 
 |     return; | 
 |  | 
 |   OutStreamer->pushSection(); | 
 |   OutStreamer->switchSection(Section); | 
 |  | 
 |   MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); | 
 |   OutStreamer->emitLabel(Loc); | 
 |   OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4); | 
 |  | 
 |   OutStreamer->popSection(); | 
 | } | 
 |  | 
 | void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { | 
 |   const Function &F = MF.getFunction(); | 
 |   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) | 
 |     emitGlobalConstant(F.getParent()->getDataLayout(), | 
 |                        mdconst::extract<ConstantInt>(MD->getOperand(0))); | 
 | } | 
 |  | 
 | void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { | 
 |   if (PP) { | 
 |     auto GUID = MI.getOperand(0).getImm(); | 
 |     auto Index = MI.getOperand(1).getImm(); | 
 |     auto Type = MI.getOperand(2).getImm(); | 
 |     auto Attr = MI.getOperand(3).getImm(); | 
 |     DILocation *DebugLoc = MI.getDebugLoc(); | 
 |     PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { | 
 |   if (!MF.getTarget().Options.EmitStackSizeSection) | 
 |     return; | 
 |  | 
 |   MCSection *StackSizeSection = | 
 |       getObjFileLowering().getStackSizesSection(*getCurrentSection()); | 
 |   if (!StackSizeSection) | 
 |     return; | 
 |  | 
 |   const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); | 
 |   // Don't emit functions with dynamic stack allocations. | 
 |   if (FrameInfo.hasVarSizedObjects()) | 
 |     return; | 
 |  | 
 |   OutStreamer->pushSection(); | 
 |   OutStreamer->switchSection(StackSizeSection); | 
 |  | 
 |   const MCSymbol *FunctionSymbol = getFunctionBegin(); | 
 |   uint64_t StackSize = | 
 |       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); | 
 |   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); | 
 |   OutStreamer->emitULEB128IntValue(StackSize); | 
 |  | 
 |   OutStreamer->popSection(); | 
 | } | 
 |  | 
 | void AsmPrinter::emitStackUsage(const MachineFunction &MF) { | 
 |   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; | 
 |  | 
 |   // OutputFilename empty implies -fstack-usage is not passed. | 
 |   if (OutputFilename.empty()) | 
 |     return; | 
 |  | 
 |   const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); | 
 |   uint64_t StackSize = | 
 |       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); | 
 |  | 
 |   if (StackUsageStream == nullptr) { | 
 |     std::error_code EC; | 
 |     StackUsageStream = | 
 |         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); | 
 |     if (EC) { | 
 |       errs() << "Could not open file: " << EC.message(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) | 
 |     *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); | 
 |   else | 
 |     *StackUsageStream << MF.getFunction().getParent()->getName(); | 
 |  | 
 |   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; | 
 |   if (FrameInfo.hasVarSizedObjects()) | 
 |     *StackUsageStream << "dynamic\n"; | 
 |   else | 
 |     *StackUsageStream << "static\n"; | 
 | } | 
 |  | 
 | void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, | 
 |                                      const MDNode &MD) { | 
 |   MCSymbol *S = MF.getContext().createTempSymbol("pcsection"); | 
 |   OutStreamer->emitLabel(S); | 
 |   PCSectionsSymbols[&MD].emplace_back(S); | 
 | } | 
 |  | 
 | void AsmPrinter::emitPCSections(const MachineFunction &MF) { | 
 |   const Function &F = MF.getFunction(); | 
 |   if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections)) | 
 |     return; | 
 |  | 
 |   const CodeModel::Model CM = MF.getTarget().getCodeModel(); | 
 |   const unsigned RelativeRelocSize = | 
 |       (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() | 
 |                                                           : 4; | 
 |  | 
 |   // Switch to PCSection, short-circuiting the common case where the current | 
 |   // section is still valid (assume most MD_pcsections contain just 1 section). | 
 |   auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { | 
 |     if (Sec == Prev) | 
 |       return; | 
 |     MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection()); | 
 |     assert(S && "PC section is not initialized"); | 
 |     OutStreamer->switchSection(S); | 
 |     Prev = Sec; | 
 |   }; | 
 |   // Emit symbols into sections and data as specified in the pcsections MDNode. | 
 |   auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, | 
 |                        bool Deltas) { | 
 |     // Expect the first operand to be a section name. After that, a tuple of | 
 |     // constants may appear, which will simply be emitted into the current | 
 |     // section (the user of MD_pcsections decides the format of encoded data). | 
 |     assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string"); | 
 |     bool ConstULEB128 = false; | 
 |     for (const MDOperand &MDO : MD.operands()) { | 
 |       if (auto *S = dyn_cast<MDString>(MDO)) { | 
 |         // Found string, start of new section! | 
 |         // Find options for this section "<section>!<opts>" - supported options: | 
 |         //   C = Compress constant integers of size 2-8 bytes as ULEB128. | 
 |         const StringRef SecWithOpt = S->getString(); | 
 |         const size_t OptStart = SecWithOpt.find('!'); // likely npos | 
 |         const StringRef Sec = SecWithOpt.substr(0, OptStart); | 
 |         const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty | 
 |         ConstULEB128 = Opts.contains('C'); | 
 | #ifndef NDEBUG | 
 |         for (char O : Opts) | 
 |           assert((O == '!' || O == 'C') && "Invalid !pcsections options"); | 
 | #endif | 
 |         SwitchSection(Sec); | 
 |         const MCSymbol *Prev = Syms.front(); | 
 |         for (const MCSymbol *Sym : Syms) { | 
 |           if (Sym == Prev || !Deltas) { | 
 |             // Use the entry itself as the base of the relative offset. | 
 |             MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base"); | 
 |             OutStreamer->emitLabel(Base); | 
 |             // Emit relative relocation `addr - base`, which avoids a dynamic | 
 |             // relocation in the final binary. User will get the address with | 
 |             // `base + addr`. | 
 |             emitLabelDifference(Sym, Base, RelativeRelocSize); | 
 |           } else { | 
 |             // Emit delta between symbol and previous symbol. | 
 |             if (ConstULEB128) | 
 |               emitLabelDifferenceAsULEB128(Sym, Prev); | 
 |             else | 
 |               emitLabelDifference(Sym, Prev, 4); | 
 |           } | 
 |           Prev = Sym; | 
 |         } | 
 |       } else { | 
 |         // Emit auxiliary data after PC. | 
 |         assert(isa<MDNode>(MDO) && "expecting either string or tuple"); | 
 |         const auto *AuxMDs = cast<MDNode>(MDO); | 
 |         for (const MDOperand &AuxMDO : AuxMDs->operands()) { | 
 |           assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant"); | 
 |           const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue(); | 
 |           const DataLayout &DL = F.getParent()->getDataLayout(); | 
 |           const uint64_t Size = DL.getTypeStoreSize(C->getType()); | 
 |  | 
 |           if (auto *CI = dyn_cast<ConstantInt>(C); | 
 |               CI && ConstULEB128 && Size > 1 && Size <= 8) { | 
 |             emitULEB128(CI->getZExtValue()); | 
 |           } else { | 
 |             emitGlobalConstant(DL, C); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   }; | 
 |  | 
 |   OutStreamer->pushSection(); | 
 |   // Emit PCs for function start and function size. | 
 |   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections)) | 
 |     EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); | 
 |   // Emit PCs for instructions collected. | 
 |   for (const auto &MS : PCSectionsSymbols) | 
 |     EmitForMD(*MS.first, MS.second, false); | 
 |   OutStreamer->popSection(); | 
 |   PCSectionsSymbols.clear(); | 
 | } | 
 |  | 
 | /// Returns true if function begin and end labels should be emitted. | 
 | static bool needFuncLabels(const MachineFunction &MF) { | 
 |   MachineModuleInfo &MMI = MF.getMMI(); | 
 |   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || | 
 |       MMI.hasDebugInfo() || | 
 |       MF.getFunction().hasMetadata(LLVMContext::MD_pcsections)) | 
 |     return true; | 
 |  | 
 |   // We might emit an EH table that uses function begin and end labels even if | 
 |   // we don't have any landingpads. | 
 |   if (!MF.getFunction().hasPersonalityFn()) | 
 |     return false; | 
 |   return !isNoOpWithoutInvoke( | 
 |       classifyEHPersonality(MF.getFunction().getPersonalityFn())); | 
 | } | 
 |  | 
 | /// EmitFunctionBody - This method emits the body and trailer for a | 
 | /// function. | 
 | void AsmPrinter::emitFunctionBody() { | 
 |   emitFunctionHeader(); | 
 |  | 
 |   // Emit target-specific gunk before the function body. | 
 |   emitFunctionBodyStart(); | 
 |  | 
 |   if (isVerbose()) { | 
 |     // Get MachineDominatorTree or compute it on the fly if it's unavailable | 
 |     MDT = getAnalysisIfAvailable<MachineDominatorTree>(); | 
 |     if (!MDT) { | 
 |       OwnedMDT = std::make_unique<MachineDominatorTree>(); | 
 |       OwnedMDT->getBase().recalculate(*MF); | 
 |       MDT = OwnedMDT.get(); | 
 |     } | 
 |  | 
 |     // Get MachineLoopInfo or compute it on the fly if it's unavailable | 
 |     MLI = getAnalysisIfAvailable<MachineLoopInfo>(); | 
 |     if (!MLI) { | 
 |       OwnedMLI = std::make_unique<MachineLoopInfo>(); | 
 |       OwnedMLI->getBase().analyze(MDT->getBase()); | 
 |       MLI = OwnedMLI.get(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Print out code for the function. | 
 |   bool HasAnyRealCode = false; | 
 |   int NumInstsInFunction = 0; | 
 |   bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch"); | 
 |  | 
 |   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); | 
 |   for (auto &MBB : *MF) { | 
 |     // Print a label for the basic block. | 
 |     emitBasicBlockStart(MBB); | 
 |     DenseMap<StringRef, unsigned> MnemonicCounts; | 
 |     for (auto &MI : MBB) { | 
 |       // Print the assembly for the instruction. | 
 |       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && | 
 |           !MI.isDebugInstr()) { | 
 |         HasAnyRealCode = true; | 
 |         ++NumInstsInFunction; | 
 |       } | 
 |  | 
 |       // If there is a pre-instruction symbol, emit a label for it here. | 
 |       if (MCSymbol *S = MI.getPreInstrSymbol()) | 
 |         OutStreamer->emitLabel(S); | 
 |  | 
 |       if (MDNode *MD = MI.getPCSections()) | 
 |         emitPCSectionsLabel(*MF, *MD); | 
 |  | 
 |       for (const HandlerInfo &HI : Handlers) { | 
 |         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                            HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |         HI.Handler->beginInstruction(&MI); | 
 |       } | 
 |  | 
 |       if (isVerbose()) | 
 |         emitComments(MI, OutStreamer->getCommentOS()); | 
 |  | 
 |       switch (MI.getOpcode()) { | 
 |       case TargetOpcode::CFI_INSTRUCTION: | 
 |         emitCFIInstruction(MI); | 
 |         break; | 
 |       case TargetOpcode::LOCAL_ESCAPE: | 
 |         emitFrameAlloc(MI); | 
 |         break; | 
 |       case TargetOpcode::ANNOTATION_LABEL: | 
 |       case TargetOpcode::GC_LABEL: | 
 |         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); | 
 |         break; | 
 |       case TargetOpcode::EH_LABEL: | 
 |         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); | 
 |         // For AsynchEH, insert a Nop if followed by a trap inst | 
 |         //   Or the exception won't be caught. | 
 |         //   (see MCConstantExpr::create(1,..) in WinException.cpp) | 
 |         //  Ignore SDiv/UDiv because a DIV with Const-0 divisor | 
 |         //    must have being turned into an UndefValue. | 
 |         //  Div with variable opnds won't be the first instruction in | 
 |         //  an EH region as it must be led by at least a Load | 
 |         { | 
 |           auto MI2 = std::next(MI.getIterator()); | 
 |           if (IsEHa && MI2 != MBB.end() && | 
 |               (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) | 
 |             emitNops(1); | 
 |         } | 
 |         break; | 
 |       case TargetOpcode::INLINEASM: | 
 |       case TargetOpcode::INLINEASM_BR: | 
 |         emitInlineAsm(&MI); | 
 |         break; | 
 |       case TargetOpcode::DBG_VALUE: | 
 |       case TargetOpcode::DBG_VALUE_LIST: | 
 |         if (isVerbose()) { | 
 |           if (!emitDebugValueComment(&MI, *this)) | 
 |             emitInstruction(&MI); | 
 |         } | 
 |         break; | 
 |       case TargetOpcode::DBG_INSTR_REF: | 
 |         // This instruction reference will have been resolved to a machine | 
 |         // location, and a nearby DBG_VALUE created. We can safely ignore | 
 |         // the instruction reference. | 
 |         break; | 
 |       case TargetOpcode::DBG_PHI: | 
 |         // This instruction is only used to label a program point, it's purely | 
 |         // meta information. | 
 |         break; | 
 |       case TargetOpcode::DBG_LABEL: | 
 |         if (isVerbose()) { | 
 |           if (!emitDebugLabelComment(&MI, *this)) | 
 |             emitInstruction(&MI); | 
 |         } | 
 |         break; | 
 |       case TargetOpcode::IMPLICIT_DEF: | 
 |         if (isVerbose()) emitImplicitDef(&MI); | 
 |         break; | 
 |       case TargetOpcode::KILL: | 
 |         if (isVerbose()) emitKill(&MI, *this); | 
 |         break; | 
 |       case TargetOpcode::PSEUDO_PROBE: | 
 |         emitPseudoProbe(MI); | 
 |         break; | 
 |       case TargetOpcode::ARITH_FENCE: | 
 |         if (isVerbose()) | 
 |           OutStreamer->emitRawComment("ARITH_FENCE"); | 
 |         break; | 
 |       case TargetOpcode::MEMBARRIER: | 
 |         OutStreamer->emitRawComment("MEMBARRIER"); | 
 |         break; | 
 |       case TargetOpcode::JUMP_TABLE_DEBUG_INFO: | 
 |         // This instruction is only used to note jump table debug info, it's | 
 |         // purely meta information. | 
 |         break; | 
 |       default: | 
 |         emitInstruction(&MI); | 
 |         if (CanDoExtraAnalysis) { | 
 |           MCInst MCI; | 
 |           MCI.setOpcode(MI.getOpcode()); | 
 |           auto Name = OutStreamer->getMnemonic(MCI); | 
 |           auto I = MnemonicCounts.insert({Name, 0u}); | 
 |           I.first->second++; | 
 |         } | 
 |         break; | 
 |       } | 
 |  | 
 |       // If there is a post-instruction symbol, emit a label for it here. | 
 |       if (MCSymbol *S = MI.getPostInstrSymbol()) | 
 |         OutStreamer->emitLabel(S); | 
 |  | 
 |       for (const HandlerInfo &HI : Handlers) { | 
 |         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                            HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |         HI.Handler->endInstruction(); | 
 |       } | 
 |     } | 
 |  | 
 |     // We must emit temporary symbol for the end of this basic block, if either | 
 |     // we have BBLabels enabled or if this basic blocks marks the end of a | 
 |     // section. | 
 |     if (MF->hasBBLabels() || MF->getTarget().Options.BBAddrMap || | 
 |         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) | 
 |       OutStreamer->emitLabel(MBB.getEndSymbol()); | 
 |  | 
 |     if (MBB.isEndSection()) { | 
 |       // The size directive for the section containing the entry block is | 
 |       // handled separately by the function section. | 
 |       if (!MBB.sameSection(&MF->front())) { | 
 |         if (MAI->hasDotTypeDotSizeDirective()) { | 
 |           // Emit the size directive for the basic block section. | 
 |           const MCExpr *SizeExp = MCBinaryExpr::createSub( | 
 |               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), | 
 |               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), | 
 |               OutContext); | 
 |           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); | 
 |         } | 
 |         MBBSectionRanges[MBB.getSectionIDNum()] = | 
 |             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; | 
 |       } | 
 |     } | 
 |     emitBasicBlockEnd(MBB); | 
 |  | 
 |     if (CanDoExtraAnalysis) { | 
 |       // Skip empty blocks. | 
 |       if (MBB.empty()) | 
 |         continue; | 
 |  | 
 |       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", | 
 |                                           MBB.begin()->getDebugLoc(), &MBB); | 
 |  | 
 |       // Generate instruction mix remark. First, sort counts in descending order | 
 |       // by count and name. | 
 |       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; | 
 |       for (auto &KV : MnemonicCounts) | 
 |         MnemonicVec.emplace_back(KV.first, KV.second); | 
 |  | 
 |       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, | 
 |                            const std::pair<StringRef, unsigned> &B) { | 
 |         if (A.second > B.second) | 
 |           return true; | 
 |         if (A.second == B.second) | 
 |           return StringRef(A.first) < StringRef(B.first); | 
 |         return false; | 
 |       }); | 
 |       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; | 
 |       for (auto &KV : MnemonicVec) { | 
 |         auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); | 
 |         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; | 
 |       } | 
 |       ORE->emit(R); | 
 |     } | 
 |   } | 
 |  | 
 |   EmittedInsts += NumInstsInFunction; | 
 |   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", | 
 |                                       MF->getFunction().getSubprogram(), | 
 |                                       &MF->front()); | 
 |   R << ore::NV("NumInstructions", NumInstsInFunction) | 
 |     << " instructions in function"; | 
 |   ORE->emit(R); | 
 |  | 
 |   // If the function is empty and the object file uses .subsections_via_symbols, | 
 |   // then we need to emit *something* to the function body to prevent the | 
 |   // labels from collapsing together.  Just emit a noop. | 
 |   // Similarly, don't emit empty functions on Windows either. It can lead to | 
 |   // duplicate entries (two functions with the same RVA) in the Guard CF Table | 
 |   // after linking, causing the kernel not to load the binary: | 
 |   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html | 
 |   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. | 
 |   const Triple &TT = TM.getTargetTriple(); | 
 |   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || | 
 |                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { | 
 |     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); | 
 |  | 
 |     // Targets can opt-out of emitting the noop here by leaving the opcode | 
 |     // unspecified. | 
 |     if (Noop.getOpcode()) { | 
 |       OutStreamer->AddComment("avoids zero-length function"); | 
 |       emitNops(1); | 
 |     } | 
 |   } | 
 |  | 
 |   // Switch to the original section in case basic block sections was used. | 
 |   OutStreamer->switchSection(MF->getSection()); | 
 |  | 
 |   const Function &F = MF->getFunction(); | 
 |   for (const auto &BB : F) { | 
 |     if (!BB.hasAddressTaken()) | 
 |       continue; | 
 |     MCSymbol *Sym = GetBlockAddressSymbol(&BB); | 
 |     if (Sym->isDefined()) | 
 |       continue; | 
 |     OutStreamer->AddComment("Address of block that was removed by CodeGen"); | 
 |     OutStreamer->emitLabel(Sym); | 
 |   } | 
 |  | 
 |   // Emit target-specific gunk after the function body. | 
 |   emitFunctionBodyEnd(); | 
 |  | 
 |   // Even though wasm supports .type and .size in general, function symbols | 
 |   // are automatically sized. | 
 |   bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); | 
 |  | 
 |   if (needFuncLabels(*MF) || EmitFunctionSize) { | 
 |     // Create a symbol for the end of function. | 
 |     CurrentFnEnd = createTempSymbol("func_end"); | 
 |     OutStreamer->emitLabel(CurrentFnEnd); | 
 |   } | 
 |  | 
 |   // If the target wants a .size directive for the size of the function, emit | 
 |   // it. | 
 |   if (EmitFunctionSize) { | 
 |     // We can get the size as difference between the function label and the | 
 |     // temp label. | 
 |     const MCExpr *SizeExp = MCBinaryExpr::createSub( | 
 |         MCSymbolRefExpr::create(CurrentFnEnd, OutContext), | 
 |         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); | 
 |     OutStreamer->emitELFSize(CurrentFnSym, SizeExp); | 
 |     if (CurrentFnBeginLocal) | 
 |       OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp); | 
 |   } | 
 |  | 
 |   // Call endBasicBlockSection on the last block now, if it wasn't already | 
 |   // called. | 
 |   if (!MF->back().isEndSection()) { | 
 |     for (const HandlerInfo &HI : Handlers) { | 
 |       NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                          HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |       HI.Handler->endBasicBlockSection(MF->back()); | 
 |     } | 
 |   } | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                        HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |     HI.Handler->markFunctionEnd(); | 
 |   } | 
 |  | 
 |   MBBSectionRanges[MF->front().getSectionIDNum()] = | 
 |       MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; | 
 |  | 
 |   // Print out jump tables referenced by the function. | 
 |   emitJumpTableInfo(); | 
 |  | 
 |   // Emit post-function debug and/or EH information. | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                        HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |     HI.Handler->endFunction(MF); | 
 |   } | 
 |  | 
 |   // Emit section containing BB address offsets and their metadata, when | 
 |   // BB labels are requested for this function. Skip empty functions. | 
 |   if (HasAnyRealCode) { | 
 |     if (MF->hasBBLabels() || MF->getTarget().Options.BBAddrMap) | 
 |       emitBBAddrMapSection(*MF); | 
 |     else if (PgoAnalysisMapFeatures.getBits() != 0) | 
 |       MF->getContext().reportWarning( | 
 |           SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() + | 
 |                        " but it does not have labels"); | 
 |   } | 
 |  | 
 |   // Emit sections containing instruction and function PCs. | 
 |   emitPCSections(*MF); | 
 |  | 
 |   // Emit section containing stack size metadata. | 
 |   emitStackSizeSection(*MF); | 
 |  | 
 |   // Emit .su file containing function stack size information. | 
 |   emitStackUsage(*MF); | 
 |  | 
 |   emitPatchableFunctionEntries(); | 
 |  | 
 |   if (isVerbose()) | 
 |     OutStreamer->getCommentOS() << "-- End function\n"; | 
 |  | 
 |   OutStreamer->addBlankLine(); | 
 | } | 
 |  | 
 | /// Compute the number of Global Variables that uses a Constant. | 
 | static unsigned getNumGlobalVariableUses(const Constant *C) { | 
 |   if (!C) | 
 |     return 0; | 
 |  | 
 |   if (isa<GlobalVariable>(C)) | 
 |     return 1; | 
 |  | 
 |   unsigned NumUses = 0; | 
 |   for (const auto *CU : C->users()) | 
 |     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); | 
 |  | 
 |   return NumUses; | 
 | } | 
 |  | 
 | /// Only consider global GOT equivalents if at least one user is a | 
 | /// cstexpr inside an initializer of another global variables. Also, don't | 
 | /// handle cstexpr inside instructions. During global variable emission, | 
 | /// candidates are skipped and are emitted later in case at least one cstexpr | 
 | /// isn't replaced by a PC relative GOT entry access. | 
 | static bool isGOTEquivalentCandidate(const GlobalVariable *GV, | 
 |                                      unsigned &NumGOTEquivUsers) { | 
 |   // Global GOT equivalents are unnamed private globals with a constant | 
 |   // pointer initializer to another global symbol. They must point to a | 
 |   // GlobalVariable or Function, i.e., as GlobalValue. | 
 |   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || | 
 |       !GV->isConstant() || !GV->isDiscardableIfUnused() || | 
 |       !isa<GlobalValue>(GV->getOperand(0))) | 
 |     return false; | 
 |  | 
 |   // To be a got equivalent, at least one of its users need to be a constant | 
 |   // expression used by another global variable. | 
 |   for (const auto *U : GV->users()) | 
 |     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); | 
 |  | 
 |   return NumGOTEquivUsers > 0; | 
 | } | 
 |  | 
 | /// Unnamed constant global variables solely contaning a pointer to | 
 | /// another globals variable is equivalent to a GOT table entry; it contains the | 
 | /// the address of another symbol. Optimize it and replace accesses to these | 
 | /// "GOT equivalents" by using the GOT entry for the final global instead. | 
 | /// Compute GOT equivalent candidates among all global variables to avoid | 
 | /// emitting them if possible later on, after it use is replaced by a GOT entry | 
 | /// access. | 
 | void AsmPrinter::computeGlobalGOTEquivs(Module &M) { | 
 |   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) | 
 |     return; | 
 |  | 
 |   for (const auto &G : M.globals()) { | 
 |     unsigned NumGOTEquivUsers = 0; | 
 |     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) | 
 |       continue; | 
 |  | 
 |     const MCSymbol *GOTEquivSym = getSymbol(&G); | 
 |     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); | 
 |   } | 
 | } | 
 |  | 
 | /// Constant expressions using GOT equivalent globals may not be eligible | 
 | /// for PC relative GOT entry conversion, in such cases we need to emit such | 
 | /// globals we previously omitted in EmitGlobalVariable. | 
 | void AsmPrinter::emitGlobalGOTEquivs() { | 
 |   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) | 
 |     return; | 
 |  | 
 |   SmallVector<const GlobalVariable *, 8> FailedCandidates; | 
 |   for (auto &I : GlobalGOTEquivs) { | 
 |     const GlobalVariable *GV = I.second.first; | 
 |     unsigned Cnt = I.second.second; | 
 |     if (Cnt) | 
 |       FailedCandidates.push_back(GV); | 
 |   } | 
 |   GlobalGOTEquivs.clear(); | 
 |  | 
 |   for (const auto *GV : FailedCandidates) | 
 |     emitGlobalVariable(GV); | 
 | } | 
 |  | 
 | void AsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { | 
 |   MCSymbol *Name = getSymbol(&GA); | 
 |   bool IsFunction = GA.getValueType()->isFunctionTy(); | 
 |   // Treat bitcasts of functions as functions also. This is important at least | 
 |   // on WebAssembly where object and function addresses can't alias each other. | 
 |   if (!IsFunction) | 
 |     IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts()); | 
 |  | 
 |   // AIX's assembly directive `.set` is not usable for aliasing purpose, | 
 |   // so AIX has to use the extra-label-at-definition strategy. At this | 
 |   // point, all the extra label is emitted, we just have to emit linkage for | 
 |   // those labels. | 
 |   if (TM.getTargetTriple().isOSBinFormatXCOFF()) { | 
 |     assert(MAI->hasVisibilityOnlyWithLinkage() && | 
 |            "Visibility should be handled with emitLinkage() on AIX."); | 
 |  | 
 |     // Linkage for alias of global variable has been emitted. | 
 |     if (isa<GlobalVariable>(GA.getAliaseeObject())) | 
 |       return; | 
 |  | 
 |     emitLinkage(&GA, Name); | 
 |     // If it's a function, also emit linkage for aliases of function entry | 
 |     // point. | 
 |     if (IsFunction) | 
 |       emitLinkage(&GA, | 
 |                   getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) | 
 |     OutStreamer->emitSymbolAttribute(Name, MCSA_Global); | 
 |   else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) | 
 |     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); | 
 |   else | 
 |     assert(GA.hasLocalLinkage() && "Invalid alias linkage"); | 
 |  | 
 |   // Set the symbol type to function if the alias has a function type. | 
 |   // This affects codegen when the aliasee is not a function. | 
 |   if (IsFunction) { | 
 |     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); | 
 |     if (TM.getTargetTriple().isOSBinFormatCOFF()) { | 
 |       OutStreamer->beginCOFFSymbolDef(Name); | 
 |       OutStreamer->emitCOFFSymbolStorageClass( | 
 |           GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC | 
 |                                : COFF::IMAGE_SYM_CLASS_EXTERNAL); | 
 |       OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION | 
 |                                       << COFF::SCT_COMPLEX_TYPE_SHIFT); | 
 |       OutStreamer->endCOFFSymbolDef(); | 
 |     } | 
 |   } | 
 |  | 
 |   emitVisibility(Name, GA.getVisibility()); | 
 |  | 
 |   const MCExpr *Expr = lowerConstant(GA.getAliasee()); | 
 |  | 
 |   if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) | 
 |     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); | 
 |  | 
 |   // Emit the directives as assignments aka .set: | 
 |   OutStreamer->emitAssignment(Name, Expr); | 
 |   MCSymbol *LocalAlias = getSymbolPreferLocal(GA); | 
 |   if (LocalAlias != Name) | 
 |     OutStreamer->emitAssignment(LocalAlias, Expr); | 
 |  | 
 |   // If the aliasee does not correspond to a symbol in the output, i.e. the | 
 |   // alias is not of an object or the aliased object is private, then set the | 
 |   // size of the alias symbol from the type of the alias. We don't do this in | 
 |   // other situations as the alias and aliasee having differing types but same | 
 |   // size may be intentional. | 
 |   const GlobalObject *BaseObject = GA.getAliaseeObject(); | 
 |   if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && | 
 |       (!BaseObject || BaseObject->hasPrivateLinkage())) { | 
 |     const DataLayout &DL = M.getDataLayout(); | 
 |     uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); | 
 |     OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { | 
 |   assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && | 
 |          "IFunc is not supported on AIX."); | 
 |  | 
 |   auto EmitLinkage = [&](MCSymbol *Sym) { | 
 |     if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) | 
 |       OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); | 
 |     else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) | 
 |       OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference); | 
 |     else | 
 |       assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); | 
 |   }; | 
 |  | 
 |   if (TM.getTargetTriple().isOSBinFormatELF()) { | 
 |     MCSymbol *Name = getSymbol(&GI); | 
 |     EmitLinkage(Name); | 
 |     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); | 
 |     emitVisibility(Name, GI.getVisibility()); | 
 |  | 
 |     // Emit the directives as assignments aka .set: | 
 |     const MCExpr *Expr = lowerConstant(GI.getResolver()); | 
 |     OutStreamer->emitAssignment(Name, Expr); | 
 |     MCSymbol *LocalAlias = getSymbolPreferLocal(GI); | 
 |     if (LocalAlias != Name) | 
 |       OutStreamer->emitAssignment(LocalAlias, Expr); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) | 
 |     llvm::report_fatal_error("IFuncs are not supported on this platform"); | 
 |  | 
 |   // On Darwin platforms, emit a manually-constructed .symbol_resolver that | 
 |   // implements the symbol resolution duties of the IFunc. | 
 |   // | 
 |   // Normally, this would be handled by linker magic, but unfortunately there | 
 |   // are a few limitations in ld64 and ld-prime's implementation of | 
 |   // .symbol_resolver that mean we can't always use them: | 
 |   // | 
 |   //    *  resolvers cannot be the target of an alias | 
 |   //    *  resolvers cannot have private linkage | 
 |   //    *  resolvers cannot have linkonce linkage | 
 |   //    *  resolvers cannot appear in executables | 
 |   //    *  resolvers cannot appear in bundles | 
 |   // | 
 |   // This works around that by emitting a close approximation of what the | 
 |   // linker would have done. | 
 |  | 
 |   MCSymbol *LazyPointer = | 
 |       GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer"); | 
 |   MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper"); | 
 |  | 
 |   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection()); | 
 |  | 
 |   const DataLayout &DL = M.getDataLayout(); | 
 |   emitAlignment(Align(DL.getPointerSize())); | 
 |   OutStreamer->emitLabel(LazyPointer); | 
 |   emitVisibility(LazyPointer, GI.getVisibility()); | 
 |   OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8); | 
 |  | 
 |   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection()); | 
 |  | 
 |   const TargetSubtargetInfo *STI = | 
 |       TM.getSubtargetImpl(*GI.getResolverFunction()); | 
 |   const TargetLowering *TLI = STI->getTargetLowering(); | 
 |   Align TextAlign(TLI->getMinFunctionAlignment()); | 
 |  | 
 |   MCSymbol *Stub = getSymbol(&GI); | 
 |   EmitLinkage(Stub); | 
 |   OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); | 
 |   OutStreamer->emitLabel(Stub); | 
 |   emitVisibility(Stub, GI.getVisibility()); | 
 |   emitMachOIFuncStubBody(M, GI, LazyPointer); | 
 |  | 
 |   OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo()); | 
 |   OutStreamer->emitLabel(StubHelper); | 
 |   emitVisibility(StubHelper, GI.getVisibility()); | 
 |   emitMachOIFuncStubHelperBody(M, GI, LazyPointer); | 
 | } | 
 |  | 
 | void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { | 
 |   if (!RS.needsSection()) | 
 |     return; | 
 |  | 
 |   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); | 
 |  | 
 |   std::optional<SmallString<128>> Filename; | 
 |   if (std::optional<StringRef> FilenameRef = RS.getFilename()) { | 
 |     Filename = *FilenameRef; | 
 |     sys::fs::make_absolute(*Filename); | 
 |     assert(!Filename->empty() && "The filename can't be empty."); | 
 |   } | 
 |  | 
 |   std::string Buf; | 
 |   raw_string_ostream OS(Buf); | 
 |   std::unique_ptr<remarks::MetaSerializer> MetaSerializer = | 
 |       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) | 
 |                : RemarkSerializer.metaSerializer(OS); | 
 |   MetaSerializer->emit(); | 
 |  | 
 |   // Switch to the remarks section. | 
 |   MCSection *RemarksSection = | 
 |       OutContext.getObjectFileInfo()->getRemarksSection(); | 
 |   OutStreamer->switchSection(RemarksSection); | 
 |  | 
 |   OutStreamer->emitBinaryData(OS.str()); | 
 | } | 
 |  | 
 | bool AsmPrinter::doFinalization(Module &M) { | 
 |   // Set the MachineFunction to nullptr so that we can catch attempted | 
 |   // accesses to MF specific features at the module level and so that | 
 |   // we can conditionalize accesses based on whether or not it is nullptr. | 
 |   MF = nullptr; | 
 |  | 
 |   // Gather all GOT equivalent globals in the module. We really need two | 
 |   // passes over the globals: one to compute and another to avoid its emission | 
 |   // in EmitGlobalVariable, otherwise we would not be able to handle cases | 
 |   // where the got equivalent shows up before its use. | 
 |   computeGlobalGOTEquivs(M); | 
 |  | 
 |   // Emit global variables. | 
 |   for (const auto &G : M.globals()) | 
 |     emitGlobalVariable(&G); | 
 |  | 
 |   // Emit remaining GOT equivalent globals. | 
 |   emitGlobalGOTEquivs(); | 
 |  | 
 |   const TargetLoweringObjectFile &TLOF = getObjFileLowering(); | 
 |  | 
 |   // Emit linkage(XCOFF) and visibility info for declarations | 
 |   for (const Function &F : M) { | 
 |     if (!F.isDeclarationForLinker()) | 
 |       continue; | 
 |  | 
 |     MCSymbol *Name = getSymbol(&F); | 
 |     // Function getSymbol gives us the function descriptor symbol for XCOFF. | 
 |  | 
 |     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { | 
 |       GlobalValue::VisibilityTypes V = F.getVisibility(); | 
 |       if (V == GlobalValue::DefaultVisibility) | 
 |         continue; | 
 |  | 
 |       emitVisibility(Name, V, false); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (F.isIntrinsic()) | 
 |       continue; | 
 |  | 
 |     // Handle the XCOFF case. | 
 |     // Variable `Name` is the function descriptor symbol (see above). Get the | 
 |     // function entry point symbol. | 
 |     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); | 
 |     // Emit linkage for the function entry point. | 
 |     emitLinkage(&F, FnEntryPointSym); | 
 |  | 
 |     // Emit linkage for the function descriptor. | 
 |     emitLinkage(&F, Name); | 
 |   } | 
 |  | 
 |   // Emit the remarks section contents. | 
 |   // FIXME: Figure out when is the safest time to emit this section. It should | 
 |   // not come after debug info. | 
 |   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) | 
 |     emitRemarksSection(*RS); | 
 |  | 
 |   TLOF.emitModuleMetadata(*OutStreamer, M); | 
 |  | 
 |   if (TM.getTargetTriple().isOSBinFormatELF()) { | 
 |     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); | 
 |  | 
 |     // Output stubs for external and common global variables. | 
 |     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); | 
 |     if (!Stubs.empty()) { | 
 |       OutStreamer->switchSection(TLOF.getDataSection()); | 
 |       const DataLayout &DL = M.getDataLayout(); | 
 |  | 
 |       emitAlignment(Align(DL.getPointerSize())); | 
 |       for (const auto &Stub : Stubs) { | 
 |         OutStreamer->emitLabel(Stub.first); | 
 |         OutStreamer->emitSymbolValue(Stub.second.getPointer(), | 
 |                                      DL.getPointerSize()); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (TM.getTargetTriple().isOSBinFormatCOFF()) { | 
 |     MachineModuleInfoCOFF &MMICOFF = | 
 |         MMI->getObjFileInfo<MachineModuleInfoCOFF>(); | 
 |  | 
 |     // Output stubs for external and common global variables. | 
 |     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); | 
 |     if (!Stubs.empty()) { | 
 |       const DataLayout &DL = M.getDataLayout(); | 
 |  | 
 |       for (const auto &Stub : Stubs) { | 
 |         SmallString<256> SectionName = StringRef(".rdata$"); | 
 |         SectionName += Stub.first->getName(); | 
 |         OutStreamer->switchSection(OutContext.getCOFFSection( | 
 |             SectionName, | 
 |             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | | 
 |                 COFF::IMAGE_SCN_LNK_COMDAT, | 
 |             SectionKind::getReadOnly(), Stub.first->getName(), | 
 |             COFF::IMAGE_COMDAT_SELECT_ANY)); | 
 |         emitAlignment(Align(DL.getPointerSize())); | 
 |         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); | 
 |         OutStreamer->emitLabel(Stub.first); | 
 |         OutStreamer->emitSymbolValue(Stub.second.getPointer(), | 
 |                                      DL.getPointerSize()); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // This needs to happen before emitting debug information since that can end | 
 |   // arbitrary sections. | 
 |   if (auto *TS = OutStreamer->getTargetStreamer()) | 
 |     TS->emitConstantPools(); | 
 |  | 
 |   // Emit Stack maps before any debug info. Mach-O requires that no data or | 
 |   // text sections come after debug info has been emitted. This matters for | 
 |   // stack maps as they are arbitrary data, and may even have a custom format | 
 |   // through user plugins. | 
 |   emitStackMaps(); | 
 |  | 
 |   // Print aliases in topological order, that is, for each alias a = b, | 
 |   // b must be printed before a. | 
 |   // This is because on some targets (e.g. PowerPC) linker expects aliases in | 
 |   // such an order to generate correct TOC information. | 
 |   SmallVector<const GlobalAlias *, 16> AliasStack; | 
 |   SmallPtrSet<const GlobalAlias *, 16> AliasVisited; | 
 |   for (const auto &Alias : M.aliases()) { | 
 |     if (Alias.hasAvailableExternallyLinkage()) | 
 |       continue; | 
 |     for (const GlobalAlias *Cur = &Alias; Cur; | 
 |          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { | 
 |       if (!AliasVisited.insert(Cur).second) | 
 |         break; | 
 |       AliasStack.push_back(Cur); | 
 |     } | 
 |     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) | 
 |       emitGlobalAlias(M, *AncestorAlias); | 
 |     AliasStack.clear(); | 
 |   } | 
 |  | 
 |   // IFuncs must come before deubginfo in case the backend decides to emit them | 
 |   // as actual functions, since on Mach-O targets, we cannot create regular | 
 |   // sections after DWARF. | 
 |   for (const auto &IFunc : M.ifuncs()) | 
 |     emitGlobalIFunc(M, IFunc); | 
 |  | 
 |   // Finalize debug and EH information. | 
 |   for (const HandlerInfo &HI : Handlers) { | 
 |     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, | 
 |                        HI.TimerGroupDescription, TimePassesIsEnabled); | 
 |     HI.Handler->endModule(); | 
 |   } | 
 |  | 
 |   // This deletes all the ephemeral handlers that AsmPrinter added, while | 
 |   // keeping all the user-added handlers alive until the AsmPrinter is | 
 |   // destroyed. | 
 |   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); | 
 |   DD = nullptr; | 
 |  | 
 |   // If the target wants to know about weak references, print them all. | 
 |   if (MAI->getWeakRefDirective()) { | 
 |     // FIXME: This is not lazy, it would be nice to only print weak references | 
 |     // to stuff that is actually used.  Note that doing so would require targets | 
 |     // to notice uses in operands (due to constant exprs etc).  This should | 
 |     // happen with the MC stuff eventually. | 
 |  | 
 |     // Print out module-level global objects here. | 
 |     for (const auto &GO : M.global_objects()) { | 
 |       if (!GO.hasExternalWeakLinkage()) | 
 |         continue; | 
 |       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); | 
 |     } | 
 |     if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { | 
 |       auto SymbolName = "swift_async_extendedFramePointerFlags"; | 
 |       auto Global = M.getGlobalVariable(SymbolName); | 
 |       if (!Global) { | 
 |         auto Int8PtrTy = PointerType::getUnqual(M.getContext()); | 
 |         Global = new GlobalVariable(M, Int8PtrTy, false, | 
 |                                     GlobalValue::ExternalWeakLinkage, nullptr, | 
 |                                     SymbolName); | 
 |         OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); | 
 |   assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
 |   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) | 
 |     if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I)) | 
 |       MP->finishAssembly(M, *MI, *this); | 
 |  | 
 |   // Emit llvm.ident metadata in an '.ident' directive. | 
 |   emitModuleIdents(M); | 
 |  | 
 |   // Emit bytes for llvm.commandline metadata. | 
 |   // The command line metadata is emitted earlier on XCOFF. | 
 |   if (!TM.getTargetTriple().isOSBinFormatXCOFF()) | 
 |     emitModuleCommandLines(M); | 
 |  | 
 |   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if | 
 |   // split-stack is used. | 
 |   if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { | 
 |     OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack", | 
 |                                                         ELF::SHT_PROGBITS, 0)); | 
 |     if (HasNoSplitStack) | 
 |       OutStreamer->switchSection(OutContext.getELFSection( | 
 |           ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); | 
 |   } | 
 |  | 
 |   // If we don't have any trampolines, then we don't require stack memory | 
 |   // to be executable. Some targets have a directive to declare this. | 
 |   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); | 
 |   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) | 
 |     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) | 
 |       OutStreamer->switchSection(S); | 
 |  | 
 |   if (TM.Options.EmitAddrsig) { | 
 |     // Emit address-significance attributes for all globals. | 
 |     OutStreamer->emitAddrsig(); | 
 |     for (const GlobalValue &GV : M.global_values()) { | 
 |       if (!GV.use_empty() && !GV.isThreadLocal() && | 
 |           !GV.hasDLLImportStorageClass() && | 
 |           !GV.getName().starts_with("llvm.") && | 
 |           !GV.hasAtLeastLocalUnnamedAddr()) | 
 |         OutStreamer->emitAddrsigSym(getSymbol(&GV)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit symbol partition specifications (ELF only). | 
 |   if (TM.getTargetTriple().isOSBinFormatELF()) { | 
 |     unsigned UniqueID = 0; | 
 |     for (const GlobalValue &GV : M.global_values()) { | 
 |       if (!GV.hasPartition() || GV.isDeclarationForLinker() || | 
 |           GV.getVisibility() != GlobalValue::DefaultVisibility) | 
 |         continue; | 
 |  | 
 |       OutStreamer->switchSection( | 
 |           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, | 
 |                                    "", false, ++UniqueID, nullptr)); | 
 |       OutStreamer->emitBytes(GV.getPartition()); | 
 |       OutStreamer->emitZeros(1); | 
 |       OutStreamer->emitValue( | 
 |           MCSymbolRefExpr::create(getSymbol(&GV), OutContext), | 
 |           MAI->getCodePointerSize()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Allow the target to emit any magic that it wants at the end of the file, | 
 |   // after everything else has gone out. | 
 |   emitEndOfAsmFile(M); | 
 |  | 
 |   MMI = nullptr; | 
 |   AddrLabelSymbols = nullptr; | 
 |  | 
 |   OutStreamer->finish(); | 
 |   OutStreamer->reset(); | 
 |   OwnedMLI.reset(); | 
 |   OwnedMDT.reset(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { | 
 |   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); | 
 |   if (Res.second) | 
 |     Res.first->second = createTempSymbol("exception"); | 
 |   return Res.first->second; | 
 | } | 
 |  | 
 | void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { | 
 |   this->MF = &MF; | 
 |   const Function &F = MF.getFunction(); | 
 |  | 
 |   // Record that there are split-stack functions, so we will emit a special | 
 |   // section to tell the linker. | 
 |   if (MF.shouldSplitStack()) { | 
 |     HasSplitStack = true; | 
 |  | 
 |     if (!MF.getFrameInfo().needsSplitStackProlog()) | 
 |       HasNoSplitStack = true; | 
 |   } else | 
 |     HasNoSplitStack = true; | 
 |  | 
 |   // Get the function symbol. | 
 |   if (!MAI->needsFunctionDescriptors()) { | 
 |     CurrentFnSym = getSymbol(&MF.getFunction()); | 
 |   } else { | 
 |     assert(TM.getTargetTriple().isOSAIX() && | 
 |            "Only AIX uses the function descriptor hooks."); | 
 |     // AIX is unique here in that the name of the symbol emitted for the | 
 |     // function body does not have the same name as the source function's | 
 |     // C-linkage name. | 
 |     assert(CurrentFnDescSym && "The function descriptor symbol needs to be" | 
 |                                " initalized first."); | 
 |  | 
 |     // Get the function entry point symbol. | 
 |     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); | 
 |   } | 
 |  | 
 |   CurrentFnSymForSize = CurrentFnSym; | 
 |   CurrentFnBegin = nullptr; | 
 |   CurrentFnBeginLocal = nullptr; | 
 |   CurrentSectionBeginSym = nullptr; | 
 |   MBBSectionRanges.clear(); | 
 |   MBBSectionExceptionSyms.clear(); | 
 |   bool NeedsLocalForSize = MAI->needsLocalForSize(); | 
 |   if (F.hasFnAttribute("patchable-function-entry") || | 
 |       F.hasFnAttribute("function-instrument") || | 
 |       F.hasFnAttribute("xray-instruction-threshold") || needFuncLabels(MF) || | 
 |       NeedsLocalForSize || MF.getTarget().Options.EmitStackSizeSection || | 
 |       MF.getTarget().Options.BBAddrMap || MF.hasBBLabels()) { | 
 |     CurrentFnBegin = createTempSymbol("func_begin"); | 
 |     if (NeedsLocalForSize) | 
 |       CurrentFnSymForSize = CurrentFnBegin; | 
 |   } | 
 |  | 
 |   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // Keep track the alignment, constpool entries per Section. | 
 |   struct SectionCPs { | 
 |     MCSection *S; | 
 |     Align Alignment; | 
 |     SmallVector<unsigned, 4> CPEs; | 
 |  | 
 |     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// EmitConstantPool - Print to the current output stream assembly | 
 | /// representations of the constants in the constant pool MCP. This is | 
 | /// used to print out constants which have been "spilled to memory" by | 
 | /// the code generator. | 
 | void AsmPrinter::emitConstantPool() { | 
 |   const MachineConstantPool *MCP = MF->getConstantPool(); | 
 |   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); | 
 |   if (CP.empty()) return; | 
 |  | 
 |   // Calculate sections for constant pool entries. We collect entries to go into | 
 |   // the same section together to reduce amount of section switch statements. | 
 |   SmallVector<SectionCPs, 4> CPSections; | 
 |   for (unsigned i = 0, e = CP.size(); i != e; ++i) { | 
 |     const MachineConstantPoolEntry &CPE = CP[i]; | 
 |     Align Alignment = CPE.getAlign(); | 
 |  | 
 |     SectionKind Kind = CPE.getSectionKind(&getDataLayout()); | 
 |  | 
 |     const Constant *C = nullptr; | 
 |     if (!CPE.isMachineConstantPoolEntry()) | 
 |       C = CPE.Val.ConstVal; | 
 |  | 
 |     MCSection *S = getObjFileLowering().getSectionForConstant( | 
 |         getDataLayout(), Kind, C, Alignment); | 
 |  | 
 |     // The number of sections are small, just do a linear search from the | 
 |     // last section to the first. | 
 |     bool Found = false; | 
 |     unsigned SecIdx = CPSections.size(); | 
 |     while (SecIdx != 0) { | 
 |       if (CPSections[--SecIdx].S == S) { | 
 |         Found = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!Found) { | 
 |       SecIdx = CPSections.size(); | 
 |       CPSections.push_back(SectionCPs(S, Alignment)); | 
 |     } | 
 |  | 
 |     if (Alignment > CPSections[SecIdx].Alignment) | 
 |       CPSections[SecIdx].Alignment = Alignment; | 
 |     CPSections[SecIdx].CPEs.push_back(i); | 
 |   } | 
 |  | 
 |   // Now print stuff into the calculated sections. | 
 |   const MCSection *CurSection = nullptr; | 
 |   unsigned Offset = 0; | 
 |   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { | 
 |     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { | 
 |       unsigned CPI = CPSections[i].CPEs[j]; | 
 |       MCSymbol *Sym = GetCPISymbol(CPI); | 
 |       if (!Sym->isUndefined()) | 
 |         continue; | 
 |  | 
 |       if (CurSection != CPSections[i].S) { | 
 |         OutStreamer->switchSection(CPSections[i].S); | 
 |         emitAlignment(Align(CPSections[i].Alignment)); | 
 |         CurSection = CPSections[i].S; | 
 |         Offset = 0; | 
 |       } | 
 |  | 
 |       MachineConstantPoolEntry CPE = CP[CPI]; | 
 |  | 
 |       // Emit inter-object padding for alignment. | 
 |       unsigned NewOffset = alignTo(Offset, CPE.getAlign()); | 
 |       OutStreamer->emitZeros(NewOffset - Offset); | 
 |  | 
 |       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); | 
 |  | 
 |       OutStreamer->emitLabel(Sym); | 
 |       if (CPE.isMachineConstantPoolEntry()) | 
 |         emitMachineConstantPoolValue(CPE.Val.MachineCPVal); | 
 |       else | 
 |         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Print assembly representations of the jump tables used by the current | 
 | // function. | 
 | void AsmPrinter::emitJumpTableInfo() { | 
 |   const DataLayout &DL = MF->getDataLayout(); | 
 |   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
 |   if (!MJTI) return; | 
 |   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; | 
 |   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
 |   if (JT.empty()) return; | 
 |  | 
 |   // Pick the directive to use to print the jump table entries, and switch to | 
 |   // the appropriate section. | 
 |   const Function &F = MF->getFunction(); | 
 |   const TargetLoweringObjectFile &TLOF = getObjFileLowering(); | 
 |   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( | 
 |       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || | 
 |           MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64, | 
 |       F); | 
 |   if (JTInDiffSection) { | 
 |     // Drop it in the readonly section. | 
 |     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); | 
 |     OutStreamer->switchSection(ReadOnlySection); | 
 |   } | 
 |  | 
 |   emitAlignment(Align(MJTI->getEntryAlignment(DL))); | 
 |  | 
 |   // Jump tables in code sections are marked with a data_region directive | 
 |   // where that's supported. | 
 |   if (!JTInDiffSection) | 
 |     OutStreamer->emitDataRegion(MCDR_DataRegionJT32); | 
 |  | 
 |   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { | 
 |     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; | 
 |  | 
 |     // If this jump table was deleted, ignore it. | 
 |     if (JTBBs.empty()) continue; | 
 |  | 
 |     // For the EK_LabelDifference32 entry, if using .set avoids a relocation, | 
 |     /// emit a .set directive for each unique entry. | 
 |     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && | 
 |         MAI->doesSetDirectiveSuppressReloc()) { | 
 |       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; | 
 |       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); | 
 |       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); | 
 |       for (const MachineBasicBlock *MBB : JTBBs) { | 
 |         if (!EmittedSets.insert(MBB).second) | 
 |           continue; | 
 |  | 
 |         // .set LJTSet, LBB32-base | 
 |         const MCExpr *LHS = | 
 |           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
 |         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), | 
 |                                     MCBinaryExpr::createSub(LHS, Base, | 
 |                                                             OutContext)); | 
 |       } | 
 |     } | 
 |  | 
 |     // On some targets (e.g. Darwin) we want to emit two consecutive labels | 
 |     // before each jump table.  The first label is never referenced, but tells | 
 |     // the assembler and linker the extents of the jump table object.  The | 
 |     // second label is actually referenced by the code. | 
 |     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) | 
 |       // FIXME: This doesn't have to have any specific name, just any randomly | 
 |       // named and numbered local label started with 'l' would work.  Simplify | 
 |       // GetJTISymbol. | 
 |       OutStreamer->emitLabel(GetJTISymbol(JTI, true)); | 
 |  | 
 |     MCSymbol* JTISymbol = GetJTISymbol(JTI); | 
 |     OutStreamer->emitLabel(JTISymbol); | 
 |  | 
 |     for (const MachineBasicBlock *MBB : JTBBs) | 
 |       emitJumpTableEntry(MJTI, MBB, JTI); | 
 |   } | 
 |   if (!JTInDiffSection) | 
 |     OutStreamer->emitDataRegion(MCDR_DataRegionEnd); | 
 | } | 
 |  | 
 | /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the | 
 | /// current stream. | 
 | void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, | 
 |                                     const MachineBasicBlock *MBB, | 
 |                                     unsigned UID) const { | 
 |   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); | 
 |   const MCExpr *Value = nullptr; | 
 |   switch (MJTI->getEntryKind()) { | 
 |   case MachineJumpTableInfo::EK_Inline: | 
 |     llvm_unreachable("Cannot emit EK_Inline jump table entry"); | 
 |   case MachineJumpTableInfo::EK_Custom32: | 
 |     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( | 
 |         MJTI, MBB, UID, OutContext); | 
 |     break; | 
 |   case MachineJumpTableInfo::EK_BlockAddress: | 
 |     // EK_BlockAddress - Each entry is a plain address of block, e.g.: | 
 |     //     .word LBB123 | 
 |     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
 |     break; | 
 |   case MachineJumpTableInfo::EK_GPRel32BlockAddress: { | 
 |     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded | 
 |     // with a relocation as gp-relative, e.g.: | 
 |     //     .gprel32 LBB123 | 
 |     MCSymbol *MBBSym = MBB->getSymbol(); | 
 |     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); | 
 |     return; | 
 |   } | 
 |  | 
 |   case MachineJumpTableInfo::EK_GPRel64BlockAddress: { | 
 |     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded | 
 |     // with a relocation as gp-relative, e.g.: | 
 |     //     .gpdword LBB123 | 
 |     MCSymbol *MBBSym = MBB->getSymbol(); | 
 |     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); | 
 |     return; | 
 |   } | 
 |  | 
 |   case MachineJumpTableInfo::EK_LabelDifference32: | 
 |   case MachineJumpTableInfo::EK_LabelDifference64: { | 
 |     // Each entry is the address of the block minus the address of the jump | 
 |     // table. This is used for PIC jump tables where gprel32 is not supported. | 
 |     // e.g.: | 
 |     //      .word LBB123 - LJTI1_2 | 
 |     // If the .set directive avoids relocations, this is emitted as: | 
 |     //      .set L4_5_set_123, LBB123 - LJTI1_2 | 
 |     //      .word L4_5_set_123 | 
 |     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && | 
 |         MAI->doesSetDirectiveSuppressReloc()) { | 
 |       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), | 
 |                                       OutContext); | 
 |       break; | 
 |     } | 
 |     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); | 
 |     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); | 
 |     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); | 
 |     Value = MCBinaryExpr::createSub(Value, Base, OutContext); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   assert(Value && "Unknown entry kind!"); | 
 |  | 
 |   unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); | 
 |   OutStreamer->emitValue(Value, EntrySize); | 
 | } | 
 |  | 
 | /// EmitSpecialLLVMGlobal - Check to see if the specified global is a | 
 | /// special global used by LLVM.  If so, emit it and return true, otherwise | 
 | /// do nothing and return false. | 
 | bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { | 
 |   if (GV->getName() == "llvm.used") { | 
 |     if (MAI->hasNoDeadStrip())    // No need to emit this at all. | 
 |       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Ignore debug and non-emitted data.  This handles llvm.compiler.used. | 
 |   if (GV->getSection() == "llvm.metadata" || | 
 |       GV->hasAvailableExternallyLinkage()) | 
 |     return true; | 
 |  | 
 |   if (GV->getName() == "llvm.arm64ec.symbolmap") { | 
 |     // For ARM64EC, print the table that maps between symbols and the | 
 |     // corresponding thunks to translate between x64 and AArch64 code. | 
 |     // This table is generated by AArch64Arm64ECCallLowering. | 
 |     OutStreamer->switchSection(OutContext.getCOFFSection( | 
 |         ".hybmp$x", COFF::IMAGE_SCN_LNK_INFO, SectionKind::getMetadata())); | 
 |     auto *Arr = cast<ConstantArray>(GV->getInitializer()); | 
 |     for (auto &U : Arr->operands()) { | 
 |       auto *C = cast<Constant>(U); | 
 |       auto *Src = cast<Function>(C->getOperand(0)->stripPointerCasts()); | 
 |       auto *Dst = cast<Function>(C->getOperand(1)->stripPointerCasts()); | 
 |       int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue(); | 
 |  | 
 |       if (Src->hasDLLImportStorageClass()) { | 
 |         // For now, we assume dllimport functions aren't directly called. | 
 |         // (We might change this later to match MSVC.) | 
 |         OutStreamer->emitCOFFSymbolIndex( | 
 |             OutContext.getOrCreateSymbol("__imp_" + Src->getName())); | 
 |         OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); | 
 |         OutStreamer->emitInt32(Kind); | 
 |       } else { | 
 |         // FIXME: For non-dllimport functions, MSVC emits the same entry | 
 |         // twice, for reasons I don't understand.  I have to assume the linker | 
 |         // ignores the redundant entry; there aren't any reasonable semantics | 
 |         // to attach to it. | 
 |         OutStreamer->emitCOFFSymbolIndex(getSymbol(Src)); | 
 |         OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst)); | 
 |         OutStreamer->emitInt32(Kind); | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!GV->hasAppendingLinkage()) return false; | 
 |  | 
 |   assert(GV->hasInitializer() && "Not a special LLVM global!"); | 
 |  | 
 |   if (GV->getName() == "llvm.global_ctors") { | 
 |     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), | 
 |                        /* isCtor */ true); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (GV->getName() == "llvm.global_dtors") { | 
 |     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), | 
 |                        /* isCtor */ false); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   report_fatal_error("unknown special variable with appending linkage"); | 
 | } | 
 |  | 
 | /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each | 
 | /// global in the specified llvm.used list. | 
 | void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { | 
 |   // Should be an array of 'i8*'. | 
 |   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { | 
 |     const GlobalValue *GV = | 
 |       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); | 
 |     if (GV) | 
 |       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, | 
 |                                           const Constant *List, | 
 |                                           SmallVector<Structor, 8> &Structors) { | 
 |   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is | 
 |   // the init priority. | 
 |   if (!isa<ConstantArray>(List)) | 
 |     return; | 
 |  | 
 |   // Gather the structors in a form that's convenient for sorting by priority. | 
 |   for (Value *O : cast<ConstantArray>(List)->operands()) { | 
 |     auto *CS = cast<ConstantStruct>(O); | 
 |     if (CS->getOperand(1)->isNullValue()) | 
 |       break; // Found a null terminator, skip the rest. | 
 |     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); | 
 |     if (!Priority) | 
 |       continue; // Malformed. | 
 |     Structors.push_back(Structor()); | 
 |     Structor &S = Structors.back(); | 
 |     S.Priority = Priority->getLimitedValue(65535); | 
 |     S.Func = CS->getOperand(1); | 
 |     if (!CS->getOperand(2)->isNullValue()) { | 
 |       if (TM.getTargetTriple().isOSAIX()) | 
 |         llvm::report_fatal_error( | 
 |             "associated data of XXStructor list is not yet supported on AIX"); | 
 |       S.ComdatKey = | 
 |           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit the function pointers in the target-specific order | 
 |   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { | 
 |     return L.Priority < R.Priority; | 
 |   }); | 
 | } | 
 |  | 
 | /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init | 
 | /// priority. | 
 | void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, | 
 |                                     bool IsCtor) { | 
 |   SmallVector<Structor, 8> Structors; | 
 |   preprocessXXStructorList(DL, List, Structors); | 
 |   if (Structors.empty()) | 
 |     return; | 
 |  | 
 |   // Emit the structors in reverse order if we are using the .ctor/.dtor | 
 |   // initialization scheme. | 
 |   if (!TM.Options.UseInitArray) | 
 |     std::reverse(Structors.begin(), Structors.end()); | 
 |  | 
 |   const Align Align = DL.getPointerPrefAlignment(); | 
 |   for (Structor &S : Structors) { | 
 |     const TargetLoweringObjectFile &Obj = getObjFileLowering(); | 
 |     const MCSymbol *KeySym = nullptr; | 
 |     if (GlobalValue *GV = S.ComdatKey) { | 
 |       if (GV->isDeclarationForLinker()) | 
 |         // If the associated variable is not defined in this module | 
 |         // (it might be available_externally, or have been an | 
 |         // available_externally definition that was dropped by the | 
 |         // EliminateAvailableExternally pass), some other TU | 
 |         // will provide its dynamic initializer. | 
 |         continue; | 
 |  | 
 |       KeySym = getSymbol(GV); | 
 |     } | 
 |  | 
 |     MCSection *OutputSection = | 
 |         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) | 
 |                 : Obj.getStaticDtorSection(S.Priority, KeySym)); | 
 |     OutStreamer->switchSection(OutputSection); | 
 |     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) | 
 |       emitAlignment(Align); | 
 |     emitXXStructor(DL, S.Func); | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::emitModuleIdents(Module &M) { | 
 |   if (!MAI->hasIdentDirective()) | 
 |     return; | 
 |  | 
 |   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { | 
 |     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { | 
 |       const MDNode *N = NMD->getOperand(i); | 
 |       assert(N->getNumOperands() == 1 && | 
 |              "llvm.ident metadata entry can have only one operand"); | 
 |       const MDString *S = cast<MDString>(N->getOperand(0)); | 
 |       OutStreamer->emitIdent(S->getString()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::emitModuleCommandLines(Module &M) { | 
 |   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); | 
 |   if (!CommandLine) | 
 |     return; | 
 |  | 
 |   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); | 
 |   if (!NMD || !NMD->getNumOperands()) | 
 |     return; | 
 |  | 
 |   OutStreamer->pushSection(); | 
 |   OutStreamer->switchSection(CommandLine); | 
 |   OutStreamer->emitZeros(1); | 
 |   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { | 
 |     const MDNode *N = NMD->getOperand(i); | 
 |     assert(N->getNumOperands() == 1 && | 
 |            "llvm.commandline metadata entry can have only one operand"); | 
 |     const MDString *S = cast<MDString>(N->getOperand(0)); | 
 |     OutStreamer->emitBytes(S->getString()); | 
 |     OutStreamer->emitZeros(1); | 
 |   } | 
 |   OutStreamer->popSection(); | 
 | } | 
 |  | 
 | //===--------------------------------------------------------------------===// | 
 | // Emission and print routines | 
 | // | 
 |  | 
 | /// Emit a byte directive and value. | 
 | /// | 
 | void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } | 
 |  | 
 | /// Emit a short directive and value. | 
 | void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } | 
 |  | 
 | /// Emit a long directive and value. | 
 | void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } | 
 |  | 
 | /// EmitSLEB128 - emit the specified signed leb128 value. | 
 | void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { | 
 |   if (isVerbose() && Desc) | 
 |     OutStreamer->AddComment(Desc); | 
 |  | 
 |   OutStreamer->emitSLEB128IntValue(Value); | 
 | } | 
 |  | 
 | void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, | 
 |                              unsigned PadTo) const { | 
 |   if (isVerbose() && Desc) | 
 |     OutStreamer->AddComment(Desc); | 
 |  | 
 |   OutStreamer->emitULEB128IntValue(Value, PadTo); | 
 | } | 
 |  | 
 | /// Emit a long long directive and value. | 
 | void AsmPrinter::emitInt64(uint64_t Value) const { | 
 |   OutStreamer->emitInt64(Value); | 
 | } | 
 |  | 
 | /// Emit something like ".long Hi-Lo" where the size in bytes of the directive | 
 | /// is specified by Size and Hi/Lo specify the labels. This implicitly uses | 
 | /// .set if it avoids relocations. | 
 | void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, | 
 |                                      unsigned Size) const { | 
 |   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); | 
 | } | 
 |  | 
 | /// Emit something like ".uleb128 Hi-Lo". | 
 | void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, | 
 |                                               const MCSymbol *Lo) const { | 
 |   OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); | 
 | } | 
 |  | 
 | /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" | 
 | /// where the size in bytes of the directive is specified by Size and Label | 
 | /// specifies the label.  This implicitly uses .set if it is available. | 
 | void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, | 
 |                                      unsigned Size, | 
 |                                      bool IsSectionRelative) const { | 
 |   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { | 
 |     OutStreamer->emitCOFFSecRel32(Label, Offset); | 
 |     if (Size > 4) | 
 |       OutStreamer->emitZeros(Size - 4); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Emit Label+Offset (or just Label if Offset is zero) | 
 |   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); | 
 |   if (Offset) | 
 |     Expr = MCBinaryExpr::createAdd( | 
 |         Expr, MCConstantExpr::create(Offset, OutContext), OutContext); | 
 |  | 
 |   OutStreamer->emitValue(Expr, Size); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // EmitAlignment - Emit an alignment directive to the specified power of | 
 | // two boundary.  If a global value is specified, and if that global has | 
 | // an explicit alignment requested, it will override the alignment request | 
 | // if required for correctness. | 
 | void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, | 
 |                                unsigned MaxBytesToEmit) const { | 
 |   if (GV) | 
 |     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); | 
 |  | 
 |   if (Alignment == Align(1)) | 
 |     return; // 1-byte aligned: no need to emit alignment. | 
 |  | 
 |   if (getCurrentSection()->getKind().isText()) { | 
 |     const MCSubtargetInfo *STI = nullptr; | 
 |     if (this->MF) | 
 |       STI = &getSubtargetInfo(); | 
 |     else | 
 |       STI = TM.getMCSubtargetInfo(); | 
 |     OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); | 
 |   } else | 
 |     OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Constant emission. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { | 
 |   MCContext &Ctx = OutContext; | 
 |  | 
 |   if (CV->isNullValue() || isa<UndefValue>(CV)) | 
 |     return MCConstantExpr::create(0, Ctx); | 
 |  | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) | 
 |     return MCConstantExpr::create(CI->getZExtValue(), Ctx); | 
 |  | 
 |   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) | 
 |     return MCSymbolRefExpr::create(getSymbol(GV), Ctx); | 
 |  | 
 |   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) | 
 |     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); | 
 |  | 
 |   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) | 
 |     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); | 
 |  | 
 |   if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV)) | 
 |     return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx); | 
 |  | 
 |   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); | 
 |   if (!CE) { | 
 |     llvm_unreachable("Unknown constant value to lower!"); | 
 |   } | 
 |  | 
 |   // The constant expression opcodes are limited to those that are necessary | 
 |   // to represent relocations on supported targets. Expressions involving only | 
 |   // constant addresses are constant folded instead. | 
 |   switch (CE->getOpcode()) { | 
 |   default: | 
 |     break; // Error | 
 |   case Instruction::AddrSpaceCast: { | 
 |     const Constant *Op = CE->getOperand(0); | 
 |     unsigned DstAS = CE->getType()->getPointerAddressSpace(); | 
 |     unsigned SrcAS = Op->getType()->getPointerAddressSpace(); | 
 |     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) | 
 |       return lowerConstant(Op); | 
 |  | 
 |     break; // Error | 
 |   } | 
 |   case Instruction::GetElementPtr: { | 
 |     // Generate a symbolic expression for the byte address | 
 |     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); | 
 |     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); | 
 |  | 
 |     const MCExpr *Base = lowerConstant(CE->getOperand(0)); | 
 |     if (!OffsetAI) | 
 |       return Base; | 
 |  | 
 |     int64_t Offset = OffsetAI.getSExtValue(); | 
 |     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), | 
 |                                    Ctx); | 
 |   } | 
 |  | 
 |   case Instruction::Trunc: | 
 |     // We emit the value and depend on the assembler to truncate the generated | 
 |     // expression properly.  This is important for differences between | 
 |     // blockaddress labels.  Since the two labels are in the same function, it | 
 |     // is reasonable to treat their delta as a 32-bit value. | 
 |     [[fallthrough]]; | 
 |   case Instruction::BitCast: | 
 |     return lowerConstant(CE->getOperand(0)); | 
 |  | 
 |   case Instruction::IntToPtr: { | 
 |     const DataLayout &DL = getDataLayout(); | 
 |  | 
 |     // Handle casts to pointers by changing them into casts to the appropriate | 
 |     // integer type.  This promotes constant folding and simplifies this code. | 
 |     Constant *Op = CE->getOperand(0); | 
 |     Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()), | 
 |                                  /*IsSigned*/ false, DL); | 
 |     if (Op) | 
 |       return lowerConstant(Op); | 
 |  | 
 |     break; // Error | 
 |   } | 
 |  | 
 |   case Instruction::PtrToInt: { | 
 |     const DataLayout &DL = getDataLayout(); | 
 |  | 
 |     // Support only foldable casts to/from pointers that can be eliminated by | 
 |     // changing the pointer to the appropriately sized integer type. | 
 |     Constant *Op = CE->getOperand(0); | 
 |     Type *Ty = CE->getType(); | 
 |  | 
 |     const MCExpr *OpExpr = lowerConstant(Op); | 
 |  | 
 |     // We can emit the pointer value into this slot if the slot is an | 
 |     // integer slot equal to the size of the pointer. | 
 |     // | 
 |     // If the pointer is larger than the resultant integer, then | 
 |     // as with Trunc just depend on the assembler to truncate it. | 
 |     if (DL.getTypeAllocSize(Ty).getFixedValue() <= | 
 |         DL.getTypeAllocSize(Op->getType()).getFixedValue()) | 
 |       return OpExpr; | 
 |  | 
 |     break; // Error | 
 |   } | 
 |  | 
 |   case Instruction::Sub: { | 
 |     GlobalValue *LHSGV; | 
 |     APInt LHSOffset; | 
 |     DSOLocalEquivalent *DSOEquiv; | 
 |     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, | 
 |                                    getDataLayout(), &DSOEquiv)) { | 
 |       GlobalValue *RHSGV; | 
 |       APInt RHSOffset; | 
 |       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, | 
 |                                      getDataLayout())) { | 
 |         const MCExpr *RelocExpr = | 
 |             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); | 
 |         if (!RelocExpr) { | 
 |           const MCExpr *LHSExpr = | 
 |               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); | 
 |           if (DSOEquiv && | 
 |               getObjFileLowering().supportDSOLocalEquivalentLowering()) | 
 |             LHSExpr = | 
 |                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); | 
 |           RelocExpr = MCBinaryExpr::createSub( | 
 |               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); | 
 |         } | 
 |         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); | 
 |         if (Addend != 0) | 
 |           RelocExpr = MCBinaryExpr::createAdd( | 
 |               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); | 
 |         return RelocExpr; | 
 |       } | 
 |     } | 
 |  | 
 |     const MCExpr *LHS = lowerConstant(CE->getOperand(0)); | 
 |     const MCExpr *RHS = lowerConstant(CE->getOperand(1)); | 
 |     return MCBinaryExpr::createSub(LHS, RHS, Ctx); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Instruction::Add: { | 
 |     const MCExpr *LHS = lowerConstant(CE->getOperand(0)); | 
 |     const MCExpr *RHS = lowerConstant(CE->getOperand(1)); | 
 |     return MCBinaryExpr::createAdd(LHS, RHS, Ctx); | 
 |   } | 
 |   } | 
 |  | 
 |   // If the code isn't optimized, there may be outstanding folding | 
 |   // opportunities. Attempt to fold the expression using DataLayout as a | 
 |   // last resort before giving up. | 
 |   Constant *C = ConstantFoldConstant(CE, getDataLayout()); | 
 |   if (C != CE) | 
 |     return lowerConstant(C); | 
 |  | 
 |   // Otherwise report the problem to the user. | 
 |   std::string S; | 
 |   raw_string_ostream OS(S); | 
 |   OS << "Unsupported expression in static initializer: "; | 
 |   CE->printAsOperand(OS, /*PrintType=*/false, | 
 |                      !MF ? nullptr : MF->getFunction().getParent()); | 
 |   report_fatal_error(Twine(OS.str())); | 
 | } | 
 |  | 
 | static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, | 
 |                                    AsmPrinter &AP, | 
 |                                    const Constant *BaseCV = nullptr, | 
 |                                    uint64_t Offset = 0, | 
 |                                    AsmPrinter::AliasMapTy *AliasList = nullptr); | 
 |  | 
 | static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); | 
 | static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); | 
 |  | 
 | /// isRepeatedByteSequence - Determine whether the given value is | 
 | /// composed of a repeated sequence of identical bytes and return the | 
 | /// byte value.  If it is not a repeated sequence, return -1. | 
 | static int isRepeatedByteSequence(const ConstantDataSequential *V) { | 
 |   StringRef Data = V->getRawDataValues(); | 
 |   assert(!Data.empty() && "Empty aggregates should be CAZ node"); | 
 |   char C = Data[0]; | 
 |   for (unsigned i = 1, e = Data.size(); i != e; ++i) | 
 |     if (Data[i] != C) return -1; | 
 |   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. | 
 | } | 
 |  | 
 | /// isRepeatedByteSequence - Determine whether the given value is | 
 | /// composed of a repeated sequence of identical bytes and return the | 
 | /// byte value.  If it is not a repeated sequence, return -1. | 
 | static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
 |     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); | 
 |     assert(Size % 8 == 0); | 
 |  | 
 |     // Extend the element to take zero padding into account. | 
 |     APInt Value = CI->getValue().zext(Size); | 
 |     if (!Value.isSplat(8)) | 
 |       return -1; | 
 |  | 
 |     return Value.zextOrTrunc(8).getZExtValue(); | 
 |   } | 
 |   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { | 
 |     // Make sure all array elements are sequences of the same repeated | 
 |     // byte. | 
 |     assert(CA->getNumOperands() != 0 && "Should be a CAZ"); | 
 |     Constant *Op0 = CA->getOperand(0); | 
 |     int Byte = isRepeatedByteSequence(Op0, DL); | 
 |     if (Byte == -1) | 
 |       return -1; | 
 |  | 
 |     // All array elements must be equal. | 
 |     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) | 
 |       if (CA->getOperand(i) != Op0) | 
 |         return -1; | 
 |     return Byte; | 
 |   } | 
 |  | 
 |   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) | 
 |     return isRepeatedByteSequence(CDS); | 
 |  | 
 |   return -1; | 
 | } | 
 |  | 
 | static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, | 
 |                                   AsmPrinter::AliasMapTy *AliasList) { | 
 |   if (AliasList) { | 
 |     auto AliasIt = AliasList->find(Offset); | 
 |     if (AliasIt != AliasList->end()) { | 
 |       for (const GlobalAlias *GA : AliasIt->second) | 
 |         AP.OutStreamer->emitLabel(AP.getSymbol(GA)); | 
 |       AliasList->erase(Offset); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void emitGlobalConstantDataSequential( | 
 |     const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, | 
 |     AsmPrinter::AliasMapTy *AliasList) { | 
 |   // See if we can aggregate this into a .fill, if so, emit it as such. | 
 |   int Value = isRepeatedByteSequence(CDS, DL); | 
 |   if (Value != -1) { | 
 |     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); | 
 |     // Don't emit a 1-byte object as a .fill. | 
 |     if (Bytes > 1) | 
 |       return AP.OutStreamer->emitFill(Bytes, Value); | 
 |   } | 
 |  | 
 |   // If this can be emitted with .ascii/.asciz, emit it as such. | 
 |   if (CDS->isString()) | 
 |     return AP.OutStreamer->emitBytes(CDS->getAsString()); | 
 |  | 
 |   // Otherwise, emit the values in successive locations. | 
 |   unsigned ElementByteSize = CDS->getElementByteSize(); | 
 |   if (isa<IntegerType>(CDS->getElementType())) { | 
 |     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { | 
 |       emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); | 
 |       if (AP.isVerbose()) | 
 |         AP.OutStreamer->getCommentOS() | 
 |             << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I)); | 
 |       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I), | 
 |                                    ElementByteSize); | 
 |     } | 
 |   } else { | 
 |     Type *ET = CDS->getElementType(); | 
 |     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { | 
 |       emitGlobalAliasInline(AP, ElementByteSize * I, AliasList); | 
 |       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned Size = DL.getTypeAllocSize(CDS->getType()); | 
 |   unsigned EmittedSize = | 
 |       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); | 
 |   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); | 
 |   if (unsigned Padding = Size - EmittedSize) | 
 |     AP.OutStreamer->emitZeros(Padding); | 
 | } | 
 |  | 
 | static void emitGlobalConstantArray(const DataLayout &DL, | 
 |                                     const ConstantArray *CA, AsmPrinter &AP, | 
 |                                     const Constant *BaseCV, uint64_t Offset, | 
 |                                     AsmPrinter::AliasMapTy *AliasList) { | 
 |   // See if we can aggregate some values.  Make sure it can be | 
 |   // represented as a series of bytes of the constant value. | 
 |   int Value = isRepeatedByteSequence(CA, DL); | 
 |  | 
 |   if (Value != -1) { | 
 |     uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); | 
 |     AP.OutStreamer->emitFill(Bytes, Value); | 
 |   } else { | 
 |     for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { | 
 |       emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset, | 
 |                              AliasList); | 
 |       Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); | 
 |  | 
 | static void emitGlobalConstantVector(const DataLayout &DL, | 
 |                                      const ConstantVector *CV, AsmPrinter &AP, | 
 |                                      AsmPrinter::AliasMapTy *AliasList) { | 
 |   Type *ElementType = CV->getType()->getElementType(); | 
 |   uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType); | 
 |   uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType); | 
 |   uint64_t EmittedSize; | 
 |   if (ElementSizeInBits != ElementAllocSizeInBits) { | 
 |     // If the allocation size of an element is different from the size in bits, | 
 |     // printing each element separately will insert incorrect padding. | 
 |     // | 
 |     // The general algorithm here is complicated; instead of writing it out | 
 |     // here, just use the existing code in ConstantFolding. | 
 |     Type *IntT = | 
 |         IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType())); | 
 |     ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant( | 
 |         ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL)); | 
 |     if (!CI) { | 
 |       report_fatal_error( | 
 |           "Cannot lower vector global with unusual element type"); | 
 |     } | 
 |     emitGlobalAliasInline(AP, 0, AliasList); | 
 |     emitGlobalConstantLargeInt(CI, AP); | 
 |     EmittedSize = DL.getTypeStoreSize(CV->getType()); | 
 |   } else { | 
 |     for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) { | 
 |       emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList); | 
 |       emitGlobalConstantImpl(DL, CV->getOperand(I), AP); | 
 |     } | 
 |     EmittedSize = | 
 |         DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements(); | 
 |   } | 
 |  | 
 |   unsigned Size = DL.getTypeAllocSize(CV->getType()); | 
 |   if (unsigned Padding = Size - EmittedSize) | 
 |     AP.OutStreamer->emitZeros(Padding); | 
 | } | 
 |  | 
 | static void emitGlobalConstantStruct(const DataLayout &DL, | 
 |                                      const ConstantStruct *CS, AsmPrinter &AP, | 
 |                                      const Constant *BaseCV, uint64_t Offset, | 
 |                                      AsmPrinter::AliasMapTy *AliasList) { | 
 |   // Print the fields in successive locations. Pad to align if needed! | 
 |   unsigned Size = DL.getTypeAllocSize(CS->getType()); | 
 |   const StructLayout *Layout = DL.getStructLayout(CS->getType()); | 
 |   uint64_t SizeSoFar = 0; | 
 |   for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { | 
 |     const Constant *Field = CS->getOperand(I); | 
 |  | 
 |     // Print the actual field value. | 
 |     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar, | 
 |                            AliasList); | 
 |  | 
 |     // Check if padding is needed and insert one or more 0s. | 
 |     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); | 
 |     uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) - | 
 |                         Layout->getElementOffset(I)) - | 
 |                        FieldSize; | 
 |     SizeSoFar += FieldSize + PadSize; | 
 |  | 
 |     // Insert padding - this may include padding to increase the size of the | 
 |     // current field up to the ABI size (if the struct is not packed) as well | 
 |     // as padding to ensure that the next field starts at the right offset. | 
 |     AP.OutStreamer->emitZeros(PadSize); | 
 |   } | 
 |   assert(SizeSoFar == Layout->getSizeInBytes() && | 
 |          "Layout of constant struct may be incorrect!"); | 
 | } | 
 |  | 
 | static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { | 
 |   assert(ET && "Unknown float type"); | 
 |   APInt API = APF.bitcastToAPInt(); | 
 |  | 
 |   // First print a comment with what we think the original floating-point value | 
 |   // should have been. | 
 |   if (AP.isVerbose()) { | 
 |     SmallString<8> StrVal; | 
 |     APF.toString(StrVal); | 
 |     ET->print(AP.OutStreamer->getCommentOS()); | 
 |     AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; | 
 |   } | 
 |  | 
 |   // Now iterate through the APInt chunks, emitting them in endian-correct | 
 |   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit | 
 |   // floats). | 
 |   unsigned NumBytes = API.getBitWidth() / 8; | 
 |   unsigned TrailingBytes = NumBytes % sizeof(uint64_t); | 
 |   const uint64_t *p = API.getRawData(); | 
 |  | 
 |   // PPC's long double has odd notions of endianness compared to how LLVM | 
 |   // handles it: p[0] goes first for *big* endian on PPC. | 
 |   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { | 
 |     int Chunk = API.getNumWords() - 1; | 
 |  | 
 |     if (TrailingBytes) | 
 |       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); | 
 |  | 
 |     for (; Chunk >= 0; --Chunk) | 
 |       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); | 
 |   } else { | 
 |     unsigned Chunk; | 
 |     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) | 
 |       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); | 
 |  | 
 |     if (TrailingBytes) | 
 |       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); | 
 |   } | 
 |  | 
 |   // Emit the tail padding for the long double. | 
 |   const DataLayout &DL = AP.getDataLayout(); | 
 |   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); | 
 | } | 
 |  | 
 | static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { | 
 |   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); | 
 | } | 
 |  | 
 | static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { | 
 |   const DataLayout &DL = AP.getDataLayout(); | 
 |   unsigned BitWidth = CI->getBitWidth(); | 
 |  | 
 |   // Copy the value as we may massage the layout for constants whose bit width | 
 |   // is not a multiple of 64-bits. | 
 |   APInt Realigned(CI->getValue()); | 
 |   uint64_t ExtraBits = 0; | 
 |   unsigned ExtraBitsSize = BitWidth & 63; | 
 |  | 
 |   if (ExtraBitsSize) { | 
 |     // The bit width of the data is not a multiple of 64-bits. | 
 |     // The extra bits are expected to be at the end of the chunk of the memory. | 
 |     // Little endian: | 
 |     // * Nothing to be done, just record the extra bits to emit. | 
 |     // Big endian: | 
 |     // * Record the extra bits to emit. | 
 |     // * Realign the raw data to emit the chunks of 64-bits. | 
 |     if (DL.isBigEndian()) { | 
 |       // Basically the structure of the raw data is a chunk of 64-bits cells: | 
 |       //    0        1         BitWidth / 64 | 
 |       // [chunk1][chunk2] ... [chunkN]. | 
 |       // The most significant chunk is chunkN and it should be emitted first. | 
 |       // However, due to the alignment issue chunkN contains useless bits. | 
 |       // Realign the chunks so that they contain only useful information: | 
 |       // ExtraBits     0       1       (BitWidth / 64) - 1 | 
 |       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] | 
 |       ExtraBitsSize = alignTo(ExtraBitsSize, 8); | 
 |       ExtraBits = Realigned.getRawData()[0] & | 
 |         (((uint64_t)-1) >> (64 - ExtraBitsSize)); | 
 |       if (BitWidth >= 64) | 
 |         Realigned.lshrInPlace(ExtraBitsSize); | 
 |     } else | 
 |       ExtraBits = Realigned.getRawData()[BitWidth / 64]; | 
 |   } | 
 |  | 
 |   // We don't expect assemblers to support integer data directives | 
 |   // for more than 64 bits, so we emit the data in at most 64-bit | 
 |   // quantities at a time. | 
 |   const uint64_t *RawData = Realigned.getRawData(); | 
 |   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { | 
 |     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; | 
 |     AP.OutStreamer->emitIntValue(Val, 8); | 
 |   } | 
 |  | 
 |   if (ExtraBitsSize) { | 
 |     // Emit the extra bits after the 64-bits chunks. | 
 |  | 
 |     // Emit a directive that fills the expected size. | 
 |     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); | 
 |     Size -= (BitWidth / 64) * 8; | 
 |     assert(Size && Size * 8 >= ExtraBitsSize && | 
 |            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) | 
 |            == ExtraBits && "Directive too small for extra bits."); | 
 |     AP.OutStreamer->emitIntValue(ExtraBits, Size); | 
 |   } | 
 | } | 
 |  | 
 | /// Transform a not absolute MCExpr containing a reference to a GOT | 
 | /// equivalent global, by a target specific GOT pc relative access to the | 
 | /// final symbol. | 
 | static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, | 
 |                                          const Constant *BaseCst, | 
 |                                          uint64_t Offset) { | 
 |   // The global @foo below illustrates a global that uses a got equivalent. | 
 |   // | 
 |   //  @bar = global i32 42 | 
 |   //  @gotequiv = private unnamed_addr constant i32* @bar | 
 |   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), | 
 |   //                             i64 ptrtoint (i32* @foo to i64)) | 
 |   //                        to i32) | 
 |   // | 
 |   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually | 
 |   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the | 
 |   // form: | 
 |   // | 
 |   //  foo = cstexpr, where | 
 |   //    cstexpr := <gotequiv> - "." + <cst> | 
 |   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> | 
 |   // | 
 |   // After canonicalization by evaluateAsRelocatable `ME` turns into: | 
 |   // | 
 |   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where | 
 |   //    gotpcrelcst := <offset from @foo base> + <cst> | 
 |   MCValue MV; | 
 |   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) | 
 |     return; | 
 |   const MCSymbolRefExpr *SymA = MV.getSymA(); | 
 |   if (!SymA) | 
 |     return; | 
 |  | 
 |   // Check that GOT equivalent symbol is cached. | 
 |   const MCSymbol *GOTEquivSym = &SymA->getSymbol(); | 
 |   if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) | 
 |     return; | 
 |  | 
 |   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); | 
 |   if (!BaseGV) | 
 |     return; | 
 |  | 
 |   // Check for a valid base symbol | 
 |   const MCSymbol *BaseSym = AP.getSymbol(BaseGV); | 
 |   const MCSymbolRefExpr *SymB = MV.getSymB(); | 
 |  | 
 |   if (!SymB || BaseSym != &SymB->getSymbol()) | 
 |     return; | 
 |  | 
 |   // Make sure to match: | 
 |   // | 
 |   //    gotpcrelcst := <offset from @foo base> + <cst> | 
 |   // | 
 |   int64_t GOTPCRelCst = Offset + MV.getConstant(); | 
 |   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) | 
 |     return; | 
 |  | 
 |   // Emit the GOT PC relative to replace the got equivalent global, i.e.: | 
 |   // | 
 |   //  bar: | 
 |   //    .long 42 | 
 |   //  gotequiv: | 
 |   //    .quad bar | 
 |   //  foo: | 
 |   //    .long gotequiv - "." + <cst> | 
 |   // | 
 |   // is replaced by the target specific equivalent to: | 
 |   // | 
 |   //  bar: | 
 |   //    .long 42 | 
 |   //  foo: | 
 |   //    .long bar@GOTPCREL+<gotpcrelcst> | 
 |   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; | 
 |   const GlobalVariable *GV = Result.first; | 
 |   int NumUses = (int)Result.second; | 
 |   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); | 
 |   const MCSymbol *FinalSym = AP.getSymbol(FinalGV); | 
 |   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( | 
 |       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); | 
 |  | 
 |   // Update GOT equivalent usage information | 
 |   --NumUses; | 
 |   if (NumUses >= 0) | 
 |     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); | 
 | } | 
 |  | 
 | static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, | 
 |                                    AsmPrinter &AP, const Constant *BaseCV, | 
 |                                    uint64_t Offset, | 
 |                                    AsmPrinter::AliasMapTy *AliasList) { | 
 |   emitGlobalAliasInline(AP, Offset, AliasList); | 
 |   uint64_t Size = DL.getTypeAllocSize(CV->getType()); | 
 |  | 
 |   // Globals with sub-elements such as combinations of arrays and structs | 
 |   // are handled recursively by emitGlobalConstantImpl. Keep track of the | 
 |   // constant symbol base and the current position with BaseCV and Offset. | 
 |   if (!BaseCV && CV->hasOneUse()) | 
 |     BaseCV = dyn_cast<Constant>(CV->user_back()); | 
 |  | 
 |   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) | 
 |     return AP.OutStreamer->emitZeros(Size); | 
 |  | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { | 
 |     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); | 
 |  | 
 |     if (StoreSize <= 8) { | 
 |       if (AP.isVerbose()) | 
 |         AP.OutStreamer->getCommentOS() | 
 |             << format("0x%" PRIx64 "\n", CI->getZExtValue()); | 
 |       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); | 
 |     } else { | 
 |       emitGlobalConstantLargeInt(CI, AP); | 
 |     } | 
 |  | 
 |     // Emit tail padding if needed | 
 |     if (Size != StoreSize) | 
 |       AP.OutStreamer->emitZeros(Size - StoreSize); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) | 
 |     return emitGlobalConstantFP(CFP, AP); | 
 |  | 
 |   if (isa<ConstantPointerNull>(CV)) { | 
 |     AP.OutStreamer->emitIntValue(0, Size); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) | 
 |     return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); | 
 |  | 
 |   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) | 
 |     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList); | 
 |  | 
 |   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) | 
 |     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList); | 
 |  | 
 |   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { | 
 |     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of | 
 |     // vectors). | 
 |     if (CE->getOpcode() == Instruction::BitCast) | 
 |       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); | 
 |  | 
 |     if (Size > 8) { | 
 |       // If the constant expression's size is greater than 64-bits, then we have | 
 |       // to emit the value in chunks. Try to constant fold the value and emit it | 
 |       // that way. | 
 |       Constant *New = ConstantFoldConstant(CE, DL); | 
 |       if (New != CE) | 
 |         return emitGlobalConstantImpl(DL, New, AP); | 
 |     } | 
 |   } | 
 |  | 
 |   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) | 
 |     return emitGlobalConstantVector(DL, V, AP, AliasList); | 
 |  | 
 |   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it | 
 |   // thread the streamer with EmitValue. | 
 |   const MCExpr *ME = AP.lowerConstant(CV); | 
 |  | 
 |   // Since lowerConstant already folded and got rid of all IR pointer and | 
 |   // integer casts, detect GOT equivalent accesses by looking into the MCExpr | 
 |   // directly. | 
 |   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) | 
 |     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); | 
 |  | 
 |   AP.OutStreamer->emitValue(ME, Size); | 
 | } | 
 |  | 
 | /// EmitGlobalConstant - Print a general LLVM constant to the .s file. | 
 | void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, | 
 |                                     AliasMapTy *AliasList) { | 
 |   uint64_t Size = DL.getTypeAllocSize(CV->getType()); | 
 |   if (Size) | 
 |     emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList); | 
 |   else if (MAI->hasSubsectionsViaSymbols()) { | 
 |     // If the global has zero size, emit a single byte so that two labels don't | 
 |     // look like they are at the same location. | 
 |     OutStreamer->emitIntValue(0, 1); | 
 |   } | 
 |   if (!AliasList) | 
 |     return; | 
 |   // TODO: These remaining aliases are not emitted in the correct location. Need | 
 |   // to handle the case where the alias offset doesn't refer to any sub-element. | 
 |   for (auto &AliasPair : *AliasList) { | 
 |     for (const GlobalAlias *GA : AliasPair.second) | 
 |       OutStreamer->emitLabel(getSymbol(GA)); | 
 |   } | 
 | } | 
 |  | 
 | void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { | 
 |   // Target doesn't support this yet! | 
 |   llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); | 
 | } | 
 |  | 
 | void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { | 
 |   if (Offset > 0) | 
 |     OS << '+' << Offset; | 
 |   else if (Offset < 0) | 
 |     OS << Offset; | 
 | } | 
 |  | 
 | void AsmPrinter::emitNops(unsigned N) { | 
 |   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); | 
 |   for (; N; --N) | 
 |     EmitToStreamer(*OutStreamer, Nop); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Symbol Lowering Routines. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { | 
 |   return OutContext.createTempSymbol(Name, true); | 
 | } | 
 |  | 
 | MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { | 
 |   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( | 
 |       BA->getBasicBlock()); | 
 | } | 
 |  | 
 | MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { | 
 |   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); | 
 | } | 
 |  | 
 | /// GetCPISymbol - Return the symbol for the specified constant pool entry. | 
 | MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { | 
 |   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { | 
 |     const MachineConstantPoolEntry &CPE = | 
 |         MF->getConstantPool()->getConstants()[CPID]; | 
 |     if (!CPE.isMachineConstantPoolEntry()) { | 
 |       const DataLayout &DL = MF->getDataLayout(); | 
 |       SectionKind Kind = CPE.getSectionKind(&DL); | 
 |       const Constant *C = CPE.Val.ConstVal; | 
 |       Align Alignment = CPE.Alignment; | 
 |       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( | 
 |               getObjFileLowering().getSectionForConstant(DL, Kind, C, | 
 |                                                          Alignment))) { | 
 |         if (MCSymbol *Sym = S->getCOMDATSymbol()) { | 
 |           if (Sym->isUndefined()) | 
 |             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); | 
 |           return Sym; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const DataLayout &DL = getDataLayout(); | 
 |   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | 
 |                                       "CPI" + Twine(getFunctionNumber()) + "_" + | 
 |                                       Twine(CPID)); | 
 | } | 
 |  | 
 | /// GetJTISymbol - Return the symbol for the specified jump table entry. | 
 | MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { | 
 |   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); | 
 | } | 
 |  | 
 | /// GetJTSetSymbol - Return the symbol for the specified jump table .set | 
 | /// FIXME: privatize to AsmPrinter. | 
 | MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { | 
 |   const DataLayout &DL = getDataLayout(); | 
 |   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | 
 |                                       Twine(getFunctionNumber()) + "_" + | 
 |                                       Twine(UID) + "_set_" + Twine(MBBID)); | 
 | } | 
 |  | 
 | MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, | 
 |                                                    StringRef Suffix) const { | 
 |   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); | 
 | } | 
 |  | 
 | /// Return the MCSymbol for the specified ExternalSymbol. | 
 | MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const { | 
 |   SmallString<60> NameStr; | 
 |   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); | 
 |   return OutContext.getOrCreateSymbol(NameStr); | 
 | } | 
 |  | 
 | /// PrintParentLoopComment - Print comments about parent loops of this one. | 
 | static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, | 
 |                                    unsigned FunctionNumber) { | 
 |   if (!Loop) return; | 
 |   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); | 
 |   OS.indent(Loop->getLoopDepth()*2) | 
 |     << "Parent Loop BB" << FunctionNumber << "_" | 
 |     << Loop->getHeader()->getNumber() | 
 |     << " Depth=" << Loop->getLoopDepth() << '\n'; | 
 | } | 
 |  | 
 | /// PrintChildLoopComment - Print comments about child loops within | 
 | /// the loop for this basic block, with nesting. | 
 | static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, | 
 |                                   unsigned FunctionNumber) { | 
 |   // Add child loop information | 
 |   for (const MachineLoop *CL : *Loop) { | 
 |     OS.indent(CL->getLoopDepth()*2) | 
 |       << "Child Loop BB" << FunctionNumber << "_" | 
 |       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() | 
 |       << '\n'; | 
 |     PrintChildLoopComment(OS, CL, FunctionNumber); | 
 |   } | 
 | } | 
 |  | 
 | /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. | 
 | static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, | 
 |                                        const MachineLoopInfo *LI, | 
 |                                        const AsmPrinter &AP) { | 
 |   // Add loop depth information | 
 |   const MachineLoop *Loop = LI->getLoopFor(&MBB); | 
 |   if (!Loop) return; | 
 |  | 
 |   MachineBasicBlock *Header = Loop->getHeader(); | 
 |   assert(Header && "No header for loop"); | 
 |  | 
 |   // If this block is not a loop header, just print out what is the loop header | 
 |   // and return. | 
 |   if (Header != &MBB) { | 
 |     AP.OutStreamer->AddComment("  in Loop: Header=BB" + | 
 |                                Twine(AP.getFunctionNumber())+"_" + | 
 |                                Twine(Loop->getHeader()->getNumber())+ | 
 |                                " Depth="+Twine(Loop->getLoopDepth())); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, it is a loop header.  Print out information about child and | 
 |   // parent loops. | 
 |   raw_ostream &OS = AP.OutStreamer->getCommentOS(); | 
 |  | 
 |   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); | 
 |  | 
 |   OS << "=>"; | 
 |   OS.indent(Loop->getLoopDepth()*2-2); | 
 |  | 
 |   OS << "This "; | 
 |   if (Loop->isInnermost()) | 
 |     OS << "Inner "; | 
 |   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; | 
 |  | 
 |   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); | 
 | } | 
 |  | 
 | /// emitBasicBlockStart - This method prints the label for the specified | 
 | /// MachineBasicBlock, an alignment (if present) and a comment describing | 
 | /// it if appropriate. | 
 | void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { | 
 |   // End the previous funclet and start a new one. | 
 |   if (MBB.isEHFuncletEntry()) { | 
 |     for (const HandlerInfo &HI : Handlers) { | 
 |       HI.Handler->endFunclet(); | 
 |       HI.Handler->beginFunclet(MBB); | 
 |     } | 
 |   } | 
 |  | 
 |   // Switch to a new section if this basic block must begin a section. The | 
 |   // entry block is always placed in the function section and is handled | 
 |   // separately. | 
 |   if (MBB.isBeginSection() && !MBB.isEntryBlock()) { | 
 |     OutStreamer->switchSection( | 
 |         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), | 
 |                                                             MBB, TM)); | 
 |     CurrentSectionBeginSym = MBB.getSymbol(); | 
 |   } | 
 |  | 
 |   // Emit an alignment directive for this block, if needed. | 
 |   const Align Alignment = MBB.getAlignment(); | 
 |   if (Alignment != Align(1)) | 
 |     emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment()); | 
 |  | 
 |   // If the block has its address taken, emit any labels that were used to | 
 |   // reference the block.  It is possible that there is more than one label | 
 |   // here, because multiple LLVM BB's may have been RAUW'd to this block after | 
 |   // the references were generated. | 
 |   if (MBB.isIRBlockAddressTaken()) { | 
 |     if (isVerbose()) | 
 |       OutStreamer->AddComment("Block address taken"); | 
 |  | 
 |     BasicBlock *BB = MBB.getAddressTakenIRBlock(); | 
 |     assert(BB && BB->hasAddressTaken() && "Missing BB"); | 
 |     for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) | 
 |       OutStreamer->emitLabel(Sym); | 
 |   } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { | 
 |     OutStreamer->AddComment("Block address taken"); | 
 |   } | 
 |  | 
 |   // Print some verbose block comments. | 
 |   if (isVerbose()) { | 
 |     if (const BasicBlock *BB = MBB.getBasicBlock()) { | 
 |       if (BB->hasName()) { | 
 |         BB->printAsOperand(OutStreamer->getCommentOS(), | 
 |                            /*PrintType=*/false, BB->getModule()); | 
 |         OutStreamer->getCommentOS() << '\n'; | 
 |       } | 
 |     } | 
 |  | 
 |     assert(MLI != nullptr && "MachineLoopInfo should has been computed"); | 
 |     emitBasicBlockLoopComments(MBB, MLI, *this); | 
 |   } | 
 |  | 
 |   // Print the main label for the block. | 
 |   if (shouldEmitLabelForBasicBlock(MBB)) { | 
 |     if (isVerbose() && MBB.hasLabelMustBeEmitted()) | 
 |       OutStreamer->AddComment("Label of block must be emitted"); | 
 |     OutStreamer->emitLabel(MBB.getSymbol()); | 
 |   } else { | 
 |     if (isVerbose()) { | 
 |       // NOTE: Want this comment at start of line, don't emit with AddComment. | 
 |       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", | 
 |                                   false); | 
 |     } | 
 |   } | 
 |  | 
 |   if (MBB.isEHCatchretTarget() && | 
 |       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { | 
 |     OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); | 
 |   } | 
 |  | 
 |   // With BB sections, each basic block must handle CFI information on its own | 
 |   // if it begins a section (Entry block call is handled separately, next to | 
 |   // beginFunction). | 
 |   if (MBB.isBeginSection() && !MBB.isEntryBlock()) | 
 |     for (const HandlerInfo &HI : Handlers) | 
 |       HI.Handler->beginBasicBlockSection(MBB); | 
 | } | 
 |  | 
 | void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { | 
 |   // Check if CFI information needs to be updated for this MBB with basic block | 
 |   // sections. | 
 |   if (MBB.isEndSection()) | 
 |     for (const HandlerInfo &HI : Handlers) | 
 |       HI.Handler->endBasicBlockSection(MBB); | 
 | } | 
 |  | 
 | void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, | 
 |                                 bool IsDefinition) const { | 
 |   MCSymbolAttr Attr = MCSA_Invalid; | 
 |  | 
 |   switch (Visibility) { | 
 |   default: break; | 
 |   case GlobalValue::HiddenVisibility: | 
 |     if (IsDefinition) | 
 |       Attr = MAI->getHiddenVisibilityAttr(); | 
 |     else | 
 |       Attr = MAI->getHiddenDeclarationVisibilityAttr(); | 
 |     break; | 
 |   case GlobalValue::ProtectedVisibility: | 
 |     Attr = MAI->getProtectedVisibilityAttr(); | 
 |     break; | 
 |   } | 
 |  | 
 |   if (Attr != MCSA_Invalid) | 
 |     OutStreamer->emitSymbolAttribute(Sym, Attr); | 
 | } | 
 |  | 
 | bool AsmPrinter::shouldEmitLabelForBasicBlock( | 
 |     const MachineBasicBlock &MBB) const { | 
 |   // With `-fbasic-block-sections=`, a label is needed for every non-entry block | 
 |   // in the labels mode (option `=labels`) and every section beginning in the | 
 |   // sections mode (`=all` and `=list=`). | 
 |   if ((MF->hasBBLabels() || MF->getTarget().Options.BBAddrMap || | 
 |        MBB.isBeginSection()) && | 
 |       !MBB.isEntryBlock()) | 
 |     return true; | 
 |   // A label is needed for any block with at least one predecessor (when that | 
 |   // predecessor is not the fallthrough predecessor, or if it is an EH funclet | 
 |   // entry, or if a label is forced). | 
 |   return !MBB.pred_empty() && | 
 |          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || | 
 |           MBB.hasLabelMustBeEmitted()); | 
 | } | 
 |  | 
 | /// isBlockOnlyReachableByFallthough - Return true if the basic block has | 
 | /// exactly one predecessor and the control transfer mechanism between | 
 | /// the predecessor and this block is a fall-through. | 
 | bool AsmPrinter:: | 
 | isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { | 
 |   // If this is a landing pad, it isn't a fall through.  If it has no preds, | 
 |   // then nothing falls through to it. | 
 |   if (MBB->isEHPad() || MBB->pred_empty()) | 
 |     return false; | 
 |  | 
 |   // If there isn't exactly one predecessor, it can't be a fall through. | 
 |   if (MBB->pred_size() > 1) | 
 |     return false; | 
 |  | 
 |   // The predecessor has to be immediately before this block. | 
 |   MachineBasicBlock *Pred = *MBB->pred_begin(); | 
 |   if (!Pred->isLayoutSuccessor(MBB)) | 
 |     return false; | 
 |  | 
 |   // If the block is completely empty, then it definitely does fall through. | 
 |   if (Pred->empty()) | 
 |     return true; | 
 |  | 
 |   // Check the terminators in the previous blocks | 
 |   for (const auto &MI : Pred->terminators()) { | 
 |     // If it is not a simple branch, we are in a table somewhere. | 
 |     if (!MI.isBranch() || MI.isIndirectBranch()) | 
 |       return false; | 
 |  | 
 |     // If we are the operands of one of the branches, this is not a fall | 
 |     // through. Note that targets with delay slots will usually bundle | 
 |     // terminators with the delay slot instruction. | 
 |     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { | 
 |       if (OP->isJTI()) | 
 |         return false; | 
 |       if (OP->isMBB() && OP->getMBB() == MBB) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { | 
 |   if (!S.usesMetadata()) | 
 |     return nullptr; | 
 |  | 
 |   auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr}); | 
 |   if (!Inserted) | 
 |     return GCPI->second.get(); | 
 |  | 
 |   auto Name = S.getName(); | 
 |  | 
 |   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : | 
 |        GCMetadataPrinterRegistry::entries()) | 
 |     if (Name == GCMetaPrinter.getName()) { | 
 |       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); | 
 |       GMP->S = &S; | 
 |       GCPI->second = std::move(GMP); | 
 |       return GCPI->second.get(); | 
 |     } | 
 |  | 
 |   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); | 
 | } | 
 |  | 
 | void AsmPrinter::emitStackMaps() { | 
 |   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); | 
 |   assert(MI && "AsmPrinter didn't require GCModuleInfo?"); | 
 |   bool NeedsDefault = false; | 
 |   if (MI->begin() == MI->end()) | 
 |     // No GC strategy, use the default format. | 
 |     NeedsDefault = true; | 
 |   else | 
 |     for (const auto &I : *MI) { | 
 |       if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I)) | 
 |         if (MP->emitStackMaps(SM, *this)) | 
 |           continue; | 
 |       // The strategy doesn't have printer or doesn't emit custom stack maps. | 
 |       // Use the default format. | 
 |       NeedsDefault = true; | 
 |     } | 
 |  | 
 |   if (NeedsDefault) | 
 |     SM.serializeToStackMapSection(); | 
 | } | 
 |  | 
 | /// Pin vtable to this file. | 
 | AsmPrinterHandler::~AsmPrinterHandler() = default; | 
 |  | 
 | void AsmPrinterHandler::markFunctionEnd() {} | 
 |  | 
 | // In the binary's "xray_instr_map" section, an array of these function entries | 
 | // describes each instrumentation point.  When XRay patches your code, the index | 
 | // into this table will be given to your handler as a patch point identifier. | 
 | void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { | 
 |   auto Kind8 = static_cast<uint8_t>(Kind); | 
 |   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); | 
 |   Out->emitBinaryData( | 
 |       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); | 
 |   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); | 
 |   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); | 
 |   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); | 
 |   Out->emitZeros(Padding); | 
 | } | 
 |  | 
 | void AsmPrinter::emitXRayTable() { | 
 |   if (Sleds.empty()) | 
 |     return; | 
 |  | 
 |   auto PrevSection = OutStreamer->getCurrentSectionOnly(); | 
 |   const Function &F = MF->getFunction(); | 
 |   MCSection *InstMap = nullptr; | 
 |   MCSection *FnSledIndex = nullptr; | 
 |   const Triple &TT = TM.getTargetTriple(); | 
 |   // Use PC-relative addresses on all targets. | 
 |   if (TT.isOSBinFormatELF()) { | 
 |     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); | 
 |     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; | 
 |     StringRef GroupName; | 
 |     if (F.hasComdat()) { | 
 |       Flags |= ELF::SHF_GROUP; | 
 |       GroupName = F.getComdat()->getName(); | 
 |     } | 
 |     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, | 
 |                                        Flags, 0, GroupName, F.hasComdat(), | 
 |                                        MCSection::NonUniqueID, LinkedToSym); | 
 |  | 
 |     if (TM.Options.XRayFunctionIndex) | 
 |       FnSledIndex = OutContext.getELFSection( | 
 |           "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(), | 
 |           MCSection::NonUniqueID, LinkedToSym); | 
 |   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { | 
 |     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", | 
 |                                          MachO::S_ATTR_LIVE_SUPPORT, | 
 |                                          SectionKind::getReadOnlyWithRel()); | 
 |     if (TM.Options.XRayFunctionIndex) | 
 |       FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", | 
 |                                                MachO::S_ATTR_LIVE_SUPPORT, | 
 |                                                SectionKind::getReadOnly()); | 
 |   } else { | 
 |     llvm_unreachable("Unsupported target"); | 
 |   } | 
 |  | 
 |   auto WordSizeBytes = MAI->getCodePointerSize(); | 
 |  | 
 |   // Now we switch to the instrumentation map section. Because this is done | 
 |   // per-function, we are able to create an index entry that will represent the | 
 |   // range of sleds associated with a function. | 
 |   auto &Ctx = OutContext; | 
 |   MCSymbol *SledsStart = | 
 |       OutContext.createLinkerPrivateSymbol("xray_sleds_start"); | 
 |   OutStreamer->switchSection(InstMap); | 
 |   OutStreamer->emitLabel(SledsStart); | 
 |   for (const auto &Sled : Sleds) { | 
 |     MCSymbol *Dot = Ctx.createTempSymbol(); | 
 |     OutStreamer->emitLabel(Dot); | 
 |     OutStreamer->emitValueImpl( | 
 |         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), | 
 |                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx), | 
 |         WordSizeBytes); | 
 |     OutStreamer->emitValueImpl( | 
 |         MCBinaryExpr::createSub( | 
 |             MCSymbolRefExpr::create(CurrentFnBegin, Ctx), | 
 |             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), | 
 |                                     MCConstantExpr::create(WordSizeBytes, Ctx), | 
 |                                     Ctx), | 
 |             Ctx), | 
 |         WordSizeBytes); | 
 |     Sled.emit(WordSizeBytes, OutStreamer.get()); | 
 |   } | 
 |   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); | 
 |   OutStreamer->emitLabel(SledsEnd); | 
 |  | 
 |   // We then emit a single entry in the index per function. We use the symbols | 
 |   // that bound the instrumentation map as the range for a specific function. | 
 |   // Each entry here will be 2 * word size aligned, as we're writing down two | 
 |   // pointers. This should work for both 32-bit and 64-bit platforms. | 
 |   if (FnSledIndex) { | 
 |     OutStreamer->switchSection(FnSledIndex); | 
 |     OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes), | 
 |                                    &getSubtargetInfo()); | 
 |     // For Mach-O, use an "l" symbol as the atom of this subsection. The label | 
 |     // difference uses a SUBTRACTOR external relocation which references the | 
 |     // symbol. | 
 |     MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx"); | 
 |     OutStreamer->emitLabel(Dot); | 
 |     OutStreamer->emitValueImpl( | 
 |         MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx), | 
 |                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx), | 
 |         WordSizeBytes); | 
 |     OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx), | 
 |                                WordSizeBytes); | 
 |     OutStreamer->switchSection(PrevSection); | 
 |   } | 
 |   Sleds.clear(); | 
 | } | 
 |  | 
 | void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, | 
 |                             SledKind Kind, uint8_t Version) { | 
 |   const Function &F = MI.getMF()->getFunction(); | 
 |   auto Attr = F.getFnAttribute("function-instrument"); | 
 |   bool LogArgs = F.hasFnAttribute("xray-log-args"); | 
 |   bool AlwaysInstrument = | 
 |     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; | 
 |   if (Kind == SledKind::FUNCTION_ENTER && LogArgs) | 
 |     Kind = SledKind::LOG_ARGS_ENTER; | 
 |   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, | 
 |                                        AlwaysInstrument, &F, Version}); | 
 | } | 
 |  | 
 | void AsmPrinter::emitPatchableFunctionEntries() { | 
 |   const Function &F = MF->getFunction(); | 
 |   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; | 
 |   (void)F.getFnAttribute("patchable-function-prefix") | 
 |       .getValueAsString() | 
 |       .getAsInteger(10, PatchableFunctionPrefix); | 
 |   (void)F.getFnAttribute("patchable-function-entry") | 
 |       .getValueAsString() | 
 |       .getAsInteger(10, PatchableFunctionEntry); | 
 |   if (!PatchableFunctionPrefix && !PatchableFunctionEntry) | 
 |     return; | 
 |   const unsigned PointerSize = getPointerSize(); | 
 |   if (TM.getTargetTriple().isOSBinFormatELF()) { | 
 |     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; | 
 |     const MCSymbolELF *LinkedToSym = nullptr; | 
 |     StringRef GroupName; | 
 |  | 
 |     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not | 
 |     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. | 
 |     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { | 
 |       Flags |= ELF::SHF_LINK_ORDER; | 
 |       if (F.hasComdat()) { | 
 |         Flags |= ELF::SHF_GROUP; | 
 |         GroupName = F.getComdat()->getName(); | 
 |       } | 
 |       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); | 
 |     } | 
 |     OutStreamer->switchSection(OutContext.getELFSection( | 
 |         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, | 
 |         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); | 
 |     emitAlignment(Align(PointerSize)); | 
 |     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); | 
 |   } | 
 | } | 
 |  | 
 | uint16_t AsmPrinter::getDwarfVersion() const { | 
 |   return OutStreamer->getContext().getDwarfVersion(); | 
 | } | 
 |  | 
 | void AsmPrinter::setDwarfVersion(uint16_t Version) { | 
 |   OutStreamer->getContext().setDwarfVersion(Version); | 
 | } | 
 |  | 
 | bool AsmPrinter::isDwarf64() const { | 
 |   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; | 
 | } | 
 |  | 
 | unsigned int AsmPrinter::getDwarfOffsetByteSize() const { | 
 |   return dwarf::getDwarfOffsetByteSize( | 
 |       OutStreamer->getContext().getDwarfFormat()); | 
 | } | 
 |  | 
 | dwarf::FormParams AsmPrinter::getDwarfFormParams() const { | 
 |   return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()), | 
 |           OutStreamer->getContext().getDwarfFormat(), | 
 |           doesDwarfUseRelocationsAcrossSections()}; | 
 | } | 
 |  | 
 | unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { | 
 |   return dwarf::getUnitLengthFieldByteSize( | 
 |       OutStreamer->getContext().getDwarfFormat()); | 
 | } | 
 |  | 
 | std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, | 
 |            codeview::JumpTableEntrySize> | 
 | AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, | 
 |                                      const MCSymbol *BranchLabel) const { | 
 |   const auto TLI = MF->getSubtarget().getTargetLowering(); | 
 |   const auto BaseExpr = | 
 |       TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext()); | 
 |   const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol(); | 
 |  | 
 |   // By default, for the architectures that support CodeView, | 
 |   // EK_LabelDifference32 is implemented as an Int32 from the base address. | 
 |   return std::make_tuple(Base, 0, BranchLabel, | 
 |                          codeview::JumpTableEntrySize::Int32); | 
 | } |