|  | //===- InputFiles.cpp -----------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains functions to parse Mach-O object files. In this comment, | 
|  | // we describe the Mach-O file structure and how we parse it. | 
|  | // | 
|  | // Mach-O is not very different from ELF or COFF. The notion of symbols, | 
|  | // sections and relocations exists in Mach-O as it does in ELF and COFF. | 
|  | // | 
|  | // Perhaps the notion that is new to those who know ELF/COFF is "subsections". | 
|  | // In ELF/COFF, sections are an atomic unit of data copied from input files to | 
|  | // output files. When we merge or garbage-collect sections, we treat each | 
|  | // section as an atomic unit. In Mach-O, that's not the case. Sections can | 
|  | // consist of multiple subsections, and subsections are a unit of merging and | 
|  | // garbage-collecting. Therefore, Mach-O's subsections are more similar to | 
|  | // ELF/COFF's sections than Mach-O's sections are. | 
|  | // | 
|  | // A section can have multiple symbols. A symbol that does not have the | 
|  | // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by | 
|  | // definition, a symbol is always present at the beginning of each subsection. A | 
|  | // symbol with N_ALT_ENTRY attribute does not start a new subsection and can | 
|  | // point to a middle of a subsection. | 
|  | // | 
|  | // The notion of subsections also affects how relocations are represented in | 
|  | // Mach-O. All references within a section need to be explicitly represented as | 
|  | // relocations if they refer to different subsections, because we obviously need | 
|  | // to fix up addresses if subsections are laid out in an output file differently | 
|  | // than they were in object files. To represent that, Mach-O relocations can | 
|  | // refer to an unnamed location via its address. Scattered relocations (those | 
|  | // with the R_SCATTERED bit set) always refer to unnamed locations. | 
|  | // Non-scattered relocations refer to an unnamed location if r_extern is not set | 
|  | // and r_symbolnum is zero. | 
|  | // | 
|  | // Without the above differences, I think you can use your knowledge about ELF | 
|  | // and COFF for Mach-O. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InputFiles.h" | 
|  | #include "Config.h" | 
|  | #include "Driver.h" | 
|  | #include "Dwarf.h" | 
|  | #include "EhFrame.h" | 
|  | #include "ExportTrie.h" | 
|  | #include "InputSection.h" | 
|  | #include "MachOStructs.h" | 
|  | #include "ObjC.h" | 
|  | #include "OutputSection.h" | 
|  | #include "OutputSegment.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Symbols.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  |  | 
|  | #include "lld/Common/CommonLinkerContext.h" | 
|  | #include "lld/Common/DWARF.h" | 
|  | #include "lld/Common/Reproduce.h" | 
|  | #include "llvm/ADT/iterator.h" | 
|  | #include "llvm/BinaryFormat/MachO.h" | 
|  | #include "llvm/LTO/LTO.h" | 
|  | #include "llvm/Support/BinaryStreamReader.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/MemoryBuffer.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Support/TarWriter.h" | 
|  | #include "llvm/Support/TimeProfiler.h" | 
|  | #include "llvm/TextAPI/Architecture.h" | 
|  | #include "llvm/TextAPI/InterfaceFile.h" | 
|  |  | 
|  | #include <optional> | 
|  | #include <type_traits> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::MachO; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace llvm::sys; | 
|  | using namespace lld; | 
|  | using namespace lld::macho; | 
|  |  | 
|  | // Returns "<internal>", "foo.a(bar.o)", or "baz.o". | 
|  | std::string lld::toString(const InputFile *f) { | 
|  | if (!f) | 
|  | return "<internal>"; | 
|  |  | 
|  | // Multiple dylibs can be defined in one .tbd file. | 
|  | if (const auto *dylibFile = dyn_cast<DylibFile>(f)) | 
|  | if (f->getName().ends_with(".tbd")) | 
|  | return (f->getName() + "(" + dylibFile->installName + ")").str(); | 
|  |  | 
|  | if (f->archiveName.empty()) | 
|  | return std::string(f->getName()); | 
|  | return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); | 
|  | } | 
|  |  | 
|  | std::string lld::toString(const Section &sec) { | 
|  | return (toString(sec.file) + ":(" + sec.name + ")").str(); | 
|  | } | 
|  |  | 
|  | SetVector<InputFile *> macho::inputFiles; | 
|  | std::unique_ptr<TarWriter> macho::tar; | 
|  | int InputFile::idCount = 0; | 
|  |  | 
|  | static VersionTuple decodeVersion(uint32_t version) { | 
|  | unsigned major = version >> 16; | 
|  | unsigned minor = (version >> 8) & 0xffu; | 
|  | unsigned subMinor = version & 0xffu; | 
|  | return VersionTuple(major, minor, subMinor); | 
|  | } | 
|  |  | 
|  | static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { | 
|  | if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) | 
|  | return {}; | 
|  |  | 
|  | const char *hdr = input->mb.getBufferStart(); | 
|  |  | 
|  | // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. | 
|  | std::vector<PlatformInfo> platformInfos; | 
|  | for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { | 
|  | PlatformInfo info; | 
|  | info.target.Platform = static_cast<PlatformType>(cmd->platform); | 
|  | info.target.MinDeployment = decodeVersion(cmd->minos); | 
|  | platformInfos.emplace_back(std::move(info)); | 
|  | } | 
|  | for (auto *cmd : findCommands<version_min_command>( | 
|  | hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, | 
|  | LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { | 
|  | PlatformInfo info; | 
|  | switch (cmd->cmd) { | 
|  | case LC_VERSION_MIN_MACOSX: | 
|  | info.target.Platform = PLATFORM_MACOS; | 
|  | break; | 
|  | case LC_VERSION_MIN_IPHONEOS: | 
|  | info.target.Platform = PLATFORM_IOS; | 
|  | break; | 
|  | case LC_VERSION_MIN_TVOS: | 
|  | info.target.Platform = PLATFORM_TVOS; | 
|  | break; | 
|  | case LC_VERSION_MIN_WATCHOS: | 
|  | info.target.Platform = PLATFORM_WATCHOS; | 
|  | break; | 
|  | } | 
|  | info.target.MinDeployment = decodeVersion(cmd->version); | 
|  | platformInfos.emplace_back(std::move(info)); | 
|  | } | 
|  |  | 
|  | return platformInfos; | 
|  | } | 
|  |  | 
|  | static bool checkCompatibility(const InputFile *input) { | 
|  | std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); | 
|  | if (platformInfos.empty()) | 
|  | return true; | 
|  |  | 
|  | auto it = find_if(platformInfos, [&](const PlatformInfo &info) { | 
|  | return removeSimulator(info.target.Platform) == | 
|  | removeSimulator(config->platform()); | 
|  | }); | 
|  | if (it == platformInfos.end()) { | 
|  | std::string platformNames; | 
|  | raw_string_ostream os(platformNames); | 
|  | interleave( | 
|  | platformInfos, os, | 
|  | [&](const PlatformInfo &info) { | 
|  | os << getPlatformName(info.target.Platform); | 
|  | }, | 
|  | "/"); | 
|  | error(toString(input) + " has platform " + platformNames + | 
|  | Twine(", which is different from target platform ") + | 
|  | getPlatformName(config->platform())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (it->target.MinDeployment > config->platformInfo.target.MinDeployment) | 
|  | warn(toString(input) + " has version " + | 
|  | it->target.MinDeployment.getAsString() + | 
|  | ", which is newer than target minimum of " + | 
|  | config->platformInfo.target.MinDeployment.getAsString()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Header> | 
|  | static bool compatWithTargetArch(const InputFile *file, const Header *hdr) { | 
|  | uint32_t cpuType; | 
|  | std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch()); | 
|  |  | 
|  | if (hdr->cputype != cpuType) { | 
|  | Architecture arch = | 
|  | getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); | 
|  | auto msg = config->errorForArchMismatch | 
|  | ? static_cast<void (*)(const Twine &)>(error) | 
|  | : warn; | 
|  |  | 
|  | msg(toString(file) + " has architecture " + getArchitectureName(arch) + | 
|  | " which is incompatible with target architecture " + | 
|  | getArchitectureName(config->arch())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return checkCompatibility(file); | 
|  | } | 
|  |  | 
|  | // This cache mostly exists to store system libraries (and .tbds) as they're | 
|  | // loaded, rather than the input archives, which are already cached at a higher | 
|  | // level, and other files like the filelist that are only read once. | 
|  | // Theoretically this caching could be more efficient by hoisting it, but that | 
|  | // would require altering many callers to track the state. | 
|  | DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; | 
|  | // Open a given file path and return it as a memory-mapped file. | 
|  | std::optional<MemoryBufferRef> macho::readFile(StringRef path) { | 
|  | CachedHashStringRef key(path); | 
|  | auto entry = cachedReads.find(key); | 
|  | if (entry != cachedReads.end()) | 
|  | return entry->second; | 
|  |  | 
|  | ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); | 
|  | if (std::error_code ec = mbOrErr.getError()) { | 
|  | error("cannot open " + path + ": " + ec.message()); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; | 
|  | MemoryBufferRef mbref = mb->getMemBufferRef(); | 
|  | make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership | 
|  |  | 
|  | // If this is a regular non-fat file, return it. | 
|  | const char *buf = mbref.getBufferStart(); | 
|  | const auto *hdr = reinterpret_cast<const fat_header *>(buf); | 
|  | if (mbref.getBufferSize() < sizeof(uint32_t) || | 
|  | read32be(&hdr->magic) != FAT_MAGIC) { | 
|  | if (tar) | 
|  | tar->append(relativeToRoot(path), mbref.getBuffer()); | 
|  | return cachedReads[key] = mbref; | 
|  | } | 
|  |  | 
|  | llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); | 
|  |  | 
|  | // Object files and archive files may be fat files, which contain multiple | 
|  | // real files for different CPU ISAs. Here, we search for a file that matches | 
|  | // with the current link target and returns it as a MemoryBufferRef. | 
|  | const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); | 
|  | auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) { | 
|  | return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype)); | 
|  | }; | 
|  |  | 
|  | std::vector<StringRef> archs; | 
|  | for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { | 
|  | if (reinterpret_cast<const char *>(arch + i + 1) > | 
|  | buf + mbref.getBufferSize()) { | 
|  | error(path + ": fat_arch struct extends beyond end of file"); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | uint32_t cpuType = read32be(&arch[i].cputype); | 
|  | uint32_t cpuSubtype = | 
|  | read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK; | 
|  |  | 
|  | // FIXME: LD64 has a more complex fallback logic here. | 
|  | // Consider implementing that as well? | 
|  | if (cpuType != static_cast<uint32_t>(target->cpuType) || | 
|  | cpuSubtype != target->cpuSubtype) { | 
|  | archs.emplace_back(getArchName(cpuType, cpuSubtype)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | uint32_t offset = read32be(&arch[i].offset); | 
|  | uint32_t size = read32be(&arch[i].size); | 
|  | if (offset + size > mbref.getBufferSize()) | 
|  | error(path + ": slice extends beyond end of file"); | 
|  | if (tar) | 
|  | tar->append(relativeToRoot(path), mbref.getBuffer()); | 
|  | return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), | 
|  | path.copy(bAlloc)); | 
|  | } | 
|  |  | 
|  | auto targetArchName = getArchName(target->cpuType, target->cpuSubtype); | 
|  | warn(path + ": ignoring file because it is universal (" + join(archs, ",") + | 
|  | ") but does not contain the " + targetArchName + " architecture"); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | InputFile::InputFile(Kind kind, const InterfaceFile &interface) | 
|  | : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} | 
|  |  | 
|  | // Some sections comprise of fixed-size records, so instead of splitting them at | 
|  | // symbol boundaries, we split them based on size. Records are distinct from | 
|  | // literals in that they may contain references to other sections, instead of | 
|  | // being leaf nodes in the InputSection graph. | 
|  | // | 
|  | // Note that "record" is a term I came up with. In contrast, "literal" is a term | 
|  | // used by the Mach-O format. | 
|  | static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) { | 
|  | if (name == section_names::compactUnwind) { | 
|  | if (segname == segment_names::ld) | 
|  | return target->wordSize == 8 ? 32 : 20; | 
|  | } | 
|  | if (!config->dedupStrings) | 
|  | return {}; | 
|  |  | 
|  | if (name == section_names::cfString && segname == segment_names::data) | 
|  | return target->wordSize == 8 ? 32 : 16; | 
|  |  | 
|  | if (config->icfLevel == ICFLevel::none) | 
|  | return {}; | 
|  |  | 
|  | if (name == section_names::objcClassRefs && segname == segment_names::data) | 
|  | return target->wordSize; | 
|  |  | 
|  | if (name == section_names::objcSelrefs && segname == segment_names::data) | 
|  | return target->wordSize; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | static Error parseCallGraph(ArrayRef<uint8_t> data, | 
|  | std::vector<CallGraphEntry> &callGraph) { | 
|  | TimeTraceScope timeScope("Parsing call graph section"); | 
|  | BinaryStreamReader reader(data, llvm::endianness::little); | 
|  | while (!reader.empty()) { | 
|  | uint32_t fromIndex, toIndex; | 
|  | uint64_t count; | 
|  | if (Error err = reader.readInteger(fromIndex)) | 
|  | return err; | 
|  | if (Error err = reader.readInteger(toIndex)) | 
|  | return err; | 
|  | if (Error err = reader.readInteger(count)) | 
|  | return err; | 
|  | callGraph.emplace_back(fromIndex, toIndex, count); | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | // Parse the sequence of sections within a single LC_SEGMENT(_64). | 
|  | // Split each section into subsections. | 
|  | template <class SectionHeader> | 
|  | void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { | 
|  | sections.reserve(sectionHeaders.size()); | 
|  | auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  |  | 
|  | for (const SectionHeader &sec : sectionHeaders) { | 
|  | StringRef name = | 
|  | StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); | 
|  | StringRef segname = | 
|  | StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); | 
|  | sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); | 
|  | if (sec.align >= 32) { | 
|  | error("alignment " + std::to_string(sec.align) + " of section " + name + | 
|  | " is too large"); | 
|  | continue; | 
|  | } | 
|  | Section §ion = *sections.back(); | 
|  | uint32_t align = 1 << sec.align; | 
|  | ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr | 
|  | : buf + sec.offset, | 
|  | static_cast<size_t>(sec.size)}; | 
|  |  | 
|  | auto splitRecords = [&](size_t recordSize) -> void { | 
|  | if (data.empty()) | 
|  | return; | 
|  | Subsections &subsections = section.subsections; | 
|  | subsections.reserve(data.size() / recordSize); | 
|  | for (uint64_t off = 0; off < data.size(); off += recordSize) { | 
|  | auto *isec = make<ConcatInputSection>( | 
|  | section, data.slice(off, std::min(data.size(), recordSize)), align); | 
|  | subsections.push_back({off, isec}); | 
|  | } | 
|  | section.doneSplitting = true; | 
|  | }; | 
|  |  | 
|  | if (sectionType(sec.flags) == S_CSTRING_LITERALS) { | 
|  | if (sec.nreloc) | 
|  | fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + | 
|  | " contains relocations, which is unsupported"); | 
|  | bool dedupLiterals = | 
|  | name == section_names::objcMethname || config->dedupStrings; | 
|  | InputSection *isec = | 
|  | make<CStringInputSection>(section, data, align, dedupLiterals); | 
|  | // FIXME: parallelize this? | 
|  | cast<CStringInputSection>(isec)->splitIntoPieces(); | 
|  | section.subsections.push_back({0, isec}); | 
|  | } else if (isWordLiteralSection(sec.flags)) { | 
|  | if (sec.nreloc) | 
|  | fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + | 
|  | " contains relocations, which is unsupported"); | 
|  | InputSection *isec = make<WordLiteralInputSection>(section, data, align); | 
|  | section.subsections.push_back({0, isec}); | 
|  | } else if (auto recordSize = getRecordSize(segname, name)) { | 
|  | splitRecords(*recordSize); | 
|  | } else if (name == section_names::ehFrame && | 
|  | segname == segment_names::text) { | 
|  | splitEhFrames(data, *sections.back()); | 
|  | } else if (segname == segment_names::llvm) { | 
|  | if (config->callGraphProfileSort && name == section_names::cgProfile) | 
|  | checkError(parseCallGraph(data, callGraph)); | 
|  | // ld64 does not appear to emit contents from sections within the __LLVM | 
|  | // segment. Symbols within those sections point to bitcode metadata | 
|  | // instead of actual symbols. Global symbols within those sections could | 
|  | // have the same name without causing duplicate symbol errors. To avoid | 
|  | // spurious duplicate symbol errors, we do not parse these sections. | 
|  | // TODO: Evaluate whether the bitcode metadata is needed. | 
|  | } else if (name == section_names::objCImageInfo && | 
|  | segname == segment_names::data) { | 
|  | objCImageInfo = data; | 
|  | } else { | 
|  | if (name == section_names::addrSig) | 
|  | addrSigSection = sections.back(); | 
|  |  | 
|  | auto *isec = make<ConcatInputSection>(section, data, align); | 
|  | if (isDebugSection(isec->getFlags()) && | 
|  | isec->getSegName() == segment_names::dwarf) { | 
|  | // Instead of emitting DWARF sections, we emit STABS symbols to the | 
|  | // object files that contain them. We filter them out early to avoid | 
|  | // parsing their relocations unnecessarily. | 
|  | debugSections.push_back(isec); | 
|  | } else { | 
|  | section.subsections.push_back({0, isec}); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { | 
|  | EhReader reader(this, data, /*dataOff=*/0); | 
|  | size_t off = 0; | 
|  | while (off < reader.size()) { | 
|  | uint64_t frameOff = off; | 
|  | uint64_t length = reader.readLength(&off); | 
|  | if (length == 0) | 
|  | break; | 
|  | uint64_t fullLength = length + (off - frameOff); | 
|  | off += length; | 
|  | // We hard-code an alignment of 1 here because we don't actually want our | 
|  | // EH frames to be aligned to the section alignment. EH frame decoders don't | 
|  | // expect this alignment. Moreover, each EH frame must start where the | 
|  | // previous one ends, and where it ends is indicated by the length field. | 
|  | // Unless we update the length field (troublesome), we should keep the | 
|  | // alignment to 1. | 
|  | // Note that we still want to preserve the alignment of the overall section, | 
|  | // just not of the individual EH frames. | 
|  | ehFrameSection.subsections.push_back( | 
|  | {frameOff, make<ConcatInputSection>(ehFrameSection, | 
|  | data.slice(frameOff, fullLength), | 
|  | /*align=*/1)}); | 
|  | } | 
|  | ehFrameSection.doneSplitting = true; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static Section *findContainingSection(const std::vector<Section *> §ions, | 
|  | T *offset) { | 
|  | static_assert(std::is_same<uint64_t, T>::value || | 
|  | std::is_same<uint32_t, T>::value, | 
|  | "unexpected type for offset"); | 
|  | auto it = std::prev(llvm::upper_bound( | 
|  | sections, *offset, | 
|  | [](uint64_t value, const Section *sec) { return value < sec->addr; })); | 
|  | *offset -= (*it)->addr; | 
|  | return *it; | 
|  | } | 
|  |  | 
|  | // Find the subsection corresponding to the greatest section offset that is <= | 
|  | // that of the given offset. | 
|  | // | 
|  | // offset: an offset relative to the start of the original InputSection (before | 
|  | // any subsection splitting has occurred). It will be updated to represent the | 
|  | // same location as an offset relative to the start of the containing | 
|  | // subsection. | 
|  | template <class T> | 
|  | static InputSection *findContainingSubsection(const Section §ion, | 
|  | T *offset) { | 
|  | static_assert(std::is_same<uint64_t, T>::value || | 
|  | std::is_same<uint32_t, T>::value, | 
|  | "unexpected type for offset"); | 
|  | auto it = std::prev(llvm::upper_bound( | 
|  | section.subsections, *offset, | 
|  | [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); | 
|  | *offset -= it->offset; | 
|  | return it->isec; | 
|  | } | 
|  |  | 
|  | // Find a symbol at offset `off` within `isec`. | 
|  | static Defined *findSymbolAtOffset(const ConcatInputSection *isec, | 
|  | uint64_t off) { | 
|  | auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { | 
|  | return d->value < off; | 
|  | }); | 
|  | // The offset should point at the exact address of a symbol (with no addend.) | 
|  | if (it == isec->symbols.end() || (*it)->value != off) { | 
|  | assert(isec->wasCoalesced); | 
|  | return nullptr; | 
|  | } | 
|  | return *it; | 
|  | } | 
|  |  | 
|  | template <class SectionHeader> | 
|  | static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, | 
|  | relocation_info rel) { | 
|  | const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); | 
|  | bool valid = true; | 
|  | auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { | 
|  | valid = false; | 
|  | return (relocAttrs.name + " relocation " + diagnostic + " at offset " + | 
|  | std::to_string(rel.r_address) + " of " + sec.segname + "," + | 
|  | sec.sectname + " in " + toString(file)) | 
|  | .str(); | 
|  | }; | 
|  |  | 
|  | if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) | 
|  | error(message("must be extern")); | 
|  | if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) | 
|  | error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + | 
|  | "be PC-relative")); | 
|  | if (isThreadLocalVariables(sec.flags) && | 
|  | !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) | 
|  | error(message("not allowed in thread-local section, must be UNSIGNED")); | 
|  | if (rel.r_length < 2 || rel.r_length > 3 || | 
|  | !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { | 
|  | static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; | 
|  | error(message("has width " + std::to_string(1 << rel.r_length) + | 
|  | " bytes, but must be " + | 
|  | widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + | 
|  | " bytes")); | 
|  | } | 
|  | return valid; | 
|  | } | 
|  |  | 
|  | template <class SectionHeader> | 
|  | void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, | 
|  | const SectionHeader &sec, Section §ion) { | 
|  | auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | ArrayRef<relocation_info> relInfos( | 
|  | reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); | 
|  |  | 
|  | Subsections &subsections = section.subsections; | 
|  | auto subsecIt = subsections.rbegin(); | 
|  | for (size_t i = 0; i < relInfos.size(); i++) { | 
|  | // Paired relocations serve as Mach-O's method for attaching a | 
|  | // supplemental datum to a primary relocation record. ELF does not | 
|  | // need them because the *_RELOC_RELA records contain the extra | 
|  | // addend field, vs. *_RELOC_REL which omit the addend. | 
|  | // | 
|  | // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, | 
|  | // and the paired *_RELOC_UNSIGNED record holds the minuend. The | 
|  | // datum for each is a symbolic address. The result is the offset | 
|  | // between two addresses. | 
|  | // | 
|  | // The ARM64_RELOC_ADDEND record holds the addend, and the paired | 
|  | // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the | 
|  | // base symbolic address. | 
|  | // | 
|  | // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into | 
|  | // the instruction stream. On X86, a relocatable address field always | 
|  | // occupies an entire contiguous sequence of byte(s), so there is no need to | 
|  | // merge opcode bits with address bits. Therefore, it's easy and convenient | 
|  | // to store addends in the instruction-stream bytes that would otherwise | 
|  | // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with | 
|  | // address bits so that bitwise arithmetic is necessary to extract and | 
|  | // insert them. Storing addends in the instruction stream is possible, but | 
|  | // inconvenient and more costly at link time. | 
|  |  | 
|  | relocation_info relInfo = relInfos[i]; | 
|  | bool isSubtrahend = | 
|  | target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); | 
|  | int64_t pairedAddend = 0; | 
|  | if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { | 
|  | pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); | 
|  | relInfo = relInfos[++i]; | 
|  | } | 
|  | assert(i < relInfos.size()); | 
|  | if (!validateRelocationInfo(this, sec, relInfo)) | 
|  | continue; | 
|  | if (relInfo.r_address & R_SCATTERED) | 
|  | fatal("TODO: Scattered relocations not supported"); | 
|  |  | 
|  | int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); | 
|  | assert(!(embeddedAddend && pairedAddend)); | 
|  | int64_t totalAddend = pairedAddend + embeddedAddend; | 
|  | Reloc r; | 
|  | r.type = relInfo.r_type; | 
|  | r.pcrel = relInfo.r_pcrel; | 
|  | r.length = relInfo.r_length; | 
|  | r.offset = relInfo.r_address; | 
|  | if (relInfo.r_extern) { | 
|  | r.referent = symbols[relInfo.r_symbolnum]; | 
|  | r.addend = isSubtrahend ? 0 : totalAddend; | 
|  | } else { | 
|  | assert(!isSubtrahend); | 
|  | const SectionHeader &referentSecHead = | 
|  | sectionHeaders[relInfo.r_symbolnum - 1]; | 
|  | uint64_t referentOffset; | 
|  | if (relInfo.r_pcrel) { | 
|  | // The implicit addend for pcrel section relocations is the pcrel offset | 
|  | // in terms of the addresses in the input file. Here we adjust it so | 
|  | // that it describes the offset from the start of the referent section. | 
|  | // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't | 
|  | // have pcrel section relocations. We may want to factor this out into | 
|  | // the arch-specific .cpp file. | 
|  | assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); | 
|  | referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - | 
|  | referentSecHead.addr; | 
|  | } else { | 
|  | // The addend for a non-pcrel relocation is its absolute address. | 
|  | referentOffset = totalAddend - referentSecHead.addr; | 
|  | } | 
|  | r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], | 
|  | &referentOffset); | 
|  | r.addend = referentOffset; | 
|  | } | 
|  |  | 
|  | // Find the subsection that this relocation belongs to. | 
|  | // Though not required by the Mach-O format, clang and gcc seem to emit | 
|  | // relocations in order, so let's take advantage of it. However, ld64 emits | 
|  | // unsorted relocations (in `-r` mode), so we have a fallback for that | 
|  | // uncommon case. | 
|  | InputSection *subsec; | 
|  | while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) | 
|  | ++subsecIt; | 
|  | if (subsecIt == subsections.rend() || | 
|  | subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { | 
|  | subsec = findContainingSubsection(section, &r.offset); | 
|  | // Now that we know the relocs are unsorted, avoid trying the 'fast path' | 
|  | // for the other relocations. | 
|  | subsecIt = subsections.rend(); | 
|  | } else { | 
|  | subsec = subsecIt->isec; | 
|  | r.offset -= subsecIt->offset; | 
|  | } | 
|  | subsec->relocs.push_back(r); | 
|  |  | 
|  | if (isSubtrahend) { | 
|  | relocation_info minuendInfo = relInfos[++i]; | 
|  | // SUBTRACTOR relocations should always be followed by an UNSIGNED one | 
|  | // attached to the same address. | 
|  | assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && | 
|  | relInfo.r_address == minuendInfo.r_address); | 
|  | Reloc p; | 
|  | p.type = minuendInfo.r_type; | 
|  | if (minuendInfo.r_extern) { | 
|  | p.referent = symbols[minuendInfo.r_symbolnum]; | 
|  | p.addend = totalAddend; | 
|  | } else { | 
|  | uint64_t referentOffset = | 
|  | totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; | 
|  | p.referent = findContainingSubsection( | 
|  | *sections[minuendInfo.r_symbolnum - 1], &referentOffset); | 
|  | p.addend = referentOffset; | 
|  | } | 
|  | subsec->relocs.push_back(p); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class NList> | 
|  | static macho::Symbol *createDefined(const NList &sym, StringRef name, | 
|  | InputSection *isec, uint64_t value, | 
|  | uint64_t size, bool forceHidden) { | 
|  | // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): | 
|  | // N_EXT: Global symbols. These go in the symbol table during the link, | 
|  | //        and also in the export table of the output so that the dynamic | 
|  | //        linker sees them. | 
|  | // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the | 
|  | //                 symbol table during the link so that duplicates are | 
|  | //                 either reported (for non-weak symbols) or merged | 
|  | //                 (for weak symbols), but they do not go in the export | 
|  | //                 table of the output. | 
|  | // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits | 
|  | //         object files) may produce them. LLD does not yet support -r. | 
|  | //         These are translation-unit scoped, identical to the `0` case. | 
|  | // 0: Translation-unit scoped. These are not in the symbol table during | 
|  | //    link, and not in the export table of the output either. | 
|  | bool isWeakDefCanBeHidden = | 
|  | (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); | 
|  |  | 
|  | assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); | 
|  |  | 
|  | if (sym.n_type & N_EXT) { | 
|  | // -load_hidden makes us treat global symbols as linkage unit scoped. | 
|  | // Duplicates are reported but the symbol does not go in the export trie. | 
|  | bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; | 
|  |  | 
|  | // lld's behavior for merging symbols is slightly different from ld64: | 
|  | // ld64 picks the winning symbol based on several criteria (see | 
|  | // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld | 
|  | // just merges metadata and keeps the contents of the first symbol | 
|  | // with that name (see SymbolTable::addDefined). For: | 
|  | // * inline function F in a TU built with -fvisibility-inlines-hidden | 
|  | // * and inline function F in another TU built without that flag | 
|  | // ld64 will pick the one from the file built without | 
|  | // -fvisibility-inlines-hidden. | 
|  | // lld will instead pick the one listed first on the link command line and | 
|  | // give it visibility as if the function was built without | 
|  | // -fvisibility-inlines-hidden. | 
|  | // If both functions have the same contents, this will have the same | 
|  | // behavior. If not, it won't, but the input had an ODR violation in | 
|  | // that case. | 
|  | // | 
|  | // Similarly, merging a symbol | 
|  | // that's isPrivateExtern and not isWeakDefCanBeHidden with one | 
|  | // that's not isPrivateExtern but isWeakDefCanBeHidden technically | 
|  | // should produce one | 
|  | // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters | 
|  | // with ld64's semantics, because it means the non-private-extern | 
|  | // definition will continue to take priority if more private extern | 
|  | // definitions are encountered. With lld's semantics there's no observable | 
|  | // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one | 
|  | // that's privateExtern -- neither makes it into the dynamic symbol table, | 
|  | // unless the autohide symbol is explicitly exported. | 
|  | // But if a symbol is both privateExtern and autohide then it can't | 
|  | // be exported. | 
|  | // So we nullify the autohide flag when privateExtern is present | 
|  | // and promote the symbol to privateExtern when it is not already. | 
|  | if (isWeakDefCanBeHidden && isPrivateExtern) | 
|  | isWeakDefCanBeHidden = false; | 
|  | else if (isWeakDefCanBeHidden) | 
|  | isPrivateExtern = true; | 
|  | return symtab->addDefined( | 
|  | name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, | 
|  | isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY, | 
|  | sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden); | 
|  | } | 
|  | bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec); | 
|  | return make<Defined>( | 
|  | name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, | 
|  | /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, | 
|  | sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); | 
|  | } | 
|  |  | 
|  | // Absolute symbols are defined symbols that do not have an associated | 
|  | // InputSection. They cannot be weak. | 
|  | template <class NList> | 
|  | static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, | 
|  | StringRef name, bool forceHidden) { | 
|  | assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); | 
|  |  | 
|  | if (sym.n_type & N_EXT) { | 
|  | bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; | 
|  | return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, | 
|  | /*isWeakDef=*/false, isPrivateExtern, | 
|  | /*isReferencedDynamically=*/false, | 
|  | sym.n_desc & N_NO_DEAD_STRIP, | 
|  | /*isWeakDefCanBeHidden=*/false); | 
|  | } | 
|  | return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, | 
|  | /*isWeakDef=*/false, | 
|  | /*isExternal=*/false, /*isPrivateExtern=*/false, | 
|  | /*includeInSymtab=*/true, | 
|  | /*isReferencedDynamically=*/false, | 
|  | sym.n_desc & N_NO_DEAD_STRIP); | 
|  | } | 
|  |  | 
|  | template <class NList> | 
|  | macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, | 
|  | const char *strtab) { | 
|  | StringRef name = StringRef(strtab + sym.n_strx); | 
|  | uint8_t type = sym.n_type & N_TYPE; | 
|  | bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; | 
|  | switch (type) { | 
|  | case N_UNDF: | 
|  | return sym.n_value == 0 | 
|  | ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) | 
|  | : symtab->addCommon(name, this, sym.n_value, | 
|  | 1 << GET_COMM_ALIGN(sym.n_desc), | 
|  | isPrivateExtern); | 
|  | case N_ABS: | 
|  | return createAbsolute(sym, this, name, forceHidden); | 
|  | case N_INDR: { | 
|  | // Not much point in making local aliases -- relocs in the current file can | 
|  | // just refer to the actual symbol itself. ld64 ignores these symbols too. | 
|  | if (!(sym.n_type & N_EXT)) | 
|  | return nullptr; | 
|  | StringRef aliasedName = StringRef(strtab + sym.n_value); | 
|  | // isPrivateExtern is the only symbol flag that has an impact on the final | 
|  | // aliased symbol. | 
|  | auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern); | 
|  | aliases.push_back(alias); | 
|  | return alias; | 
|  | } | 
|  | case N_PBUD: | 
|  | error("TODO: support symbols of type N_PBUD"); | 
|  | return nullptr; | 
|  | case N_SECT: | 
|  | llvm_unreachable( | 
|  | "N_SECT symbols should not be passed to parseNonSectionSymbol"); | 
|  | default: | 
|  | llvm_unreachable("invalid symbol type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class NList> static bool isUndef(const NList &sym) { | 
|  | return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; | 
|  | } | 
|  |  | 
|  | template <class LP> | 
|  | void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, | 
|  | ArrayRef<typename LP::nlist> nList, | 
|  | const char *strtab, bool subsectionsViaSymbols) { | 
|  | using NList = typename LP::nlist; | 
|  |  | 
|  | // Groups indices of the symbols by the sections that contain them. | 
|  | std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); | 
|  | symbols.resize(nList.size()); | 
|  | SmallVector<unsigned, 32> undefineds; | 
|  | for (uint32_t i = 0; i < nList.size(); ++i) { | 
|  | const NList &sym = nList[i]; | 
|  |  | 
|  | // Ignore debug symbols for now. | 
|  | // FIXME: may need special handling. | 
|  | if (sym.n_type & N_STAB) | 
|  | continue; | 
|  |  | 
|  | if ((sym.n_type & N_TYPE) == N_SECT) { | 
|  | Subsections &subsections = sections[sym.n_sect - 1]->subsections; | 
|  | // parseSections() may have chosen not to parse this section. | 
|  | if (subsections.empty()) | 
|  | continue; | 
|  | symbolsBySection[sym.n_sect - 1].push_back(i); | 
|  | } else if (isUndef(sym)) { | 
|  | undefineds.push_back(i); | 
|  | } else { | 
|  | symbols[i] = parseNonSectionSymbol(sym, strtab); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < sections.size(); ++i) { | 
|  | Subsections &subsections = sections[i]->subsections; | 
|  | if (subsections.empty()) | 
|  | continue; | 
|  | std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; | 
|  | uint64_t sectionAddr = sectionHeaders[i].addr; | 
|  | uint32_t sectionAlign = 1u << sectionHeaders[i].align; | 
|  |  | 
|  | // Some sections have already been split into subsections during | 
|  | // parseSections(), so we simply need to match Symbols to the corresponding | 
|  | // subsection here. | 
|  | if (sections[i]->doneSplitting) { | 
|  | for (size_t j = 0; j < symbolIndices.size(); ++j) { | 
|  | const uint32_t symIndex = symbolIndices[j]; | 
|  | const NList &sym = nList[symIndex]; | 
|  | StringRef name = strtab + sym.n_strx; | 
|  | uint64_t symbolOffset = sym.n_value - sectionAddr; | 
|  | InputSection *isec = | 
|  | findContainingSubsection(*sections[i], &symbolOffset); | 
|  | if (symbolOffset != 0) { | 
|  | error(toString(*sections[i]) + ":  symbol " + name + | 
|  | " at misaligned offset"); | 
|  | continue; | 
|  | } | 
|  | symbols[symIndex] = | 
|  | createDefined(sym, name, isec, 0, isec->getSize(), forceHidden); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | sections[i]->doneSplitting = true; | 
|  |  | 
|  | auto getSymName = [strtab](const NList& sym) -> StringRef { | 
|  | return StringRef(strtab + sym.n_strx); | 
|  | }; | 
|  |  | 
|  | // Calculate symbol sizes and create subsections by splitting the sections | 
|  | // along symbol boundaries. | 
|  | // We populate subsections by repeatedly splitting the last (highest | 
|  | // address) subsection. | 
|  | llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { | 
|  | // Put extern weak symbols after other symbols at the same address so | 
|  | // that weak symbol coalescing works correctly. See | 
|  | // SymbolTable::addDefined() for details. | 
|  | if (nList[lhs].n_value == nList[rhs].n_value && | 
|  | nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT) | 
|  | return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF); | 
|  | return nList[lhs].n_value < nList[rhs].n_value; | 
|  | }); | 
|  | for (size_t j = 0; j < symbolIndices.size(); ++j) { | 
|  | const uint32_t symIndex = symbolIndices[j]; | 
|  | const NList &sym = nList[symIndex]; | 
|  | StringRef name = getSymName(sym); | 
|  | Subsection &subsec = subsections.back(); | 
|  | InputSection *isec = subsec.isec; | 
|  |  | 
|  | uint64_t subsecAddr = sectionAddr + subsec.offset; | 
|  | size_t symbolOffset = sym.n_value - subsecAddr; | 
|  | uint64_t symbolSize = | 
|  | j + 1 < symbolIndices.size() | 
|  | ? nList[symbolIndices[j + 1]].n_value - sym.n_value | 
|  | : isec->data.size() - symbolOffset; | 
|  | // There are 4 cases where we do not need to create a new subsection: | 
|  | //   1. If the input file does not use subsections-via-symbols. | 
|  | //   2. Multiple symbols at the same address only induce one subsection. | 
|  | //      (The symbolOffset == 0 check covers both this case as well as | 
|  | //      the first loop iteration.) | 
|  | //   3. Alternative entry points do not induce new subsections. | 
|  | //   4. If we have a literal section (e.g. __cstring and __literal4). | 
|  | if (!subsectionsViaSymbols || symbolOffset == 0 || | 
|  | sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { | 
|  | isec->hasAltEntry = symbolOffset != 0; | 
|  | symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, | 
|  | symbolSize, forceHidden); | 
|  | continue; | 
|  | } | 
|  | auto *concatIsec = cast<ConcatInputSection>(isec); | 
|  |  | 
|  | auto *nextIsec = make<ConcatInputSection>(*concatIsec); | 
|  | nextIsec->wasCoalesced = false; | 
|  | if (isZeroFill(isec->getFlags())) { | 
|  | // Zero-fill sections have NULL data.data() non-zero data.size() | 
|  | nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; | 
|  | isec->data = {nullptr, symbolOffset}; | 
|  | } else { | 
|  | nextIsec->data = isec->data.slice(symbolOffset); | 
|  | isec->data = isec->data.slice(0, symbolOffset); | 
|  | } | 
|  |  | 
|  | // By construction, the symbol will be at offset zero in the new | 
|  | // subsection. | 
|  | symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, | 
|  | symbolSize, forceHidden); | 
|  | // TODO: ld64 appears to preserve the original alignment as well as each | 
|  | // subsection's offset from the last aligned address. We should consider | 
|  | // emulating that behavior. | 
|  | nextIsec->align = MinAlign(sectionAlign, sym.n_value); | 
|  | subsections.push_back({sym.n_value - sectionAddr, nextIsec}); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Undefined symbols can trigger recursive fetch from Archives due to | 
|  | // LazySymbols. Process defined symbols first so that the relative order | 
|  | // between a defined symbol and an undefined symbol does not change the | 
|  | // symbol resolution behavior. In addition, a set of interconnected symbols | 
|  | // will all be resolved to the same file, instead of being resolved to | 
|  | // different files. | 
|  | for (unsigned i : undefineds) | 
|  | symbols[i] = parseNonSectionSymbol(nList[i], strtab); | 
|  | } | 
|  |  | 
|  | OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, | 
|  | StringRef sectName) | 
|  | : InputFile(OpaqueKind, mb) { | 
|  | const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; | 
|  | sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), | 
|  | sectName.take_front(16), | 
|  | /*flags=*/0, /*addr=*/0)); | 
|  | Section §ion = *sections.back(); | 
|  | ConcatInputSection *isec = make<ConcatInputSection>(section, data); | 
|  | isec->live = true; | 
|  | section.subsections.push_back({0, isec}); | 
|  | } | 
|  |  | 
|  | template <class LP> | 
|  | void ObjFile::parseLinkerOptions(SmallVectorImpl<StringRef> &LCLinkerOptions) { | 
|  | using Header = typename LP::mach_header; | 
|  | auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); | 
|  |  | 
|  | for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { | 
|  | StringRef data{reinterpret_cast<const char *>(cmd + 1), | 
|  | cmd->cmdsize - sizeof(linker_option_command)}; | 
|  | parseLCLinkerOption(LCLinkerOptions, this, cmd->count, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<StringRef> macho::unprocessedLCLinkerOptions; | 
|  | ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, | 
|  | bool lazy, bool forceHidden, bool compatArch, | 
|  | bool builtFromBitcode) | 
|  | : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden), | 
|  | builtFromBitcode(builtFromBitcode) { | 
|  | this->archiveName = std::string(archiveName); | 
|  | this->compatArch = compatArch; | 
|  | if (lazy) { | 
|  | if (target->wordSize == 8) | 
|  | parseLazy<LP64>(); | 
|  | else | 
|  | parseLazy<ILP32>(); | 
|  | } else { | 
|  | if (target->wordSize == 8) | 
|  | parse<LP64>(); | 
|  | else | 
|  | parse<ILP32>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class LP> void ObjFile::parse() { | 
|  | using Header = typename LP::mach_header; | 
|  | using SegmentCommand = typename LP::segment_command; | 
|  | using SectionHeader = typename LP::section; | 
|  | using NList = typename LP::nlist; | 
|  |  | 
|  | auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); | 
|  |  | 
|  | // If we've already checked the arch, then don't need to check again. | 
|  | if (!compatArch) | 
|  | return; | 
|  | if (!(compatArch = compatWithTargetArch(this, hdr))) | 
|  | return; | 
|  |  | 
|  | // We will resolve LC linker options once all native objects are loaded after | 
|  | // LTO is finished. | 
|  | SmallVector<StringRef, 4> LCLinkerOptions; | 
|  | parseLinkerOptions<LP>(LCLinkerOptions); | 
|  | unprocessedLCLinkerOptions.append(LCLinkerOptions); | 
|  |  | 
|  | ArrayRef<SectionHeader> sectionHeaders; | 
|  | if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { | 
|  | auto *c = reinterpret_cast<const SegmentCommand *>(cmd); | 
|  | sectionHeaders = ArrayRef<SectionHeader>{ | 
|  | reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; | 
|  | parseSections(sectionHeaders); | 
|  | } | 
|  |  | 
|  | // TODO: Error on missing LC_SYMTAB? | 
|  | if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { | 
|  | auto *c = reinterpret_cast<const symtab_command *>(cmd); | 
|  | ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), | 
|  | c->nsyms); | 
|  | const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; | 
|  | bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; | 
|  | parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); | 
|  | } | 
|  |  | 
|  | // The relocations may refer to the symbols, so we parse them after we have | 
|  | // parsed all the symbols. | 
|  | for (size_t i = 0, n = sections.size(); i < n; ++i) | 
|  | if (!sections[i]->subsections.empty()) | 
|  | parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); | 
|  |  | 
|  | parseDebugInfo(); | 
|  |  | 
|  | Section *ehFrameSection = nullptr; | 
|  | Section *compactUnwindSection = nullptr; | 
|  | for (Section *sec : sections) { | 
|  | Section **s = StringSwitch<Section **>(sec->name) | 
|  | .Case(section_names::compactUnwind, &compactUnwindSection) | 
|  | .Case(section_names::ehFrame, &ehFrameSection) | 
|  | .Default(nullptr); | 
|  | if (s) | 
|  | *s = sec; | 
|  | } | 
|  | if (compactUnwindSection) | 
|  | registerCompactUnwind(*compactUnwindSection); | 
|  | if (ehFrameSection) | 
|  | registerEhFrames(*ehFrameSection); | 
|  | } | 
|  |  | 
|  | template <class LP> void ObjFile::parseLazy() { | 
|  | using Header = typename LP::mach_header; | 
|  | using NList = typename LP::nlist; | 
|  |  | 
|  | auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); | 
|  |  | 
|  | if (!compatArch) | 
|  | return; | 
|  | if (!(compatArch = compatWithTargetArch(this, hdr))) | 
|  | return; | 
|  |  | 
|  | const load_command *cmd = findCommand(hdr, LC_SYMTAB); | 
|  | if (!cmd) | 
|  | return; | 
|  | auto *c = reinterpret_cast<const symtab_command *>(cmd); | 
|  | ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), | 
|  | c->nsyms); | 
|  | const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; | 
|  | symbols.resize(nList.size()); | 
|  | for (const auto &[i, sym] : llvm::enumerate(nList)) { | 
|  | if ((sym.n_type & N_EXT) && !isUndef(sym)) { | 
|  | // TODO: Bound checking | 
|  | StringRef name = strtab + sym.n_strx; | 
|  | symbols[i] = symtab->addLazyObject(name, *this); | 
|  | if (!lazy) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ObjFile::parseDebugInfo() { | 
|  | std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); | 
|  | if (!dObj) | 
|  | return; | 
|  |  | 
|  | // We do not re-use the context from getDwarf() here as that function | 
|  | // constructs an expensive DWARFCache object. | 
|  | auto *ctx = make<DWARFContext>( | 
|  | std::move(dObj), "", | 
|  | [&](Error err) { | 
|  | warn(toString(this) + ": " + toString(std::move(err))); | 
|  | }, | 
|  | [&](Error warning) { | 
|  | warn(toString(this) + ": " + toString(std::move(warning))); | 
|  | }); | 
|  |  | 
|  | // TODO: Since object files can contain a lot of DWARF info, we should verify | 
|  | // that we are parsing just the info we need | 
|  | const DWARFContext::compile_unit_range &units = ctx->compile_units(); | 
|  | // FIXME: There can be more than one compile unit per object file. See | 
|  | // PR48637. | 
|  | auto it = units.begin(); | 
|  | compileUnit = it != units.end() ? it->get() : nullptr; | 
|  | } | 
|  |  | 
|  | ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { | 
|  | const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); | 
|  | if (!cmd) | 
|  | return {}; | 
|  | const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); | 
|  | return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), | 
|  | c->datasize / sizeof(data_in_code_entry)}; | 
|  | } | 
|  |  | 
|  | ArrayRef<uint8_t> ObjFile::getOptimizationHints() const { | 
|  | const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | if (auto *cmd = | 
|  | findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT)) | 
|  | return {buf + cmd->dataoff, cmd->datasize}; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // Create pointers from symbols to their associated compact unwind entries. | 
|  | void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { | 
|  | for (const Subsection &subsection : compactUnwindSection.subsections) { | 
|  | ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); | 
|  | // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed | 
|  | // their addends in its data. Thus if ICF operated naively and compared the | 
|  | // entire contents of each CUE, entries with identical unwind info but e.g. | 
|  | // belonging to different functions would never be considered equivalent. To | 
|  | // work around this problem, we remove some parts of the data containing the | 
|  | // embedded addends. In particular, we remove the function address and LSDA | 
|  | // pointers.  Since these locations are at the start and end of the entry, | 
|  | // we can do this using a simple, efficient slice rather than performing a | 
|  | // copy.  We are not losing any information here because the embedded | 
|  | // addends have already been parsed in the corresponding Reloc structs. | 
|  | // | 
|  | // Removing these pointers would not be safe if they were pointers to | 
|  | // absolute symbols. In that case, there would be no corresponding | 
|  | // relocation. However, (AFAIK) MC cannot emit references to absolute | 
|  | // symbols for either the function address or the LSDA. However, it *can* do | 
|  | // so for the personality pointer, so we are not slicing that field away. | 
|  | // | 
|  | // Note that we do not adjust the offsets of the corresponding relocations; | 
|  | // instead, we rely on `relocateCompactUnwind()` to correctly handle these | 
|  | // truncated input sections. | 
|  | isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); | 
|  | uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); | 
|  | // llvm-mc omits CU entries for functions that need DWARF encoding, but | 
|  | // `ld -r` doesn't. We can ignore them because we will re-synthesize these | 
|  | // CU entries from the DWARF info during the output phase. | 
|  | if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) == | 
|  | target->modeDwarfEncoding) | 
|  | continue; | 
|  |  | 
|  | ConcatInputSection *referentIsec; | 
|  | for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { | 
|  | Reloc &r = *it; | 
|  | // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. | 
|  | if (r.offset != 0) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  | uint64_t add = r.addend; | 
|  | if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { | 
|  | // Check whether the symbol defined in this file is the prevailing one. | 
|  | // Skip if it is e.g. a weak def that didn't prevail. | 
|  | if (sym->getFile() != this) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  | add += sym->value; | 
|  | referentIsec = cast<ConcatInputSection>(sym->isec()); | 
|  | } else { | 
|  | referentIsec = | 
|  | cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); | 
|  | } | 
|  | // Unwind info lives in __DATA, and finalization of __TEXT will occur | 
|  | // before finalization of __DATA. Moreover, the finalization of unwind | 
|  | // info depends on the exact addresses that it references. So it is safe | 
|  | // for compact unwind to reference addresses in __TEXT, but not addresses | 
|  | // in any other segment. | 
|  | if (referentIsec->getSegName() != segment_names::text) | 
|  | error(isec->getLocation(r.offset) + " references section " + | 
|  | referentIsec->getName() + " which is not in segment __TEXT"); | 
|  | // The functionAddress relocations are typically section relocations. | 
|  | // However, unwind info operates on a per-symbol basis, so we search for | 
|  | // the function symbol here. | 
|  | Defined *d = findSymbolAtOffset(referentIsec, add); | 
|  | if (!d) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  | d->originalUnwindEntry = isec; | 
|  | // Now that the symbol points to the unwind entry, we can remove the reloc | 
|  | // that points from the unwind entry back to the symbol. | 
|  | // | 
|  | // First, the symbol keeps the unwind entry alive (and not vice versa), so | 
|  | // this keeps dead-stripping simple. | 
|  | // | 
|  | // Moreover, it reduces the work that ICF needs to do to figure out if | 
|  | // functions with unwind info are foldable. | 
|  | // | 
|  | // However, this does make it possible for ICF to fold CUEs that point to | 
|  | // distinct functions (if the CUEs are otherwise identical). | 
|  | // UnwindInfoSection takes care of this by re-duplicating the CUEs so that | 
|  | // each one can hold a distinct functionAddress value. | 
|  | // | 
|  | // Given that clang emits relocations in reverse order of address, this | 
|  | // relocation should be at the end of the vector for most of our input | 
|  | // object files, so this erase() is typically an O(1) operation. | 
|  | it = isec->relocs.erase(it); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct CIE { | 
|  | macho::Symbol *personalitySymbol = nullptr; | 
|  | bool fdesHaveAug = false; | 
|  | uint8_t lsdaPtrSize = 0; // 0 => no LSDA | 
|  | uint8_t funcPtrSize = 0; | 
|  | }; | 
|  |  | 
|  | static uint8_t pointerEncodingToSize(uint8_t enc) { | 
|  | switch (enc & 0xf) { | 
|  | case dwarf::DW_EH_PE_absptr: | 
|  | return target->wordSize; | 
|  | case dwarf::DW_EH_PE_sdata4: | 
|  | return 4; | 
|  | case dwarf::DW_EH_PE_sdata8: | 
|  | // ld64 doesn't actually support sdata8, but this seems simple enough... | 
|  | return 8; | 
|  | default: | 
|  | return 0; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static CIE parseCIE(const InputSection *isec, const EhReader &reader, | 
|  | size_t off) { | 
|  | // Handling the full generality of possible DWARF encodings would be a major | 
|  | // pain. We instead take advantage of our knowledge of how llvm-mc encodes | 
|  | // DWARF and handle just that. | 
|  | constexpr uint8_t expectedPersonalityEnc = | 
|  | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; | 
|  |  | 
|  | CIE cie; | 
|  | uint8_t version = reader.readByte(&off); | 
|  | if (version != 1 && version != 3) | 
|  | fatal("Expected CIE version of 1 or 3, got " + Twine(version)); | 
|  | StringRef aug = reader.readString(&off); | 
|  | reader.skipLeb128(&off); // skip code alignment | 
|  | reader.skipLeb128(&off); // skip data alignment | 
|  | reader.skipLeb128(&off); // skip return address register | 
|  | reader.skipLeb128(&off); // skip aug data length | 
|  | uint64_t personalityAddrOff = 0; | 
|  | for (char c : aug) { | 
|  | switch (c) { | 
|  | case 'z': | 
|  | cie.fdesHaveAug = true; | 
|  | break; | 
|  | case 'P': { | 
|  | uint8_t personalityEnc = reader.readByte(&off); | 
|  | if (personalityEnc != expectedPersonalityEnc) | 
|  | reader.failOn(off, "unexpected personality encoding 0x" + | 
|  | Twine::utohexstr(personalityEnc)); | 
|  | personalityAddrOff = off; | 
|  | off += 4; | 
|  | break; | 
|  | } | 
|  | case 'L': { | 
|  | uint8_t lsdaEnc = reader.readByte(&off); | 
|  | cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc); | 
|  | if (cie.lsdaPtrSize == 0) | 
|  | reader.failOn(off, "unexpected LSDA encoding 0x" + | 
|  | Twine::utohexstr(lsdaEnc)); | 
|  | break; | 
|  | } | 
|  | case 'R': { | 
|  | uint8_t pointerEnc = reader.readByte(&off); | 
|  | cie.funcPtrSize = pointerEncodingToSize(pointerEnc); | 
|  | if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel)) | 
|  | reader.failOn(off, "unexpected pointer encoding 0x" + | 
|  | Twine::utohexstr(pointerEnc)); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (personalityAddrOff != 0) { | 
|  | const auto *personalityReloc = isec->getRelocAt(personalityAddrOff); | 
|  | if (!personalityReloc) | 
|  | reader.failOn(off, "Failed to locate relocation for personality symbol"); | 
|  | cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>(); | 
|  | } | 
|  | return cie; | 
|  | } | 
|  |  | 
|  | // EH frame target addresses may be encoded as pcrel offsets. However, instead | 
|  | // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. | 
|  | // This function recovers the target address from the subtractors, essentially | 
|  | // performing the inverse operation of EhRelocator. | 
|  | // | 
|  | // Concretely, we expect our relocations to write the value of `PC - | 
|  | // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that | 
|  | // points to a symbol plus an addend. | 
|  | // | 
|  | // It is important that the minuend relocation point to a symbol within the | 
|  | // same section as the fixup value, since sections may get moved around. | 
|  | // | 
|  | // For example, for arm64, llvm-mc emits relocations for the target function | 
|  | // address like so: | 
|  | // | 
|  | //   ltmp: | 
|  | //     <CIE start> | 
|  | //     ... | 
|  | //     <CIE end> | 
|  | //     ... multiple FDEs ... | 
|  | //     <FDE start> | 
|  | //     <target function address - (ltmp + pcrel offset)> | 
|  | //     ... | 
|  | // | 
|  | // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` | 
|  | // will move to an earlier address, and `ltmp + pcrel offset` will no longer | 
|  | // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" | 
|  | // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating | 
|  | // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. | 
|  | // | 
|  | // If `Invert` is set, then we instead expect `target_addr - PC` to be written | 
|  | // to `PC`. | 
|  | template <bool Invert = false> | 
|  | Defined * | 
|  | targetSymFromCanonicalSubtractor(const InputSection *isec, | 
|  | std::vector<macho::Reloc>::iterator relocIt) { | 
|  | macho::Reloc &subtrahend = *relocIt; | 
|  | macho::Reloc &minuend = *std::next(relocIt); | 
|  | assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); | 
|  | assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); | 
|  | // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero | 
|  | // addend. | 
|  | auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); | 
|  | Defined *target = | 
|  | cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); | 
|  | if (!pcSym) { | 
|  | auto *targetIsec = | 
|  | cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); | 
|  | target = findSymbolAtOffset(targetIsec, minuend.addend); | 
|  | } | 
|  | if (Invert) | 
|  | std::swap(pcSym, target); | 
|  | if (pcSym->isec() == isec) { | 
|  | if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) | 
|  | fatal("invalid FDE relocation in __eh_frame"); | 
|  | } else { | 
|  | // Ensure the pcReloc points to a symbol within the current EH frame. | 
|  | // HACK: we should really verify that the original relocation's semantics | 
|  | // are preserved. In particular, we should have | 
|  | // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't | 
|  | // have an easy way to access the offsets from this point in the code; some | 
|  | // refactoring is needed for that. | 
|  | macho::Reloc &pcReloc = Invert ? minuend : subtrahend; | 
|  | pcReloc.referent = isec->symbols[0]; | 
|  | assert(isec->symbols[0]->value == 0); | 
|  | minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); | 
|  | } | 
|  | return target; | 
|  | } | 
|  |  | 
|  | Defined *findSymbolAtAddress(const std::vector<Section *> §ions, | 
|  | uint64_t addr) { | 
|  | Section *sec = findContainingSection(sections, &addr); | 
|  | auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); | 
|  | return findSymbolAtOffset(isec, addr); | 
|  | } | 
|  |  | 
|  | // For symbols that don't have compact unwind info, associate them with the more | 
|  | // general-purpose (and verbose) DWARF unwind info found in __eh_frame. | 
|  | // | 
|  | // This requires us to parse the contents of __eh_frame. See EhFrame.h for a | 
|  | // description of its format. | 
|  | // | 
|  | // While parsing, we also look for what MC calls "abs-ified" relocations -- they | 
|  | // are relocations which are implicitly encoded as offsets in the section data. | 
|  | // We convert them into explicit Reloc structs so that the EH frames can be | 
|  | // handled just like a regular ConcatInputSection later in our output phase. | 
|  | // | 
|  | // We also need to handle the case where our input object file has explicit | 
|  | // relocations. This is the case when e.g. it's the output of `ld -r`. We only | 
|  | // look for the "abs-ified" relocation if an explicit relocation is absent. | 
|  | void ObjFile::registerEhFrames(Section &ehFrameSection) { | 
|  | DenseMap<const InputSection *, CIE> cieMap; | 
|  | for (const Subsection &subsec : ehFrameSection.subsections) { | 
|  | auto *isec = cast<ConcatInputSection>(subsec.isec); | 
|  | uint64_t isecOff = subsec.offset; | 
|  |  | 
|  | // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure | 
|  | // that all EH frames have an associated symbol so that we can generate | 
|  | // subtractor relocs that reference them. | 
|  | if (isec->symbols.size() == 0) | 
|  | make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0, | 
|  | isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false, | 
|  | /*isPrivateExtern=*/false, /*includeInSymtab=*/false, | 
|  | /*isReferencedDynamically=*/false, | 
|  | /*noDeadStrip=*/false); | 
|  | else if (isec->symbols[0]->value != 0) | 
|  | fatal("found symbol at unexpected offset in __eh_frame"); | 
|  |  | 
|  | EhReader reader(this, isec->data, subsec.offset); | 
|  | size_t dataOff = 0; // Offset from the start of the EH frame. | 
|  | reader.skipValidLength(&dataOff); // readLength() already validated this. | 
|  | // cieOffOff is the offset from the start of the EH frame to the cieOff | 
|  | // value, which is itself an offset from the current PC to a CIE. | 
|  | const size_t cieOffOff = dataOff; | 
|  |  | 
|  | EhRelocator ehRelocator(isec); | 
|  | auto cieOffRelocIt = llvm::find_if( | 
|  | isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); | 
|  | InputSection *cieIsec = nullptr; | 
|  | if (cieOffRelocIt != isec->relocs.end()) { | 
|  | // We already have an explicit relocation for the CIE offset. | 
|  | cieIsec = | 
|  | targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) | 
|  | ->isec(); | 
|  | dataOff += sizeof(uint32_t); | 
|  | } else { | 
|  | // If we haven't found a relocation, then the CIE offset is most likely | 
|  | // embedded in the section data (AKA an "abs-ified" reloc.). Parse that | 
|  | // and generate a Reloc struct. | 
|  | uint32_t cieMinuend = reader.readU32(&dataOff); | 
|  | if (cieMinuend == 0) { | 
|  | cieIsec = isec; | 
|  | } else { | 
|  | uint32_t cieOff = isecOff + dataOff - cieMinuend; | 
|  | cieIsec = findContainingSubsection(ehFrameSection, &cieOff); | 
|  | if (cieIsec == nullptr) | 
|  | fatal("failed to find CIE"); | 
|  | } | 
|  | if (cieIsec != isec) | 
|  | ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], | 
|  | /*length=*/2); | 
|  | } | 
|  | if (cieIsec == isec) { | 
|  | cieMap[cieIsec] = parseCIE(isec, reader, dataOff); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(cieMap.count(cieIsec)); | 
|  | const CIE &cie = cieMap[cieIsec]; | 
|  | // Offset of the function address within the EH frame. | 
|  | const size_t funcAddrOff = dataOff; | 
|  | uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) + | 
|  | ehFrameSection.addr + isecOff + funcAddrOff; | 
|  | uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize); | 
|  | size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. | 
|  | std::optional<uint64_t> lsdaAddrOpt; | 
|  | if (cie.fdesHaveAug) { | 
|  | reader.skipLeb128(&dataOff); | 
|  | lsdaAddrOff = dataOff; | 
|  | if (cie.lsdaPtrSize != 0) { | 
|  | uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize); | 
|  | if (lsdaOff != 0) // FIXME possible to test this? | 
|  | lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto funcAddrRelocIt = isec->relocs.end(); | 
|  | auto lsdaAddrRelocIt = isec->relocs.end(); | 
|  | for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { | 
|  | if (it->offset == funcAddrOff) | 
|  | funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc | 
|  | else if (lsdaAddrOpt && it->offset == lsdaAddrOff) | 
|  | lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc | 
|  | } | 
|  |  | 
|  | Defined *funcSym; | 
|  | if (funcAddrRelocIt != isec->relocs.end()) { | 
|  | funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); | 
|  | // Canonicalize the symbol. If there are multiple symbols at the same | 
|  | // address, we want both `registerEhFrame` and `registerCompactUnwind` | 
|  | // to register the unwind entry under same symbol. | 
|  | // This is not particularly efficient, but we should run into this case | 
|  | // infrequently (only when handling the output of `ld -r`). | 
|  | if (funcSym->isec()) | 
|  | funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec()), | 
|  | funcSym->value); | 
|  | } else { | 
|  | funcSym = findSymbolAtAddress(sections, funcAddr); | 
|  | ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); | 
|  | } | 
|  | // The symbol has been coalesced, or already has a compact unwind entry. | 
|  | if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry()) { | 
|  | // We must prune unused FDEs for correctness, so we cannot rely on | 
|  | // -dead_strip being enabled. | 
|  | isec->live = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | InputSection *lsdaIsec = nullptr; | 
|  | if (lsdaAddrRelocIt != isec->relocs.end()) { | 
|  | lsdaIsec = | 
|  | targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec(); | 
|  | } else if (lsdaAddrOpt) { | 
|  | uint64_t lsdaAddr = *lsdaAddrOpt; | 
|  | Section *sec = findContainingSection(sections, &lsdaAddr); | 
|  | lsdaIsec = | 
|  | cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); | 
|  | ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); | 
|  | } | 
|  |  | 
|  | fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; | 
|  | funcSym->originalUnwindEntry = isec; | 
|  | ehRelocator.commit(); | 
|  | } | 
|  |  | 
|  | // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs | 
|  | // are normally required to be kept alive if they reference a live symbol. | 
|  | // However, we've explicitly created a dependency from a symbol to its FDE, so | 
|  | // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only | 
|  | // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a | 
|  | // live symbol (e.g. if there were multiple weak copies). Remove this flag to | 
|  | // let dead-stripping proceed correctly. | 
|  | ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT; | 
|  | } | 
|  |  | 
|  | std::string ObjFile::sourceFile() const { | 
|  | const char *unitName = compileUnit->getUnitDIE().getShortName(); | 
|  | // DWARF allows DW_AT_name to be absolute, in which case nothing should be | 
|  | // prepended. As for the styles, debug info can contain paths from any OS, not | 
|  | // necessarily an OS we're currently running on. Moreover different | 
|  | // compilation units can be compiled on different operating systems and linked | 
|  | // together later. | 
|  | if (sys::path::is_absolute(unitName, llvm::sys::path::Style::posix) || | 
|  | sys::path::is_absolute(unitName, llvm::sys::path::Style::windows)) | 
|  | return unitName; | 
|  | SmallString<261> dir(compileUnit->getCompilationDir()); | 
|  | StringRef sep = sys::path::get_separator(); | 
|  | // We don't use `path::append` here because we want an empty `dir` to result | 
|  | // in an absolute path. `append` would give us a relative path for that case. | 
|  | if (!dir.ends_with(sep)) | 
|  | dir += sep; | 
|  | return (dir + unitName).str(); | 
|  | } | 
|  |  | 
|  | lld::DWARFCache *ObjFile::getDwarf() { | 
|  | llvm::call_once(initDwarf, [this]() { | 
|  | auto dwObj = DwarfObject::create(this); | 
|  | if (!dwObj) | 
|  | return; | 
|  | dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( | 
|  | std::move(dwObj), "", | 
|  | [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, | 
|  | [&](Error warning) { | 
|  | warn(getName() + ": " + toString(std::move(warning))); | 
|  | })); | 
|  | }); | 
|  |  | 
|  | return dwarfCache.get(); | 
|  | } | 
|  | // The path can point to either a dylib or a .tbd file. | 
|  | static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { | 
|  | std::optional<MemoryBufferRef> mbref = readFile(path); | 
|  | if (!mbref) { | 
|  | error("could not read dylib file at " + path); | 
|  | return nullptr; | 
|  | } | 
|  | return loadDylib(*mbref, umbrella); | 
|  | } | 
|  |  | 
|  | // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with | 
|  | // the first document storing child pointers to the rest of them. When we are | 
|  | // processing a given TBD file, we store that top-level document in | 
|  | // currentTopLevelTapi. When processing re-exports, we search its children for | 
|  | // potentially matching documents in the same TBD file. Note that the children | 
|  | // themselves don't point to further documents, i.e. this is a two-level tree. | 
|  | // | 
|  | // Re-exports can either refer to on-disk files, or to documents within .tbd | 
|  | // files. | 
|  | static DylibFile *findDylib(StringRef path, DylibFile *umbrella, | 
|  | const InterfaceFile *currentTopLevelTapi) { | 
|  | // Search order: | 
|  | // 1. Install name basename in -F / -L directories. | 
|  | { | 
|  | StringRef stem = path::stem(path); | 
|  | SmallString<128> frameworkName; | 
|  | path::append(frameworkName, path::Style::posix, stem + ".framework", stem); | 
|  | bool isFramework = path.ends_with(frameworkName); | 
|  | if (isFramework) { | 
|  | for (StringRef dir : config->frameworkSearchPaths) { | 
|  | SmallString<128> candidate = dir; | 
|  | path::append(candidate, frameworkName); | 
|  | if (std::optional<StringRef> dylibPath = | 
|  | resolveDylibPath(candidate.str())) | 
|  | return loadDylib(*dylibPath, umbrella); | 
|  | } | 
|  | } else if (std::optional<StringRef> dylibPath = findPathCombination( | 
|  | stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"})) | 
|  | return loadDylib(*dylibPath, umbrella); | 
|  | } | 
|  |  | 
|  | // 2. As absolute path. | 
|  | if (path::is_absolute(path, path::Style::posix)) | 
|  | for (StringRef root : config->systemLibraryRoots) | 
|  | if (std::optional<StringRef> dylibPath = | 
|  | resolveDylibPath((root + path).str())) | 
|  | return loadDylib(*dylibPath, umbrella); | 
|  |  | 
|  | // 3. As relative path. | 
|  |  | 
|  | // TODO: Handle -dylib_file | 
|  |  | 
|  | // Replace @executable_path, @loader_path, @rpath prefixes in install name. | 
|  | SmallString<128> newPath; | 
|  | if (config->outputType == MH_EXECUTE && | 
|  | path.consume_front("@executable_path/")) { | 
|  | // ld64 allows overriding this with the undocumented flag -executable_path. | 
|  | // lld doesn't currently implement that flag. | 
|  | // FIXME: Consider using finalOutput instead of outputFile. | 
|  | path::append(newPath, path::parent_path(config->outputFile), path); | 
|  | path = newPath; | 
|  | } else if (path.consume_front("@loader_path/")) { | 
|  | fs::real_path(umbrella->getName(), newPath); | 
|  | path::remove_filename(newPath); | 
|  | path::append(newPath, path); | 
|  | path = newPath; | 
|  | } else if (path.starts_with("@rpath/")) { | 
|  | for (StringRef rpath : umbrella->rpaths) { | 
|  | newPath.clear(); | 
|  | if (rpath.consume_front("@loader_path/")) { | 
|  | fs::real_path(umbrella->getName(), newPath); | 
|  | path::remove_filename(newPath); | 
|  | } | 
|  | path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); | 
|  | if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) | 
|  | return loadDylib(*dylibPath, umbrella); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Should this be further up? | 
|  | if (currentTopLevelTapi) { | 
|  | for (InterfaceFile &child : | 
|  | make_pointee_range(currentTopLevelTapi->documents())) { | 
|  | assert(child.documents().empty()); | 
|  | if (path == child.getInstallName()) { | 
|  | auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, | 
|  | /*explicitlyLinked=*/false); | 
|  | file->parseReexports(child); | 
|  | return file; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (std::optional<StringRef> dylibPath = resolveDylibPath(path)) | 
|  | return loadDylib(*dylibPath, umbrella); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If a re-exported dylib is public (lives in /usr/lib or | 
|  | // /System/Library/Frameworks), then it is considered implicitly linked: we | 
|  | // should bind to its symbols directly instead of via the re-exporting umbrella | 
|  | // library. | 
|  | static bool isImplicitlyLinked(StringRef path) { | 
|  | if (!config->implicitDylibs) | 
|  | return false; | 
|  |  | 
|  | if (path::parent_path(path) == "/usr/lib") | 
|  | return true; | 
|  |  | 
|  | // Match /System/Library/Frameworks/$FOO.framework/**/$FOO | 
|  | if (path.consume_front("/System/Library/Frameworks/")) { | 
|  | StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); | 
|  | return path::filename(path) == frameworkName; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void DylibFile::loadReexport(StringRef path, DylibFile *umbrella, | 
|  | const InterfaceFile *currentTopLevelTapi) { | 
|  | DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); | 
|  | if (!reexport) | 
|  | error(toString(this) + ": unable to locate re-export with install name " + | 
|  | path); | 
|  | } | 
|  |  | 
|  | DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, | 
|  | bool isBundleLoader, bool explicitlyLinked) | 
|  | : InputFile(DylibKind, mb), refState(RefState::Unreferenced), | 
|  | explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { | 
|  | assert(!isBundleLoader || !umbrella); | 
|  | if (umbrella == nullptr) | 
|  | umbrella = this; | 
|  | this->umbrella = umbrella; | 
|  |  | 
|  | auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); | 
|  |  | 
|  | // Initialize installName. | 
|  | if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { | 
|  | auto *c = reinterpret_cast<const dylib_command *>(cmd); | 
|  | currentVersion = read32le(&c->dylib.current_version); | 
|  | compatibilityVersion = read32le(&c->dylib.compatibility_version); | 
|  | installName = | 
|  | reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); | 
|  | } else if (!isBundleLoader) { | 
|  | // macho_executable and macho_bundle don't have LC_ID_DYLIB, | 
|  | // so it's OK. | 
|  | error(toString(this) + ": dylib missing LC_ID_DYLIB load command"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (config->printEachFile) | 
|  | message(toString(this)); | 
|  | inputFiles.insert(this); | 
|  |  | 
|  | deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; | 
|  |  | 
|  | if (!checkCompatibility(this)) | 
|  | return; | 
|  |  | 
|  | checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); | 
|  |  | 
|  | for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { | 
|  | StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; | 
|  | rpaths.push_back(rpath); | 
|  | } | 
|  |  | 
|  | // Initialize symbols. | 
|  | exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; | 
|  |  | 
|  | const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); | 
|  | const auto *exportsTrie = | 
|  | findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); | 
|  | if (dyldInfo && exportsTrie) { | 
|  | // It's unclear what should happen in this case. Maybe we should only error | 
|  | // out if the two load commands refer to different data? | 
|  | error(toString(this) + | 
|  | ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dyldInfo) { | 
|  | parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); | 
|  | } else if (exportsTrie) { | 
|  | parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); | 
|  | } else { | 
|  | error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + | 
|  | toString(this)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { | 
|  | struct TrieEntry { | 
|  | StringRef name; | 
|  | uint64_t flags; | 
|  | }; | 
|  |  | 
|  | auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); | 
|  | std::vector<TrieEntry> entries; | 
|  | // Find all the $ld$* symbols to process first. | 
|  | parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { | 
|  | StringRef savedName = saver().save(name); | 
|  | if (handleLDSymbol(savedName)) | 
|  | return; | 
|  | entries.push_back({savedName, flags}); | 
|  | }); | 
|  |  | 
|  | // Process the "normal" symbols. | 
|  | for (TrieEntry &entry : entries) { | 
|  | if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) | 
|  | continue; | 
|  |  | 
|  | bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; | 
|  | bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; | 
|  |  | 
|  | symbols.push_back( | 
|  | symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DylibFile::parseLoadCommands(MemoryBufferRef mb) { | 
|  | auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); | 
|  | const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + | 
|  | target->headerSize; | 
|  | for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { | 
|  | auto *cmd = reinterpret_cast<const load_command *>(p); | 
|  | p += cmd->cmdsize; | 
|  |  | 
|  | if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && | 
|  | cmd->cmd == LC_REEXPORT_DYLIB) { | 
|  | const auto *c = reinterpret_cast<const dylib_command *>(cmd); | 
|  | StringRef reexportPath = | 
|  | reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); | 
|  | loadReexport(reexportPath, exportingFile, nullptr); | 
|  | } | 
|  |  | 
|  | // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, | 
|  | // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with | 
|  | // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? | 
|  | if (config->namespaceKind == NamespaceKind::flat && | 
|  | cmd->cmd == LC_LOAD_DYLIB) { | 
|  | const auto *c = reinterpret_cast<const dylib_command *>(cmd); | 
|  | StringRef dylibPath = | 
|  | reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); | 
|  | DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); | 
|  | if (!dylib) | 
|  | error(Twine("unable to locate library '") + dylibPath + | 
|  | "' loaded from '" + toString(this) + "' for -flat_namespace"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some versions of Xcode ship with .tbd files that don't have the right | 
|  | // platform settings. | 
|  | constexpr std::array<StringRef, 3> skipPlatformChecks{ | 
|  | "/usr/lib/system/libsystem_kernel.dylib", | 
|  | "/usr/lib/system/libsystem_platform.dylib", | 
|  | "/usr/lib/system/libsystem_pthread.dylib"}; | 
|  |  | 
|  | static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, | 
|  | bool explicitlyLinked) { | 
|  | // Catalyst outputs can link against implicitly linked macOS-only libraries. | 
|  | if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) | 
|  | return false; | 
|  | return is_contained(interface.targets(), | 
|  | MachO::Target(config->arch(), PLATFORM_MACOS)); | 
|  | } | 
|  |  | 
|  | static bool isArchABICompatible(ArchitectureSet archSet, | 
|  | Architecture targetArch) { | 
|  | uint32_t cpuType; | 
|  | uint32_t targetCpuType; | 
|  | std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch); | 
|  |  | 
|  | return llvm::any_of(archSet, [&](const auto &p) { | 
|  | std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p); | 
|  | return cpuType == targetCpuType; | 
|  | }); | 
|  | } | 
|  |  | 
|  | static bool isTargetPlatformArchCompatible( | 
|  | InterfaceFile::const_target_range interfaceTargets, Target target) { | 
|  | if (is_contained(interfaceTargets, target)) | 
|  | return true; | 
|  |  | 
|  | if (config->forceExactCpuSubtypeMatch) | 
|  | return false; | 
|  |  | 
|  | ArchitectureSet archSet; | 
|  | for (const auto &p : interfaceTargets) | 
|  | if (p.Platform == target.Platform) | 
|  | archSet.set(p.Arch); | 
|  | if (archSet.empty()) | 
|  | return false; | 
|  |  | 
|  | return isArchABICompatible(archSet, target.Arch); | 
|  | } | 
|  |  | 
|  | DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, | 
|  | bool isBundleLoader, bool explicitlyLinked) | 
|  | : InputFile(DylibKind, interface), refState(RefState::Unreferenced), | 
|  | explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { | 
|  | // FIXME: Add test for the missing TBD code path. | 
|  |  | 
|  | if (umbrella == nullptr) | 
|  | umbrella = this; | 
|  | this->umbrella = umbrella; | 
|  |  | 
|  | installName = saver().save(interface.getInstallName()); | 
|  | compatibilityVersion = interface.getCompatibilityVersion().rawValue(); | 
|  | currentVersion = interface.getCurrentVersion().rawValue(); | 
|  |  | 
|  | if (config->printEachFile) | 
|  | message(toString(this)); | 
|  | inputFiles.insert(this); | 
|  |  | 
|  | if (!is_contained(skipPlatformChecks, installName) && | 
|  | !isTargetPlatformArchCompatible(interface.targets(), | 
|  | config->platformInfo.target) && | 
|  | !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { | 
|  | error(toString(this) + " is incompatible with " + | 
|  | std::string(config->platformInfo.target)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | checkAppExtensionSafety(interface.isApplicationExtensionSafe()); | 
|  |  | 
|  | exportingFile = isImplicitlyLinked(installName) ? this : umbrella; | 
|  | auto addSymbol = [&](const llvm::MachO::Symbol &symbol, | 
|  | const Twine &name) -> void { | 
|  | StringRef savedName = saver().save(name); | 
|  | if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) | 
|  | return; | 
|  |  | 
|  | symbols.push_back(symtab->addDylib(savedName, exportingFile, | 
|  | symbol.isWeakDefined(), | 
|  | symbol.isThreadLocalValue())); | 
|  | }; | 
|  |  | 
|  | std::vector<const llvm::MachO::Symbol *> normalSymbols; | 
|  | normalSymbols.reserve(interface.symbolsCount()); | 
|  | for (const auto *symbol : interface.symbols()) { | 
|  | if (!isArchABICompatible(symbol->getArchitectures(), config->arch())) | 
|  | continue; | 
|  | if (handleLDSymbol(symbol->getName())) | 
|  | continue; | 
|  |  | 
|  | switch (symbol->getKind()) { | 
|  | case EncodeKind::GlobalSymbol: | 
|  | case EncodeKind::ObjectiveCClass: | 
|  | case EncodeKind::ObjectiveCClassEHType: | 
|  | case EncodeKind::ObjectiveCInstanceVariable: | 
|  | normalSymbols.push_back(symbol); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(compnerd) filter out symbols based on the target platform | 
|  | for (const auto *symbol : normalSymbols) { | 
|  | switch (symbol->getKind()) { | 
|  | case EncodeKind::GlobalSymbol: | 
|  | addSymbol(*symbol, symbol->getName()); | 
|  | break; | 
|  | case EncodeKind::ObjectiveCClass: | 
|  | // XXX ld64 only creates these symbols when -ObjC is passed in. We may | 
|  | // want to emulate that. | 
|  | addSymbol(*symbol, objc::symbol_names::klass + symbol->getName()); | 
|  | addSymbol(*symbol, objc::symbol_names::metaclass + symbol->getName()); | 
|  | break; | 
|  | case EncodeKind::ObjectiveCClassEHType: | 
|  | addSymbol(*symbol, objc::symbol_names::ehtype + symbol->getName()); | 
|  | break; | 
|  | case EncodeKind::ObjectiveCInstanceVariable: | 
|  | addSymbol(*symbol, objc::symbol_names::ivar + symbol->getName()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DylibFile::DylibFile(DylibFile *umbrella) | 
|  | : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced), | 
|  | explicitlyLinked(false), isBundleLoader(false) { | 
|  | if (umbrella == nullptr) | 
|  | umbrella = this; | 
|  | this->umbrella = umbrella; | 
|  | } | 
|  |  | 
|  | void DylibFile::parseReexports(const InterfaceFile &interface) { | 
|  | const InterfaceFile *topLevel = | 
|  | interface.getParent() == nullptr ? &interface : interface.getParent(); | 
|  | for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { | 
|  | InterfaceFile::const_target_range targets = intfRef.targets(); | 
|  | if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || | 
|  | isTargetPlatformArchCompatible(targets, config->platformInfo.target)) | 
|  | loadReexport(intfRef.getInstallName(), exportingFile, topLevel); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DylibFile::isExplicitlyLinked() const { | 
|  | if (!explicitlyLinked) | 
|  | return false; | 
|  |  | 
|  | // If this dylib was explicitly linked, but at least one of the symbols | 
|  | // of the synthetic dylibs it created via $ld$previous symbols is | 
|  | // referenced, then that synthetic dylib fulfils the explicit linkedness | 
|  | // and we can deadstrip this dylib if it's unreferenced. | 
|  | for (const auto *dylib : extraDylibs) | 
|  | if (dylib->isReferenced()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DylibFile *DylibFile::getSyntheticDylib(StringRef installName, | 
|  | uint32_t currentVersion, | 
|  | uint32_t compatVersion) { | 
|  | for (DylibFile *dylib : extraDylibs) | 
|  | if (dylib->installName == installName) { | 
|  | // FIXME: Check what to do if different $ld$previous symbols | 
|  | // request the same dylib, but with different versions. | 
|  | return dylib; | 
|  | } | 
|  |  | 
|  | auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella); | 
|  | dylib->installName = saver().save(installName); | 
|  | dylib->currentVersion = currentVersion; | 
|  | dylib->compatibilityVersion = compatVersion; | 
|  | extraDylibs.push_back(dylib); | 
|  | return dylib; | 
|  | } | 
|  |  | 
|  | // $ld$ symbols modify the properties/behavior of the library (e.g. its install | 
|  | // name, compatibility version or hide/add symbols) for specific target | 
|  | // versions. | 
|  | bool DylibFile::handleLDSymbol(StringRef originalName) { | 
|  | if (!originalName.starts_with("$ld$")) | 
|  | return false; | 
|  |  | 
|  | StringRef action; | 
|  | StringRef name; | 
|  | std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); | 
|  | if (action == "previous") | 
|  | handleLDPreviousSymbol(name, originalName); | 
|  | else if (action == "install_name") | 
|  | handleLDInstallNameSymbol(name, originalName); | 
|  | else if (action == "hide") | 
|  | handleLDHideSymbol(name, originalName); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { | 
|  | // originalName: $ld$ previous $ <installname> $ <compatversion> $ | 
|  | // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ | 
|  | StringRef installName; | 
|  | StringRef compatVersion; | 
|  | StringRef platformStr; | 
|  | StringRef startVersion; | 
|  | StringRef endVersion; | 
|  | StringRef symbolName; | 
|  | StringRef rest; | 
|  |  | 
|  | std::tie(installName, name) = name.split('$'); | 
|  | std::tie(compatVersion, name) = name.split('$'); | 
|  | std::tie(platformStr, name) = name.split('$'); | 
|  | std::tie(startVersion, name) = name.split('$'); | 
|  | std::tie(endVersion, name) = name.split('$'); | 
|  | std::tie(symbolName, rest) = name.rsplit('$'); | 
|  |  | 
|  | // FIXME: Does this do the right thing for zippered files? | 
|  | unsigned platform; | 
|  | if (platformStr.getAsInteger(10, platform) || | 
|  | platform != static_cast<unsigned>(config->platform())) | 
|  | return; | 
|  |  | 
|  | VersionTuple start; | 
|  | if (start.tryParse(startVersion)) { | 
|  | warn(toString(this) + ": failed to parse start version, symbol '" + | 
|  | originalName + "' ignored"); | 
|  | return; | 
|  | } | 
|  | VersionTuple end; | 
|  | if (end.tryParse(endVersion)) { | 
|  | warn(toString(this) + ": failed to parse end version, symbol '" + | 
|  | originalName + "' ignored"); | 
|  | return; | 
|  | } | 
|  | if (config->platformInfo.target.MinDeployment < start || | 
|  | config->platformInfo.target.MinDeployment >= end) | 
|  | return; | 
|  |  | 
|  | // Initialized to compatibilityVersion for the symbolName branch below. | 
|  | uint32_t newCompatibilityVersion = compatibilityVersion; | 
|  | uint32_t newCurrentVersionForSymbol = currentVersion; | 
|  | if (!compatVersion.empty()) { | 
|  | VersionTuple cVersion; | 
|  | if (cVersion.tryParse(compatVersion)) { | 
|  | warn(toString(this) + | 
|  | ": failed to parse compatibility version, symbol '" + originalName + | 
|  | "' ignored"); | 
|  | return; | 
|  | } | 
|  | newCompatibilityVersion = encodeVersion(cVersion); | 
|  | newCurrentVersionForSymbol = newCompatibilityVersion; | 
|  | } | 
|  |  | 
|  | if (!symbolName.empty()) { | 
|  | // A $ld$previous$ symbol with symbol name adds a symbol with that name to | 
|  | // a dylib with given name and version. | 
|  | auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol, | 
|  | newCompatibilityVersion); | 
|  |  | 
|  | // The tbd file usually contains the $ld$previous symbol for an old version, | 
|  | // and then the symbol itself later, for newer deployment targets, like so: | 
|  | //    symbols: [ | 
|  | //      '$ld$previous$/Another$$1$3.0$14.0$_zzz$', | 
|  | //      _zzz, | 
|  | //    ] | 
|  | // Since the symbols are sorted, adding them to the symtab in the given | 
|  | // order means the $ld$previous version of _zzz will prevail, as desired. | 
|  | dylib->symbols.push_back(symtab->addDylib( | 
|  | saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A $ld$previous$ symbol without symbol name modifies the dylib it's in. | 
|  | this->installName = saver().save(installName); | 
|  | this->compatibilityVersion = newCompatibilityVersion; | 
|  | } | 
|  |  | 
|  | void DylibFile::handleLDInstallNameSymbol(StringRef name, | 
|  | StringRef originalName) { | 
|  | // originalName: $ld$ install_name $ os<version> $ install_name | 
|  | StringRef condition, installName; | 
|  | std::tie(condition, installName) = name.split('$'); | 
|  | VersionTuple version; | 
|  | if (!condition.consume_front("os") || version.tryParse(condition)) | 
|  | warn(toString(this) + ": failed to parse os version, symbol '" + | 
|  | originalName + "' ignored"); | 
|  | else if (version == config->platformInfo.target.MinDeployment) | 
|  | this->installName = saver().save(installName); | 
|  | } | 
|  |  | 
|  | void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { | 
|  | StringRef symbolName; | 
|  | bool shouldHide = true; | 
|  | if (name.starts_with("os")) { | 
|  | // If it's hidden based on versions. | 
|  | name = name.drop_front(2); | 
|  | StringRef minVersion; | 
|  | std::tie(minVersion, symbolName) = name.split('$'); | 
|  | VersionTuple versionTup; | 
|  | if (versionTup.tryParse(minVersion)) { | 
|  | warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName + | 
|  | "` ignored."); | 
|  | return; | 
|  | } | 
|  | shouldHide = versionTup == config->platformInfo.target.MinDeployment; | 
|  | } else { | 
|  | symbolName = name; | 
|  | } | 
|  |  | 
|  | if (shouldHide) | 
|  | exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); | 
|  | } | 
|  |  | 
|  | void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { | 
|  | if (config->applicationExtension && !dylibIsAppExtensionSafe) | 
|  | warn("using '-application_extension' with unsafe dylib: " + toString(this)); | 
|  | } | 
|  |  | 
|  | ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden) | 
|  | : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)), | 
|  | forceHidden(forceHidden) {} | 
|  |  | 
|  | void ArchiveFile::addLazySymbols() { | 
|  | // Avoid calling getMemoryBufferRef() on zero-symbol archive | 
|  | // since that crashes. | 
|  | if (file->isEmpty() || file->getNumberOfSymbols() == 0) | 
|  | return; | 
|  |  | 
|  | Error err = Error::success(); | 
|  | auto child = file->child_begin(err); | 
|  | // Ignore the I/O error here - will be reported later. | 
|  | if (!err) { | 
|  | Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef(); | 
|  | if (!mbOrErr) { | 
|  | llvm::consumeError(mbOrErr.takeError()); | 
|  | } else { | 
|  | if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) { | 
|  | if (target->wordSize == 8) | 
|  | compatArch = compatWithTargetArch( | 
|  | this, reinterpret_cast<const LP64::mach_header *>( | 
|  | mbOrErr->getBufferStart())); | 
|  | else | 
|  | compatArch = compatWithTargetArch( | 
|  | this, reinterpret_cast<const ILP32::mach_header *>( | 
|  | mbOrErr->getBufferStart())); | 
|  | if (!compatArch) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const object::Archive::Symbol &sym : file->symbols()) | 
|  | symtab->addLazyArchive(sym.getName(), this, sym); | 
|  | } | 
|  |  | 
|  | static Expected<InputFile *> | 
|  | loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, | 
|  | uint64_t offsetInArchive, bool forceHidden, bool compatArch) { | 
|  | if (config->zeroModTime) | 
|  | modTime = 0; | 
|  |  | 
|  | switch (identify_magic(mb.getBuffer())) { | 
|  | case file_magic::macho_object: | 
|  | return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden, | 
|  | compatArch); | 
|  | case file_magic::bitcode: | 
|  | return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false, | 
|  | forceHidden, compatArch); | 
|  | default: | 
|  | return createStringError(inconvertibleErrorCode(), | 
|  | mb.getBufferIdentifier() + | 
|  | " has unhandled file type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { | 
|  | if (!seen.insert(c.getChildOffset()).second) | 
|  | return Error::success(); | 
|  |  | 
|  | Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); | 
|  | if (!mb) | 
|  | return mb.takeError(); | 
|  |  | 
|  | // Thin archives refer to .o files, so --reproduce needs the .o files too. | 
|  | if (tar && c.getParent()->isThin()) | 
|  | tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); | 
|  |  | 
|  | Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); | 
|  | if (!modTime) | 
|  | return modTime.takeError(); | 
|  |  | 
|  | Expected<InputFile *> file = | 
|  | loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(), | 
|  | forceHidden, compatArch); | 
|  |  | 
|  | if (!file) | 
|  | return file.takeError(); | 
|  |  | 
|  | inputFiles.insert(*file); | 
|  | printArchiveMemberLoad(reason, *file); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void ArchiveFile::fetch(const object::Archive::Symbol &sym) { | 
|  | object::Archive::Child c = | 
|  | CHECK(sym.getMember(), toString(this) + | 
|  | ": could not get the member defining symbol " + | 
|  | toMachOString(sym)); | 
|  |  | 
|  | // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> | 
|  | // and become invalid after that call. Copy it to the stack so we can refer | 
|  | // to it later. | 
|  | const object::Archive::Symbol symCopy = sym; | 
|  |  | 
|  | // ld64 doesn't demangle sym here even with -demangle. | 
|  | // Match that: intentionally don't call toMachOString(). | 
|  | if (Error e = fetch(c, symCopy.getName())) | 
|  | error(toString(this) + ": could not get the member defining symbol " + | 
|  | toMachOString(symCopy) + ": " + toString(std::move(e))); | 
|  | } | 
|  |  | 
|  | static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, | 
|  | BitcodeFile &file) { | 
|  | StringRef name = saver().save(objSym.getName()); | 
|  |  | 
|  | if (objSym.isUndefined()) | 
|  | return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); | 
|  |  | 
|  | // TODO: Write a test demonstrating why computing isPrivateExtern before | 
|  | // LTO compilation is important. | 
|  | bool isPrivateExtern = false; | 
|  | switch (objSym.getVisibility()) { | 
|  | case GlobalValue::HiddenVisibility: | 
|  | isPrivateExtern = true; | 
|  | break; | 
|  | case GlobalValue::ProtectedVisibility: | 
|  | error(name + " has protected visibility, which is not supported by Mach-O"); | 
|  | break; | 
|  | case GlobalValue::DefaultVisibility: | 
|  | break; | 
|  | } | 
|  | isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() || | 
|  | file.forceHidden; | 
|  |  | 
|  | if (objSym.isCommon()) | 
|  | return symtab->addCommon(name, &file, objSym.getCommonSize(), | 
|  | objSym.getCommonAlignment(), isPrivateExtern); | 
|  |  | 
|  | return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, | 
|  | /*size=*/0, objSym.isWeak(), isPrivateExtern, | 
|  | /*isReferencedDynamically=*/false, | 
|  | /*noDeadStrip=*/false, | 
|  | /*isWeakDefCanBeHidden=*/false); | 
|  | } | 
|  |  | 
|  | BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, | 
|  | uint64_t offsetInArchive, bool lazy, bool forceHidden, | 
|  | bool compatArch) | 
|  | : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) { | 
|  | this->archiveName = std::string(archiveName); | 
|  | this->compatArch = compatArch; | 
|  | std::string path = mb.getBufferIdentifier().str(); | 
|  | if (config->thinLTOIndexOnly) | 
|  | path = replaceThinLTOSuffix(mb.getBufferIdentifier()); | 
|  |  | 
|  | // If the parent archive already determines that the arch is not compat with | 
|  | // target, then just return. | 
|  | if (!compatArch) | 
|  | return; | 
|  |  | 
|  | // ThinLTO assumes that all MemoryBufferRefs given to it have a unique | 
|  | // name. If two members with the same name are provided, this causes a | 
|  | // collision and ThinLTO can't proceed. | 
|  | // So, we append the archive name to disambiguate two members with the same | 
|  | // name from multiple different archives, and offset within the archive to | 
|  | // disambiguate two members of the same name from a single archive. | 
|  | MemoryBufferRef mbref(mb.getBuffer(), | 
|  | saver().save(archiveName.empty() | 
|  | ? path | 
|  | : archiveName + "(" + | 
|  | sys::path::filename(path) + ")" + | 
|  | utostr(offsetInArchive))); | 
|  | obj = check(lto::InputFile::create(mbref)); | 
|  | if (lazy) | 
|  | parseLazy(); | 
|  | else | 
|  | parse(); | 
|  | } | 
|  |  | 
|  | void BitcodeFile::parse() { | 
|  | // Convert LTO Symbols to LLD Symbols in order to perform resolution. The | 
|  | // "winning" symbol will then be marked as Prevailing at LTO compilation | 
|  | // time. | 
|  | symbols.resize(obj->symbols().size()); | 
|  |  | 
|  | // Process defined symbols first. See the comment at the end of | 
|  | // ObjFile<>::parseSymbols. | 
|  | for (auto it : llvm::enumerate(obj->symbols())) | 
|  | if (!it.value().isUndefined()) | 
|  | symbols[it.index()] = createBitcodeSymbol(it.value(), *this); | 
|  | for (auto it : llvm::enumerate(obj->symbols())) | 
|  | if (it.value().isUndefined()) | 
|  | symbols[it.index()] = createBitcodeSymbol(it.value(), *this); | 
|  | } | 
|  |  | 
|  | void BitcodeFile::parseLazy() { | 
|  | symbols.resize(obj->symbols().size()); | 
|  | for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) { | 
|  | if (!objSym.isUndefined()) { | 
|  | symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this); | 
|  | if (!lazy) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string macho::replaceThinLTOSuffix(StringRef path) { | 
|  | auto [suffix, repl] = config->thinLTOObjectSuffixReplace; | 
|  | if (path.consume_back(suffix)) | 
|  | return (path + repl).str(); | 
|  | return std::string(path); | 
|  | } | 
|  |  | 
|  | void macho::extract(InputFile &file, StringRef reason) { | 
|  | if (!file.lazy) | 
|  | return; | 
|  | file.lazy = false; | 
|  |  | 
|  | printArchiveMemberLoad(reason, &file); | 
|  | if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { | 
|  | bitcode->parse(); | 
|  | } else { | 
|  | auto &f = cast<ObjFile>(file); | 
|  | if (target->wordSize == 8) | 
|  | f.parse<LP64>(); | 
|  | else | 
|  | f.parse<ILP32>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template void ObjFile::parse<LP64>(); |