|  | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file provides Sema routines for C++ overloading. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DependenceFlags.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/Basic/DiagnosticOptions.h" | 
|  | #include "clang/Basic/OperatorKinds.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Sema/EnterExpressionEvaluationContext.h" | 
|  | #include "clang/Sema/Initialization.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Overload.h" | 
|  | #include "clang/Sema/SemaCUDA.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/Template.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/STLForwardCompat.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <algorithm> | 
|  | #include <cstddef> | 
|  | #include <cstdlib> | 
|  | #include <optional> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | using AllowedExplicit = Sema::AllowedExplicit; | 
|  |  | 
|  | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { | 
|  | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { | 
|  | return P->hasAttr<PassObjectSizeAttr>(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// A convenience routine for creating a decayed reference to a function. | 
|  | static ExprResult CreateFunctionRefExpr( | 
|  | Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base, | 
|  | bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(), | 
|  | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) { | 
|  | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) | 
|  | return ExprError(); | 
|  | // If FoundDecl is different from Fn (such as if one is a template | 
|  | // and the other a specialization), make sure DiagnoseUseOfDecl is | 
|  | // called on both. | 
|  | // FIXME: This would be more comprehensively addressed by modifying | 
|  | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | 
|  | // being used. | 
|  | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) | 
|  | return ExprError(); | 
|  | DeclRefExpr *DRE = new (S.Context) | 
|  | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); | 
|  | if (HadMultipleCandidates) | 
|  | DRE->setHadMultipleCandidates(true); | 
|  |  | 
|  | S.MarkDeclRefReferenced(DRE, Base); | 
|  | if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { | 
|  | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | 
|  | S.ResolveExceptionSpec(Loc, FPT); | 
|  | DRE->setType(Fn->getType()); | 
|  | } | 
|  | } | 
|  | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), | 
|  | CK_FunctionToPointerDecay); | 
|  | } | 
|  |  | 
|  | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion); | 
|  |  | 
|  | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, | 
|  | QualType &ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle); | 
|  | static OverloadingResult | 
|  | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | 
|  | UserDefinedConversionSequence& User, | 
|  | OverloadCandidateSet& Conversions, | 
|  | AllowedExplicit AllowExplicit, | 
|  | bool AllowObjCConversionOnExplicit); | 
|  |  | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2); | 
|  |  | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareQualificationConversions(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2); | 
|  |  | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2); | 
|  |  | 
|  | /// GetConversionRank - Retrieve the implicit conversion rank | 
|  | /// corresponding to the given implicit conversion kind. | 
|  | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { | 
|  | static const ImplicitConversionRank Rank[] = { | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Exact_Match, | 
|  | ICR_Promotion, | 
|  | ICR_Promotion, | 
|  | ICR_Promotion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_OCL_Scalar_Widening, | 
|  | ICR_Complex_Real_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Writeback_Conversion, | 
|  | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- | 
|  | // it was omitted by the patch that added | 
|  | // ICK_Zero_Event_Conversion | 
|  | ICR_Exact_Match, // NOTE(ctopper): This may not be completely right -- | 
|  | // it was omitted by the patch that added | 
|  | // ICK_Zero_Queue_Conversion | 
|  | ICR_C_Conversion, | 
|  | ICR_C_Conversion_Extension, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | ICR_Conversion, | 
|  | }; | 
|  | static_assert(std::size(Rank) == (int)ICK_Num_Conversion_Kinds); | 
|  | return Rank[(int)Kind]; | 
|  | } | 
|  |  | 
|  | /// GetImplicitConversionName - Return the name of this kind of | 
|  | /// implicit conversion. | 
|  | static const char *GetImplicitConversionName(ImplicitConversionKind Kind) { | 
|  | static const char *const Name[] = { | 
|  | "No conversion", | 
|  | "Lvalue-to-rvalue", | 
|  | "Array-to-pointer", | 
|  | "Function-to-pointer", | 
|  | "Function pointer conversion", | 
|  | "Qualification", | 
|  | "Integral promotion", | 
|  | "Floating point promotion", | 
|  | "Complex promotion", | 
|  | "Integral conversion", | 
|  | "Floating conversion", | 
|  | "Complex conversion", | 
|  | "Floating-integral conversion", | 
|  | "Pointer conversion", | 
|  | "Pointer-to-member conversion", | 
|  | "Boolean conversion", | 
|  | "Compatible-types conversion", | 
|  | "Derived-to-base conversion", | 
|  | "Vector conversion", | 
|  | "SVE Vector conversion", | 
|  | "RVV Vector conversion", | 
|  | "Vector splat", | 
|  | "Complex-real conversion", | 
|  | "Block Pointer conversion", | 
|  | "Transparent Union Conversion", | 
|  | "Writeback conversion", | 
|  | "OpenCL Zero Event Conversion", | 
|  | "OpenCL Zero Queue Conversion", | 
|  | "C specific type conversion", | 
|  | "Incompatible pointer conversion", | 
|  | "Fixed point conversion", | 
|  | "HLSL vector truncation", | 
|  | "Non-decaying array conversion", | 
|  | }; | 
|  | static_assert(std::size(Name) == (int)ICK_Num_Conversion_Kinds); | 
|  | return Name[Kind]; | 
|  | } | 
|  |  | 
|  | /// StandardConversionSequence - Set the standard conversion | 
|  | /// sequence to the identity conversion. | 
|  | void StandardConversionSequence::setAsIdentityConversion() { | 
|  | First = ICK_Identity; | 
|  | Second = ICK_Identity; | 
|  | Element = ICK_Identity; | 
|  | Third = ICK_Identity; | 
|  | DeprecatedStringLiteralToCharPtr = false; | 
|  | QualificationIncludesObjCLifetime = false; | 
|  | ReferenceBinding = false; | 
|  | DirectBinding = false; | 
|  | IsLvalueReference = true; | 
|  | BindsToFunctionLvalue = false; | 
|  | BindsToRvalue = false; | 
|  | BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ObjCLifetimeConversionBinding = false; | 
|  | CopyConstructor = nullptr; | 
|  | } | 
|  |  | 
|  | /// getRank - Retrieve the rank of this standard conversion sequence | 
|  | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the | 
|  | /// implicit conversions. | 
|  | ImplicitConversionRank StandardConversionSequence::getRank() const { | 
|  | ImplicitConversionRank Rank = ICR_Exact_Match; | 
|  | if (GetConversionRank(First) > Rank) | 
|  | Rank = GetConversionRank(First); | 
|  | if (GetConversionRank(Second) > Rank) | 
|  | Rank = GetConversionRank(Second); | 
|  | if (GetConversionRank(Element) > Rank) | 
|  | Rank = GetConversionRank(Element); | 
|  | if (GetConversionRank(Third) > Rank) | 
|  | Rank = GetConversionRank(Third); | 
|  | return Rank; | 
|  | } | 
|  |  | 
|  | /// isPointerConversionToBool - Determines whether this conversion is | 
|  | /// a conversion of a pointer or pointer-to-member to bool. This is | 
|  | /// used as part of the ranking of standard conversion sequences | 
|  | /// (C++ 13.3.3.2p4). | 
|  | bool StandardConversionSequence::isPointerConversionToBool() const { | 
|  | // Note that FromType has not necessarily been transformed by the | 
|  | // array-to-pointer or function-to-pointer implicit conversions, so | 
|  | // check for their presence as well as checking whether FromType is | 
|  | // a pointer. | 
|  | if (getToType(1)->isBooleanType() && | 
|  | (getFromType()->isPointerType() || | 
|  | getFromType()->isMemberPointerType() || | 
|  | getFromType()->isObjCObjectPointerType() || | 
|  | getFromType()->isBlockPointerType() || | 
|  | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isPointerConversionToVoidPointer - Determines whether this | 
|  | /// conversion is a conversion of a pointer to a void pointer. This is | 
|  | /// used as part of the ranking of standard conversion sequences (C++ | 
|  | /// 13.3.3.2p4). | 
|  | bool | 
|  | StandardConversionSequence:: | 
|  | isPointerConversionToVoidPointer(ASTContext& Context) const { | 
|  | QualType FromType = getFromType(); | 
|  | QualType ToType = getToType(1); | 
|  |  | 
|  | // Note that FromType has not necessarily been transformed by the | 
|  | // array-to-pointer implicit conversion, so check for its presence | 
|  | // and redo the conversion to get a pointer. | 
|  | if (First == ICK_Array_To_Pointer) | 
|  | FromType = Context.getArrayDecayedType(FromType); | 
|  |  | 
|  | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) | 
|  | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) | 
|  | return ToPtrType->getPointeeType()->isVoidType(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Skip any implicit casts which could be either part of a narrowing conversion | 
|  | /// or after one in an implicit conversion. | 
|  | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, | 
|  | const Expr *Converted) { | 
|  | // We can have cleanups wrapping the converted expression; these need to be | 
|  | // preserved so that destructors run if necessary. | 
|  | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { | 
|  | Expr *Inner = | 
|  | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); | 
|  | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), | 
|  | EWC->getObjects()); | 
|  | } | 
|  |  | 
|  | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { | 
|  | switch (ICE->getCastKind()) { | 
|  | case CK_NoOp: | 
|  | case CK_IntegralCast: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_FloatingCast: | 
|  | Converted = ICE->getSubExpr(); | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | return Converted; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Converted; | 
|  | } | 
|  |  | 
|  | /// Check if this standard conversion sequence represents a narrowing | 
|  | /// conversion, according to C++11 [dcl.init.list]p7. | 
|  | /// | 
|  | /// \param Ctx  The AST context. | 
|  | /// \param Converted  The result of applying this standard conversion sequence. | 
|  | /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the | 
|  | ///        value of the expression prior to the narrowing conversion. | 
|  | /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the | 
|  | ///        type of the expression prior to the narrowing conversion. | 
|  | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions | 
|  | ///        from floating point types to integral types should be ignored. | 
|  | NarrowingKind StandardConversionSequence::getNarrowingKind( | 
|  | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, | 
|  | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { | 
|  | assert((Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23) && | 
|  | "narrowing check outside C++"); | 
|  |  | 
|  | // C++11 [dcl.init.list]p7: | 
|  | //   A narrowing conversion is an implicit conversion ... | 
|  | QualType FromType = getToType(0); | 
|  | QualType ToType = getToType(1); | 
|  |  | 
|  | // A conversion to an enumeration type is narrowing if the conversion to | 
|  | // the underlying type is narrowing. This only arises for expressions of | 
|  | // the form 'Enum{init}'. | 
|  | if (auto *ET = ToType->getAs<EnumType>()) | 
|  | ToType = ET->getDecl()->getIntegerType(); | 
|  |  | 
|  | switch (Second) { | 
|  | // 'bool' is an integral type; dispatch to the right place to handle it. | 
|  | case ICK_Boolean_Conversion: | 
|  | if (FromType->isRealFloatingType()) | 
|  | goto FloatingIntegralConversion; | 
|  | if (FromType->isIntegralOrUnscopedEnumerationType()) | 
|  | goto IntegralConversion; | 
|  | // -- from a pointer type or pointer-to-member type to bool, or | 
|  | return NK_Type_Narrowing; | 
|  |  | 
|  | // -- from a floating-point type to an integer type, or | 
|  | // | 
|  | // -- from an integer type or unscoped enumeration type to a floating-point | 
|  | //    type, except where the source is a constant expression and the actual | 
|  | //    value after conversion will fit into the target type and will produce | 
|  | //    the original value when converted back to the original type, or | 
|  | case ICK_Floating_Integral: | 
|  | FloatingIntegralConversion: | 
|  | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { | 
|  | return NK_Type_Narrowing; | 
|  | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isRealFloatingType()) { | 
|  | if (IgnoreFloatToIntegralConversion) | 
|  | return NK_Not_Narrowing; | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | 
|  | assert(Initializer && "Unknown conversion expression"); | 
|  |  | 
|  | // If it's value-dependent, we can't tell whether it's narrowing. | 
|  | if (Initializer->isValueDependent()) | 
|  | return NK_Dependent_Narrowing; | 
|  |  | 
|  | if (std::optional<llvm::APSInt> IntConstantValue = | 
|  | Initializer->getIntegerConstantExpr(Ctx)) { | 
|  | // Convert the integer to the floating type. | 
|  | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); | 
|  | Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), | 
|  | llvm::APFloat::rmNearestTiesToEven); | 
|  | // And back. | 
|  | llvm::APSInt ConvertedValue = *IntConstantValue; | 
|  | bool ignored; | 
|  | Result.convertToInteger(ConvertedValue, | 
|  | llvm::APFloat::rmTowardZero, &ignored); | 
|  | // If the resulting value is different, this was a narrowing conversion. | 
|  | if (*IntConstantValue != ConvertedValue) { | 
|  | ConstantValue = APValue(*IntConstantValue); | 
|  | ConstantType = Initializer->getType(); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } else { | 
|  | // Variables are always narrowings. | 
|  | return NK_Variable_Narrowing; | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  |  | 
|  | // -- from long double to double or float, or from double to float, except | 
|  | //    where the source is a constant expression and the actual value after | 
|  | //    conversion is within the range of values that can be represented (even | 
|  | //    if it cannot be represented exactly), or | 
|  | case ICK_Floating_Conversion: | 
|  | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && | 
|  | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { | 
|  | // FromType is larger than ToType. | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | 
|  |  | 
|  | // If it's value-dependent, we can't tell whether it's narrowing. | 
|  | if (Initializer->isValueDependent()) | 
|  | return NK_Dependent_Narrowing; | 
|  |  | 
|  | Expr::EvalResult R; | 
|  | if ((Ctx.getLangOpts().C23 && Initializer->EvaluateAsRValue(R, Ctx)) || | 
|  | Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { | 
|  | // Constant! | 
|  | if (Ctx.getLangOpts().C23) | 
|  | ConstantValue = R.Val; | 
|  | assert(ConstantValue.isFloat()); | 
|  | llvm::APFloat FloatVal = ConstantValue.getFloat(); | 
|  | // Convert the source value into the target type. | 
|  | bool ignored; | 
|  | llvm::APFloat Converted = FloatVal; | 
|  | llvm::APFloat::opStatus ConvertStatus = | 
|  | Converted.convert(Ctx.getFloatTypeSemantics(ToType), | 
|  | llvm::APFloat::rmNearestTiesToEven, &ignored); | 
|  | Converted.convert(Ctx.getFloatTypeSemantics(FromType), | 
|  | llvm::APFloat::rmNearestTiesToEven, &ignored); | 
|  | if (Ctx.getLangOpts().C23) { | 
|  | if (FloatVal.isNaN() && Converted.isNaN() && | 
|  | !FloatVal.isSignaling() && !Converted.isSignaling()) { | 
|  | // Quiet NaNs are considered the same value, regardless of | 
|  | // payloads. | 
|  | return NK_Not_Narrowing; | 
|  | } | 
|  | // For normal values, check exact equality. | 
|  | if (!Converted.bitwiseIsEqual(FloatVal)) { | 
|  | ConstantType = Initializer->getType(); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } else { | 
|  | // If there was no overflow, the source value is within the range of | 
|  | // values that can be represented. | 
|  | if (ConvertStatus & llvm::APFloat::opOverflow) { | 
|  | ConstantType = Initializer->getType(); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | return NK_Variable_Narrowing; | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  |  | 
|  | // -- from an integer type or unscoped enumeration type to an integer type | 
|  | //    that cannot represent all the values of the original type, except where | 
|  | //    the source is a constant expression and the actual value after | 
|  | //    conversion will fit into the target type and will produce the original | 
|  | //    value when converted back to the original type. | 
|  | case ICK_Integral_Conversion: | 
|  | IntegralConversion: { | 
|  | assert(FromType->isIntegralOrUnscopedEnumerationType()); | 
|  | assert(ToType->isIntegralOrUnscopedEnumerationType()); | 
|  | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); | 
|  | const unsigned FromWidth = Ctx.getIntWidth(FromType); | 
|  | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); | 
|  | const unsigned ToWidth = Ctx.getIntWidth(ToType); | 
|  |  | 
|  | if (FromWidth > ToWidth || | 
|  | (FromWidth == ToWidth && FromSigned != ToSigned) || | 
|  | (FromSigned && !ToSigned)) { | 
|  | // Not all values of FromType can be represented in ToType. | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | 
|  |  | 
|  | // If it's value-dependent, we can't tell whether it's narrowing. | 
|  | if (Initializer->isValueDependent()) | 
|  | return NK_Dependent_Narrowing; | 
|  |  | 
|  | std::optional<llvm::APSInt> OptInitializerValue; | 
|  | if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { | 
|  | // Such conversions on variables are always narrowing. | 
|  | return NK_Variable_Narrowing; | 
|  | } | 
|  | llvm::APSInt &InitializerValue = *OptInitializerValue; | 
|  | bool Narrowing = false; | 
|  | if (FromWidth < ToWidth) { | 
|  | // Negative -> unsigned is narrowing. Otherwise, more bits is never | 
|  | // narrowing. | 
|  | if (InitializerValue.isSigned() && InitializerValue.isNegative()) | 
|  | Narrowing = true; | 
|  | } else { | 
|  | // Add a bit to the InitializerValue so we don't have to worry about | 
|  | // signed vs. unsigned comparisons. | 
|  | InitializerValue = InitializerValue.extend( | 
|  | InitializerValue.getBitWidth() + 1); | 
|  | // Convert the initializer to and from the target width and signed-ness. | 
|  | llvm::APSInt ConvertedValue = InitializerValue; | 
|  | ConvertedValue = ConvertedValue.trunc(ToWidth); | 
|  | ConvertedValue.setIsSigned(ToSigned); | 
|  | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); | 
|  | ConvertedValue.setIsSigned(InitializerValue.isSigned()); | 
|  | // If the result is different, this was a narrowing conversion. | 
|  | if (ConvertedValue != InitializerValue) | 
|  | Narrowing = true; | 
|  | } | 
|  | if (Narrowing) { | 
|  | ConstantType = Initializer->getType(); | 
|  | ConstantValue = APValue(InitializerValue); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  | } | 
|  | case ICK_Complex_Real: | 
|  | if (FromType->isComplexType() && !ToType->isComplexType()) | 
|  | return NK_Type_Narrowing; | 
|  | return NK_Not_Narrowing; | 
|  |  | 
|  | case ICK_Floating_Promotion: | 
|  | if (Ctx.getLangOpts().C23) { | 
|  | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | 
|  | Expr::EvalResult R; | 
|  | if (Initializer->EvaluateAsRValue(R, Ctx)) { | 
|  | ConstantValue = R.Val; | 
|  | assert(ConstantValue.isFloat()); | 
|  | llvm::APFloat FloatVal = ConstantValue.getFloat(); | 
|  | // C23 6.7.3p6 If the initializer has real type and a signaling NaN | 
|  | // value, the unqualified versions of the type of the initializer and | 
|  | // the corresponding real type of the object declared shall be | 
|  | // compatible. | 
|  | if (FloatVal.isNaN() && FloatVal.isSignaling()) { | 
|  | ConstantType = Initializer->getType(); | 
|  | return NK_Constant_Narrowing; | 
|  | } | 
|  | } | 
|  | } | 
|  | return NK_Not_Narrowing; | 
|  | default: | 
|  | // Other kinds of conversions are not narrowings. | 
|  | return NK_Not_Narrowing; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dump - Print this standard conversion sequence to standard | 
|  | /// error. Useful for debugging overloading issues. | 
|  | LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | bool PrintedSomething = false; | 
|  | if (First != ICK_Identity) { | 
|  | OS << GetImplicitConversionName(First); | 
|  | PrintedSomething = true; | 
|  | } | 
|  |  | 
|  | if (Second != ICK_Identity) { | 
|  | if (PrintedSomething) { | 
|  | OS << " -> "; | 
|  | } | 
|  | OS << GetImplicitConversionName(Second); | 
|  |  | 
|  | if (CopyConstructor) { | 
|  | OS << " (by copy constructor)"; | 
|  | } else if (DirectBinding) { | 
|  | OS << " (direct reference binding)"; | 
|  | } else if (ReferenceBinding) { | 
|  | OS << " (reference binding)"; | 
|  | } | 
|  | PrintedSomething = true; | 
|  | } | 
|  |  | 
|  | if (Third != ICK_Identity) { | 
|  | if (PrintedSomething) { | 
|  | OS << " -> "; | 
|  | } | 
|  | OS << GetImplicitConversionName(Third); | 
|  | PrintedSomething = true; | 
|  | } | 
|  |  | 
|  | if (!PrintedSomething) { | 
|  | OS << "No conversions required"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dump - Print this user-defined conversion sequence to standard | 
|  | /// error. Useful for debugging overloading issues. | 
|  | void UserDefinedConversionSequence::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | if (Before.First || Before.Second || Before.Third) { | 
|  | Before.dump(); | 
|  | OS << " -> "; | 
|  | } | 
|  | if (ConversionFunction) | 
|  | OS << '\'' << *ConversionFunction << '\''; | 
|  | else | 
|  | OS << "aggregate initialization"; | 
|  | if (After.First || After.Second || After.Third) { | 
|  | OS << " -> "; | 
|  | After.dump(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// dump - Print this implicit conversion sequence to standard | 
|  | /// error. Useful for debugging overloading issues. | 
|  | void ImplicitConversionSequence::dump() const { | 
|  | raw_ostream &OS = llvm::errs(); | 
|  | if (hasInitializerListContainerType()) | 
|  | OS << "Worst list element conversion: "; | 
|  | switch (ConversionKind) { | 
|  | case StandardConversion: | 
|  | OS << "Standard conversion: "; | 
|  | Standard.dump(); | 
|  | break; | 
|  | case UserDefinedConversion: | 
|  | OS << "User-defined conversion: "; | 
|  | UserDefined.dump(); | 
|  | break; | 
|  | case EllipsisConversion: | 
|  | OS << "Ellipsis conversion"; | 
|  | break; | 
|  | case AmbiguousConversion: | 
|  | OS << "Ambiguous conversion"; | 
|  | break; | 
|  | case BadConversion: | 
|  | OS << "Bad conversion"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | void AmbiguousConversionSequence::construct() { | 
|  | new (&conversions()) ConversionSet(); | 
|  | } | 
|  |  | 
|  | void AmbiguousConversionSequence::destruct() { | 
|  | conversions().~ConversionSet(); | 
|  | } | 
|  |  | 
|  | void | 
|  | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { | 
|  | FromTypePtr = O.FromTypePtr; | 
|  | ToTypePtr = O.ToTypePtr; | 
|  | new (&conversions()) ConversionSet(O.conversions()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Structure used by DeductionFailureInfo to store | 
|  | // template argument information. | 
|  | struct DFIArguments { | 
|  | TemplateArgument FirstArg; | 
|  | TemplateArgument SecondArg; | 
|  | }; | 
|  | // Structure used by DeductionFailureInfo to store | 
|  | // template parameter and template argument information. | 
|  | struct DFIParamWithArguments : DFIArguments { | 
|  | TemplateParameter Param; | 
|  | }; | 
|  | // Structure used by DeductionFailureInfo to store template argument | 
|  | // information and the index of the problematic call argument. | 
|  | struct DFIDeducedMismatchArgs : DFIArguments { | 
|  | TemplateArgumentList *TemplateArgs; | 
|  | unsigned CallArgIndex; | 
|  | }; | 
|  | // Structure used by DeductionFailureInfo to store information about | 
|  | // unsatisfied constraints. | 
|  | struct CNSInfo { | 
|  | TemplateArgumentList *TemplateArgs; | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Convert from Sema's representation of template deduction information | 
|  | /// to the form used in overload-candidate information. | 
|  | DeductionFailureInfo | 
|  | clang::MakeDeductionFailureInfo(ASTContext &Context, | 
|  | TemplateDeductionResult TDK, | 
|  | TemplateDeductionInfo &Info) { | 
|  | DeductionFailureInfo Result; | 
|  | Result.Result = static_cast<unsigned>(TDK); | 
|  | Result.HasDiagnostic = false; | 
|  | switch (TDK) { | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | Result.Data = nullptr; | 
|  | break; | 
|  |  | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | Result.Data = Info.Param.getOpaqueValue(); | 
|  | break; | 
|  |  | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: { | 
|  | // FIXME: Should allocate from normal heap so that we can free this later. | 
|  | auto *Saved = new (Context) DFIDeducedMismatchArgs; | 
|  | Saved->FirstArg = Info.FirstArg; | 
|  | Saved->SecondArg = Info.SecondArg; | 
|  | Saved->TemplateArgs = Info.takeSugared(); | 
|  | Saved->CallArgIndex = Info.CallArgIndex; | 
|  | Result.Data = Saved; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::NonDeducedMismatch: { | 
|  | // FIXME: Should allocate from normal heap so that we can free this later. | 
|  | DFIArguments *Saved = new (Context) DFIArguments; | 
|  | Saved->FirstArg = Info.FirstArg; | 
|  | Saved->SecondArg = Info.SecondArg; | 
|  | Result.Data = Saved; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | case TemplateDeductionResult::Underqualified: { | 
|  | // FIXME: Should allocate from normal heap so that we can free this later. | 
|  | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; | 
|  | Saved->Param = Info.Param; | 
|  | Saved->FirstArg = Info.FirstArg; | 
|  | Saved->SecondArg = Info.SecondArg; | 
|  | Result.Data = Saved; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | Result.Data = Info.takeSugared(); | 
|  | if (Info.hasSFINAEDiagnostic()) { | 
|  | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( | 
|  | SourceLocation(), PartialDiagnostic::NullDiagnostic()); | 
|  | Info.takeSFINAEDiagnostic(*Diag); | 
|  | Result.HasDiagnostic = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: { | 
|  | CNSInfo *Saved = new (Context) CNSInfo; | 
|  | Saved->TemplateArgs = Info.takeSugared(); | 
|  | Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; | 
|  | Result.Data = Saved; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | llvm_unreachable("not a deduction failure"); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void DeductionFailureInfo::Destroy() { | 
|  | switch (static_cast<TemplateDeductionResult>(Result)) { | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | break; | 
|  |  | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | case TemplateDeductionResult::Underqualified: | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | case TemplateDeductionResult::NonDeducedMismatch: | 
|  | // FIXME: Destroy the data? | 
|  | Data = nullptr; | 
|  | break; | 
|  |  | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | // FIXME: Destroy the template argument list? | 
|  | Data = nullptr; | 
|  | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | 
|  | Diag->~PartialDiagnosticAt(); | 
|  | HasDiagnostic = false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: | 
|  | // FIXME: Destroy the template argument list? | 
|  | Data = nullptr; | 
|  | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | 
|  | Diag->~PartialDiagnosticAt(); | 
|  | HasDiagnostic = false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Unhandled | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { | 
|  | if (HasDiagnostic) | 
|  | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TemplateParameter DeductionFailureInfo::getTemplateParameter() { | 
|  | switch (static_cast<TemplateDeductionResult>(Result)) { | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | case TemplateDeductionResult::NonDeducedMismatch: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: | 
|  | return TemplateParameter(); | 
|  |  | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | return TemplateParameter::getFromOpaqueValue(Data); | 
|  |  | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | case TemplateDeductionResult::Underqualified: | 
|  | return static_cast<DFIParamWithArguments*>(Data)->Param; | 
|  |  | 
|  | // Unhandled | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return TemplateParameter(); | 
|  | } | 
|  |  | 
|  | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { | 
|  | switch (static_cast<TemplateDeductionResult>(Result)) { | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | case TemplateDeductionResult::Underqualified: | 
|  | case TemplateDeductionResult::NonDeducedMismatch: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | return nullptr; | 
|  |  | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; | 
|  |  | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | return static_cast<TemplateArgumentList*>(Data); | 
|  |  | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: | 
|  | return static_cast<CNSInfo*>(Data)->TemplateArgs; | 
|  |  | 
|  | // Unhandled | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TemplateArgument *DeductionFailureInfo::getFirstArg() { | 
|  | switch (static_cast<TemplateDeductionResult>(Result)) { | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: | 
|  | return nullptr; | 
|  |  | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | case TemplateDeductionResult::Underqualified: | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | case TemplateDeductionResult::NonDeducedMismatch: | 
|  | return &static_cast<DFIArguments*>(Data)->FirstArg; | 
|  |  | 
|  | // Unhandled | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TemplateArgument *DeductionFailureInfo::getSecondArg() { | 
|  | switch (static_cast<TemplateDeductionResult>(Result)) { | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: | 
|  | return nullptr; | 
|  |  | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | case TemplateDeductionResult::Underqualified: | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | case TemplateDeductionResult::NonDeducedMismatch: | 
|  | return &static_cast<DFIArguments*>(Data)->SecondArg; | 
|  |  | 
|  | // Unhandled | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::optional<unsigned> DeductionFailureInfo::getCallArgIndex() { | 
|  | switch (static_cast<TemplateDeductionResult>(Result)) { | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; | 
|  |  | 
|  | default: | 
|  | return std::nullopt; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X, | 
|  | const FunctionDecl *Y) { | 
|  | if (!X || !Y) | 
|  | return false; | 
|  | if (X->getNumParams() != Y->getNumParams()) | 
|  | return false; | 
|  | // FIXME: when do rewritten comparison operators | 
|  | // with explicit object parameters correspond? | 
|  | // https://cplusplus.github.io/CWG/issues/2797.html | 
|  | for (unsigned I = 0; I < X->getNumParams(); ++I) | 
|  | if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(), | 
|  | Y->getParamDecl(I)->getType())) | 
|  | return false; | 
|  | if (auto *FTX = X->getDescribedFunctionTemplate()) { | 
|  | auto *FTY = Y->getDescribedFunctionTemplate(); | 
|  | if (!FTY) | 
|  | return false; | 
|  | if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(), | 
|  | FTY->getTemplateParameters())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc, | 
|  | Expr *FirstOperand, FunctionDecl *EqFD) { | 
|  | assert(EqFD->getOverloadedOperator() == | 
|  | OverloadedOperatorKind::OO_EqualEqual); | 
|  | // C++2a [over.match.oper]p4: | 
|  | // A non-template function or function template F named operator== is a | 
|  | // rewrite target with first operand o unless a search for the name operator!= | 
|  | // in the scope S from the instantiation context of the operator expression | 
|  | // finds a function or function template that would correspond | 
|  | // ([basic.scope.scope]) to F if its name were operator==, where S is the | 
|  | // scope of the class type of o if F is a class member, and the namespace | 
|  | // scope of which F is a member otherwise. A function template specialization | 
|  | // named operator== is a rewrite target if its function template is a rewrite | 
|  | // target. | 
|  | DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName( | 
|  | OverloadedOperatorKind::OO_ExclaimEqual); | 
|  | if (isa<CXXMethodDecl>(EqFD)) { | 
|  | // If F is a class member, search scope is class type of first operand. | 
|  | QualType RHS = FirstOperand->getType(); | 
|  | auto *RHSRec = RHS->getAs<RecordType>(); | 
|  | if (!RHSRec) | 
|  | return true; | 
|  | LookupResult Members(S, NotEqOp, OpLoc, | 
|  | Sema::LookupNameKind::LookupMemberName); | 
|  | S.LookupQualifiedName(Members, RHSRec->getDecl()); | 
|  | Members.suppressAccessDiagnostics(); | 
|  | for (NamedDecl *Op : Members) | 
|  | if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction())) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | // Otherwise the search scope is the namespace scope of which F is a member. | 
|  | for (NamedDecl *Op : EqFD->getEnclosingNamespaceContext()->lookup(NotEqOp)) { | 
|  | auto *NotEqFD = Op->getAsFunction(); | 
|  | if (auto *UD = dyn_cast<UsingShadowDecl>(Op)) | 
|  | NotEqFD = UD->getUnderlyingDecl()->getAsFunction(); | 
|  | if (FunctionsCorrespond(S.Context, EqFD, NotEqFD) && S.isVisible(NotEqFD) && | 
|  | declaresSameEntity(cast<Decl>(EqFD->getEnclosingNamespaceContext()), | 
|  | cast<Decl>(Op->getLexicalDeclContext()))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed( | 
|  | OverloadedOperatorKind Op) { | 
|  | if (!AllowRewrittenCandidates) | 
|  | return false; | 
|  | return Op == OO_EqualEqual || Op == OO_Spaceship; | 
|  | } | 
|  |  | 
|  | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( | 
|  | Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) { | 
|  | auto Op = FD->getOverloadedOperator(); | 
|  | if (!allowsReversed(Op)) | 
|  | return false; | 
|  | if (Op == OverloadedOperatorKind::OO_EqualEqual) { | 
|  | assert(OriginalArgs.size() == 2); | 
|  | if (!shouldAddReversedEqEq( | 
|  | S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD)) | 
|  | return false; | 
|  | } | 
|  | // Don't bother adding a reversed candidate that can never be a better | 
|  | // match than the non-reversed version. | 
|  | return FD->getNumNonObjectParams() != 2 || | 
|  | !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), | 
|  | FD->getParamDecl(1)->getType()) || | 
|  | FD->hasAttr<EnableIfAttr>(); | 
|  | } | 
|  |  | 
|  | void OverloadCandidateSet::destroyCandidates() { | 
|  | for (iterator i = begin(), e = end(); i != e; ++i) { | 
|  | for (auto &C : i->Conversions) | 
|  | C.~ImplicitConversionSequence(); | 
|  | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) | 
|  | i->DeductionFailure.Destroy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OverloadCandidateSet::clear(CandidateSetKind CSK) { | 
|  | destroyCandidates(); | 
|  | SlabAllocator.Reset(); | 
|  | NumInlineBytesUsed = 0; | 
|  | Candidates.clear(); | 
|  | Functions.clear(); | 
|  | Kind = CSK; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class UnbridgedCastsSet { | 
|  | struct Entry { | 
|  | Expr **Addr; | 
|  | Expr *Saved; | 
|  | }; | 
|  | SmallVector<Entry, 2> Entries; | 
|  |  | 
|  | public: | 
|  | void save(Sema &S, Expr *&E) { | 
|  | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); | 
|  | Entry entry = { &E, E }; | 
|  | Entries.push_back(entry); | 
|  | E = S.stripARCUnbridgedCast(E); | 
|  | } | 
|  |  | 
|  | void restore() { | 
|  | for (SmallVectorImpl<Entry>::iterator | 
|  | i = Entries.begin(), e = Entries.end(); i != e; ++i) | 
|  | *i->Addr = i->Saved; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// checkPlaceholderForOverload - Do any interesting placeholder-like | 
|  | /// preprocessing on the given expression. | 
|  | /// | 
|  | /// \param unbridgedCasts a collection to which to add unbridged casts; | 
|  | ///   without this, they will be immediately diagnosed as errors | 
|  | /// | 
|  | /// Return true on unrecoverable error. | 
|  | static bool | 
|  | checkPlaceholderForOverload(Sema &S, Expr *&E, | 
|  | UnbridgedCastsSet *unbridgedCasts = nullptr) { | 
|  | if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) { | 
|  | // We can't handle overloaded expressions here because overload | 
|  | // resolution might reasonably tweak them. | 
|  | if (placeholder->getKind() == BuiltinType::Overload) return false; | 
|  |  | 
|  | // If the context potentially accepts unbridged ARC casts, strip | 
|  | // the unbridged cast and add it to the collection for later restoration. | 
|  | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && | 
|  | unbridgedCasts) { | 
|  | unbridgedCasts->save(S, E); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Go ahead and check everything else. | 
|  | ExprResult result = S.CheckPlaceholderExpr(E); | 
|  | if (result.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | E = result.get(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Nothing to do. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// checkArgPlaceholdersForOverload - Check a set of call operands for | 
|  | /// placeholders. | 
|  | static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args, | 
|  | UnbridgedCastsSet &unbridged) { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the given New declaration is an overload of the | 
|  | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if | 
|  | /// New and Old cannot be overloaded, e.g., if New has the same signature as | 
|  | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't | 
|  | /// functions (or function templates) at all. When it does return Ovl_Match or | 
|  | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be | 
|  | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying | 
|  | /// declaration. | 
|  | /// | 
|  | /// Example: Given the following input: | 
|  | /// | 
|  | ///   void f(int, float); // #1 | 
|  | ///   void f(int, int); // #2 | 
|  | ///   int f(int, int); // #3 | 
|  | /// | 
|  | /// When we process #1, there is no previous declaration of "f", so IsOverload | 
|  | /// will not be used. | 
|  | /// | 
|  | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing | 
|  | /// the parameter types, we see that #1 and #2 are overloaded (since they have | 
|  | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is | 
|  | /// unchanged. | 
|  | /// | 
|  | /// When we process #3, Old is an overload set containing #1 and #2. We compare | 
|  | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then | 
|  | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of | 
|  | /// functions are not part of the signature), IsOverload returns Ovl_Match and | 
|  | /// MatchedDecl will be set to point to the FunctionDecl for #2. | 
|  | /// | 
|  | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class | 
|  | /// by a using declaration. The rules for whether to hide shadow declarations | 
|  | /// ignore some properties which otherwise figure into a function template's | 
|  | /// signature. | 
|  | Sema::OverloadKind | 
|  | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, | 
|  | NamedDecl *&Match, bool NewIsUsingDecl) { | 
|  | for (LookupResult::iterator I = Old.begin(), E = Old.end(); | 
|  | I != E; ++I) { | 
|  | NamedDecl *OldD = *I; | 
|  |  | 
|  | bool OldIsUsingDecl = false; | 
|  | if (isa<UsingShadowDecl>(OldD)) { | 
|  | OldIsUsingDecl = true; | 
|  |  | 
|  | // We can always introduce two using declarations into the same | 
|  | // context, even if they have identical signatures. | 
|  | if (NewIsUsingDecl) continue; | 
|  |  | 
|  | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); | 
|  | } | 
|  |  | 
|  | // A using-declaration does not conflict with another declaration | 
|  | // if one of them is hidden. | 
|  | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) | 
|  | continue; | 
|  |  | 
|  | // If either declaration was introduced by a using declaration, | 
|  | // we'll need to use slightly different rules for matching. | 
|  | // Essentially, these rules are the normal rules, except that | 
|  | // function templates hide function templates with different | 
|  | // return types or template parameter lists. | 
|  | bool UseMemberUsingDeclRules = | 
|  | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && | 
|  | !New->getFriendObjectKind(); | 
|  |  | 
|  | if (FunctionDecl *OldF = OldD->getAsFunction()) { | 
|  | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { | 
|  | if (UseMemberUsingDeclRules && OldIsUsingDecl) { | 
|  | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!isa<FunctionTemplateDecl>(OldD) && | 
|  | !shouldLinkPossiblyHiddenDecl(*I, New)) | 
|  | continue; | 
|  |  | 
|  | Match = *I; | 
|  | return Ovl_Match; | 
|  | } | 
|  |  | 
|  | // Builtins that have custom typechecking or have a reference should | 
|  | // not be overloadable or redeclarable. | 
|  | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { | 
|  | Match = *I; | 
|  | return Ovl_NonFunction; | 
|  | } | 
|  | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { | 
|  | // We can overload with these, which can show up when doing | 
|  | // redeclaration checks for UsingDecls. | 
|  | assert(Old.getLookupKind() == LookupUsingDeclName); | 
|  | } else if (isa<TagDecl>(OldD)) { | 
|  | // We can always overload with tags by hiding them. | 
|  | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { | 
|  | // Optimistically assume that an unresolved using decl will | 
|  | // overload; if it doesn't, we'll have to diagnose during | 
|  | // template instantiation. | 
|  | // | 
|  | // Exception: if the scope is dependent and this is not a class | 
|  | // member, the using declaration can only introduce an enumerator. | 
|  | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { | 
|  | Match = *I; | 
|  | return Ovl_NonFunction; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13p1): | 
|  | //   Only function declarations can be overloaded; object and type | 
|  | //   declarations cannot be overloaded. | 
|  | Match = *I; | 
|  | return Ovl_NonFunction; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [temp.friend]p1: | 
|  | //   For a friend function declaration that is not a template declaration: | 
|  | //    -- if the name of the friend is a qualified or unqualified template-id, | 
|  | //       [...], otherwise | 
|  | //    -- if the name of the friend is a qualified-id and a matching | 
|  | //       non-template function is found in the specified class or namespace, | 
|  | //       the friend declaration refers to that function, otherwise, | 
|  | //    -- if the name of the friend is a qualified-id and a matching function | 
|  | //       template is found in the specified class or namespace, the friend | 
|  | //       declaration refers to the deduced specialization of that function | 
|  | //       template, otherwise | 
|  | //    -- the name shall be an unqualified-id [...] | 
|  | // If we get here for a qualified friend declaration, we've just reached the | 
|  | // third bullet. If the type of the friend is dependent, skip this lookup | 
|  | // until instantiation. | 
|  | if (New->getFriendObjectKind() && New->getQualifier() && | 
|  | !New->getDescribedFunctionTemplate() && | 
|  | !New->getDependentSpecializationInfo() && | 
|  | !New->getType()->isDependentType()) { | 
|  | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); | 
|  | TemplateSpecResult.addAllDecls(Old); | 
|  | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, | 
|  | /*QualifiedFriend*/true)) { | 
|  | New->setInvalidDecl(); | 
|  | return Ovl_Overload; | 
|  | } | 
|  |  | 
|  | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); | 
|  | return Ovl_Match; | 
|  | } | 
|  |  | 
|  | return Ovl_Overload; | 
|  | } | 
|  |  | 
|  | static bool IsOverloadOrOverrideImpl(Sema &SemaRef, FunctionDecl *New, | 
|  | FunctionDecl *Old, | 
|  | bool UseMemberUsingDeclRules, | 
|  | bool ConsiderCudaAttrs, | 
|  | bool UseOverrideRules = false) { | 
|  | // C++ [basic.start.main]p2: This function shall not be overloaded. | 
|  | if (New->isMain()) | 
|  | return false; | 
|  |  | 
|  | // MSVCRT user defined entry points cannot be overloaded. | 
|  | if (New->isMSVCRTEntryPoint()) | 
|  | return false; | 
|  |  | 
|  | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); | 
|  | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); | 
|  |  | 
|  | // C++ [temp.fct]p2: | 
|  | //   A function template can be overloaded with other function templates | 
|  | //   and with normal (non-template) functions. | 
|  | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) | 
|  | return true; | 
|  |  | 
|  | // Is the function New an overload of the function Old? | 
|  | QualType OldQType = SemaRef.Context.getCanonicalType(Old->getType()); | 
|  | QualType NewQType = SemaRef.Context.getCanonicalType(New->getType()); | 
|  |  | 
|  | // Compare the signatures (C++ 1.3.10) of the two functions to | 
|  | // determine whether they are overloads. If we find any mismatch | 
|  | // in the signature, they are overloads. | 
|  |  | 
|  | // If either of these functions is a K&R-style function (no | 
|  | // prototype), then we consider them to have matching signatures. | 
|  | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || | 
|  | isa<FunctionNoProtoType>(NewQType.getTypePtr())) | 
|  | return false; | 
|  |  | 
|  | const auto *OldType = cast<FunctionProtoType>(OldQType); | 
|  | const auto *NewType = cast<FunctionProtoType>(NewQType); | 
|  |  | 
|  | // The signature of a function includes the types of its | 
|  | // parameters (C++ 1.3.10), which includes the presence or absence | 
|  | // of the ellipsis; see C++ DR 357). | 
|  | if (OldQType != NewQType && OldType->isVariadic() != NewType->isVariadic()) | 
|  | return true; | 
|  |  | 
|  | // For member-like friends, the enclosing class is part of the signature. | 
|  | if ((New->isMemberLikeConstrainedFriend() || | 
|  | Old->isMemberLikeConstrainedFriend()) && | 
|  | !New->getLexicalDeclContext()->Equals(Old->getLexicalDeclContext())) | 
|  | return true; | 
|  |  | 
|  | // Compare the parameter lists. | 
|  | // This can only be done once we have establish that friend functions | 
|  | // inhabit the same context, otherwise we might tried to instantiate | 
|  | // references to non-instantiated entities during constraint substitution. | 
|  | // GH78101. | 
|  | if (NewTemplate) { | 
|  | // C++ [temp.over.link]p4: | 
|  | //   The signature of a function template consists of its function | 
|  | //   signature, its return type and its template parameter list. The names | 
|  | //   of the template parameters are significant only for establishing the | 
|  | //   relationship between the template parameters and the rest of the | 
|  | //   signature. | 
|  | // | 
|  | // We check the return type and template parameter lists for function | 
|  | // templates first; the remaining checks follow. | 
|  | bool SameTemplateParameterList = SemaRef.TemplateParameterListsAreEqual( | 
|  | NewTemplate, NewTemplate->getTemplateParameters(), OldTemplate, | 
|  | OldTemplate->getTemplateParameters(), false, Sema::TPL_TemplateMatch); | 
|  | bool SameReturnType = SemaRef.Context.hasSameType( | 
|  | Old->getDeclaredReturnType(), New->getDeclaredReturnType()); | 
|  | // FIXME(GH58571): Match template parameter list even for non-constrained | 
|  | // template heads. This currently ensures that the code prior to C++20 is | 
|  | // not newly broken. | 
|  | bool ConstraintsInTemplateHead = | 
|  | NewTemplate->getTemplateParameters()->hasAssociatedConstraints() || | 
|  | OldTemplate->getTemplateParameters()->hasAssociatedConstraints(); | 
|  | // C++ [namespace.udecl]p11: | 
|  | //   The set of declarations named by a using-declarator that inhabits a | 
|  | //   class C does not include member functions and member function | 
|  | //   templates of a base class that "correspond" to (and thus would | 
|  | //   conflict with) a declaration of a function or function template in | 
|  | //   C. | 
|  | // Comparing return types is not required for the "correspond" check to | 
|  | // decide whether a member introduced by a shadow declaration is hidden. | 
|  | if (UseMemberUsingDeclRules && ConstraintsInTemplateHead && | 
|  | !SameTemplateParameterList) | 
|  | return true; | 
|  | if (!UseMemberUsingDeclRules && | 
|  | (!SameTemplateParameterList || !SameReturnType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const auto *OldMethod = dyn_cast<CXXMethodDecl>(Old); | 
|  | const auto *NewMethod = dyn_cast<CXXMethodDecl>(New); | 
|  |  | 
|  | int OldParamsOffset = 0; | 
|  | int NewParamsOffset = 0; | 
|  |  | 
|  | // When determining if a method is an overload from a base class, act as if | 
|  | // the implicit object parameter are of the same type. | 
|  |  | 
|  | auto NormalizeQualifiers = [&](const CXXMethodDecl *M, Qualifiers Q) { | 
|  | if (M->isExplicitObjectMemberFunction()) | 
|  | return Q; | 
|  |  | 
|  | // We do not allow overloading based off of '__restrict'. | 
|  | Q.removeRestrict(); | 
|  |  | 
|  | // We may not have applied the implicit const for a constexpr member | 
|  | // function yet (because we haven't yet resolved whether this is a static | 
|  | // or non-static member function). Add it now, on the assumption that this | 
|  | // is a redeclaration of OldMethod. | 
|  | if (!SemaRef.getLangOpts().CPlusPlus14 && | 
|  | (M->isConstexpr() || M->isConsteval()) && | 
|  | !isa<CXXConstructorDecl>(NewMethod)) | 
|  | Q.addConst(); | 
|  | return Q; | 
|  | }; | 
|  |  | 
|  | auto CompareType = [&](QualType Base, QualType D) { | 
|  | auto BS = Base.getNonReferenceType().getCanonicalType().split(); | 
|  | BS.Quals = NormalizeQualifiers(OldMethod, BS.Quals); | 
|  |  | 
|  | auto DS = D.getNonReferenceType().getCanonicalType().split(); | 
|  | DS.Quals = NormalizeQualifiers(NewMethod, DS.Quals); | 
|  |  | 
|  | if (BS.Quals != DS.Quals) | 
|  | return false; | 
|  |  | 
|  | if (OldMethod->isImplicitObjectMemberFunction() && | 
|  | OldMethod->getParent() != NewMethod->getParent()) { | 
|  | QualType ParentType = | 
|  | SemaRef.Context.getTypeDeclType(OldMethod->getParent()) | 
|  | .getCanonicalType(); | 
|  | if (ParentType.getTypePtr() != BS.Ty) | 
|  | return false; | 
|  | BS.Ty = DS.Ty; | 
|  | } | 
|  |  | 
|  | // FIXME: should we ignore some type attributes here? | 
|  | if (BS.Ty != DS.Ty) | 
|  | return false; | 
|  |  | 
|  | if (Base->isLValueReferenceType()) | 
|  | return D->isLValueReferenceType(); | 
|  | return Base->isRValueReferenceType() == D->isRValueReferenceType(); | 
|  | }; | 
|  |  | 
|  | // If the function is a class member, its signature includes the | 
|  | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. | 
|  | auto DiagnoseInconsistentRefQualifiers = [&]() { | 
|  | if (SemaRef.LangOpts.CPlusPlus23) | 
|  | return false; | 
|  | if (OldMethod->getRefQualifier() == NewMethod->getRefQualifier()) | 
|  | return false; | 
|  | if (OldMethod->isExplicitObjectMemberFunction() || | 
|  | NewMethod->isExplicitObjectMemberFunction()) | 
|  | return false; | 
|  | if (!UseMemberUsingDeclRules && (OldMethod->getRefQualifier() == RQ_None || | 
|  | NewMethod->getRefQualifier() == RQ_None)) { | 
|  | SemaRef.Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) | 
|  | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); | 
|  | SemaRef.Diag(OldMethod->getLocation(), diag::note_previous_declaration); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (OldMethod && OldMethod->isExplicitObjectMemberFunction()) | 
|  | OldParamsOffset++; | 
|  | if (NewMethod && NewMethod->isExplicitObjectMemberFunction()) | 
|  | NewParamsOffset++; | 
|  |  | 
|  | if (OldType->getNumParams() - OldParamsOffset != | 
|  | NewType->getNumParams() - NewParamsOffset || | 
|  | !SemaRef.FunctionParamTypesAreEqual( | 
|  | {OldType->param_type_begin() + OldParamsOffset, | 
|  | OldType->param_type_end()}, | 
|  | {NewType->param_type_begin() + NewParamsOffset, | 
|  | NewType->param_type_end()}, | 
|  | nullptr)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (OldMethod && NewMethod && !OldMethod->isStatic() && | 
|  | !OldMethod->isStatic()) { | 
|  | bool HaveCorrespondingObjectParameters = [&](const CXXMethodDecl *Old, | 
|  | const CXXMethodDecl *New) { | 
|  | auto NewObjectType = New->getFunctionObjectParameterReferenceType(); | 
|  | auto OldObjectType = Old->getFunctionObjectParameterReferenceType(); | 
|  |  | 
|  | auto IsImplicitWithNoRefQual = [](const CXXMethodDecl *F) { | 
|  | return F->getRefQualifier() == RQ_None && | 
|  | !F->isExplicitObjectMemberFunction(); | 
|  | }; | 
|  |  | 
|  | if (IsImplicitWithNoRefQual(Old) != IsImplicitWithNoRefQual(New) && | 
|  | CompareType(OldObjectType.getNonReferenceType(), | 
|  | NewObjectType.getNonReferenceType())) | 
|  | return true; | 
|  | return CompareType(OldObjectType, NewObjectType); | 
|  | }(OldMethod, NewMethod); | 
|  |  | 
|  | if (!HaveCorrespondingObjectParameters) { | 
|  | if (DiagnoseInconsistentRefQualifiers()) | 
|  | return true; | 
|  | // CWG2554 | 
|  | // and, if at least one is an explicit object member function, ignoring | 
|  | // object parameters | 
|  | if (!UseOverrideRules || (!NewMethod->isExplicitObjectMemberFunction() && | 
|  | !OldMethod->isExplicitObjectMemberFunction())) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!UseOverrideRules) { | 
|  | Expr *NewRC = New->getTrailingRequiresClause(), | 
|  | *OldRC = Old->getTrailingRequiresClause(); | 
|  | if ((NewRC != nullptr) != (OldRC != nullptr)) | 
|  | return true; | 
|  |  | 
|  | if (NewRC && !SemaRef.AreConstraintExpressionsEqual(Old, OldRC, New, NewRC)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (NewMethod && OldMethod && OldMethod->isImplicitObjectMemberFunction() && | 
|  | NewMethod->isImplicitObjectMemberFunction()) { | 
|  | if (DiagnoseInconsistentRefQualifiers()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Though pass_object_size is placed on parameters and takes an argument, we | 
|  | // consider it to be a function-level modifier for the sake of function | 
|  | // identity. Either the function has one or more parameters with | 
|  | // pass_object_size or it doesn't. | 
|  | if (functionHasPassObjectSizeParams(New) != | 
|  | functionHasPassObjectSizeParams(Old)) | 
|  | return true; | 
|  |  | 
|  | // enable_if attributes are an order-sensitive part of the signature. | 
|  | for (specific_attr_iterator<EnableIfAttr> | 
|  | NewI = New->specific_attr_begin<EnableIfAttr>(), | 
|  | NewE = New->specific_attr_end<EnableIfAttr>(), | 
|  | OldI = Old->specific_attr_begin<EnableIfAttr>(), | 
|  | OldE = Old->specific_attr_end<EnableIfAttr>(); | 
|  | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { | 
|  | if (NewI == NewE || OldI == OldE) | 
|  | return true; | 
|  | llvm::FoldingSetNodeID NewID, OldID; | 
|  | NewI->getCond()->Profile(NewID, SemaRef.Context, true); | 
|  | OldI->getCond()->Profile(OldID, SemaRef.Context, true); | 
|  | if (NewID != OldID) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().CUDA && ConsiderCudaAttrs) { | 
|  | // Don't allow overloading of destructors.  (In theory we could, but it | 
|  | // would be a giant change to clang.) | 
|  | if (!isa<CXXDestructorDecl>(New)) { | 
|  | CUDAFunctionTarget NewTarget = SemaRef.CUDA().IdentifyTarget(New), | 
|  | OldTarget = SemaRef.CUDA().IdentifyTarget(Old); | 
|  | if (NewTarget != CUDAFunctionTarget::InvalidTarget) { | 
|  | assert((OldTarget != CUDAFunctionTarget::InvalidTarget) && | 
|  | "Unexpected invalid target."); | 
|  |  | 
|  | // Allow overloading of functions with same signature and different CUDA | 
|  | // target attributes. | 
|  | if (NewTarget != OldTarget) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The signatures match; this is not an overload. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, | 
|  | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { | 
|  | return IsOverloadOrOverrideImpl(*this, New, Old, UseMemberUsingDeclRules, | 
|  | ConsiderCudaAttrs); | 
|  | } | 
|  |  | 
|  | bool Sema::IsOverride(FunctionDecl *MD, FunctionDecl *BaseMD, | 
|  | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { | 
|  | return IsOverloadOrOverrideImpl(*this, MD, BaseMD, | 
|  | /*UseMemberUsingDeclRules=*/false, | 
|  | /*ConsiderCudaAttrs=*/true, | 
|  | /*UseOverrideRules=*/true); | 
|  | } | 
|  |  | 
|  | /// Tries a user-defined conversion from From to ToType. | 
|  | /// | 
|  | /// Produces an implicit conversion sequence for when a standard conversion | 
|  | /// is not an option. See TryImplicitConversion for more information. | 
|  | static ImplicitConversionSequence | 
|  | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | AllowedExplicit AllowExplicit, | 
|  | bool InOverloadResolution, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | ImplicitConversionSequence ICS; | 
|  |  | 
|  | if (SuppressUserConversions) { | 
|  | // We're not in the case above, so there is no conversion that | 
|  | // we can perform. | 
|  | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // Attempt user-defined conversion. | 
|  | OverloadCandidateSet Conversions(From->getExprLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, | 
|  | Conversions, AllowExplicit, | 
|  | AllowObjCConversionOnExplicit)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | ICS.setUserDefined(); | 
|  | // C++ [over.ics.user]p4: | 
|  | //   A conversion of an expression of class type to the same class | 
|  | //   type is given Exact Match rank, and a conversion of an | 
|  | //   expression of class type to a base class of that type is | 
|  | //   given Conversion rank, in spite of the fact that a copy | 
|  | //   constructor (i.e., a user-defined conversion function) is | 
|  | //   called for those cases. | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { | 
|  | QualType FromCanon | 
|  | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); | 
|  | QualType ToCanon | 
|  | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); | 
|  | if (Constructor->isCopyConstructor() && | 
|  | (FromCanon == ToCanon || | 
|  | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { | 
|  | // Turn this into a "standard" conversion sequence, so that it | 
|  | // gets ranked with standard conversion sequences. | 
|  | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.setAsIdentityConversion(); | 
|  | ICS.Standard.setFromType(From->getType()); | 
|  | ICS.Standard.setAllToTypes(ToType); | 
|  | ICS.Standard.CopyConstructor = Constructor; | 
|  | ICS.Standard.FoundCopyConstructor = Found; | 
|  | if (ToCanon != FromCanon) | 
|  | ICS.Standard.Second = ICK_Derived_To_Base; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | ICS.setAmbiguous(); | 
|  | ICS.Ambiguous.setFromType(From->getType()); | 
|  | ICS.Ambiguous.setToType(ToType); | 
|  | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); | 
|  | Cand != Conversions.end(); ++Cand) | 
|  | if (Cand->Best) | 
|  | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | 
|  | break; | 
|  |  | 
|  | // Fall through. | 
|  | case OR_No_Viable_Function: | 
|  | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | /// TryImplicitConversion - Attempt to perform an implicit conversion | 
|  | /// from the given expression (Expr) to the given type (ToType). This | 
|  | /// function returns an implicit conversion sequence that can be used | 
|  | /// to perform the initialization. Given | 
|  | /// | 
|  | ///   void f(float f); | 
|  | ///   void g(int i) { f(i); } | 
|  | /// | 
|  | /// this routine would produce an implicit conversion sequence to | 
|  | /// describe the initialization of f from i, which will be a standard | 
|  | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ | 
|  | /// 4.1) followed by a floating-integral conversion (C++ 4.9). | 
|  | // | 
|  | /// Note that this routine only determines how the conversion can be | 
|  | /// performed; it does not actually perform the conversion. As such, | 
|  | /// it will not produce any diagnostics if no conversion is available, | 
|  | /// but will instead return an implicit conversion sequence of kind | 
|  | /// "BadConversion". | 
|  | /// | 
|  | /// If @p SuppressUserConversions, then user-defined conversions are | 
|  | /// not permitted. | 
|  | /// If @p AllowExplicit, then explicit user-defined conversions are | 
|  | /// permitted. | 
|  | /// | 
|  | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C | 
|  | /// writeback conversion, which allows __autoreleasing id* parameters to | 
|  | /// be initialized with __strong id* or __weak id* arguments. | 
|  | static ImplicitConversionSequence | 
|  | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | AllowedExplicit AllowExplicit, | 
|  | bool InOverloadResolution, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | ImplicitConversionSequence ICS; | 
|  | if (IsStandardConversion(S, From, ToType, InOverloadResolution, | 
|  | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ | 
|  | ICS.setStandard(); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | if (!S.getLangOpts().CPlusPlus) { | 
|  | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // C++ [over.ics.user]p4: | 
|  | //   A conversion of an expression of class type to the same class | 
|  | //   type is given Exact Match rank, and a conversion of an | 
|  | //   expression of class type to a base class of that type is | 
|  | //   given Conversion rank, in spite of the fact that a copy/move | 
|  | //   constructor (i.e., a user-defined conversion function) is | 
|  | //   called for those cases. | 
|  | QualType FromType = From->getType(); | 
|  | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && | 
|  | (S.Context.hasSameUnqualifiedType(FromType, ToType) || | 
|  | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.setAsIdentityConversion(); | 
|  | ICS.Standard.setFromType(FromType); | 
|  | ICS.Standard.setAllToTypes(ToType); | 
|  |  | 
|  | // We don't actually check at this point whether there is a valid | 
|  | // copy/move constructor, since overloading just assumes that it | 
|  | // exists. When we actually perform initialization, we'll find the | 
|  | // appropriate constructor to copy the returned object, if needed. | 
|  | ICS.Standard.CopyConstructor = nullptr; | 
|  |  | 
|  | // Determine whether this is considered a derived-to-base conversion. | 
|  | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | ICS.Standard.Second = ICK_Derived_To_Base; | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | 
|  | AllowExplicit, InOverloadResolution, CStyle, | 
|  | AllowObjCWritebackConversion, | 
|  | AllowObjCConversionOnExplicit); | 
|  | } | 
|  |  | 
|  | ImplicitConversionSequence | 
|  | Sema::TryImplicitConversion(Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | AllowedExplicit AllowExplicit, | 
|  | bool InOverloadResolution, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion) { | 
|  | return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, | 
|  | AllowExplicit, InOverloadResolution, CStyle, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | /// PerformImplicitConversion - Perform an implicit conversion of the | 
|  | /// expression From to the type ToType. Returns the | 
|  | /// converted expression. Flavor is the kind of conversion we're | 
|  | /// performing, used in the error message. If @p AllowExplicit, | 
|  | /// explicit user-defined conversions are permitted. | 
|  | ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, | 
|  | AssignmentAction Action, | 
|  | bool AllowExplicit) { | 
|  | if (checkPlaceholderForOverload(*this, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Objective-C ARC: Determine whether we will allow the writeback conversion. | 
|  | bool AllowObjCWritebackConversion | 
|  | = getLangOpts().ObjCAutoRefCount && | 
|  | (Action == AA_Passing || Action == AA_Sending); | 
|  | if (getLangOpts().ObjC) | 
|  | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, | 
|  | From->getType(), From); | 
|  | ImplicitConversionSequence ICS = ::TryImplicitConversion( | 
|  | *this, From, ToType, | 
|  | /*SuppressUserConversions=*/false, | 
|  | AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | return PerformImplicitConversion(From, ToType, ICS, Action); | 
|  | } | 
|  |  | 
|  | /// Determine whether the conversion from FromType to ToType is a valid | 
|  | /// conversion that strips "noexcept" or "noreturn" off the nested function | 
|  | /// type. | 
|  | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, | 
|  | QualType &ResultTy) { | 
|  | if (Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return false; | 
|  |  | 
|  | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) | 
|  | //                    or F(t noexcept) -> F(t) | 
|  | // where F adds one of the following at most once: | 
|  | //   - a pointer | 
|  | //   - a member pointer | 
|  | //   - a block pointer | 
|  | // Changes here need matching changes in FindCompositePointerType. | 
|  | CanQualType CanTo = Context.getCanonicalType(ToType); | 
|  | CanQualType CanFrom = Context.getCanonicalType(FromType); | 
|  | Type::TypeClass TyClass = CanTo->getTypeClass(); | 
|  | if (TyClass != CanFrom->getTypeClass()) return false; | 
|  | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { | 
|  | if (TyClass == Type::Pointer) { | 
|  | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); | 
|  | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); | 
|  | } else if (TyClass == Type::BlockPointer) { | 
|  | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); | 
|  | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); | 
|  | } else if (TyClass == Type::MemberPointer) { | 
|  | auto ToMPT = CanTo.castAs<MemberPointerType>(); | 
|  | auto FromMPT = CanFrom.castAs<MemberPointerType>(); | 
|  | // A function pointer conversion cannot change the class of the function. | 
|  | if (ToMPT->getClass() != FromMPT->getClass()) | 
|  | return false; | 
|  | CanTo = ToMPT->getPointeeType(); | 
|  | CanFrom = FromMPT->getPointeeType(); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TyClass = CanTo->getTypeClass(); | 
|  | if (TyClass != CanFrom->getTypeClass()) return false; | 
|  | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto *FromFn = cast<FunctionType>(CanFrom); | 
|  | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | 
|  |  | 
|  | const auto *ToFn = cast<FunctionType>(CanTo); | 
|  | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // Drop 'noreturn' if not present in target type. | 
|  | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { | 
|  | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Drop 'noexcept' if not present in target type. | 
|  | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { | 
|  | const auto *ToFPT = cast<FunctionProtoType>(ToFn); | 
|  | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { | 
|  | FromFn = cast<FunctionType>( | 
|  | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), | 
|  | EST_None) | 
|  | .getTypePtr()); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid | 
|  | // only if the ExtParameterInfo lists of the two function prototypes can be | 
|  | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. | 
|  | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | 
|  | bool CanUseToFPT, CanUseFromFPT; | 
|  | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, | 
|  | CanUseFromFPT, NewParamInfos) && | 
|  | CanUseToFPT && !CanUseFromFPT) { | 
|  | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); | 
|  | ExtInfo.ExtParameterInfos = | 
|  | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); | 
|  | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), | 
|  | FromFPT->getParamTypes(), ExtInfo); | 
|  | FromFn = QT->getAs<FunctionType>(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Changed) | 
|  | return false; | 
|  |  | 
|  | assert(QualType(FromFn, 0).isCanonical()); | 
|  | if (QualType(FromFn, 0) != CanTo) return false; | 
|  |  | 
|  | ResultTy = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine whether the conversion from FromType to ToType is a valid | 
|  | /// floating point conversion. | 
|  | /// | 
|  | static bool IsFloatingPointConversion(Sema &S, QualType FromType, | 
|  | QualType ToType) { | 
|  | if (!FromType->isRealFloatingType() || !ToType->isRealFloatingType()) | 
|  | return false; | 
|  | // FIXME: disable conversions between long double, __ibm128 and __float128 | 
|  | // if their representation is different until there is back end support | 
|  | // We of course allow this conversion if long double is really double. | 
|  |  | 
|  | // Conversions between bfloat16 and float16 are currently not supported. | 
|  | if ((FromType->isBFloat16Type() && | 
|  | (ToType->isFloat16Type() || ToType->isHalfType())) || | 
|  | (ToType->isBFloat16Type() && | 
|  | (FromType->isFloat16Type() || FromType->isHalfType()))) | 
|  | return false; | 
|  |  | 
|  | // Conversions between IEEE-quad and IBM-extended semantics are not | 
|  | // permitted. | 
|  | const llvm::fltSemantics &FromSem = S.Context.getFloatTypeSemantics(FromType); | 
|  | const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); | 
|  | if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && | 
|  | &ToSem == &llvm::APFloat::IEEEquad()) || | 
|  | (&FromSem == &llvm::APFloat::IEEEquad() && | 
|  | &ToSem == &llvm::APFloat::PPCDoubleDouble())) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsVectorElementConversion(Sema &S, QualType FromType, | 
|  | QualType ToType, | 
|  | ImplicitConversionKind &ICK, Expr *From) { | 
|  | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return true; | 
|  |  | 
|  | if (S.IsFloatingPointPromotion(FromType, ToType)) { | 
|  | ICK = ICK_Floating_Promotion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsFloatingPointConversion(S, FromType, ToType)) { | 
|  | ICK = ICK_Floating_Conversion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ToType->isBooleanType() && FromType->isArithmeticType()) { | 
|  | ICK = ICK_Boolean_Conversion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((FromType->isRealFloatingType() && ToType->isIntegralType(S.Context)) || | 
|  | (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isRealFloatingType())) { | 
|  | ICK = ICK_Floating_Integral; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (S.IsIntegralPromotion(From, FromType, ToType)) { | 
|  | ICK = ICK_Integral_Promotion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isIntegralType(S.Context)) { | 
|  | ICK = ICK_Integral_Conversion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the conversion from FromType to ToType is a valid | 
|  | /// vector conversion. | 
|  | /// | 
|  | /// \param ICK Will be set to the vector conversion kind, if this is a vector | 
|  | /// conversion. | 
|  | static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType, | 
|  | ImplicitConversionKind &ICK, | 
|  | ImplicitConversionKind &ElConv, Expr *From, | 
|  | bool InOverloadResolution, bool CStyle) { | 
|  | // We need at least one of these types to be a vector type to have a vector | 
|  | // conversion. | 
|  | if (!ToType->isVectorType() && !FromType->isVectorType()) | 
|  | return false; | 
|  |  | 
|  | // Identical types require no conversions. | 
|  | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return false; | 
|  |  | 
|  | // There are no conversions between extended vector types, only identity. | 
|  | if (ToType->isExtVectorType()) { | 
|  | if (FromType->isExtVectorType()) { | 
|  | // HLSL allows implicit truncation of vector types. | 
|  | if (S.getLangOpts().HLSL) { | 
|  | unsigned FromElts = FromType->getAs<VectorType>()->getNumElements(); | 
|  | unsigned ToElts = ToType->getAs<VectorType>()->getNumElements(); | 
|  | if (FromElts < ToElts) | 
|  | return false; | 
|  | if (FromElts == ToElts) | 
|  | ICK = ICK_Identity; | 
|  | else | 
|  | ICK = ICK_HLSL_Vector_Truncation; | 
|  |  | 
|  | QualType FromElTy = FromType->getAs<VectorType>()->getElementType(); | 
|  | QualType ToElTy = ToType->getAs<VectorType>()->getElementType(); | 
|  | if (S.Context.hasSameUnqualifiedType(FromElTy, ToElTy)) | 
|  | return true; | 
|  | return IsVectorElementConversion(S, FromElTy, ToElTy, ElConv, From); | 
|  | } | 
|  | // There are no conversions between extended vector types other than the | 
|  | // identity conversion. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Vector splat from any arithmetic type to a vector. | 
|  | if (FromType->isArithmeticType()) { | 
|  | ICK = ICK_Vector_Splat; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ToType->isSVESizelessBuiltinType() || | 
|  | FromType->isSVESizelessBuiltinType()) | 
|  | if (S.Context.areCompatibleSveTypes(FromType, ToType) || | 
|  | S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { | 
|  | ICK = ICK_SVE_Vector_Conversion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ToType->isRVVSizelessBuiltinType() || | 
|  | FromType->isRVVSizelessBuiltinType()) | 
|  | if (S.Context.areCompatibleRVVTypes(FromType, ToType) || | 
|  | S.Context.areLaxCompatibleRVVTypes(FromType, ToType)) { | 
|  | ICK = ICK_RVV_Vector_Conversion; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We can perform the conversion between vector types in the following cases: | 
|  | // 1)vector types are equivalent AltiVec and GCC vector types | 
|  | // 2)lax vector conversions are permitted and the vector types are of the | 
|  | //   same size | 
|  | // 3)the destination type does not have the ARM MVE strict-polymorphism | 
|  | //   attribute, which inhibits lax vector conversion for overload resolution | 
|  | //   only | 
|  | if (ToType->isVectorType() && FromType->isVectorType()) { | 
|  | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || | 
|  | (S.isLaxVectorConversion(FromType, ToType) && | 
|  | !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { | 
|  | if (S.getASTContext().getTargetInfo().getTriple().isPPC() && | 
|  | S.isLaxVectorConversion(FromType, ToType) && | 
|  | S.anyAltivecTypes(FromType, ToType) && | 
|  | !S.Context.areCompatibleVectorTypes(FromType, ToType) && | 
|  | !InOverloadResolution && !CStyle) { | 
|  | S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all) | 
|  | << FromType << ToType; | 
|  | } | 
|  | ICK = ICK_Vector_Conversion; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle); | 
|  |  | 
|  | /// IsStandardConversion - Determines whether there is a standard | 
|  | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the | 
|  | /// expression From to the type ToType. Standard conversion sequences | 
|  | /// only consider non-class types; for conversions that involve class | 
|  | /// types, use TryImplicitConversion. If a conversion exists, SCS will | 
|  | /// contain the standard conversion sequence required to perform this | 
|  | /// conversion and this routine will return true. Otherwise, this | 
|  | /// routine will return false and the value of SCS is unspecified. | 
|  | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle, | 
|  | bool AllowObjCWritebackConversion) { | 
|  | QualType FromType = From->getType(); | 
|  |  | 
|  | // Standard conversions (C++ [conv]) | 
|  | SCS.setAsIdentityConversion(); | 
|  | SCS.IncompatibleObjC = false; | 
|  | SCS.setFromType(FromType); | 
|  | SCS.CopyConstructor = nullptr; | 
|  |  | 
|  | // There are no standard conversions for class types in C++, so | 
|  | // abort early. When overloading in C, however, we do permit them. | 
|  | if (S.getLangOpts().CPlusPlus && | 
|  | (FromType->isRecordType() || ToType->isRecordType())) | 
|  | return false; | 
|  |  | 
|  | // The first conversion can be an lvalue-to-rvalue conversion, | 
|  | // array-to-pointer conversion, or function-to-pointer conversion | 
|  | // (C++ 4p1). | 
|  |  | 
|  | if (FromType == S.Context.OverloadTy) { | 
|  | DeclAccessPair AccessPair; | 
|  | if (FunctionDecl *Fn | 
|  | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, | 
|  | AccessPair)) { | 
|  | // We were able to resolve the address of the overloaded function, | 
|  | // so we can convert to the type of that function. | 
|  | FromType = Fn->getType(); | 
|  | SCS.setFromType(FromType); | 
|  |  | 
|  | // we can sometimes resolve &foo<int> regardless of ToType, so check | 
|  | // if the type matches (identity) or we are converting to bool | 
|  | if (!S.Context.hasSameUnqualifiedType( | 
|  | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { | 
|  | QualType resultTy; | 
|  | // if the function type matches except for [[noreturn]], it's ok | 
|  | if (!S.IsFunctionConversion(FromType, | 
|  | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) | 
|  | // otherwise, only a boolean conversion is standard | 
|  | if (!ToType->isBooleanType()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the "from" expression is taking the address of an overloaded | 
|  | // function and recompute the FromType accordingly. Take advantage of the | 
|  | // fact that non-static member functions *must* have such an address-of | 
|  | // expression. | 
|  | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); | 
|  | if (Method && !Method->isStatic() && | 
|  | !Method->isExplicitObjectMemberFunction()) { | 
|  | assert(isa<UnaryOperator>(From->IgnoreParens()) && | 
|  | "Non-unary operator on non-static member address"); | 
|  | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() | 
|  | == UO_AddrOf && | 
|  | "Non-address-of operator on non-static member address"); | 
|  | const Type *ClassType | 
|  | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); | 
|  | FromType = S.Context.getMemberPointerType(FromType, ClassType); | 
|  | } else if (isa<UnaryOperator>(From->IgnoreParens())) { | 
|  | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == | 
|  | UO_AddrOf && | 
|  | "Non-address-of operator for overloaded function expression"); | 
|  | FromType = S.Context.getPointerType(FromType); | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Lvalue-to-rvalue conversion (C++11 4.1): | 
|  | //   A glvalue (3.10) of a non-function, non-array type T can | 
|  | //   be converted to a prvalue. | 
|  | bool argIsLValue = From->isGLValue(); | 
|  | if (argIsLValue && !FromType->canDecayToPointerType() && | 
|  | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { | 
|  | SCS.First = ICK_Lvalue_To_Rvalue; | 
|  |  | 
|  | // C11 6.3.2.1p2: | 
|  | //   ... if the lvalue has atomic type, the value has the non-atomic version | 
|  | //   of the type of the lvalue ... | 
|  | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) | 
|  | FromType = Atomic->getValueType(); | 
|  |  | 
|  | // If T is a non-class type, the type of the rvalue is the | 
|  | // cv-unqualified version of T. Otherwise, the type of the rvalue | 
|  | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we | 
|  | // just strip the qualifiers because they don't matter. | 
|  | FromType = FromType.getUnqualifiedType(); | 
|  | } else if (S.getLangOpts().HLSL && FromType->isConstantArrayType() && | 
|  | ToType->isArrayParameterType()) { | 
|  | // HLSL constant array parameters do not decay, so if the argument is a | 
|  | // constant array and the parameter is an ArrayParameterType we have special | 
|  | // handling here. | 
|  | FromType = S.Context.getArrayParameterType(FromType); | 
|  | if (S.Context.getCanonicalType(FromType) != | 
|  | S.Context.getCanonicalType(ToType)) | 
|  | return false; | 
|  |  | 
|  | SCS.First = ICK_HLSL_Array_RValue; | 
|  | SCS.setAllToTypes(ToType); | 
|  | return true; | 
|  | } else if (FromType->isArrayType()) { | 
|  | // Array-to-pointer conversion (C++ 4.2) | 
|  | SCS.First = ICK_Array_To_Pointer; | 
|  |  | 
|  | // An lvalue or rvalue of type "array of N T" or "array of unknown | 
|  | // bound of T" can be converted to an rvalue of type "pointer to | 
|  | // T" (C++ 4.2p1). | 
|  | FromType = S.Context.getArrayDecayedType(FromType); | 
|  |  | 
|  | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { | 
|  | // This conversion is deprecated in C++03 (D.4) | 
|  | SCS.DeprecatedStringLiteralToCharPtr = true; | 
|  |  | 
|  | // For the purpose of ranking in overload resolution | 
|  | // (13.3.3.1.1), this conversion is considered an | 
|  | // array-to-pointer conversion followed by a qualification | 
|  | // conversion (4.4). (C++ 4.2p2) | 
|  | SCS.Second = ICK_Identity; | 
|  | SCS.Third = ICK_Qualification; | 
|  | SCS.QualificationIncludesObjCLifetime = false; | 
|  | SCS.setAllToTypes(FromType); | 
|  | return true; | 
|  | } | 
|  | } else if (FromType->isFunctionType() && argIsLValue) { | 
|  | // Function-to-pointer conversion (C++ 4.3). | 
|  | SCS.First = ICK_Function_To_Pointer; | 
|  |  | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | 
|  | if (!S.checkAddressOfFunctionIsAvailable(FD)) | 
|  | return false; | 
|  |  | 
|  | // An lvalue of function type T can be converted to an rvalue of | 
|  | // type "pointer to T." The result is a pointer to the | 
|  | // function. (C++ 4.3p1). | 
|  | FromType = S.Context.getPointerType(FromType); | 
|  | } else { | 
|  | // We don't require any conversions for the first step. | 
|  | SCS.First = ICK_Identity; | 
|  | } | 
|  | SCS.setToType(0, FromType); | 
|  |  | 
|  | // The second conversion can be an integral promotion, floating | 
|  | // point promotion, integral conversion, floating point conversion, | 
|  | // floating-integral conversion, pointer conversion, | 
|  | // pointer-to-member conversion, or boolean conversion (C++ 4p1). | 
|  | // For overloading in C, this can also be a "compatible-type" | 
|  | // conversion. | 
|  | bool IncompatibleObjC = false; | 
|  | ImplicitConversionKind SecondICK = ICK_Identity; | 
|  | ImplicitConversionKind ElementICK = ICK_Identity; | 
|  | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { | 
|  | // The unqualified versions of the types are the same: there's no | 
|  | // conversion to do. | 
|  | SCS.Second = ICK_Identity; | 
|  | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { | 
|  | // Integral promotion (C++ 4.5). | 
|  | SCS.Second = ICK_Integral_Promotion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { | 
|  | // Floating point promotion (C++ 4.6). | 
|  | SCS.Second = ICK_Floating_Promotion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsComplexPromotion(FromType, ToType)) { | 
|  | // Complex promotion (Clang extension) | 
|  | SCS.Second = ICK_Complex_Promotion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (ToType->isBooleanType() && | 
|  | (FromType->isArithmeticType() || | 
|  | FromType->isAnyPointerType() || | 
|  | FromType->isBlockPointerType() || | 
|  | FromType->isMemberPointerType())) { | 
|  | // Boolean conversions (C++ 4.12). | 
|  | SCS.Second = ICK_Boolean_Conversion; | 
|  | FromType = S.Context.BoolTy; | 
|  | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isIntegralType(S.Context)) { | 
|  | // Integral conversions (C++ 4.7). | 
|  | SCS.Second = ICK_Integral_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { | 
|  | // Complex conversions (C99 6.3.1.6) | 
|  | SCS.Second = ICK_Complex_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || | 
|  | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { | 
|  | // Complex-real conversions (C99 6.3.1.7) | 
|  | SCS.Second = ICK_Complex_Real; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (IsFloatingPointConversion(S, FromType, ToType)) { | 
|  | // Floating point conversions (C++ 4.8). | 
|  | SCS.Second = ICK_Floating_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if ((FromType->isRealFloatingType() && | 
|  | ToType->isIntegralType(S.Context)) || | 
|  | (FromType->isIntegralOrUnscopedEnumerationType() && | 
|  | ToType->isRealFloatingType())) { | 
|  |  | 
|  | // Floating-integral conversions (C++ 4.9). | 
|  | SCS.Second = ICK_Floating_Integral; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { | 
|  | SCS.Second = ICK_Block_Pointer_Conversion; | 
|  | } else if (AllowObjCWritebackConversion && | 
|  | S.isObjCWritebackConversion(FromType, ToType, FromType)) { | 
|  | SCS.Second = ICK_Writeback_Conversion; | 
|  | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, | 
|  | FromType, IncompatibleObjC)) { | 
|  | // Pointer conversions (C++ 4.10). | 
|  | SCS.Second = ICK_Pointer_Conversion; | 
|  | SCS.IncompatibleObjC = IncompatibleObjC; | 
|  | FromType = FromType.getUnqualifiedType(); | 
|  | } else if (S.IsMemberPointerConversion(From, FromType, ToType, | 
|  | InOverloadResolution, FromType)) { | 
|  | // Pointer to member conversions (4.11). | 
|  | SCS.Second = ICK_Pointer_Member; | 
|  | } else if (IsVectorConversion(S, FromType, ToType, SecondICK, ElementICK, | 
|  | From, InOverloadResolution, CStyle)) { | 
|  | SCS.Second = SecondICK; | 
|  | SCS.Element = ElementICK; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (!S.getLangOpts().CPlusPlus && | 
|  | S.Context.typesAreCompatible(ToType, FromType)) { | 
|  | // Compatible conversions (Clang extension for C function overloading) | 
|  | SCS.Second = ICK_Compatible_Conversion; | 
|  | FromType = ToType.getUnqualifiedType(); | 
|  | } else if (IsTransparentUnionStandardConversion( | 
|  | S, From, ToType, InOverloadResolution, SCS, CStyle)) { | 
|  | SCS.Second = ICK_TransparentUnionConversion; | 
|  | FromType = ToType; | 
|  | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, | 
|  | CStyle)) { | 
|  | // tryAtomicConversion has updated the standard conversion sequence | 
|  | // appropriately. | 
|  | return true; | 
|  | } else if (ToType->isEventT() && | 
|  | From->isIntegerConstantExpr(S.getASTContext()) && | 
|  | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { | 
|  | SCS.Second = ICK_Zero_Event_Conversion; | 
|  | FromType = ToType; | 
|  | } else if (ToType->isQueueT() && | 
|  | From->isIntegerConstantExpr(S.getASTContext()) && | 
|  | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { | 
|  | SCS.Second = ICK_Zero_Queue_Conversion; | 
|  | FromType = ToType; | 
|  | } else if (ToType->isSamplerT() && | 
|  | From->isIntegerConstantExpr(S.getASTContext())) { | 
|  | SCS.Second = ICK_Compatible_Conversion; | 
|  | FromType = ToType; | 
|  | } else if ((ToType->isFixedPointType() && | 
|  | FromType->isConvertibleToFixedPointType()) || | 
|  | (FromType->isFixedPointType() && | 
|  | ToType->isConvertibleToFixedPointType())) { | 
|  | SCS.Second = ICK_Fixed_Point_Conversion; | 
|  | FromType = ToType; | 
|  | } else { | 
|  | // No second conversion required. | 
|  | SCS.Second = ICK_Identity; | 
|  | } | 
|  | SCS.setToType(1, FromType); | 
|  |  | 
|  | // The third conversion can be a function pointer conversion or a | 
|  | // qualification conversion (C++ [conv.fctptr], [conv.qual]). | 
|  | bool ObjCLifetimeConversion; | 
|  | if (S.IsFunctionConversion(FromType, ToType, FromType)) { | 
|  | // Function pointer conversions (removing 'noexcept') including removal of | 
|  | // 'noreturn' (Clang extension). | 
|  | SCS.Third = ICK_Function_Conversion; | 
|  | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, | 
|  | ObjCLifetimeConversion)) { | 
|  | SCS.Third = ICK_Qualification; | 
|  | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; | 
|  | FromType = ToType; | 
|  | } else { | 
|  | // No conversion required | 
|  | SCS.Third = ICK_Identity; | 
|  | } | 
|  |  | 
|  | // C++ [over.best.ics]p6: | 
|  | //   [...] Any difference in top-level cv-qualification is | 
|  | //   subsumed by the initialization itself and does not constitute | 
|  | //   a conversion. [...] | 
|  | QualType CanonFrom = S.Context.getCanonicalType(FromType); | 
|  | QualType CanonTo = S.Context.getCanonicalType(ToType); | 
|  | if (CanonFrom.getLocalUnqualifiedType() | 
|  | == CanonTo.getLocalUnqualifiedType() && | 
|  | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { | 
|  | FromType = ToType; | 
|  | CanonFrom = CanonTo; | 
|  | } | 
|  |  | 
|  | SCS.setToType(2, FromType); | 
|  |  | 
|  | if (CanonFrom == CanonTo) | 
|  | return true; | 
|  |  | 
|  | // If we have not converted the argument type to the parameter type, | 
|  | // this is a bad conversion sequence, unless we're resolving an overload in C. | 
|  | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) | 
|  | return false; | 
|  |  | 
|  | ExprResult ER = ExprResult{From}; | 
|  | Sema::AssignConvertType Conv = | 
|  | S.CheckSingleAssignmentConstraints(ToType, ER, | 
|  | /*Diagnose=*/false, | 
|  | /*DiagnoseCFAudited=*/false, | 
|  | /*ConvertRHS=*/false); | 
|  | ImplicitConversionKind SecondConv; | 
|  | switch (Conv) { | 
|  | case Sema::Compatible: | 
|  | SecondConv = ICK_C_Only_Conversion; | 
|  | break; | 
|  | // For our purposes, discarding qualifiers is just as bad as using an | 
|  | // incompatible pointer. Note that an IncompatiblePointer conversion can drop | 
|  | // qualifiers, as well. | 
|  | case Sema::CompatiblePointerDiscardsQualifiers: | 
|  | case Sema::IncompatiblePointer: | 
|  | case Sema::IncompatiblePointerSign: | 
|  | SecondConv = ICK_Incompatible_Pointer_Conversion; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // First can only be an lvalue conversion, so we pretend that this was the | 
|  | // second conversion. First should already be valid from earlier in the | 
|  | // function. | 
|  | SCS.Second = SecondConv; | 
|  | SCS.setToType(1, ToType); | 
|  |  | 
|  | // Third is Identity, because Second should rank us worse than any other | 
|  | // conversion. This could also be ICK_Qualification, but it's simpler to just | 
|  | // lump everything in with the second conversion, and we don't gain anything | 
|  | // from making this ICK_Qualification. | 
|  | SCS.Third = ICK_Identity; | 
|  | SCS.setToType(2, ToType); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | IsTransparentUnionStandardConversion(Sema &S, Expr* From, | 
|  | QualType &ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle) { | 
|  |  | 
|  | const RecordType *UT = ToType->getAsUnionType(); | 
|  | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
|  | return false; | 
|  | // The field to initialize within the transparent union. | 
|  | RecordDecl *UD = UT->getDecl(); | 
|  | // It's compatible if the expression matches any of the fields. | 
|  | for (const auto *it : UD->fields()) { | 
|  | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, | 
|  | CStyle, /*AllowObjCWritebackConversion=*/false)) { | 
|  | ToType = it->getType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsIntegralPromotion - Determines whether the conversion from the | 
|  | /// expression From (whose potentially-adjusted type is FromType) to | 
|  | /// ToType is an integral promotion (C++ 4.5). If so, returns true and | 
|  | /// sets PromotedType to the promoted type. | 
|  | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { | 
|  | const BuiltinType *To = ToType->getAs<BuiltinType>(); | 
|  | // All integers are built-in. | 
|  | if (!To) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // An rvalue of type char, signed char, unsigned char, short int, or | 
|  | // unsigned short int can be converted to an rvalue of type int if | 
|  | // int can represent all the values of the source type; otherwise, | 
|  | // the source rvalue can be converted to an rvalue of type unsigned | 
|  | // int (C++ 4.5p1). | 
|  | if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() && | 
|  | !FromType->isEnumeralType()) { | 
|  | if ( // We can promote any signed, promotable integer type to an int | 
|  | (FromType->isSignedIntegerType() || | 
|  | // We can promote any unsigned integer type whose size is | 
|  | // less than int to an int. | 
|  | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { | 
|  | return To->getKind() == BuiltinType::Int; | 
|  | } | 
|  |  | 
|  | return To->getKind() == BuiltinType::UInt; | 
|  | } | 
|  |  | 
|  | // C++11 [conv.prom]p3: | 
|  | //   A prvalue of an unscoped enumeration type whose underlying type is not | 
|  | //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the | 
|  | //   following types that can represent all the values of the enumeration | 
|  | //   (i.e., the values in the range bmin to bmax as described in 7.2): int, | 
|  | //   unsigned int, long int, unsigned long int, long long int, or unsigned | 
|  | //   long long int. If none of the types in that list can represent all the | 
|  | //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration | 
|  | //   type can be converted to an rvalue a prvalue of the extended integer type | 
|  | //   with lowest integer conversion rank (4.13) greater than the rank of long | 
|  | //   long in which all the values of the enumeration can be represented. If | 
|  | //   there are two such extended types, the signed one is chosen. | 
|  | // C++11 [conv.prom]p4: | 
|  | //   A prvalue of an unscoped enumeration type whose underlying type is fixed | 
|  | //   can be converted to a prvalue of its underlying type. Moreover, if | 
|  | //   integral promotion can be applied to its underlying type, a prvalue of an | 
|  | //   unscoped enumeration type whose underlying type is fixed can also be | 
|  | //   converted to a prvalue of the promoted underlying type. | 
|  | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { | 
|  | // C++0x 7.2p9: Note that this implicit enum to int conversion is not | 
|  | // provided for a scoped enumeration. | 
|  | if (FromEnumType->getDecl()->isScoped()) | 
|  | return false; | 
|  |  | 
|  | // We can perform an integral promotion to the underlying type of the enum, | 
|  | // even if that's not the promoted type. Note that the check for promoting | 
|  | // the underlying type is based on the type alone, and does not consider | 
|  | // the bitfield-ness of the actual source expression. | 
|  | if (FromEnumType->getDecl()->isFixed()) { | 
|  | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); | 
|  | return Context.hasSameUnqualifiedType(Underlying, ToType) || | 
|  | IsIntegralPromotion(nullptr, Underlying, ToType); | 
|  | } | 
|  |  | 
|  | // We have already pre-calculated the promotion type, so this is trivial. | 
|  | if (ToType->isIntegerType() && | 
|  | isCompleteType(From->getBeginLoc(), FromType)) | 
|  | return Context.hasSameUnqualifiedType( | 
|  | ToType, FromEnumType->getDecl()->getPromotionType()); | 
|  |  | 
|  | // C++ [conv.prom]p5: | 
|  | //   If the bit-field has an enumerated type, it is treated as any other | 
|  | //   value of that type for promotion purposes. | 
|  | // | 
|  | // ... so do not fall through into the bit-field checks below in C++. | 
|  | if (getLangOpts().CPlusPlus) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // C++0x [conv.prom]p2: | 
|  | //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted | 
|  | //   to an rvalue a prvalue of the first of the following types that can | 
|  | //   represent all the values of its underlying type: int, unsigned int, | 
|  | //   long int, unsigned long int, long long int, or unsigned long long int. | 
|  | //   If none of the types in that list can represent all the values of its | 
|  | //   underlying type, an rvalue a prvalue of type char16_t, char32_t, | 
|  | //   or wchar_t can be converted to an rvalue a prvalue of its underlying | 
|  | //   type. | 
|  | if (FromType->isAnyCharacterType() && !FromType->isCharType() && | 
|  | ToType->isIntegerType()) { | 
|  | // Determine whether the type we're converting from is signed or | 
|  | // unsigned. | 
|  | bool FromIsSigned = FromType->isSignedIntegerType(); | 
|  | uint64_t FromSize = Context.getTypeSize(FromType); | 
|  |  | 
|  | // The types we'll try to promote to, in the appropriate | 
|  | // order. Try each of these types. | 
|  | QualType PromoteTypes[6] = { | 
|  | Context.IntTy, Context.UnsignedIntTy, | 
|  | Context.LongTy, Context.UnsignedLongTy , | 
|  | Context.LongLongTy, Context.UnsignedLongLongTy | 
|  | }; | 
|  | for (int Idx = 0; Idx < 6; ++Idx) { | 
|  | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); | 
|  | if (FromSize < ToSize || | 
|  | (FromSize == ToSize && | 
|  | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { | 
|  | // We found the type that we can promote to. If this is the | 
|  | // type we wanted, we have a promotion. Otherwise, no | 
|  | // promotion. | 
|  | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // An rvalue for an integral bit-field (9.6) can be converted to an | 
|  | // rvalue of type int if int can represent all the values of the | 
|  | // bit-field; otherwise, it can be converted to unsigned int if | 
|  | // unsigned int can represent all the values of the bit-field. If | 
|  | // the bit-field is larger yet, no integral promotion applies to | 
|  | // it. If the bit-field has an enumerated type, it is treated as any | 
|  | // other value of that type for promotion purposes (C++ 4.5p3). | 
|  | // FIXME: We should delay checking of bit-fields until we actually perform the | 
|  | // conversion. | 
|  | // | 
|  | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be | 
|  | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum | 
|  | // bit-fields and those whose underlying type is larger than int) for GCC | 
|  | // compatibility. | 
|  | if (From) { | 
|  | if (FieldDecl *MemberDecl = From->getSourceBitField()) { | 
|  | std::optional<llvm::APSInt> BitWidth; | 
|  | if (FromType->isIntegralType(Context) && | 
|  | (BitWidth = | 
|  | MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { | 
|  | llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); | 
|  | ToSize = Context.getTypeSize(ToType); | 
|  |  | 
|  | // Are we promoting to an int from a bitfield that fits in an int? | 
|  | if (*BitWidth < ToSize || | 
|  | (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { | 
|  | return To->getKind() == BuiltinType::Int; | 
|  | } | 
|  |  | 
|  | // Are we promoting to an unsigned int from an unsigned bitfield | 
|  | // that fits into an unsigned int? | 
|  | if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { | 
|  | return To->getKind() == BuiltinType::UInt; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // An rvalue of type bool can be converted to an rvalue of type int, | 
|  | // with false becoming zero and true becoming one (C++ 4.5p4). | 
|  | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In HLSL an rvalue of integral type can be promoted to an rvalue of a larger | 
|  | // integral type. | 
|  | if (Context.getLangOpts().HLSL) | 
|  | return Context.getTypeSize(FromType) < Context.getTypeSize(ToType); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsFloatingPointPromotion - Determines whether the conversion from | 
|  | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, | 
|  | /// returns true and sets PromotedType to the promoted type. | 
|  | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { | 
|  | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) | 
|  | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { | 
|  | /// An rvalue of type float can be converted to an rvalue of type | 
|  | /// double. (C++ 4.6p1). | 
|  | if (FromBuiltin->getKind() == BuiltinType::Float && | 
|  | ToBuiltin->getKind() == BuiltinType::Double) | 
|  | return true; | 
|  |  | 
|  | // C99 6.3.1.5p1: | 
|  | //   When a float is promoted to double or long double, or a | 
|  | //   double is promoted to long double [...]. | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | (FromBuiltin->getKind() == BuiltinType::Float || | 
|  | FromBuiltin->getKind() == BuiltinType::Double) && | 
|  | (ToBuiltin->getKind() == BuiltinType::LongDouble || | 
|  | ToBuiltin->getKind() == BuiltinType::Float128 || | 
|  | ToBuiltin->getKind() == BuiltinType::Ibm128)) | 
|  | return true; | 
|  |  | 
|  | // Half can be promoted to float. | 
|  | if (!getLangOpts().NativeHalfType && | 
|  | FromBuiltin->getKind() == BuiltinType::Half && | 
|  | ToBuiltin->getKind() == BuiltinType::Float) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine if a conversion is a complex promotion. | 
|  | /// | 
|  | /// A complex promotion is defined as a complex -> complex conversion | 
|  | /// where the conversion between the underlying real types is a | 
|  | /// floating-point or integral promotion. | 
|  | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { | 
|  | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); | 
|  | if (!FromComplex) | 
|  | return false; | 
|  |  | 
|  | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); | 
|  | if (!ToComplex) | 
|  | return false; | 
|  |  | 
|  | return IsFloatingPointPromotion(FromComplex->getElementType(), | 
|  | ToComplex->getElementType()) || | 
|  | IsIntegralPromotion(nullptr, FromComplex->getElementType(), | 
|  | ToComplex->getElementType()); | 
|  | } | 
|  |  | 
|  | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from | 
|  | /// the pointer type FromPtr to a pointer to type ToPointee, with the | 
|  | /// same type qualifiers as FromPtr has on its pointee type. ToType, | 
|  | /// if non-empty, will be a pointer to ToType that may or may not have | 
|  | /// the right set of qualifiers on its pointee. | 
|  | /// | 
|  | static QualType | 
|  | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, | 
|  | QualType ToPointee, QualType ToType, | 
|  | ASTContext &Context, | 
|  | bool StripObjCLifetime = false) { | 
|  | assert((FromPtr->getTypeClass() == Type::Pointer || | 
|  | FromPtr->getTypeClass() == Type::ObjCObjectPointer) && | 
|  | "Invalid similarly-qualified pointer type"); | 
|  |  | 
|  | /// Conversions to 'id' subsume cv-qualifier conversions. | 
|  | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) | 
|  | return ToType.getUnqualifiedType(); | 
|  |  | 
|  | QualType CanonFromPointee | 
|  | = Context.getCanonicalType(FromPtr->getPointeeType()); | 
|  | QualType CanonToPointee = Context.getCanonicalType(ToPointee); | 
|  | Qualifiers Quals = CanonFromPointee.getQualifiers(); | 
|  |  | 
|  | if (StripObjCLifetime) | 
|  | Quals.removeObjCLifetime(); | 
|  |  | 
|  | // Exact qualifier match -> return the pointer type we're converting to. | 
|  | if (CanonToPointee.getLocalQualifiers() == Quals) { | 
|  | // ToType is exactly what we need. Return it. | 
|  | if (!ToType.isNull()) | 
|  | return ToType.getUnqualifiedType(); | 
|  |  | 
|  | // Build a pointer to ToPointee. It has the right qualifiers | 
|  | // already. | 
|  | if (isa<ObjCObjectPointerType>(ToType)) | 
|  | return Context.getObjCObjectPointerType(ToPointee); | 
|  | return Context.getPointerType(ToPointee); | 
|  | } | 
|  |  | 
|  | // Just build a canonical type that has the right qualifiers. | 
|  | QualType QualifiedCanonToPointee | 
|  | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); | 
|  |  | 
|  | if (isa<ObjCObjectPointerType>(ToType)) | 
|  | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); | 
|  | return Context.getPointerType(QualifiedCanonToPointee); | 
|  | } | 
|  |  | 
|  | static bool isNullPointerConstantForConversion(Expr *Expr, | 
|  | bool InOverloadResolution, | 
|  | ASTContext &Context) { | 
|  | // Handle value-dependent integral null pointer constants correctly. | 
|  | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 | 
|  | if (Expr->isValueDependent() && !Expr->isTypeDependent() && | 
|  | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) | 
|  | return !InOverloadResolution; | 
|  |  | 
|  | return Expr->isNullPointerConstant(Context, | 
|  | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | 
|  | : Expr::NPC_ValueDependentIsNull); | 
|  | } | 
|  |  | 
|  | /// IsPointerConversion - Determines whether the conversion of the | 
|  | /// expression From, which has the (possibly adjusted) type FromType, | 
|  | /// can be converted to the type ToType via a pointer conversion (C++ | 
|  | /// 4.10). If so, returns true and places the converted type (that | 
|  | /// might differ from ToType in its cv-qualifiers at some level) into | 
|  | /// ConvertedType. | 
|  | /// | 
|  | /// This routine also supports conversions to and from block pointers | 
|  | /// and conversions with Objective-C's 'id', 'id<protocols...>', and | 
|  | /// pointers to interfaces. FIXME: Once we've determined the | 
|  | /// appropriate overloading rules for Objective-C, we may want to | 
|  | /// split the Objective-C checks into a different routine; however, | 
|  | /// GCC seems to consider all of these conversions to be pointer | 
|  | /// conversions, so for now they live here. IncompatibleObjC will be | 
|  | /// set if the conversion is an allowed Objective-C conversion that | 
|  | /// should result in a warning. | 
|  | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | QualType& ConvertedType, | 
|  | bool &IncompatibleObjC) { | 
|  | IncompatibleObjC = false; | 
|  | if (isObjCPointerConversion(FromType, ToType, ConvertedType, | 
|  | IncompatibleObjC)) | 
|  | return true; | 
|  |  | 
|  | // Conversion from a null pointer constant to any Objective-C pointer type. | 
|  | if (ToType->isObjCObjectPointerType() && | 
|  | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Blocks: Block pointers can be converted to void*. | 
|  | if (FromType->isBlockPointerType() && ToType->isPointerType() && | 
|  | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  | // Blocks: A null pointer constant can be converted to a block | 
|  | // pointer type. | 
|  | if (ToType->isBlockPointerType() && | 
|  | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the left-hand-side is nullptr_t, the right side can be a null | 
|  | // pointer constant. | 
|  | if (ToType->isNullPtrType() && | 
|  | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); | 
|  | if (!ToTypePtr) | 
|  | return false; | 
|  |  | 
|  | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). | 
|  | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Beyond this point, both types need to be pointers | 
|  | // , including objective-c pointers. | 
|  | QualType ToPointeeType = ToTypePtr->getPointeeType(); | 
|  | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && | 
|  | !getLangOpts().ObjCAutoRefCount) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType( | 
|  | FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType, | 
|  | Context); | 
|  | return true; | 
|  | } | 
|  | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); | 
|  | if (!FromTypePtr) | 
|  | return false; | 
|  |  | 
|  | QualType FromPointeeType = FromTypePtr->getPointeeType(); | 
|  |  | 
|  | // If the unqualified pointee types are the same, this can't be a | 
|  | // pointer conversion, so don't do all of the work below. | 
|  | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) | 
|  | return false; | 
|  |  | 
|  | // An rvalue of type "pointer to cv T," where T is an object type, | 
|  | // can be converted to an rvalue of type "pointer to cv void" (C++ | 
|  | // 4.10p2). | 
|  | if (FromPointeeType->isIncompleteOrObjectType() && | 
|  | ToPointeeType->isVoidType()) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context, | 
|  | /*StripObjCLifetime=*/true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // MSVC allows implicit function to void* type conversion. | 
|  | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && | 
|  | ToPointeeType->isVoidType()) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When we're overloading in C, we allow a special kind of pointer | 
|  | // conversion for compatible-but-not-identical pointee types. | 
|  | if (!getLangOpts().CPlusPlus && | 
|  | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // C++ [conv.ptr]p3: | 
|  | // | 
|  | //   An rvalue of type "pointer to cv D," where D is a class type, | 
|  | //   can be converted to an rvalue of type "pointer to cv B," where | 
|  | //   B is a base class (clause 10) of D. If B is an inaccessible | 
|  | //   (clause 11) or ambiguous (10.2) base class of D, a program that | 
|  | //   necessitates this conversion is ill-formed. The result of the | 
|  | //   conversion is a pointer to the base class sub-object of the | 
|  | //   derived class object. The null pointer value is converted to | 
|  | //   the null pointer value of the destination type. | 
|  | // | 
|  | // Note that we do not check for ambiguity or inaccessibility | 
|  | // here. That is handled by CheckPointerConversion. | 
|  | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && | 
|  | ToPointeeType->isRecordType() && | 
|  | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && | 
|  | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && | 
|  | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
|  | ToPointeeType, | 
|  | ToType, Context); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Adopt the given qualifiers for the given type. | 
|  | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ | 
|  | Qualifiers TQs = T.getQualifiers(); | 
|  |  | 
|  | // Check whether qualifiers already match. | 
|  | if (TQs == Qs) | 
|  | return T; | 
|  |  | 
|  | if (Qs.compatiblyIncludes(TQs)) | 
|  | return Context.getQualifiedType(T, Qs); | 
|  |  | 
|  | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); | 
|  | } | 
|  |  | 
|  | /// isObjCPointerConversion - Determines whether this is an | 
|  | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, | 
|  | /// with the same arguments and return values. | 
|  | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, | 
|  | QualType& ConvertedType, | 
|  | bool &IncompatibleObjC) { | 
|  | if (!getLangOpts().ObjC) | 
|  | return false; | 
|  |  | 
|  | // The set of qualifiers on the type we're converting from. | 
|  | Qualifiers FromQualifiers = FromType.getQualifiers(); | 
|  |  | 
|  | // First, we handle all conversions on ObjC object pointer types. | 
|  | const ObjCObjectPointerType* ToObjCPtr = | 
|  | ToType->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *FromObjCPtr = | 
|  | FromType->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (ToObjCPtr && FromObjCPtr) { | 
|  | // If the pointee types are the same (ignoring qualifications), | 
|  | // then this is not a pointer conversion. | 
|  | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), | 
|  | FromObjCPtr->getPointeeType())) | 
|  | return false; | 
|  |  | 
|  | // Conversion between Objective-C pointers. | 
|  | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { | 
|  | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); | 
|  | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); | 
|  | if (getLangOpts().CPlusPlus && LHS && RHS && | 
|  | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( | 
|  | FromObjCPtr->getPointeeType())) | 
|  | return false; | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | 
|  | ToObjCPtr->getPointeeType(), | 
|  | ToType, Context); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { | 
|  | // Okay: this is some kind of implicit downcast of Objective-C | 
|  | // interfaces, which is permitted. However, we're going to | 
|  | // complain about it. | 
|  | IncompatibleObjC = true; | 
|  | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | 
|  | ToObjCPtr->getPointeeType(), | 
|  | ToType, Context); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // Beyond this point, both types need to be C pointers or block pointers. | 
|  | QualType ToPointeeType; | 
|  | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) | 
|  | ToPointeeType = ToCPtr->getPointeeType(); | 
|  | else if (const BlockPointerType *ToBlockPtr = | 
|  | ToType->getAs<BlockPointerType>()) { | 
|  | // Objective C++: We're able to convert from a pointer to any object | 
|  | // to a block pointer type. | 
|  | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | ToPointeeType = ToBlockPtr->getPointeeType(); | 
|  | } | 
|  | else if (FromType->getAs<BlockPointerType>() && | 
|  | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { | 
|  | // Objective C++: We're able to convert from a block pointer type to a | 
|  | // pointer to any object. | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | else | 
|  | return false; | 
|  |  | 
|  | QualType FromPointeeType; | 
|  | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) | 
|  | FromPointeeType = FromCPtr->getPointeeType(); | 
|  | else if (const BlockPointerType *FromBlockPtr = | 
|  | FromType->getAs<BlockPointerType>()) | 
|  | FromPointeeType = FromBlockPtr->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // If we have pointers to pointers, recursively check whether this | 
|  | // is an Objective-C conversion. | 
|  | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && | 
|  | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | 
|  | IncompatibleObjC)) { | 
|  | // We always complain about this conversion. | 
|  | IncompatibleObjC = true; | 
|  | ConvertedType = Context.getPointerType(ConvertedType); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  | // Allow conversion of pointee being objective-c pointer to another one; | 
|  | // as in I* to id. | 
|  | if (FromPointeeType->getAs<ObjCObjectPointerType>() && | 
|  | ToPointeeType->getAs<ObjCObjectPointerType>() && | 
|  | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | 
|  | IncompatibleObjC)) { | 
|  |  | 
|  | ConvertedType = Context.getPointerType(ConvertedType); | 
|  | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we have pointers to functions or blocks, check whether the only | 
|  | // differences in the argument and result types are in Objective-C | 
|  | // pointer conversions. If so, we permit the conversion (but | 
|  | // complain about it). | 
|  | const FunctionProtoType *FromFunctionType | 
|  | = FromPointeeType->getAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *ToFunctionType | 
|  | = ToPointeeType->getAs<FunctionProtoType>(); | 
|  | if (FromFunctionType && ToFunctionType) { | 
|  | // If the function types are exactly the same, this isn't an | 
|  | // Objective-C pointer conversion. | 
|  | if (Context.getCanonicalType(FromPointeeType) | 
|  | == Context.getCanonicalType(ToPointeeType)) | 
|  | return false; | 
|  |  | 
|  | // Perform the quick checks that will tell us whether these | 
|  | // function types are obviously different. | 
|  | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | 
|  | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || | 
|  | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) | 
|  | return false; | 
|  |  | 
|  | bool HasObjCConversion = false; | 
|  | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == | 
|  | Context.getCanonicalType(ToFunctionType->getReturnType())) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), | 
|  | ToFunctionType->getReturnType(), | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | HasObjCConversion = true; | 
|  | } else { | 
|  | // Function types are too different. Abort. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check argument types. | 
|  | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | 
|  | ArgIdx != NumArgs; ++ArgIdx) { | 
|  | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | 
|  | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | 
|  | if (Context.getCanonicalType(FromArgType) | 
|  | == Context.getCanonicalType(ToArgType)) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else if (isObjCPointerConversion(FromArgType, ToArgType, | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | HasObjCConversion = true; | 
|  | } else { | 
|  | // Argument types are too different. Abort. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasObjCConversion) { | 
|  | // We had an Objective-C conversion. Allow this pointer | 
|  | // conversion, but complain about it. | 
|  | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | 
|  | IncompatibleObjC = true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether this is an Objective-C writeback conversion, | 
|  | /// used for parameter passing when performing automatic reference counting. | 
|  | /// | 
|  | /// \param FromType The type we're converting form. | 
|  | /// | 
|  | /// \param ToType The type we're converting to. | 
|  | /// | 
|  | /// \param ConvertedType The type that will be produced after applying | 
|  | /// this conversion. | 
|  | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, | 
|  | QualType &ConvertedType) { | 
|  | if (!getLangOpts().ObjCAutoRefCount || | 
|  | Context.hasSameUnqualifiedType(FromType, ToType)) | 
|  | return false; | 
|  |  | 
|  | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). | 
|  | QualType ToPointee; | 
|  | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) | 
|  | ToPointee = ToPointer->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | Qualifiers ToQuals = ToPointee.getQualifiers(); | 
|  | if (!ToPointee->isObjCLifetimeType() || | 
|  | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || | 
|  | !ToQuals.withoutObjCLifetime().empty()) | 
|  | return false; | 
|  |  | 
|  | // Argument must be a pointer to __strong to __weak. | 
|  | QualType FromPointee; | 
|  | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) | 
|  | FromPointee = FromPointer->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | Qualifiers FromQuals = FromPointee.getQualifiers(); | 
|  | if (!FromPointee->isObjCLifetimeType() || | 
|  | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && | 
|  | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that we have compatible qualifiers. | 
|  | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); | 
|  | if (!ToQuals.compatiblyIncludes(FromQuals)) | 
|  | return false; | 
|  |  | 
|  | // Remove qualifiers from the pointee type we're converting from; they | 
|  | // aren't used in the compatibility check belong, and we'll be adding back | 
|  | // qualifiers (with __autoreleasing) if the compatibility check succeeds. | 
|  | FromPointee = FromPointee.getUnqualifiedType(); | 
|  |  | 
|  | // The unqualified form of the pointee types must be compatible. | 
|  | ToPointee = ToPointee.getUnqualifiedType(); | 
|  | bool IncompatibleObjC; | 
|  | if (Context.typesAreCompatible(FromPointee, ToPointee)) | 
|  | FromPointee = ToPointee; | 
|  | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, | 
|  | IncompatibleObjC)) | 
|  | return false; | 
|  |  | 
|  | /// Construct the type we're converting to, which is a pointer to | 
|  | /// __autoreleasing pointee. | 
|  | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); | 
|  | ConvertedType = Context.getPointerType(FromPointee); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, | 
|  | QualType& ConvertedType) { | 
|  | QualType ToPointeeType; | 
|  | if (const BlockPointerType *ToBlockPtr = | 
|  | ToType->getAs<BlockPointerType>()) | 
|  | ToPointeeType = ToBlockPtr->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | QualType FromPointeeType; | 
|  | if (const BlockPointerType *FromBlockPtr = | 
|  | FromType->getAs<BlockPointerType>()) | 
|  | FromPointeeType = FromBlockPtr->getPointeeType(); | 
|  | else | 
|  | return false; | 
|  | // We have pointer to blocks, check whether the only | 
|  | // differences in the argument and result types are in Objective-C | 
|  | // pointer conversions. If so, we permit the conversion. | 
|  |  | 
|  | const FunctionProtoType *FromFunctionType | 
|  | = FromPointeeType->getAs<FunctionProtoType>(); | 
|  | const FunctionProtoType *ToFunctionType | 
|  | = ToPointeeType->getAs<FunctionProtoType>(); | 
|  |  | 
|  | if (!FromFunctionType || !ToFunctionType) | 
|  | return false; | 
|  |  | 
|  | if (Context.hasSameType(FromPointeeType, ToPointeeType)) | 
|  | return true; | 
|  |  | 
|  | // Perform the quick checks that will tell us whether these | 
|  | // function types are obviously different. | 
|  | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | 
|  | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) | 
|  | return false; | 
|  |  | 
|  | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); | 
|  | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); | 
|  | if (FromEInfo != ToEInfo) | 
|  | return false; | 
|  |  | 
|  | bool IncompatibleObjC = false; | 
|  | if (Context.hasSameType(FromFunctionType->getReturnType(), | 
|  | ToFunctionType->getReturnType())) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else { | 
|  | QualType RHS = FromFunctionType->getReturnType(); | 
|  | QualType LHS = ToFunctionType->getReturnType(); | 
|  | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && | 
|  | !RHS.hasQualifiers() && LHS.hasQualifiers()) | 
|  | LHS = LHS.getUnqualifiedType(); | 
|  |  | 
|  | if (Context.hasSameType(RHS,LHS)) { | 
|  | // OK exact match. | 
|  | } else if (isObjCPointerConversion(RHS, LHS, | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | if (IncompatibleObjC) | 
|  | return false; | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check argument types. | 
|  | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | 
|  | ArgIdx != NumArgs; ++ArgIdx) { | 
|  | IncompatibleObjC = false; | 
|  | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | 
|  | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | 
|  | if (Context.hasSameType(FromArgType, ToArgType)) { | 
|  | // Okay, the types match exactly. Nothing to do. | 
|  | } else if (isObjCPointerConversion(ToArgType, FromArgType, | 
|  | ConvertedType, IncompatibleObjC)) { | 
|  | if (IncompatibleObjC) | 
|  | return false; | 
|  | // Okay, we have an Objective-C pointer conversion. | 
|  | } else | 
|  | // Argument types are too different. Abort. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | 
|  | bool CanUseToFPT, CanUseFromFPT; | 
|  | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, | 
|  | CanUseToFPT, CanUseFromFPT, | 
|  | NewParamInfos)) | 
|  | return false; | 
|  |  | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | ft_default, | 
|  | ft_different_class, | 
|  | ft_parameter_arity, | 
|  | ft_parameter_mismatch, | 
|  | ft_return_type, | 
|  | ft_qualifer_mismatch, | 
|  | ft_noexcept | 
|  | }; | 
|  |  | 
|  | /// Attempts to get the FunctionProtoType from a Type. Handles | 
|  | /// MemberFunctionPointers properly. | 
|  | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { | 
|  | if (auto *FPT = FromType->getAs<FunctionProtoType>()) | 
|  | return FPT; | 
|  |  | 
|  | if (auto *MPT = FromType->getAs<MemberPointerType>()) | 
|  | return MPT->getPointeeType()->getAs<FunctionProtoType>(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing | 
|  | /// function types.  Catches different number of parameter, mismatch in | 
|  | /// parameter types, and different return types. | 
|  | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, | 
|  | QualType FromType, QualType ToType) { | 
|  | // If either type is not valid, include no extra info. | 
|  | if (FromType.isNull() || ToType.isNull()) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get the function type from the pointers. | 
|  | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { | 
|  | const auto *FromMember = FromType->castAs<MemberPointerType>(), | 
|  | *ToMember = ToType->castAs<MemberPointerType>(); | 
|  | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { | 
|  | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) | 
|  | << QualType(FromMember->getClass(), 0); | 
|  | return; | 
|  | } | 
|  | FromType = FromMember->getPointeeType(); | 
|  | ToType = ToMember->getPointeeType(); | 
|  | } | 
|  |  | 
|  | if (FromType->isPointerType()) | 
|  | FromType = FromType->getPointeeType(); | 
|  | if (ToType->isPointerType()) | 
|  | ToType = ToType->getPointeeType(); | 
|  |  | 
|  | // Remove references. | 
|  | FromType = FromType.getNonReferenceType(); | 
|  | ToType = ToType.getNonReferenceType(); | 
|  |  | 
|  | // Don't print extra info for non-specialized template functions. | 
|  | if (FromType->isInstantiationDependentType() && | 
|  | !FromType->getAs<TemplateSpecializationType>()) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // No extra info for same types. | 
|  | if (Context.hasSameType(FromType, ToType)) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), | 
|  | *ToFunction = tryGetFunctionProtoType(ToType); | 
|  |  | 
|  | // Both types need to be function types. | 
|  | if (!FromFunction || !ToFunction) { | 
|  | PDiag << ft_default; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { | 
|  | PDiag << ft_parameter_arity << ToFunction->getNumParams() | 
|  | << FromFunction->getNumParams(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle different parameter types. | 
|  | unsigned ArgPos; | 
|  | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { | 
|  | PDiag << ft_parameter_mismatch << ArgPos + 1 | 
|  | << ToFunction->getParamType(ArgPos) | 
|  | << FromFunction->getParamType(ArgPos); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle different return type. | 
|  | if (!Context.hasSameType(FromFunction->getReturnType(), | 
|  | ToFunction->getReturnType())) { | 
|  | PDiag << ft_return_type << ToFunction->getReturnType() | 
|  | << FromFunction->getReturnType(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { | 
|  | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() | 
|  | << FromFunction->getMethodQuals(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle exception specification differences on canonical type (in C++17 | 
|  | // onwards). | 
|  | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) | 
|  | ->isNothrow() != | 
|  | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) | 
|  | ->isNothrow()) { | 
|  | PDiag << ft_noexcept; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Unable to find a difference, so add no extra info. | 
|  | PDiag << ft_default; | 
|  | } | 
|  |  | 
|  | /// FunctionParamTypesAreEqual - This routine checks two function proto types | 
|  | /// for equality of their parameter types. Caller has already checked that | 
|  | /// they have same number of parameters.  If the parameters are different, | 
|  | /// ArgPos will have the parameter index of the first different parameter. | 
|  | /// If `Reversed` is true, the parameters of `NewType` will be compared in | 
|  | /// reverse order. That's useful if one of the functions is being used as a C++20 | 
|  | /// synthesized operator overload with a reversed parameter order. | 
|  | bool Sema::FunctionParamTypesAreEqual(ArrayRef<QualType> Old, | 
|  | ArrayRef<QualType> New, unsigned *ArgPos, | 
|  | bool Reversed) { | 
|  | assert(llvm::size(Old) == llvm::size(New) && | 
|  | "Can't compare parameters of functions with different number of " | 
|  | "parameters!"); | 
|  |  | 
|  | for (auto &&[Idx, Type] : llvm::enumerate(Old)) { | 
|  | // Reverse iterate over the parameters of `OldType` if `Reversed` is true. | 
|  | size_t J = Reversed ? (llvm::size(New) - Idx - 1) : Idx; | 
|  |  | 
|  | // Ignore address spaces in pointee type. This is to disallow overloading | 
|  | // on __ptr32/__ptr64 address spaces. | 
|  | QualType OldType = | 
|  | Context.removePtrSizeAddrSpace(Type.getUnqualifiedType()); | 
|  | QualType NewType = | 
|  | Context.removePtrSizeAddrSpace((New.begin() + J)->getUnqualifiedType()); | 
|  |  | 
|  | if (!Context.hasSameType(OldType, NewType)) { | 
|  | if (ArgPos) | 
|  | *ArgPos = Idx; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, | 
|  | const FunctionProtoType *NewType, | 
|  | unsigned *ArgPos, bool Reversed) { | 
|  | return FunctionParamTypesAreEqual(OldType->param_types(), | 
|  | NewType->param_types(), ArgPos, Reversed); | 
|  | } | 
|  |  | 
|  | bool Sema::FunctionNonObjectParamTypesAreEqual(const FunctionDecl *OldFunction, | 
|  | const FunctionDecl *NewFunction, | 
|  | unsigned *ArgPos, | 
|  | bool Reversed) { | 
|  |  | 
|  | if (OldFunction->getNumNonObjectParams() != | 
|  | NewFunction->getNumNonObjectParams()) | 
|  | return false; | 
|  |  | 
|  | unsigned OldIgnore = | 
|  | unsigned(OldFunction->hasCXXExplicitFunctionObjectParameter()); | 
|  | unsigned NewIgnore = | 
|  | unsigned(NewFunction->hasCXXExplicitFunctionObjectParameter()); | 
|  |  | 
|  | auto *OldPT = cast<FunctionProtoType>(OldFunction->getFunctionType()); | 
|  | auto *NewPT = cast<FunctionProtoType>(NewFunction->getFunctionType()); | 
|  |  | 
|  | return FunctionParamTypesAreEqual(OldPT->param_types().slice(OldIgnore), | 
|  | NewPT->param_types().slice(NewIgnore), | 
|  | ArgPos, Reversed); | 
|  | } | 
|  |  | 
|  | /// CheckPointerConversion - Check the pointer conversion from the | 
|  | /// expression From to the type ToType. This routine checks for | 
|  | /// ambiguous or inaccessible derived-to-base pointer | 
|  | /// conversions for which IsPointerConversion has already returned | 
|  | /// true. It returns true and produces a diagnostic if there was an | 
|  | /// error, or returns false otherwise. | 
|  | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, | 
|  | CastKind &Kind, | 
|  | CXXCastPath& BasePath, | 
|  | bool IgnoreBaseAccess, | 
|  | bool Diagnose) { | 
|  | QualType FromType = From->getType(); | 
|  | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; | 
|  |  | 
|  | Kind = CK_BitCast; | 
|  |  | 
|  | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && | 
|  | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == | 
|  | Expr::NPCK_ZeroExpression) { | 
|  | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) | 
|  | DiagRuntimeBehavior(From->getExprLoc(), From, | 
|  | PDiag(diag::warn_impcast_bool_to_null_pointer) | 
|  | << ToType << From->getSourceRange()); | 
|  | else if (!isUnevaluatedContext()) | 
|  | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) | 
|  | << ToType << From->getSourceRange(); | 
|  | } | 
|  | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { | 
|  | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { | 
|  | QualType FromPointeeType = FromPtrType->getPointeeType(), | 
|  | ToPointeeType   = ToPtrType->getPointeeType(); | 
|  |  | 
|  | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | 
|  | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { | 
|  | // We must have a derived-to-base conversion. Check an | 
|  | // ambiguous or inaccessible conversion. | 
|  | unsigned InaccessibleID = 0; | 
|  | unsigned AmbiguousID = 0; | 
|  | if (Diagnose) { | 
|  | InaccessibleID = diag::err_upcast_to_inaccessible_base; | 
|  | AmbiguousID = diag::err_ambiguous_derived_to_base_conv; | 
|  | } | 
|  | if (CheckDerivedToBaseConversion( | 
|  | FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, | 
|  | From->getExprLoc(), From->getSourceRange(), DeclarationName(), | 
|  | &BasePath, IgnoreBaseAccess)) | 
|  | return true; | 
|  |  | 
|  | // The conversion was successful. | 
|  | Kind = CK_DerivedToBase; | 
|  | } | 
|  |  | 
|  | if (Diagnose && !IsCStyleOrFunctionalCast && | 
|  | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { | 
|  | assert(getLangOpts().MSVCCompat && | 
|  | "this should only be possible with MSVCCompat!"); | 
|  | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) | 
|  | << From->getSourceRange(); | 
|  | } | 
|  | } | 
|  | } else if (const ObjCObjectPointerType *ToPtrType = | 
|  | ToType->getAs<ObjCObjectPointerType>()) { | 
|  | if (const ObjCObjectPointerType *FromPtrType = | 
|  | FromType->getAs<ObjCObjectPointerType>()) { | 
|  | // Objective-C++ conversions are always okay. | 
|  | // FIXME: We should have a different class of conversions for the | 
|  | // Objective-C++ implicit conversions. | 
|  | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) | 
|  | return false; | 
|  | } else if (FromType->isBlockPointerType()) { | 
|  | Kind = CK_BlockPointerToObjCPointerCast; | 
|  | } else { | 
|  | Kind = CK_CPointerToObjCPointerCast; | 
|  | } | 
|  | } else if (ToType->isBlockPointerType()) { | 
|  | if (!FromType->isBlockPointerType()) | 
|  | Kind = CK_AnyPointerToBlockPointerCast; | 
|  | } | 
|  |  | 
|  | // We shouldn't fall into this case unless it's valid for other | 
|  | // reasons. | 
|  | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) | 
|  | Kind = CK_NullToPointer; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsMemberPointerConversion - Determines whether the conversion of the | 
|  | /// expression From, which has the (possibly adjusted) type FromType, can be | 
|  | /// converted to the type ToType via a member pointer conversion (C++ 4.11). | 
|  | /// If so, returns true and places the converted type (that might differ from | 
|  | /// ToType in its cv-qualifiers at some level) into ConvertedType. | 
|  | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, | 
|  | QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | QualType &ConvertedType) { | 
|  | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); | 
|  | if (!ToTypePtr) | 
|  | return false; | 
|  |  | 
|  | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) | 
|  | if (From->isNullPointerConstant(Context, | 
|  | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | 
|  | : Expr::NPC_ValueDependentIsNull)) { | 
|  | ConvertedType = ToType; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, both types have to be member pointers. | 
|  | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); | 
|  | if (!FromTypePtr) | 
|  | return false; | 
|  |  | 
|  | // A pointer to member of B can be converted to a pointer to member of D, | 
|  | // where D is derived from B (C++ 4.11p2). | 
|  | QualType FromClass(FromTypePtr->getClass(), 0); | 
|  | QualType ToClass(ToTypePtr->getClass(), 0); | 
|  |  | 
|  | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && | 
|  | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { | 
|  | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), | 
|  | ToClass.getTypePtr()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckMemberPointerConversion - Check the member pointer conversion from the | 
|  | /// expression From to the type ToType. This routine checks for ambiguous or | 
|  | /// virtual or inaccessible base-to-derived member pointer conversions | 
|  | /// for which IsMemberPointerConversion has already returned true. It returns | 
|  | /// true and produces a diagnostic if there was an error, or returns false | 
|  | /// otherwise. | 
|  | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, | 
|  | CastKind &Kind, | 
|  | CXXCastPath &BasePath, | 
|  | bool IgnoreBaseAccess) { | 
|  | QualType FromType = From->getType(); | 
|  | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); | 
|  | if (!FromPtrType) { | 
|  | // This must be a null pointer to member pointer conversion | 
|  | assert(From->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull) && | 
|  | "Expr must be null pointer constant!"); | 
|  | Kind = CK_NullToMemberPointer; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); | 
|  | assert(ToPtrType && "No member pointer cast has a target type " | 
|  | "that is not a member pointer."); | 
|  |  | 
|  | QualType FromClass = QualType(FromPtrType->getClass(), 0); | 
|  | QualType ToClass   = QualType(ToPtrType->getClass(), 0); | 
|  |  | 
|  | // FIXME: What about dependent types? | 
|  | assert(FromClass->isRecordType() && "Pointer into non-class."); | 
|  | assert(ToClass->isRecordType() && "Pointer into non-class."); | 
|  |  | 
|  | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/true); | 
|  | bool DerivationOkay = | 
|  | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); | 
|  | assert(DerivationOkay && | 
|  | "Should not have been called if derivation isn't OK."); | 
|  | (void)DerivationOkay; | 
|  |  | 
|  | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). | 
|  | getUnqualifiedType())) { | 
|  | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
|  | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) | 
|  | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const RecordType *VBase = Paths.getDetectedVirtual()) { | 
|  | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) | 
|  | << FromClass << ToClass << QualType(VBase, 0) | 
|  | << From->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!IgnoreBaseAccess) | 
|  | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, | 
|  | Paths.front(), | 
|  | diag::err_downcast_from_inaccessible_base); | 
|  |  | 
|  | // Must be a base to derived member conversion. | 
|  | BuildBasePathArray(Paths, BasePath); | 
|  | Kind = CK_BaseToDerivedMemberPointer; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether the lifetime conversion between the two given | 
|  | /// qualifiers sets is nontrivial. | 
|  | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, | 
|  | Qualifiers ToQuals) { | 
|  | // Converting anything to const __unsafe_unretained is trivial. | 
|  | if (ToQuals.hasConst() && | 
|  | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Perform a single iteration of the loop for checking if a qualification | 
|  | /// conversion is valid. | 
|  | /// | 
|  | /// Specifically, check whether any change between the qualifiers of \p | 
|  | /// FromType and \p ToType is permissible, given knowledge about whether every | 
|  | /// outer layer is const-qualified. | 
|  | static bool isQualificationConversionStep(QualType FromType, QualType ToType, | 
|  | bool CStyle, bool IsTopLevel, | 
|  | bool &PreviousToQualsIncludeConst, | 
|  | bool &ObjCLifetimeConversion) { | 
|  | Qualifiers FromQuals = FromType.getQualifiers(); | 
|  | Qualifiers ToQuals = ToType.getQualifiers(); | 
|  |  | 
|  | // Ignore __unaligned qualifier. | 
|  | FromQuals.removeUnaligned(); | 
|  |  | 
|  | // Objective-C ARC: | 
|  | //   Check Objective-C lifetime conversions. | 
|  | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { | 
|  | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { | 
|  | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) | 
|  | ObjCLifetimeConversion = true; | 
|  | FromQuals.removeObjCLifetime(); | 
|  | ToQuals.removeObjCLifetime(); | 
|  | } else { | 
|  | // Qualification conversions cannot cast between different | 
|  | // Objective-C lifetime qualifiers. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow addition/removal of GC attributes but not changing GC attributes. | 
|  | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && | 
|  | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { | 
|  | FromQuals.removeObjCGCAttr(); | 
|  | ToQuals.removeObjCGCAttr(); | 
|  | } | 
|  |  | 
|  | //   -- for every j > 0, if const is in cv 1,j then const is in cv | 
|  | //      2,j, and similarly for volatile. | 
|  | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) | 
|  | return false; | 
|  |  | 
|  | // If address spaces mismatch: | 
|  | //  - in top level it is only valid to convert to addr space that is a | 
|  | //    superset in all cases apart from C-style casts where we allow | 
|  | //    conversions between overlapping address spaces. | 
|  | //  - in non-top levels it is not a valid conversion. | 
|  | if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && | 
|  | (!IsTopLevel || | 
|  | !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || | 
|  | (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) | 
|  | return false; | 
|  |  | 
|  | //   -- if the cv 1,j and cv 2,j are different, then const is in | 
|  | //      every cv for 0 < k < j. | 
|  | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && | 
|  | !PreviousToQualsIncludeConst) | 
|  | return false; | 
|  |  | 
|  | // The following wording is from C++20, where the result of the conversion | 
|  | // is T3, not T2. | 
|  | //   -- if [...] P1,i [...] is "array of unknown bound of", P3,i is | 
|  | //      "array of unknown bound of" | 
|  | if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) | 
|  | return false; | 
|  |  | 
|  | //   -- if the resulting P3,i is different from P1,i [...], then const is | 
|  | //      added to every cv 3_k for 0 < k < i. | 
|  | if (!CStyle && FromType->isConstantArrayType() && | 
|  | ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) | 
|  | return false; | 
|  |  | 
|  | // Keep track of whether all prior cv-qualifiers in the "to" type | 
|  | // include const. | 
|  | PreviousToQualsIncludeConst = | 
|  | PreviousToQualsIncludeConst && ToQuals.hasConst(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// IsQualificationConversion - Determines whether the conversion from | 
|  | /// an rvalue of type FromType to ToType is a qualification conversion | 
|  | /// (C++ 4.4). | 
|  | /// | 
|  | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate | 
|  | /// when the qualification conversion involves a change in the Objective-C | 
|  | /// object lifetime. | 
|  | bool | 
|  | Sema::IsQualificationConversion(QualType FromType, QualType ToType, | 
|  | bool CStyle, bool &ObjCLifetimeConversion) { | 
|  | FromType = Context.getCanonicalType(FromType); | 
|  | ToType = Context.getCanonicalType(ToType); | 
|  | ObjCLifetimeConversion = false; | 
|  |  | 
|  | // If FromType and ToType are the same type, this is not a | 
|  | // qualification conversion. | 
|  | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) | 
|  | return false; | 
|  |  | 
|  | // (C++ 4.4p4): | 
|  | //   A conversion can add cv-qualifiers at levels other than the first | 
|  | //   in multi-level pointers, subject to the following rules: [...] | 
|  | bool PreviousToQualsIncludeConst = true; | 
|  | bool UnwrappedAnyPointer = false; | 
|  | while (Context.UnwrapSimilarTypes(FromType, ToType)) { | 
|  | if (!isQualificationConversionStep( | 
|  | FromType, ToType, CStyle, !UnwrappedAnyPointer, | 
|  | PreviousToQualsIncludeConst, ObjCLifetimeConversion)) | 
|  | return false; | 
|  | UnwrappedAnyPointer = true; | 
|  | } | 
|  |  | 
|  | // We are left with FromType and ToType being the pointee types | 
|  | // after unwrapping the original FromType and ToType the same number | 
|  | // of times. If we unwrapped any pointers, and if FromType and | 
|  | // ToType have the same unqualified type (since we checked | 
|  | // qualifiers above), then this is a qualification conversion. | 
|  | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); | 
|  | } | 
|  |  | 
|  | /// - Determine whether this is a conversion from a scalar type to an | 
|  | /// atomic type. | 
|  | /// | 
|  | /// If successful, updates \c SCS's second and third steps in the conversion | 
|  | /// sequence to finish the conversion. | 
|  | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | 
|  | bool InOverloadResolution, | 
|  | StandardConversionSequence &SCS, | 
|  | bool CStyle) { | 
|  | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); | 
|  | if (!ToAtomic) | 
|  | return false; | 
|  |  | 
|  | StandardConversionSequence InnerSCS; | 
|  | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), | 
|  | InOverloadResolution, InnerSCS, | 
|  | CStyle, /*AllowObjCWritebackConversion=*/false)) | 
|  | return false; | 
|  |  | 
|  | SCS.Second = InnerSCS.Second; | 
|  | SCS.setToType(1, InnerSCS.getToType(1)); | 
|  | SCS.Third = InnerSCS.Third; | 
|  | SCS.QualificationIncludesObjCLifetime | 
|  | = InnerSCS.QualificationIncludesObjCLifetime; | 
|  | SCS.setToType(2, InnerSCS.getToType(2)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, | 
|  | CXXConstructorDecl *Constructor, | 
|  | QualType Type) { | 
|  | const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); | 
|  | if (CtorType->getNumParams() > 0) { | 
|  | QualType FirstArg = CtorType->getParamType(0); | 
|  | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static OverloadingResult | 
|  | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, | 
|  | CXXRecordDecl *To, | 
|  | UserDefinedConversionSequence &User, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool AllowExplicit) { | 
|  | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | 
|  | for (auto *D : S.LookupConstructors(To)) { | 
|  | auto Info = getConstructorInfo(D); | 
|  | if (!Info) | 
|  | continue; | 
|  |  | 
|  | bool Usable = !Info.Constructor->isInvalidDecl() && | 
|  | S.isInitListConstructor(Info.Constructor); | 
|  | if (Usable) { | 
|  | bool SuppressUserConversions = false; | 
|  | if (Info.ConstructorTmpl) | 
|  | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, | 
|  | /*ExplicitArgs*/ nullptr, From, | 
|  | CandidateSet, SuppressUserConversions, | 
|  | /*PartialOverloading*/ false, | 
|  | AllowExplicit); | 
|  | else | 
|  | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, | 
|  | CandidateSet, SuppressUserConversions, | 
|  | /*PartialOverloading*/ false, AllowExplicit); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (auto Result = | 
|  | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | 
|  | case OR_Deleted: | 
|  | case OR_Success: { | 
|  | // Record the standard conversion we used and the conversion function. | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); | 
|  | QualType ThisType = Constructor->getFunctionObjectParameterType(); | 
|  | // Initializer lists don't have conversions as such. | 
|  | User.Before.setAsIdentityConversion(); | 
|  | User.HadMultipleCandidates = HadMultipleCandidates; | 
|  | User.ConversionFunction = Constructor; | 
|  | User.FoundConversionFunction = Best->FoundDecl; | 
|  | User.After.setAsIdentityConversion(); | 
|  | User.After.setFromType(ThisType); | 
|  | User.After.setAllToTypes(ToType); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | return OR_No_Viable_Function; | 
|  | case OR_Ambiguous: | 
|  | return OR_Ambiguous; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid OverloadResult!"); | 
|  | } | 
|  |  | 
|  | /// Determines whether there is a user-defined conversion sequence | 
|  | /// (C++ [over.ics.user]) that converts expression From to the type | 
|  | /// ToType. If such a conversion exists, User will contain the | 
|  | /// user-defined conversion sequence that performs such a conversion | 
|  | /// and this routine will return true. Otherwise, this routine returns | 
|  | /// false and User is unspecified. | 
|  | /// | 
|  | /// \param AllowExplicit  true if the conversion should consider C++0x | 
|  | /// "explicit" conversion functions as well as non-explicit conversion | 
|  | /// functions (C++0x [class.conv.fct]p2). | 
|  | /// | 
|  | /// \param AllowObjCConversionOnExplicit true if the conversion should | 
|  | /// allow an extra Objective-C pointer conversion on uses of explicit | 
|  | /// constructors. Requires \c AllowExplicit to also be set. | 
|  | static OverloadingResult | 
|  | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | 
|  | UserDefinedConversionSequence &User, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | AllowedExplicit AllowExplicit, | 
|  | bool AllowObjCConversionOnExplicit) { | 
|  | assert(AllowExplicit != AllowedExplicit::None || | 
|  | !AllowObjCConversionOnExplicit); | 
|  | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | 
|  |  | 
|  | // Whether we will only visit constructors. | 
|  | bool ConstructorsOnly = false; | 
|  |  | 
|  | // If the type we are conversion to is a class type, enumerate its | 
|  | // constructors. | 
|  | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { | 
|  | // C++ [over.match.ctor]p1: | 
|  | //   When objects of class type are direct-initialized (8.5), or | 
|  | //   copy-initialized from an expression of the same or a | 
|  | //   derived class type (8.5), overload resolution selects the | 
|  | //   constructor. [...] For copy-initialization, the candidate | 
|  | //   functions are all the converting constructors (12.3.1) of | 
|  | //   that class. The argument list is the expression-list within | 
|  | //   the parentheses of the initializer. | 
|  | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || | 
|  | (From->getType()->getAs<RecordType>() && | 
|  | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) | 
|  | ConstructorsOnly = true; | 
|  |  | 
|  | if (!S.isCompleteType(From->getExprLoc(), ToType)) { | 
|  | // We're not going to find any constructors. | 
|  | } else if (CXXRecordDecl *ToRecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { | 
|  |  | 
|  | Expr **Args = &From; | 
|  | unsigned NumArgs = 1; | 
|  | bool ListInitializing = false; | 
|  | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { | 
|  | // But first, see if there is an init-list-constructor that will work. | 
|  | OverloadingResult Result = IsInitializerListConstructorConversion( | 
|  | S, From, ToType, ToRecordDecl, User, CandidateSet, | 
|  | AllowExplicit == AllowedExplicit::All); | 
|  | if (Result != OR_No_Viable_Function) | 
|  | return Result; | 
|  | // Never mind. | 
|  | CandidateSet.clear( | 
|  | OverloadCandidateSet::CSK_InitByUserDefinedConversion); | 
|  |  | 
|  | // If we're list-initializing, we pass the individual elements as | 
|  | // arguments, not the entire list. | 
|  | Args = InitList->getInits(); | 
|  | NumArgs = InitList->getNumInits(); | 
|  | ListInitializing = true; | 
|  | } | 
|  |  | 
|  | for (auto *D : S.LookupConstructors(ToRecordDecl)) { | 
|  | auto Info = getConstructorInfo(D); | 
|  | if (!Info) | 
|  | continue; | 
|  |  | 
|  | bool Usable = !Info.Constructor->isInvalidDecl(); | 
|  | if (!ListInitializing) | 
|  | Usable = Usable && Info.Constructor->isConvertingConstructor( | 
|  | /*AllowExplicit*/ true); | 
|  | if (Usable) { | 
|  | bool SuppressUserConversions = !ConstructorsOnly; | 
|  | // C++20 [over.best.ics.general]/4.5: | 
|  | //   if the target is the first parameter of a constructor [of class | 
|  | //   X] and the constructor [...] is a candidate by [...] the second | 
|  | //   phase of [over.match.list] when the initializer list has exactly | 
|  | //   one element that is itself an initializer list, [...] and the | 
|  | //   conversion is to X or reference to cv X, user-defined conversion | 
|  | //   sequences are not cnosidered. | 
|  | if (SuppressUserConversions && ListInitializing) { | 
|  | SuppressUserConversions = | 
|  | NumArgs == 1 && isa<InitListExpr>(Args[0]) && | 
|  | isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, | 
|  | ToType); | 
|  | } | 
|  | if (Info.ConstructorTmpl) | 
|  | S.AddTemplateOverloadCandidate( | 
|  | Info.ConstructorTmpl, Info.FoundDecl, | 
|  | /*ExplicitArgs*/ nullptr, llvm::ArrayRef(Args, NumArgs), | 
|  | CandidateSet, SuppressUserConversions, | 
|  | /*PartialOverloading*/ false, | 
|  | AllowExplicit == AllowedExplicit::All); | 
|  | else | 
|  | // Allow one user-defined conversion when user specifies a | 
|  | // From->ToType conversion via an static cast (c-style, etc). | 
|  | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, | 
|  | llvm::ArrayRef(Args, NumArgs), CandidateSet, | 
|  | SuppressUserConversions, | 
|  | /*PartialOverloading*/ false, | 
|  | AllowExplicit == AllowedExplicit::All); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enumerate conversion functions, if we're allowed to. | 
|  | if (ConstructorsOnly || isa<InitListExpr>(From)) { | 
|  | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { | 
|  | // No conversion functions from incomplete types. | 
|  | } else if (const RecordType *FromRecordType = | 
|  | From->getType()->getAs<RecordType>()) { | 
|  | if (CXXRecordDecl *FromRecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { | 
|  | // Add all of the conversion functions as candidates. | 
|  | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | DeclAccessPair FoundDecl = I.getPair(); | 
|  | NamedDecl *D = FoundDecl.getDecl(); | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | CXXConversionDecl *Conv; | 
|  | FunctionTemplateDecl *ConvTemplate; | 
|  | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | if (ConvTemplate) | 
|  | S.AddTemplateConversionCandidate( | 
|  | ConvTemplate, FoundDecl, ActingContext, From, ToType, | 
|  | CandidateSet, AllowObjCConversionOnExplicit, | 
|  | AllowExplicit != AllowedExplicit::None); | 
|  | else | 
|  | S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, | 
|  | CandidateSet, AllowObjCConversionOnExplicit, | 
|  | AllowExplicit != AllowedExplicit::None); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (auto Result = | 
|  | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | // Record the standard conversion we used and the conversion function. | 
|  | if (CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(Best->Function)) { | 
|  | // C++ [over.ics.user]p1: | 
|  | //   If the user-defined conversion is specified by a | 
|  | //   constructor (12.3.1), the initial standard conversion | 
|  | //   sequence converts the source type to the type required by | 
|  | //   the argument of the constructor. | 
|  | // | 
|  | if (isa<InitListExpr>(From)) { | 
|  | // Initializer lists don't have conversions as such. | 
|  | User.Before.setAsIdentityConversion(); | 
|  | } else { | 
|  | if (Best->Conversions[0].isEllipsis()) | 
|  | User.EllipsisConversion = true; | 
|  | else { | 
|  | User.Before = Best->Conversions[0].Standard; | 
|  | User.EllipsisConversion = false; | 
|  | } | 
|  | } | 
|  | User.HadMultipleCandidates = HadMultipleCandidates; | 
|  | User.ConversionFunction = Constructor; | 
|  | User.FoundConversionFunction = Best->FoundDecl; | 
|  | User.After.setAsIdentityConversion(); | 
|  | User.After.setFromType(Constructor->getFunctionObjectParameterType()); | 
|  | User.After.setAllToTypes(ToType); | 
|  | return Result; | 
|  | } | 
|  | if (CXXConversionDecl *Conversion | 
|  | = dyn_cast<CXXConversionDecl>(Best->Function)) { | 
|  | // C++ [over.ics.user]p1: | 
|  | // | 
|  | //   [...] If the user-defined conversion is specified by a | 
|  | //   conversion function (12.3.2), the initial standard | 
|  | //   conversion sequence converts the source type to the | 
|  | //   implicit object parameter of the conversion function. | 
|  | User.Before = Best->Conversions[0].Standard; | 
|  | User.HadMultipleCandidates = HadMultipleCandidates; | 
|  | User.ConversionFunction = Conversion; | 
|  | User.FoundConversionFunction = Best->FoundDecl; | 
|  | User.EllipsisConversion = false; | 
|  |  | 
|  | // C++ [over.ics.user]p2: | 
|  | //   The second standard conversion sequence converts the | 
|  | //   result of the user-defined conversion to the target type | 
|  | //   for the sequence. Since an implicit conversion sequence | 
|  | //   is an initialization, the special rules for | 
|  | //   initialization by user-defined conversion apply when | 
|  | //   selecting the best user-defined conversion for a | 
|  | //   user-defined conversion sequence (see 13.3.3 and | 
|  | //   13.3.3.1). | 
|  | User.After = Best->FinalConversion; | 
|  | return Result; | 
|  | } | 
|  | llvm_unreachable("Not a constructor or conversion function?"); | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | return OR_No_Viable_Function; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | return OR_Ambiguous; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid OverloadResult!"); | 
|  | } | 
|  |  | 
|  | bool | 
|  | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { | 
|  | ImplicitConversionSequence ICS; | 
|  | OverloadCandidateSet CandidateSet(From->getExprLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | OverloadingResult OvResult = | 
|  | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, | 
|  | CandidateSet, AllowedExplicit::None, false); | 
|  |  | 
|  | if (!(OvResult == OR_Ambiguous || | 
|  | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) | 
|  | return false; | 
|  |  | 
|  | auto Cands = CandidateSet.CompleteCandidates( | 
|  | *this, | 
|  | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, | 
|  | From); | 
|  | if (OvResult == OR_Ambiguous) | 
|  | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) | 
|  | << From->getType() << ToType << From->getSourceRange(); | 
|  | else { // OR_No_Viable_Function && !CandidateSet.empty() | 
|  | if (!RequireCompleteType(From->getBeginLoc(), ToType, | 
|  | diag::err_typecheck_nonviable_condition_incomplete, | 
|  | From->getType(), From->getSourceRange())) | 
|  | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) | 
|  | << false << From->getType() << From->getSourceRange() << ToType; | 
|  | } | 
|  |  | 
|  | CandidateSet.NoteCandidates( | 
|  | *this, From, Cands); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper for compareConversionFunctions that gets the FunctionType that the | 
|  | // conversion-operator return  value 'points' to, or nullptr. | 
|  | static const FunctionType * | 
|  | getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { | 
|  | const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); | 
|  | const PointerType *RetPtrTy = | 
|  | ConvFuncTy->getReturnType()->getAs<PointerType>(); | 
|  |  | 
|  | if (!RetPtrTy) | 
|  | return nullptr; | 
|  |  | 
|  | return RetPtrTy->getPointeeType()->getAs<FunctionType>(); | 
|  | } | 
|  |  | 
|  | /// Compare the user-defined conversion functions or constructors | 
|  | /// of two user-defined conversion sequences to determine whether any ordering | 
|  | /// is possible. | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | compareConversionFunctions(Sema &S, FunctionDecl *Function1, | 
|  | FunctionDecl *Function2) { | 
|  | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); | 
|  | CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); | 
|  | if (!Conv1 || !Conv2) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // Objective-C++: | 
|  | //   If both conversion functions are implicitly-declared conversions from | 
|  | //   a lambda closure type to a function pointer and a block pointer, | 
|  | //   respectively, always prefer the conversion to a function pointer, | 
|  | //   because the function pointer is more lightweight and is more likely | 
|  | //   to keep code working. | 
|  | if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { | 
|  | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); | 
|  | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); | 
|  | if (Block1 != Block2) | 
|  | return Block1 ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  | } | 
|  |  | 
|  | // In order to support multiple calling conventions for the lambda conversion | 
|  | // operator (such as when the free and member function calling convention is | 
|  | // different), prefer the 'free' mechanism, followed by the calling-convention | 
|  | // of operator(). The latter is in place to support the MSVC-like solution of | 
|  | // defining ALL of the possible conversions in regards to calling-convention. | 
|  | const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); | 
|  | const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); | 
|  |  | 
|  | if (Conv1FuncRet && Conv2FuncRet && | 
|  | Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { | 
|  | CallingConv Conv1CC = Conv1FuncRet->getCallConv(); | 
|  | CallingConv Conv2CC = Conv2FuncRet->getCallConv(); | 
|  |  | 
|  | CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); | 
|  | const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>(); | 
|  |  | 
|  | CallingConv CallOpCC = | 
|  | CallOp->getType()->castAs<FunctionType>()->getCallConv(); | 
|  | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( | 
|  | CallOpProto->isVariadic(), /*IsCXXMethod=*/false); | 
|  | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( | 
|  | CallOpProto->isVariadic(), /*IsCXXMethod=*/true); | 
|  |  | 
|  | CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; | 
|  | for (CallingConv CC : PrefOrder) { | 
|  | if (Conv1CC == CC) | 
|  | return ImplicitConversionSequence::Better; | 
|  | if (Conv2CC == CC) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | static bool hasDeprecatedStringLiteralToCharPtrConversion( | 
|  | const ImplicitConversionSequence &ICS) { | 
|  | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || | 
|  | (ICS.isUserDefined() && | 
|  | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); | 
|  | } | 
|  |  | 
|  | /// CompareImplicitConversionSequences - Compare two implicit | 
|  | /// conversion sequences to determine whether one is better than the | 
|  | /// other or if they are indistinguishable (C++ 13.3.3.2). | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, | 
|  | const ImplicitConversionSequence& ICS1, | 
|  | const ImplicitConversionSequence& ICS2) | 
|  | { | 
|  | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit | 
|  | // conversion sequences (as defined in 13.3.3.1) | 
|  | //   -- a standard conversion sequence (13.3.3.1.1) is a better | 
|  | //      conversion sequence than a user-defined conversion sequence or | 
|  | //      an ellipsis conversion sequence, and | 
|  | //   -- a user-defined conversion sequence (13.3.3.1.2) is a better | 
|  | //      conversion sequence than an ellipsis conversion sequence | 
|  | //      (13.3.3.1.3). | 
|  | // | 
|  | // C++0x [over.best.ics]p10: | 
|  | //   For the purpose of ranking implicit conversion sequences as | 
|  | //   described in 13.3.3.2, the ambiguous conversion sequence is | 
|  | //   treated as a user-defined sequence that is indistinguishable | 
|  | //   from any other user-defined conversion sequence. | 
|  |  | 
|  | // String literal to 'char *' conversion has been deprecated in C++03. It has | 
|  | // been removed from C++11. We still accept this conversion, if it happens at | 
|  | // the best viable function. Otherwise, this conversion is considered worse | 
|  | // than ellipsis conversion. Consider this as an extension; this is not in the | 
|  | // standard. For example: | 
|  | // | 
|  | // int &f(...);    // #1 | 
|  | // void f(char*);  // #2 | 
|  | // void g() { int &r = f("foo"); } | 
|  | // | 
|  | // In C++03, we pick #2 as the best viable function. | 
|  | // In C++11, we pick #1 as the best viable function, because ellipsis | 
|  | // conversion is better than string-literal to char* conversion (since there | 
|  | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't | 
|  | // convert arguments, #2 would be the best viable function in C++11. | 
|  | // If the best viable function has this conversion, a warning will be issued | 
|  | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. | 
|  |  | 
|  | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | 
|  | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != | 
|  | hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && | 
|  | // Ill-formedness must not differ | 
|  | ICS1.isBad() == ICS2.isBad()) | 
|  | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) | 
|  | ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  |  | 
|  | if (ICS1.getKindRank() < ICS2.getKindRank()) | 
|  | return ImplicitConversionSequence::Better; | 
|  | if (ICS2.getKindRank() < ICS1.getKindRank()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // The following checks require both conversion sequences to be of | 
|  | // the same kind. | 
|  | if (ICS1.getKind() != ICS2.getKind()) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | ImplicitConversionSequence::CompareKind Result = | 
|  | ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // Two implicit conversion sequences of the same form are | 
|  | // indistinguishable conversion sequences unless one of the | 
|  | // following rules apply: (C++ 13.3.3.2p3): | 
|  |  | 
|  | // List-initialization sequence L1 is a better conversion sequence than | 
|  | // list-initialization sequence L2 if: | 
|  | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, | 
|  | //   if not that, | 
|  | // — L1 and L2 convert to arrays of the same element type, and either the | 
|  | //   number of elements n_1 initialized by L1 is less than the number of | 
|  | //   elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to | 
|  | //   an array of unknown bound and L1 does not, | 
|  | // even if one of the other rules in this paragraph would otherwise apply. | 
|  | if (!ICS1.isBad()) { | 
|  | bool StdInit1 = false, StdInit2 = false; | 
|  | if (ICS1.hasInitializerListContainerType()) | 
|  | StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), | 
|  | nullptr); | 
|  | if (ICS2.hasInitializerListContainerType()) | 
|  | StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), | 
|  | nullptr); | 
|  | if (StdInit1 != StdInit2) | 
|  | return StdInit1 ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  |  | 
|  | if (ICS1.hasInitializerListContainerType() && | 
|  | ICS2.hasInitializerListContainerType()) | 
|  | if (auto *CAT1 = S.Context.getAsConstantArrayType( | 
|  | ICS1.getInitializerListContainerType())) | 
|  | if (auto *CAT2 = S.Context.getAsConstantArrayType( | 
|  | ICS2.getInitializerListContainerType())) { | 
|  | if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), | 
|  | CAT2->getElementType())) { | 
|  | // Both to arrays of the same element type | 
|  | if (CAT1->getSize() != CAT2->getSize()) | 
|  | // Different sized, the smaller wins | 
|  | return CAT1->getSize().ult(CAT2->getSize()) | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | if (ICS1.isInitializerListOfIncompleteArray() != | 
|  | ICS2.isInitializerListOfIncompleteArray()) | 
|  | // One is incomplete, it loses | 
|  | return ICS2.isInitializerListOfIncompleteArray() | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ICS1.isStandard()) | 
|  | // Standard conversion sequence S1 is a better conversion sequence than | 
|  | // standard conversion sequence S2 if [...] | 
|  | Result = CompareStandardConversionSequences(S, Loc, | 
|  | ICS1.Standard, ICS2.Standard); | 
|  | else if (ICS1.isUserDefined()) { | 
|  | // User-defined conversion sequence U1 is a better conversion | 
|  | // sequence than another user-defined conversion sequence U2 if | 
|  | // they contain the same user-defined conversion function or | 
|  | // constructor and if the second standard conversion sequence of | 
|  | // U1 is better than the second standard conversion sequence of | 
|  | // U2 (C++ 13.3.3.2p3). | 
|  | if (ICS1.UserDefined.ConversionFunction == | 
|  | ICS2.UserDefined.ConversionFunction) | 
|  | Result = CompareStandardConversionSequences(S, Loc, | 
|  | ICS1.UserDefined.After, | 
|  | ICS2.UserDefined.After); | 
|  | else | 
|  | Result = compareConversionFunctions(S, | 
|  | ICS1.UserDefined.ConversionFunction, | 
|  | ICS2.UserDefined.ConversionFunction); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Per 13.3.3.2p3, compare the given standard conversion sequences to | 
|  | // determine if one is a proper subset of the other. | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | compareStandardConversionSubsets(ASTContext &Context, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) { | 
|  | ImplicitConversionSequence::CompareKind Result | 
|  | = ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // the identity conversion sequence is considered to be a subsequence of | 
|  | // any non-identity conversion sequence | 
|  | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | if (SCS1.Second != SCS2.Second) { | 
|  | if (SCS1.Second == ICK_Identity) | 
|  | Result = ImplicitConversionSequence::Better; | 
|  | else if (SCS2.Second == ICK_Identity) | 
|  | Result = ImplicitConversionSequence::Worse; | 
|  | else | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | if (SCS1.Third == SCS2.Third) { | 
|  | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result | 
|  | : ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | if (SCS1.Third == ICK_Identity) | 
|  | return Result == ImplicitConversionSequence::Worse | 
|  | ? ImplicitConversionSequence::Indistinguishable | 
|  | : ImplicitConversionSequence::Better; | 
|  |  | 
|  | if (SCS2.Third == ICK_Identity) | 
|  | return Result == ImplicitConversionSequence::Better | 
|  | ? ImplicitConversionSequence::Indistinguishable | 
|  | : ImplicitConversionSequence::Worse; | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | /// Determine whether one of the given reference bindings is better | 
|  | /// than the other based on what kind of bindings they are. | 
|  | static bool | 
|  | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, | 
|  | const StandardConversionSequence &SCS2) { | 
|  | // C++0x [over.ics.rank]p3b4: | 
|  | //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an | 
|  | //      implicit object parameter of a non-static member function declared | 
|  | //      without a ref-qualifier, and *either* S1 binds an rvalue reference | 
|  | //      to an rvalue and S2 binds an lvalue reference *or S1 binds an | 
|  | //      lvalue reference to a function lvalue and S2 binds an rvalue | 
|  | //      reference*. | 
|  | // | 
|  | // FIXME: Rvalue references. We're going rogue with the above edits, | 
|  | // because the semantics in the current C++0x working paper (N3225 at the | 
|  | // time of this writing) break the standard definition of std::forward | 
|  | // and std::reference_wrapper when dealing with references to functions. | 
|  | // Proposed wording changes submitted to CWG for consideration. | 
|  | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || | 
|  | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) | 
|  | return false; | 
|  |  | 
|  | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && | 
|  | SCS2.IsLvalueReference) || | 
|  | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && | 
|  | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); | 
|  | } | 
|  |  | 
|  | enum class FixedEnumPromotion { | 
|  | None, | 
|  | ToUnderlyingType, | 
|  | ToPromotedUnderlyingType | 
|  | }; | 
|  |  | 
|  | /// Returns kind of fixed enum promotion the \a SCS uses. | 
|  | static FixedEnumPromotion | 
|  | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { | 
|  |  | 
|  | if (SCS.Second != ICK_Integral_Promotion) | 
|  | return FixedEnumPromotion::None; | 
|  |  | 
|  | QualType FromType = SCS.getFromType(); | 
|  | if (!FromType->isEnumeralType()) | 
|  | return FixedEnumPromotion::None; | 
|  |  | 
|  | EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); | 
|  | if (!Enum->isFixed()) | 
|  | return FixedEnumPromotion::None; | 
|  |  | 
|  | QualType UnderlyingType = Enum->getIntegerType(); | 
|  | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) | 
|  | return FixedEnumPromotion::ToUnderlyingType; | 
|  |  | 
|  | return FixedEnumPromotion::ToPromotedUnderlyingType; | 
|  | } | 
|  |  | 
|  | /// CompareStandardConversionSequences - Compare two standard | 
|  | /// conversion sequences to determine whether one is better than the | 
|  | /// other or if they are indistinguishable (C++ 13.3.3.2p3). | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) | 
|  | { | 
|  | // Standard conversion sequence S1 is a better conversion sequence | 
|  | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): | 
|  |  | 
|  | //  -- S1 is a proper subsequence of S2 (comparing the conversion | 
|  | //     sequences in the canonical form defined by 13.3.3.1.1, | 
|  | //     excluding any Lvalue Transformation; the identity conversion | 
|  | //     sequence is considered to be a subsequence of any | 
|  | //     non-identity conversion sequence) or, if not that, | 
|  | if (ImplicitConversionSequence::CompareKind CK | 
|  | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) | 
|  | return CK; | 
|  |  | 
|  | //  -- the rank of S1 is better than the rank of S2 (by the rules | 
|  | //     defined below), or, if not that, | 
|  | ImplicitConversionRank Rank1 = SCS1.getRank(); | 
|  | ImplicitConversionRank Rank2 = SCS2.getRank(); | 
|  | if (Rank1 < Rank2) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (Rank2 < Rank1) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank | 
|  | // are indistinguishable unless one of the following rules | 
|  | // applies: | 
|  |  | 
|  | //   A conversion that is not a conversion of a pointer, or | 
|  | //   pointer to member, to bool is better than another conversion | 
|  | //   that is such a conversion. | 
|  | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) | 
|  | return SCS2.isPointerConversionToBool() | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // C++14 [over.ics.rank]p4b2: | 
|  | // This is retroactively applied to C++11 by CWG 1601. | 
|  | // | 
|  | //   A conversion that promotes an enumeration whose underlying type is fixed | 
|  | //   to its underlying type is better than one that promotes to the promoted | 
|  | //   underlying type, if the two are different. | 
|  | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); | 
|  | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); | 
|  | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && | 
|  | FEP1 != FEP2) | 
|  | return FEP1 == FixedEnumPromotion::ToUnderlyingType | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // C++ [over.ics.rank]p4b2: | 
|  | // | 
|  | //   If class B is derived directly or indirectly from class A, | 
|  | //   conversion of B* to A* is better than conversion of B* to | 
|  | //   void*, and conversion of A* to void* is better than conversion | 
|  | //   of B* to void*. | 
|  | bool SCS1ConvertsToVoid | 
|  | = SCS1.isPointerConversionToVoidPointer(S.Context); | 
|  | bool SCS2ConvertsToVoid | 
|  | = SCS2.isPointerConversionToVoidPointer(S.Context); | 
|  | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { | 
|  | // Exactly one of the conversion sequences is a conversion to | 
|  | // a void pointer; it's the worse conversion. | 
|  | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { | 
|  | // Neither conversion sequence converts to a void pointer; compare | 
|  | // their derived-to-base conversions. | 
|  | if (ImplicitConversionSequence::CompareKind DerivedCK | 
|  | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) | 
|  | return DerivedCK; | 
|  | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && | 
|  | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { | 
|  | // Both conversion sequences are conversions to void | 
|  | // pointers. Compare the source types to determine if there's an | 
|  | // inheritance relationship in their sources. | 
|  | QualType FromType1 = SCS1.getFromType(); | 
|  | QualType FromType2 = SCS2.getFromType(); | 
|  |  | 
|  | // Adjust the types we're converting from via the array-to-pointer | 
|  | // conversion, if we need to. | 
|  | if (SCS1.First == ICK_Array_To_Pointer) | 
|  | FromType1 = S.Context.getArrayDecayedType(FromType1); | 
|  | if (SCS2.First == ICK_Array_To_Pointer) | 
|  | FromType2 = S.Context.getArrayDecayedType(FromType2); | 
|  |  | 
|  | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); | 
|  | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); | 
|  |  | 
|  | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  |  | 
|  | // Objective-C++: If one interface is more specific than the | 
|  | // other, it is the better one. | 
|  | const ObjCObjectPointerType* FromObjCPtr1 | 
|  | = FromType1->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType* FromObjCPtr2 | 
|  | = FromType2->getAs<ObjCObjectPointerType>(); | 
|  | if (FromObjCPtr1 && FromObjCPtr2) { | 
|  | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, | 
|  | FromObjCPtr2); | 
|  | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, | 
|  | FromObjCPtr1); | 
|  | if (AssignLeft != AssignRight) { | 
|  | return AssignLeft? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | 
|  | // Check for a better reference binding based on the kind of bindings. | 
|  | if (isBetterReferenceBindingKind(SCS1, SCS2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (isBetterReferenceBindingKind(SCS2, SCS1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | // Compare based on qualification conversions (C++ 13.3.3.2p3, | 
|  | // bullet 3). | 
|  | if (ImplicitConversionSequence::CompareKind QualCK | 
|  | = CompareQualificationConversions(S, SCS1, SCS2)) | 
|  | return QualCK; | 
|  |  | 
|  | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | 
|  | // C++ [over.ics.rank]p3b4: | 
|  | //   -- S1 and S2 are reference bindings (8.5.3), and the types to | 
|  | //      which the references refer are the same type except for | 
|  | //      top-level cv-qualifiers, and the type to which the reference | 
|  | //      initialized by S2 refers is more cv-qualified than the type | 
|  | //      to which the reference initialized by S1 refers. | 
|  | QualType T1 = SCS1.getToType(2); | 
|  | QualType T2 = SCS2.getToType(2); | 
|  | T1 = S.Context.getCanonicalType(T1); | 
|  | T2 = S.Context.getCanonicalType(T2); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  | if (UnqualT1 == UnqualT2) { | 
|  | // Objective-C++ ARC: If the references refer to objects with different | 
|  | // lifetimes, prefer bindings that don't change lifetime. | 
|  | if (SCS1.ObjCLifetimeConversionBinding != | 
|  | SCS2.ObjCLifetimeConversionBinding) { | 
|  | return SCS1.ObjCLifetimeConversionBinding | 
|  | ? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  | } | 
|  |  | 
|  | // If the type is an array type, promote the element qualifiers to the | 
|  | // type for comparison. | 
|  | if (isa<ArrayType>(T1) && T1Quals) | 
|  | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | 
|  | if (isa<ArrayType>(T2) && T2Quals) | 
|  | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | 
|  | if (T2.isMoreQualifiedThan(T1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | if (T1.isMoreQualifiedThan(T2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In Microsoft mode (below 19.28), prefer an integral conversion to a | 
|  | // floating-to-integral conversion if the integral conversion | 
|  | // is between types of the same size. | 
|  | // For example: | 
|  | // void f(float); | 
|  | // void f(int); | 
|  | // int main { | 
|  | //    long a; | 
|  | //    f(a); | 
|  | // } | 
|  | // Here, MSVC will call f(int) instead of generating a compile error | 
|  | // as clang will do in standard mode. | 
|  | if (S.getLangOpts().MSVCCompat && | 
|  | !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && | 
|  | SCS1.Second == ICK_Integral_Conversion && | 
|  | SCS2.Second == ICK_Floating_Integral && | 
|  | S.Context.getTypeSize(SCS1.getFromType()) == | 
|  | S.Context.getTypeSize(SCS1.getToType(2))) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // Prefer a compatible vector conversion over a lax vector conversion | 
|  | // For example: | 
|  | // | 
|  | // typedef float __v4sf __attribute__((__vector_size__(16))); | 
|  | // void f(vector float); | 
|  | // void f(vector signed int); | 
|  | // int main() { | 
|  | //   __v4sf a; | 
|  | //   f(a); | 
|  | // } | 
|  | // Here, we'd like to choose f(vector float) and not | 
|  | // report an ambiguous call error | 
|  | if (SCS1.Second == ICK_Vector_Conversion && | 
|  | SCS2.Second == ICK_Vector_Conversion) { | 
|  | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | 
|  | SCS1.getFromType(), SCS1.getToType(2)); | 
|  | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | 
|  | SCS2.getFromType(), SCS2.getToType(2)); | 
|  |  | 
|  | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) | 
|  | return SCS1IsCompatibleVectorConversion | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | if (SCS1.Second == ICK_SVE_Vector_Conversion && | 
|  | SCS2.Second == ICK_SVE_Vector_Conversion) { | 
|  | bool SCS1IsCompatibleSVEVectorConversion = | 
|  | S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); | 
|  | bool SCS2IsCompatibleSVEVectorConversion = | 
|  | S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); | 
|  |  | 
|  | if (SCS1IsCompatibleSVEVectorConversion != | 
|  | SCS2IsCompatibleSVEVectorConversion) | 
|  | return SCS1IsCompatibleSVEVectorConversion | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | if (SCS1.Second == ICK_RVV_Vector_Conversion && | 
|  | SCS2.Second == ICK_RVV_Vector_Conversion) { | 
|  | bool SCS1IsCompatibleRVVVectorConversion = | 
|  | S.Context.areCompatibleRVVTypes(SCS1.getFromType(), SCS1.getToType(2)); | 
|  | bool SCS2IsCompatibleRVVVectorConversion = | 
|  | S.Context.areCompatibleRVVTypes(SCS2.getFromType(), SCS2.getToType(2)); | 
|  |  | 
|  | if (SCS1IsCompatibleRVVVectorConversion != | 
|  | SCS2IsCompatibleRVVVectorConversion) | 
|  | return SCS1IsCompatibleRVVVectorConversion | 
|  | ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | /// CompareQualificationConversions - Compares two standard conversion | 
|  | /// sequences to determine whether they can be ranked based on their | 
|  | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareQualificationConversions(Sema &S, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) { | 
|  | // C++ [over.ics.rank]p3: | 
|  | //  -- S1 and S2 differ only in their qualification conversion and | 
|  | //     yield similar types T1 and T2 (C++ 4.4), respectively, [...] | 
|  | // [C++98] | 
|  | //     [...] and the cv-qualification signature of type T1 is a proper subset | 
|  | //     of the cv-qualification signature of type T2, and S1 is not the | 
|  | //     deprecated string literal array-to-pointer conversion (4.2). | 
|  | // [C++2a] | 
|  | //     [...] where T1 can be converted to T2 by a qualification conversion. | 
|  | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || | 
|  | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // FIXME: the example in the standard doesn't use a qualification | 
|  | // conversion (!) | 
|  | QualType T1 = SCS1.getToType(2); | 
|  | QualType T2 = SCS2.getToType(2); | 
|  | T1 = S.Context.getCanonicalType(T1); | 
|  | T2 = S.Context.getCanonicalType(T2); | 
|  | assert(!T1->isReferenceType() && !T2->isReferenceType()); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  |  | 
|  | // If the types are the same, we won't learn anything by unwrapping | 
|  | // them. | 
|  | if (UnqualT1 == UnqualT2) | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  |  | 
|  | // Don't ever prefer a standard conversion sequence that uses the deprecated | 
|  | // string literal array to pointer conversion. | 
|  | bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; | 
|  | bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; | 
|  |  | 
|  | // Objective-C++ ARC: | 
|  | //   Prefer qualification conversions not involving a change in lifetime | 
|  | //   to qualification conversions that do change lifetime. | 
|  | if (SCS1.QualificationIncludesObjCLifetime && | 
|  | !SCS2.QualificationIncludesObjCLifetime) | 
|  | CanPick1 = false; | 
|  | if (SCS2.QualificationIncludesObjCLifetime && | 
|  | !SCS1.QualificationIncludesObjCLifetime) | 
|  | CanPick2 = false; | 
|  |  | 
|  | bool ObjCLifetimeConversion; | 
|  | if (CanPick1 && | 
|  | !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion)) | 
|  | CanPick1 = false; | 
|  | // FIXME: In Objective-C ARC, we can have qualification conversions in both | 
|  | // directions, so we can't short-cut this second check in general. | 
|  | if (CanPick2 && | 
|  | !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion)) | 
|  | CanPick2 = false; | 
|  |  | 
|  | if (CanPick1 != CanPick2) | 
|  | return CanPick1 ? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | /// CompareDerivedToBaseConversions - Compares two standard conversion | 
|  | /// sequences to determine whether they can be ranked based on their | 
|  | /// various kinds of derived-to-base conversions (C++ | 
|  | /// [over.ics.rank]p4b3).  As part of these checks, we also look at | 
|  | /// conversions between Objective-C interface types. | 
|  | static ImplicitConversionSequence::CompareKind | 
|  | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | 
|  | const StandardConversionSequence& SCS1, | 
|  | const StandardConversionSequence& SCS2) { | 
|  | QualType FromType1 = SCS1.getFromType(); | 
|  | QualType ToType1 = SCS1.getToType(1); | 
|  | QualType FromType2 = SCS2.getFromType(); | 
|  | QualType ToType2 = SCS2.getToType(1); | 
|  |  | 
|  | // Adjust the types we're converting from via the array-to-pointer | 
|  | // conversion, if we need to. | 
|  | if (SCS1.First == ICK_Array_To_Pointer) | 
|  | FromType1 = S.Context.getArrayDecayedType(FromType1); | 
|  | if (SCS2.First == ICK_Array_To_Pointer) | 
|  | FromType2 = S.Context.getArrayDecayedType(FromType2); | 
|  |  | 
|  | // Canonicalize all of the types. | 
|  | FromType1 = S.Context.getCanonicalType(FromType1); | 
|  | ToType1 = S.Context.getCanonicalType(ToType1); | 
|  | FromType2 = S.Context.getCanonicalType(FromType2); | 
|  | ToType2 = S.Context.getCanonicalType(ToType2); | 
|  |  | 
|  | // C++ [over.ics.rank]p4b3: | 
|  | // | 
|  | //   If class B is derived directly or indirectly from class A and | 
|  | //   class C is derived directly or indirectly from B, | 
|  | // | 
|  | // Compare based on pointer conversions. | 
|  | if (SCS1.Second == ICK_Pointer_Conversion && | 
|  | SCS2.Second == ICK_Pointer_Conversion && | 
|  | /*FIXME: Remove if Objective-C id conversions get their own rank*/ | 
|  | FromType1->isPointerType() && FromType2->isPointerType() && | 
|  | ToType1->isPointerType() && ToType2->isPointerType()) { | 
|  | QualType FromPointee1 = | 
|  | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  | QualType ToPointee1 = | 
|  | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  | QualType FromPointee2 = | 
|  | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  | QualType ToPointee2 = | 
|  | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
|  |  | 
|  | //   -- conversion of C* to B* is better than conversion of C* to A*, | 
|  | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | 
|  | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | //   -- conversion of B* to A* is better than conversion of C* to A*, | 
|  | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { | 
|  | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } else if (SCS1.Second == ICK_Pointer_Conversion && | 
|  | SCS2.Second == ICK_Pointer_Conversion) { | 
|  | const ObjCObjectPointerType *FromPtr1 | 
|  | = FromType1->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *FromPtr2 | 
|  | = FromType2->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *ToPtr1 | 
|  | = ToType1->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *ToPtr2 | 
|  | = ToType2->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { | 
|  | // Apply the same conversion ranking rules for Objective-C pointer types | 
|  | // that we do for C++ pointers to class types. However, we employ the | 
|  | // Objective-C pseudo-subtyping relationship used for assignment of | 
|  | // Objective-C pointer types. | 
|  | bool FromAssignLeft | 
|  | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); | 
|  | bool FromAssignRight | 
|  | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); | 
|  | bool ToAssignLeft | 
|  | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); | 
|  | bool ToAssignRight | 
|  | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); | 
|  |  | 
|  | // A conversion to an a non-id object pointer type or qualified 'id' | 
|  | // type is better than a conversion to 'id'. | 
|  | if (ToPtr1->isObjCIdType() && | 
|  | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCIdType() && | 
|  | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // A conversion to a non-id object pointer type is better than a | 
|  | // conversion to a qualified 'id' type | 
|  | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // A conversion to an a non-Class object pointer type or qualified 'Class' | 
|  | // type is better than a conversion to 'Class'. | 
|  | if (ToPtr1->isObjCClassType() && | 
|  | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCClassType() && | 
|  | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | // A conversion to a non-Class object pointer type is better than a | 
|  | // conversion to a qualified 'Class' type. | 
|  | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) | 
|  | return ImplicitConversionSequence::Better; | 
|  |  | 
|  | //   -- "conversion of C* to B* is better than conversion of C* to A*," | 
|  | if (S.Context.hasSameType(FromType1, FromType2) && | 
|  | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && | 
|  | (ToAssignLeft != ToAssignRight)) { | 
|  | if (FromPtr1->isSpecialized()) { | 
|  | // "conversion of B<A> * to B * is better than conversion of B * to | 
|  | // C *. | 
|  | bool IsFirstSame = | 
|  | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); | 
|  | bool IsSecondSame = | 
|  | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); | 
|  | if (IsFirstSame) { | 
|  | if (!IsSecondSame) | 
|  | return ImplicitConversionSequence::Better; | 
|  | } else if (IsSecondSame) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | return ToAssignLeft? ImplicitConversionSequence::Worse | 
|  | : ImplicitConversionSequence::Better; | 
|  | } | 
|  |  | 
|  | //   -- "conversion of B* to A* is better than conversion of C* to A*," | 
|  | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && | 
|  | (FromAssignLeft != FromAssignRight)) | 
|  | return FromAssignLeft? ImplicitConversionSequence::Better | 
|  | : ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ranking of member-pointer types. | 
|  | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && | 
|  | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && | 
|  | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { | 
|  | const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); | 
|  | const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); | 
|  | const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); | 
|  | const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); | 
|  | const Type *FromPointeeType1 = FromMemPointer1->getClass(); | 
|  | const Type *ToPointeeType1 = ToMemPointer1->getClass(); | 
|  | const Type *FromPointeeType2 = FromMemPointer2->getClass(); | 
|  | const Type *ToPointeeType2 = ToMemPointer2->getClass(); | 
|  | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); | 
|  | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); | 
|  | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); | 
|  | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); | 
|  | // conversion of A::* to B::* is better than conversion of A::* to C::*, | 
|  | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | 
|  | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | } | 
|  | // conversion of B::* to C::* is better than conversion of A::* to C::* | 
|  | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { | 
|  | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SCS1.Second == ICK_Derived_To_Base) { | 
|  | //   -- conversion of C to B is better than conversion of C to A, | 
|  | //   -- binding of an expression of type C to a reference of type | 
|  | //      B& is better than binding an expression of type C to a | 
|  | //      reference of type A&, | 
|  | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | 
|  | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | 
|  | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  |  | 
|  | //   -- conversion of B to A is better than conversion of C to A. | 
|  | //   -- binding of an expression of type B to a reference of type | 
|  | //      A& is better than binding an expression of type C to a | 
|  | //      reference of type A&, | 
|  | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | 
|  | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | 
|  | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) | 
|  | return ImplicitConversionSequence::Better; | 
|  | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) | 
|  | return ImplicitConversionSequence::Worse; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ImplicitConversionSequence::Indistinguishable; | 
|  | } | 
|  |  | 
|  | static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { | 
|  | if (!T.getQualifiers().hasUnaligned()) | 
|  | return T; | 
|  |  | 
|  | Qualifiers Q; | 
|  | T = Ctx.getUnqualifiedArrayType(T, Q); | 
|  | Q.removeUnaligned(); | 
|  | return Ctx.getQualifiedType(T, Q); | 
|  | } | 
|  |  | 
|  | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | 
|  | /// determine whether they are reference-compatible, | 
|  | /// reference-related, or incompatible, for use in C++ initialization by | 
|  | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | 
|  | /// type, and the first type (T1) is the pointee type of the reference | 
|  | /// type being initialized. | 
|  | Sema::ReferenceCompareResult | 
|  | Sema::CompareReferenceRelationship(SourceLocation Loc, | 
|  | QualType OrigT1, QualType OrigT2, | 
|  | ReferenceConversions *ConvOut) { | 
|  | assert(!OrigT1->isReferenceType() && | 
|  | "T1 must be the pointee type of the reference type"); | 
|  | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); | 
|  |  | 
|  | QualType T1 = Context.getCanonicalType(OrigT1); | 
|  | QualType T2 = Context.getCanonicalType(OrigT2); | 
|  | Qualifiers T1Quals, T2Quals; | 
|  | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | 
|  | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | 
|  |  | 
|  | ReferenceConversions ConvTmp; | 
|  | ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; | 
|  | Conv = ReferenceConversions(); | 
|  |  | 
|  | // C++2a [dcl.init.ref]p4: | 
|  | //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | 
|  | //   reference-related to "cv2 T2" if T1 is similar to T2, or | 
|  | //   T1 is a base class of T2. | 
|  | //   "cv1 T1" is reference-compatible with "cv2 T2" if | 
|  | //   a prvalue of type "pointer to cv2 T2" can be converted to the type | 
|  | //   "pointer to cv1 T1" via a standard conversion sequence. | 
|  |  | 
|  | // Check for standard conversions we can apply to pointers: derived-to-base | 
|  | // conversions, ObjC pointer conversions, and function pointer conversions. | 
|  | // (Qualification conversions are checked last.) | 
|  | QualType ConvertedT2; | 
|  | if (UnqualT1 == UnqualT2) { | 
|  | // Nothing to do. | 
|  | } else if (isCompleteType(Loc, OrigT2) && | 
|  | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) | 
|  | Conv |= ReferenceConversions::DerivedToBase; | 
|  | else if (UnqualT1->isObjCObjectOrInterfaceType() && | 
|  | UnqualT2->isObjCObjectOrInterfaceType() && | 
|  | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) | 
|  | Conv |= ReferenceConversions::ObjC; | 
|  | else if (UnqualT2->isFunctionType() && | 
|  | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { | 
|  | Conv |= ReferenceConversions::Function; | 
|  | // No need to check qualifiers; function types don't have them. | 
|  | return Ref_Compatible; | 
|  | } | 
|  | bool ConvertedReferent = Conv != 0; | 
|  |  | 
|  | // We can have a qualification conversion. Compute whether the types are | 
|  | // similar at the same time. | 
|  | bool PreviousToQualsIncludeConst = true; | 
|  | bool TopLevel = true; | 
|  | do { | 
|  | if (T1 == T2) | 
|  | break; | 
|  |  | 
|  | // We will need a qualification conversion. | 
|  | Conv |= ReferenceConversions::Qualification; | 
|  |  | 
|  | // Track whether we performed a qualification conversion anywhere other | 
|  | // than the top level. This matters for ranking reference bindings in | 
|  | // overload resolution. | 
|  | if (!TopLevel) | 
|  | Conv |= ReferenceConversions::NestedQualification; | 
|  |  | 
|  | // MS compiler ignores __unaligned qualifier for references; do the same. | 
|  | T1 = withoutUnaligned(Context, T1); | 
|  | T2 = withoutUnaligned(Context, T2); | 
|  |  | 
|  | // If we find a qualifier mismatch, the types are not reference-compatible, | 
|  | // but are still be reference-related if they're similar. | 
|  | bool ObjCLifetimeConversion = false; | 
|  | if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, | 
|  | PreviousToQualsIncludeConst, | 
|  | ObjCLifetimeConversion)) | 
|  | return (ConvertedReferent || Context.hasSimilarType(T1, T2)) | 
|  | ? Ref_Related | 
|  | : Ref_Incompatible; | 
|  |  | 
|  | // FIXME: Should we track this for any level other than the first? | 
|  | if (ObjCLifetimeConversion) | 
|  | Conv |= ReferenceConversions::ObjCLifetime; | 
|  |  | 
|  | TopLevel = false; | 
|  | } while (Context.UnwrapSimilarTypes(T1, T2)); | 
|  |  | 
|  | // At this point, if the types are reference-related, we must either have the | 
|  | // same inner type (ignoring qualifiers), or must have already worked out how | 
|  | // to convert the referent. | 
|  | return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) | 
|  | ? Ref_Compatible | 
|  | : Ref_Incompatible; | 
|  | } | 
|  |  | 
|  | /// Look for a user-defined conversion to a value reference-compatible | 
|  | ///        with DeclType. Return true if something definite is found. | 
|  | static bool | 
|  | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, | 
|  | QualType DeclType, SourceLocation DeclLoc, | 
|  | Expr *Init, QualType T2, bool AllowRvalues, | 
|  | bool AllowExplicit) { | 
|  | assert(T2->isRecordType() && "Can only find conversions of record types."); | 
|  | auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); | 
|  |  | 
|  | OverloadCandidateSet CandidateSet( | 
|  | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); | 
|  | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | FunctionTemplateDecl *ConvTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(D); | 
|  | CXXConversionDecl *Conv; | 
|  | if (ConvTemplate) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | if (AllowRvalues) { | 
|  | // If we are initializing an rvalue reference, don't permit conversion | 
|  | // functions that return lvalues. | 
|  | if (!ConvTemplate && DeclType->isRValueReferenceType()) { | 
|  | const ReferenceType *RefType | 
|  | = Conv->getConversionType()->getAs<LValueReferenceType>(); | 
|  | if (RefType && !RefType->getPointeeType()->isFunctionType()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!ConvTemplate && | 
|  | S.CompareReferenceRelationship( | 
|  | DeclLoc, | 
|  | Conv->getConversionType() | 
|  | .getNonReferenceType() | 
|  | .getUnqualifiedType(), | 
|  | DeclType.getNonReferenceType().getUnqualifiedType()) == | 
|  | Sema::Ref_Incompatible) | 
|  | continue; | 
|  | } else { | 
|  | // If the conversion function doesn't return a reference type, | 
|  | // it can't be considered for this conversion. An rvalue reference | 
|  | // is only acceptable if its referencee is a function type. | 
|  |  | 
|  | const ReferenceType *RefType = | 
|  | Conv->getConversionType()->getAs<ReferenceType>(); | 
|  | if (!RefType || | 
|  | (!RefType->isLValueReferenceType() && | 
|  | !RefType->getPointeeType()->isFunctionType())) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ConvTemplate) | 
|  | S.AddTemplateConversionCandidate( | 
|  | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | 
|  | else | 
|  | S.AddConversionCandidate( | 
|  | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { | 
|  | case OR_Success: | 
|  | // C++ [over.ics.ref]p1: | 
|  | // | 
|  | //   [...] If the parameter binds directly to the result of | 
|  | //   applying a conversion function to the argument | 
|  | //   expression, the implicit conversion sequence is a | 
|  | //   user-defined conversion sequence (13.3.3.1.2), with the | 
|  | //   second standard conversion sequence either an identity | 
|  | //   conversion or, if the conversion function returns an | 
|  | //   entity of a type that is a derived class of the parameter | 
|  | //   type, a derived-to-base Conversion. | 
|  | if (!Best->FinalConversion.DirectBinding) | 
|  | return false; | 
|  |  | 
|  | ICS.setUserDefined(); | 
|  | ICS.UserDefined.Before = Best->Conversions[0].Standard; | 
|  | ICS.UserDefined.After = Best->FinalConversion; | 
|  | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; | 
|  | ICS.UserDefined.ConversionFunction = Best->Function; | 
|  | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; | 
|  | ICS.UserDefined.EllipsisConversion = false; | 
|  | assert(ICS.UserDefined.After.ReferenceBinding && | 
|  | ICS.UserDefined.After.DirectBinding && | 
|  | "Expected a direct reference binding!"); | 
|  | return true; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | ICS.setAmbiguous(); | 
|  | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | 
|  | Cand != CandidateSet.end(); ++Cand) | 
|  | if (Cand->Best) | 
|  | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | 
|  | return true; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | case OR_Deleted: | 
|  | // There was no suitable conversion, or we found a deleted | 
|  | // conversion; continue with other checks. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid OverloadResult!"); | 
|  | } | 
|  |  | 
|  | /// Compute an implicit conversion sequence for reference | 
|  | /// initialization. | 
|  | static ImplicitConversionSequence | 
|  | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, | 
|  | SourceLocation DeclLoc, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit) { | 
|  | assert(DeclType->isReferenceType() && "Reference init needs a reference"); | 
|  |  | 
|  | // Most paths end in a failed conversion. | 
|  | ImplicitConversionSequence ICS; | 
|  | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | 
|  |  | 
|  | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); | 
|  | QualType T2 = Init->getType(); | 
|  |  | 
|  | // If the initializer is the address of an overloaded function, try | 
|  | // to resolve the overloaded function. If all goes well, T2 is the | 
|  | // type of the resulting function. | 
|  | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | 
|  | DeclAccessPair Found; | 
|  | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, | 
|  | false, Found)) | 
|  | T2 = Fn->getType(); | 
|  | } | 
|  |  | 
|  | // Compute some basic properties of the types and the initializer. | 
|  | bool isRValRef = DeclType->isRValueReferenceType(); | 
|  | Expr::Classification InitCategory = Init->Classify(S.Context); | 
|  |  | 
|  | Sema::ReferenceConversions RefConv; | 
|  | Sema::ReferenceCompareResult RefRelationship = | 
|  | S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); | 
|  |  | 
|  | auto SetAsReferenceBinding = [&](bool BindsDirectly) { | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.First = ICK_Identity; | 
|  | // FIXME: A reference binding can be a function conversion too. We should | 
|  | // consider that when ordering reference-to-function bindings. | 
|  | ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) | 
|  | ? ICK_Derived_To_Base | 
|  | : (RefConv & Sema::ReferenceConversions::ObjC) | 
|  | ? ICK_Compatible_Conversion | 
|  | : ICK_Identity; | 
|  | ICS.Standard.Element = ICK_Identity; | 
|  | // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank | 
|  | // a reference binding that performs a non-top-level qualification | 
|  | // conversion as a qualification conversion, not as an identity conversion. | 
|  | ICS.Standard.Third = (RefConv & | 
|  | Sema::ReferenceConversions::NestedQualification) | 
|  | ? ICK_Qualification | 
|  | : ICK_Identity; | 
|  | ICS.Standard.setFromType(T2); | 
|  | ICS.Standard.setToType(0, T2); | 
|  | ICS.Standard.setToType(1, T1); | 
|  | ICS.Standard.setToType(2, T1); | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | ICS.Standard.DirectBinding = BindsDirectly; | 
|  | ICS.Standard.IsLvalueReference = !isRValRef; | 
|  | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | 
|  | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.Standard.ObjCLifetimeConversionBinding = | 
|  | (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; | 
|  | ICS.Standard.CopyConstructor = nullptr; | 
|  | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | 
|  | }; | 
|  |  | 
|  | // C++0x [dcl.init.ref]p5: | 
|  | //   A reference to type "cv1 T1" is initialized by an expression | 
|  | //   of type "cv2 T2" as follows: | 
|  |  | 
|  | //     -- If reference is an lvalue reference and the initializer expression | 
|  | if (!isRValRef) { | 
|  | //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is | 
|  | //        reference-compatible with "cv2 T2," or | 
|  | // | 
|  | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. | 
|  | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { | 
|  | // C++ [over.ics.ref]p1: | 
|  | //   When a parameter of reference type binds directly (8.5.3) | 
|  | //   to an argument expression, the implicit conversion sequence | 
|  | //   is the identity conversion, unless the argument expression | 
|  | //   has a type that is a derived class of the parameter type, | 
|  | //   in which case the implicit conversion sequence is a | 
|  | //   derived-to-base Conversion (13.3.3.1). | 
|  | SetAsReferenceBinding(/*BindsDirectly=*/true); | 
|  |  | 
|  | // Nothing more to do: the inaccessibility/ambiguity check for | 
|  | // derived-to-base conversions is suppressed when we're | 
|  | // computing the implicit conversion sequence (C++ | 
|  | // [over.best.ics]p2). | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | //       -- has a class type (i.e., T2 is a class type), where T1 is | 
|  | //          not reference-related to T2, and can be implicitly | 
|  | //          converted to an lvalue of type "cv3 T3," where "cv1 T1" | 
|  | //          is reference-compatible with "cv3 T3" 92) (this | 
|  | //          conversion is selected by enumerating the applicable | 
|  | //          conversion functions (13.3.1.6) and choosing the best | 
|  | //          one through overload resolution (13.3)), | 
|  | if (!SuppressUserConversions && T2->isRecordType() && | 
|  | S.isCompleteType(DeclLoc, T2) && | 
|  | RefRelationship == Sema::Ref_Incompatible) { | 
|  | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | 
|  | Init, T2, /*AllowRvalues=*/false, | 
|  | AllowExplicit)) | 
|  | return ICS; | 
|  | } | 
|  | } | 
|  |  | 
|  | //     -- Otherwise, the reference shall be an lvalue reference to a | 
|  | //        non-volatile const type (i.e., cv1 shall be const), or the reference | 
|  | //        shall be an rvalue reference. | 
|  | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { | 
|  | if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) | 
|  | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | //       -- If the initializer expression | 
|  | // | 
|  | //            -- is an xvalue, class prvalue, array prvalue or function | 
|  | //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or | 
|  | if (RefRelationship == Sema::Ref_Compatible && | 
|  | (InitCategory.isXValue() || | 
|  | (InitCategory.isPRValue() && | 
|  | (T2->isRecordType() || T2->isArrayType())) || | 
|  | (InitCategory.isLValue() && T2->isFunctionType()))) { | 
|  | // In C++11, this is always a direct binding. In C++98/03, it's a direct | 
|  | // binding unless we're binding to a class prvalue. | 
|  | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we | 
|  | // allow the use of rvalue references in C++98/03 for the benefit of | 
|  | // standard library implementors; therefore, we need the xvalue check here. | 
|  | SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || | 
|  | !(InitCategory.isPRValue() || T2->isRecordType())); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | //            -- has a class type (i.e., T2 is a class type), where T1 is not | 
|  | //               reference-related to T2, and can be implicitly converted to | 
|  | //               an xvalue, class prvalue, or function lvalue of type | 
|  | //               "cv3 T3", where "cv1 T1" is reference-compatible with | 
|  | //               "cv3 T3", | 
|  | // | 
|  | //          then the reference is bound to the value of the initializer | 
|  | //          expression in the first case and to the result of the conversion | 
|  | //          in the second case (or, in either case, to an appropriate base | 
|  | //          class subobject). | 
|  | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | 
|  | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && | 
|  | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | 
|  | Init, T2, /*AllowRvalues=*/true, | 
|  | AllowExplicit)) { | 
|  | // In the second case, if the reference is an rvalue reference | 
|  | // and the second standard conversion sequence of the | 
|  | // user-defined conversion sequence includes an lvalue-to-rvalue | 
|  | // conversion, the program is ill-formed. | 
|  | if (ICS.isUserDefined() && isRValRef && | 
|  | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) | 
|  | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // A temporary of function type cannot be created; don't even try. | 
|  | if (T1->isFunctionType()) | 
|  | return ICS; | 
|  |  | 
|  | //       -- Otherwise, a temporary of type "cv1 T1" is created and | 
|  | //          initialized from the initializer expression using the | 
|  | //          rules for a non-reference copy initialization (8.5). The | 
|  | //          reference is then bound to the temporary. If T1 is | 
|  | //          reference-related to T2, cv1 must be the same | 
|  | //          cv-qualification as, or greater cv-qualification than, | 
|  | //          cv2; otherwise, the program is ill-formed. | 
|  | if (RefRelationship == Sema::Ref_Related) { | 
|  | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | 
|  | // we would be reference-compatible or reference-compatible with | 
|  | // added qualification. But that wasn't the case, so the reference | 
|  | // initialization fails. | 
|  | // | 
|  | // Note that we only want to check address spaces and cvr-qualifiers here. | 
|  | // ObjC GC, lifetime and unaligned qualifiers aren't important. | 
|  | Qualifiers T1Quals = T1.getQualifiers(); | 
|  | Qualifiers T2Quals = T2.getQualifiers(); | 
|  | T1Quals.removeObjCGCAttr(); | 
|  | T1Quals.removeObjCLifetime(); | 
|  | T2Quals.removeObjCGCAttr(); | 
|  | T2Quals.removeObjCLifetime(); | 
|  | // MS compiler ignores __unaligned qualifier for references; do the same. | 
|  | T1Quals.removeUnaligned(); | 
|  | T2Quals.removeUnaligned(); | 
|  | if (!T1Quals.compatiblyIncludes(T2Quals)) | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // If at least one of the types is a class type, the types are not | 
|  | // related, and we aren't allowed any user conversions, the | 
|  | // reference binding fails. This case is important for breaking | 
|  | // recursion, since TryImplicitConversion below will attempt to | 
|  | // create a temporary through the use of a copy constructor. | 
|  | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | 
|  | (T1->isRecordType() || T2->isRecordType())) | 
|  | return ICS; | 
|  |  | 
|  | // If T1 is reference-related to T2 and the reference is an rvalue | 
|  | // reference, the initializer expression shall not be an lvalue. | 
|  | if (RefRelationship >= Sema::Ref_Related && isRValRef && | 
|  | Init->Classify(S.Context).isLValue()) { | 
|  | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // C++ [over.ics.ref]p2: | 
|  | //   When a parameter of reference type is not bound directly to | 
|  | //   an argument expression, the conversion sequence is the one | 
|  | //   required to convert the argument expression to the | 
|  | //   underlying type of the reference according to | 
|  | //   13.3.3.1. Conceptually, this conversion sequence corresponds | 
|  | //   to copy-initializing a temporary of the underlying type with | 
|  | //   the argument expression. Any difference in top-level | 
|  | //   cv-qualification is subsumed by the initialization itself | 
|  | //   and does not constitute a conversion. | 
|  | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, | 
|  | AllowedExplicit::None, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  |  | 
|  | // Of course, that's still a reference binding. | 
|  | if (ICS.isStandard()) { | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | ICS.Standard.IsLvalueReference = !isRValRef; | 
|  | ICS.Standard.BindsToFunctionLvalue = false; | 
|  | ICS.Standard.BindsToRvalue = true; | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.Standard.ObjCLifetimeConversionBinding = false; | 
|  | } else if (ICS.isUserDefined()) { | 
|  | const ReferenceType *LValRefType = | 
|  | ICS.UserDefined.ConversionFunction->getReturnType() | 
|  | ->getAs<LValueReferenceType>(); | 
|  |  | 
|  | // C++ [over.ics.ref]p3: | 
|  | //   Except for an implicit object parameter, for which see 13.3.1, a | 
|  | //   standard conversion sequence cannot be formed if it requires [...] | 
|  | //   binding an rvalue reference to an lvalue other than a function | 
|  | //   lvalue. | 
|  | // Note that the function case is not possible here. | 
|  | if (isRValRef && LValRefType) { | 
|  | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | ICS.UserDefined.After.ReferenceBinding = true; | 
|  | ICS.UserDefined.After.IsLvalueReference = !isRValRef; | 
|  | ICS.UserDefined.After.BindsToFunctionLvalue = false; | 
|  | ICS.UserDefined.After.BindsToRvalue = !LValRefType; | 
|  | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; | 
|  | } | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | static ImplicitConversionSequence | 
|  | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool InOverloadResolution, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowExplicit = false); | 
|  |  | 
|  | /// TryListConversion - Try to copy-initialize a value of type ToType from the | 
|  | /// initializer list From. | 
|  | static ImplicitConversionSequence | 
|  | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool InOverloadResolution, | 
|  | bool AllowObjCWritebackConversion) { | 
|  | // C++11 [over.ics.list]p1: | 
|  | //   When an argument is an initializer list, it is not an expression and | 
|  | //   special rules apply for converting it to a parameter type. | 
|  |  | 
|  | ImplicitConversionSequence Result; | 
|  | Result.setBad(BadConversionSequence::no_conversion, From, ToType); | 
|  |  | 
|  | // We need a complete type for what follows.  With one C++20 exception, | 
|  | // incomplete types can never be initialized from init lists. | 
|  | QualType InitTy = ToType; | 
|  | const ArrayType *AT = S.Context.getAsArrayType(ToType); | 
|  | if (AT && S.getLangOpts().CPlusPlus20) | 
|  | if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) | 
|  | // C++20 allows list initialization of an incomplete array type. | 
|  | InitTy = IAT->getElementType(); | 
|  | if (!S.isCompleteType(From->getBeginLoc(), InitTy)) | 
|  | return Result; | 
|  |  | 
|  | // C++20 [over.ics.list]/2: | 
|  | //   If the initializer list is a designated-initializer-list, a conversion | 
|  | //   is only possible if the parameter has an aggregate type | 
|  | // | 
|  | // FIXME: The exception for reference initialization here is not part of the | 
|  | // language rules, but follow other compilers in adding it as a tentative DR | 
|  | // resolution. | 
|  | bool IsDesignatedInit = From->hasDesignatedInit(); | 
|  | if (!ToType->isAggregateType() && !ToType->isReferenceType() && | 
|  | IsDesignatedInit) | 
|  | return Result; | 
|  |  | 
|  | // Per DR1467: | 
|  | //   If the parameter type is a class X and the initializer list has a single | 
|  | //   element of type cv U, where U is X or a class derived from X, the | 
|  | //   implicit conversion sequence is the one required to convert the element | 
|  | //   to the parameter type. | 
|  | // | 
|  | //   Otherwise, if the parameter type is a character array [... ] | 
|  | //   and the initializer list has a single element that is an | 
|  | //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the | 
|  | //   implicit conversion sequence is the identity conversion. | 
|  | if (From->getNumInits() == 1 && !IsDesignatedInit) { | 
|  | if (ToType->isRecordType()) { | 
|  | QualType InitType = From->getInit(0)->getType(); | 
|  | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || | 
|  | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) | 
|  | return TryCopyInitialization(S, From->getInit(0), ToType, | 
|  | SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | } | 
|  |  | 
|  | if (AT && S.IsStringInit(From->getInit(0), AT)) { | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(S.Context, ToType, | 
|  | /*Consumed=*/false); | 
|  | if (S.CanPerformCopyInitialization(Entity, From)) { | 
|  | Result.setStandard(); | 
|  | Result.Standard.setAsIdentityConversion(); | 
|  | Result.Standard.setFromType(ToType); | 
|  | Result.Standard.setAllToTypes(ToType); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). | 
|  | // C++11 [over.ics.list]p2: | 
|  | //   If the parameter type is std::initializer_list<X> or "array of X" and | 
|  | //   all the elements can be implicitly converted to X, the implicit | 
|  | //   conversion sequence is the worst conversion necessary to convert an | 
|  | //   element of the list to X. | 
|  | // | 
|  | // C++14 [over.ics.list]p3: | 
|  | //   Otherwise, if the parameter type is "array of N X", if the initializer | 
|  | //   list has exactly N elements or if it has fewer than N elements and X is | 
|  | //   default-constructible, and if all the elements of the initializer list | 
|  | //   can be implicitly converted to X, the implicit conversion sequence is | 
|  | //   the worst conversion necessary to convert an element of the list to X. | 
|  | if ((AT || S.isStdInitializerList(ToType, &InitTy)) && !IsDesignatedInit) { | 
|  | unsigned e = From->getNumInits(); | 
|  | ImplicitConversionSequence DfltElt; | 
|  | DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), | 
|  | QualType()); | 
|  | QualType ContTy = ToType; | 
|  | bool IsUnbounded = false; | 
|  | if (AT) { | 
|  | InitTy = AT->getElementType(); | 
|  | if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) { | 
|  | if (CT->getSize().ult(e)) { | 
|  | // Too many inits, fatally bad | 
|  | Result.setBad(BadConversionSequence::too_many_initializers, From, | 
|  | ToType); | 
|  | Result.setInitializerListContainerType(ContTy, IsUnbounded); | 
|  | return Result; | 
|  | } | 
|  | if (CT->getSize().ugt(e)) { | 
|  | // Need an init from empty {}, is there one? | 
|  | InitListExpr EmptyList(S.Context, From->getEndLoc(), std::nullopt, | 
|  | From->getEndLoc()); | 
|  | EmptyList.setType(S.Context.VoidTy); | 
|  | DfltElt = TryListConversion( | 
|  | S, &EmptyList, InitTy, SuppressUserConversions, | 
|  | InOverloadResolution, AllowObjCWritebackConversion); | 
|  | if (DfltElt.isBad()) { | 
|  | // No {} init, fatally bad | 
|  | Result.setBad(BadConversionSequence::too_few_initializers, From, | 
|  | ToType); | 
|  | Result.setInitializerListContainerType(ContTy, IsUnbounded); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array"); | 
|  | IsUnbounded = true; | 
|  | if (!e) { | 
|  | // Cannot convert to zero-sized. | 
|  | Result.setBad(BadConversionSequence::too_few_initializers, From, | 
|  | ToType); | 
|  | Result.setInitializerListContainerType(ContTy, IsUnbounded); | 
|  | return Result; | 
|  | } | 
|  | llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e); | 
|  | ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr, | 
|  | ArraySizeModifier::Normal, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | Result.setStandard(); | 
|  | Result.Standard.setAsIdentityConversion(); | 
|  | Result.Standard.setFromType(InitTy); | 
|  | Result.Standard.setAllToTypes(InitTy); | 
|  | for (unsigned i = 0; i < e; ++i) { | 
|  | Expr *Init = From->getInit(i); | 
|  | ImplicitConversionSequence ICS = TryCopyInitialization( | 
|  | S, Init, InitTy, SuppressUserConversions, InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  |  | 
|  | // Keep the worse conversion seen so far. | 
|  | // FIXME: Sequences are not totally ordered, so 'worse' can be | 
|  | // ambiguous. CWG has been informed. | 
|  | if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, | 
|  | Result) == | 
|  | ImplicitConversionSequence::Worse) { | 
|  | Result = ICS; | 
|  | // Bail as soon as we find something unconvertible. | 
|  | if (Result.isBad()) { | 
|  | Result.setInitializerListContainerType(ContTy, IsUnbounded); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we needed any implicit {} initialization, compare that now. | 
|  | // over.ics.list/6 indicates we should compare that conversion.  Again CWG | 
|  | // has been informed that this might not be the best thing. | 
|  | if (!DfltElt.isBad() && CompareImplicitConversionSequences( | 
|  | S, From->getEndLoc(), DfltElt, Result) == | 
|  | ImplicitConversionSequence::Worse) | 
|  | Result = DfltElt; | 
|  | // Record the type being initialized so that we may compare sequences | 
|  | Result.setInitializerListContainerType(ContTy, IsUnbounded); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p4: | 
|  | // C++11 [over.ics.list]p3: | 
|  | //   Otherwise, if the parameter is a non-aggregate class X and overload | 
|  | //   resolution chooses a single best constructor [...] the implicit | 
|  | //   conversion sequence is a user-defined conversion sequence. If multiple | 
|  | //   constructors are viable but none is better than the others, the | 
|  | //   implicit conversion sequence is a user-defined conversion sequence. | 
|  | if (ToType->isRecordType() && !ToType->isAggregateType()) { | 
|  | // This function can deal with initializer lists. | 
|  | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | 
|  | AllowedExplicit::None, | 
|  | InOverloadResolution, /*CStyle=*/false, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p5: | 
|  | // C++11 [over.ics.list]p4: | 
|  | //   Otherwise, if the parameter has an aggregate type which can be | 
|  | //   initialized from the initializer list [...] the implicit conversion | 
|  | //   sequence is a user-defined conversion sequence. | 
|  | if (ToType->isAggregateType()) { | 
|  | // Type is an aggregate, argument is an init list. At this point it comes | 
|  | // down to checking whether the initialization works. | 
|  | // FIXME: Find out whether this parameter is consumed or not. | 
|  | InitializedEntity Entity = | 
|  | InitializedEntity::InitializeParameter(S.Context, ToType, | 
|  | /*Consumed=*/false); | 
|  | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, | 
|  | From)) { | 
|  | Result.setUserDefined(); | 
|  | Result.UserDefined.Before.setAsIdentityConversion(); | 
|  | // Initializer lists don't have a type. | 
|  | Result.UserDefined.Before.setFromType(QualType()); | 
|  | Result.UserDefined.Before.setAllToTypes(QualType()); | 
|  |  | 
|  | Result.UserDefined.After.setAsIdentityConversion(); | 
|  | Result.UserDefined.After.setFromType(ToType); | 
|  | Result.UserDefined.After.setAllToTypes(ToType); | 
|  | Result.UserDefined.ConversionFunction = nullptr; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p6: | 
|  | // C++11 [over.ics.list]p5: | 
|  | //   Otherwise, if the parameter is a reference, see 13.3.3.1.4. | 
|  | if (ToType->isReferenceType()) { | 
|  | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't | 
|  | // mention initializer lists in any way. So we go by what list- | 
|  | // initialization would do and try to extrapolate from that. | 
|  |  | 
|  | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); | 
|  |  | 
|  | // If the initializer list has a single element that is reference-related | 
|  | // to the parameter type, we initialize the reference from that. | 
|  | if (From->getNumInits() == 1 && !IsDesignatedInit) { | 
|  | Expr *Init = From->getInit(0); | 
|  |  | 
|  | QualType T2 = Init->getType(); | 
|  |  | 
|  | // If the initializer is the address of an overloaded function, try | 
|  | // to resolve the overloaded function. If all goes well, T2 is the | 
|  | // type of the resulting function. | 
|  | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | 
|  | DeclAccessPair Found; | 
|  | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( | 
|  | Init, ToType, false, Found)) | 
|  | T2 = Fn->getType(); | 
|  | } | 
|  |  | 
|  | // Compute some basic properties of the types and the initializer. | 
|  | Sema::ReferenceCompareResult RefRelationship = | 
|  | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); | 
|  |  | 
|  | if (RefRelationship >= Sema::Ref_Related) { | 
|  | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), | 
|  | SuppressUserConversions, | 
|  | /*AllowExplicit=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we bind the reference to a temporary created from the | 
|  | // initializer list. | 
|  | Result = TryListConversion(S, From, T1, SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | if (Result.isFailure()) | 
|  | return Result; | 
|  | assert(!Result.isEllipsis() && | 
|  | "Sub-initialization cannot result in ellipsis conversion."); | 
|  |  | 
|  | // Can we even bind to a temporary? | 
|  | if (ToType->isRValueReferenceType() || | 
|  | (T1.isConstQualified() && !T1.isVolatileQualified())) { | 
|  | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : | 
|  | Result.UserDefined.After; | 
|  | SCS.ReferenceBinding = true; | 
|  | SCS.IsLvalueReference = ToType->isLValueReferenceType(); | 
|  | SCS.BindsToRvalue = true; | 
|  | SCS.BindsToFunctionLvalue = false; | 
|  | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; | 
|  | SCS.ObjCLifetimeConversionBinding = false; | 
|  | } else | 
|  | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, | 
|  | From, ToType); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p7: | 
|  | // C++11 [over.ics.list]p6: | 
|  | //   Otherwise, if the parameter type is not a class: | 
|  | if (!ToType->isRecordType()) { | 
|  | //    - if the initializer list has one element that is not itself an | 
|  | //      initializer list, the implicit conversion sequence is the one | 
|  | //      required to convert the element to the parameter type. | 
|  | unsigned NumInits = From->getNumInits(); | 
|  | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) | 
|  | Result = TryCopyInitialization(S, From->getInit(0), ToType, | 
|  | SuppressUserConversions, | 
|  | InOverloadResolution, | 
|  | AllowObjCWritebackConversion); | 
|  | //    - if the initializer list has no elements, the implicit conversion | 
|  | //      sequence is the identity conversion. | 
|  | else if (NumInits == 0) { | 
|  | Result.setStandard(); | 
|  | Result.Standard.setAsIdentityConversion(); | 
|  | Result.Standard.setFromType(ToType); | 
|  | Result.Standard.setAllToTypes(ToType); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // C++14 [over.ics.list]p8: | 
|  | // C++11 [over.ics.list]p7: | 
|  | //   In all cases other than those enumerated above, no conversion is possible | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// TryCopyInitialization - Try to copy-initialize a value of type | 
|  | /// ToType from the expression From. Return the implicit conversion | 
|  | /// sequence required to pass this argument, which may be a bad | 
|  | /// conversion sequence (meaning that the argument cannot be passed to | 
|  | /// a parameter of this type). If @p SuppressUserConversions, then we | 
|  | /// do not permit any user-defined conversion sequences. | 
|  | static ImplicitConversionSequence | 
|  | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | 
|  | bool SuppressUserConversions, | 
|  | bool InOverloadResolution, | 
|  | bool AllowObjCWritebackConversion, | 
|  | bool AllowExplicit) { | 
|  | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) | 
|  | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, | 
|  | InOverloadResolution,AllowObjCWritebackConversion); | 
|  |  | 
|  | if (ToType->isReferenceType()) | 
|  | return TryReferenceInit(S, From, ToType, | 
|  | /*FIXME:*/ From->getBeginLoc(), | 
|  | SuppressUserConversions, AllowExplicit); | 
|  |  | 
|  | return TryImplicitConversion(S, From, ToType, | 
|  | SuppressUserConversions, | 
|  | AllowedExplicit::None, | 
|  | InOverloadResolution, | 
|  | /*CStyle=*/false, | 
|  | AllowObjCWritebackConversion, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | static bool TryCopyInitialization(const CanQualType FromQTy, | 
|  | const CanQualType ToQTy, | 
|  | Sema &S, | 
|  | SourceLocation Loc, | 
|  | ExprValueKind FromVK) { | 
|  | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); | 
|  | ImplicitConversionSequence ICS = | 
|  | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); | 
|  |  | 
|  | return !ICS.isBad(); | 
|  | } | 
|  |  | 
|  | /// TryObjectArgumentInitialization - Try to initialize the object | 
|  | /// parameter of the given member function (@c Method) from the | 
|  | /// expression @p From. | 
|  | static ImplicitConversionSequence TryObjectArgumentInitialization( | 
|  | Sema &S, SourceLocation Loc, QualType FromType, | 
|  | Expr::Classification FromClassification, CXXMethodDecl *Method, | 
|  | const CXXRecordDecl *ActingContext, bool InOverloadResolution = false, | 
|  | QualType ExplicitParameterType = QualType(), | 
|  | bool SuppressUserConversion = false) { | 
|  |  | 
|  | // We need to have an object of class type. | 
|  | if (const auto *PT = FromType->getAs<PointerType>()) { | 
|  | FromType = PT->getPointeeType(); | 
|  |  | 
|  | // When we had a pointer, it's implicitly dereferenced, so we | 
|  | // better have an lvalue. | 
|  | assert(FromClassification.isLValue()); | 
|  | } | 
|  |  | 
|  | auto ValueKindFromClassification = [](Expr::Classification C) { | 
|  | if (C.isPRValue()) | 
|  | return clang::VK_PRValue; | 
|  | if (C.isXValue()) | 
|  | return VK_XValue; | 
|  | return clang::VK_LValue; | 
|  | }; | 
|  |  | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | if (ExplicitParameterType.isNull()) | 
|  | ExplicitParameterType = Method->getFunctionObjectParameterReferenceType(); | 
|  | OpaqueValueExpr TmpExpr(Loc, FromType.getNonReferenceType(), | 
|  | ValueKindFromClassification(FromClassification)); | 
|  | ImplicitConversionSequence ICS = TryCopyInitialization( | 
|  | S, &TmpExpr, ExplicitParameterType, SuppressUserConversion, | 
|  | /*InOverloadResolution=*/true, false); | 
|  | if (ICS.isBad()) | 
|  | ICS.Bad.FromExpr = nullptr; | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | assert(FromType->isRecordType()); | 
|  |  | 
|  | QualType ClassType = S.Context.getTypeDeclType(ActingContext); | 
|  | // C++98 [class.dtor]p2: | 
|  | //   A destructor can be invoked for a const, volatile or const volatile | 
|  | //   object. | 
|  | // C++98 [over.match.funcs]p4: | 
|  | //   For static member functions, the implicit object parameter is considered | 
|  | //   to match any object (since if the function is selected, the object is | 
|  | //   discarded). | 
|  | Qualifiers Quals = Method->getMethodQualifiers(); | 
|  | if (isa<CXXDestructorDecl>(Method) || Method->isStatic()) { | 
|  | Quals.addConst(); | 
|  | Quals.addVolatile(); | 
|  | } | 
|  |  | 
|  | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); | 
|  |  | 
|  | // Set up the conversion sequence as a "bad" conversion, to allow us | 
|  | // to exit early. | 
|  | ImplicitConversionSequence ICS; | 
|  |  | 
|  | // C++0x [over.match.funcs]p4: | 
|  | //   For non-static member functions, the type of the implicit object | 
|  | //   parameter is | 
|  | // | 
|  | //     - "lvalue reference to cv X" for functions declared without a | 
|  | //        ref-qualifier or with the & ref-qualifier | 
|  | //     - "rvalue reference to cv X" for functions declared with the && | 
|  | //        ref-qualifier | 
|  | // | 
|  | // where X is the class of which the function is a member and cv is the | 
|  | // cv-qualification on the member function declaration. | 
|  | // | 
|  | // However, when finding an implicit conversion sequence for the argument, we | 
|  | // are not allowed to perform user-defined conversions | 
|  | // (C++ [over.match.funcs]p5). We perform a simplified version of | 
|  | // reference binding here, that allows class rvalues to bind to | 
|  | // non-constant references. | 
|  |  | 
|  | // First check the qualifiers. | 
|  | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); | 
|  | // MSVC ignores __unaligned qualifier for overload candidates; do the same. | 
|  | if (ImplicitParamType.getCVRQualifiers() != | 
|  | FromTypeCanon.getLocalCVRQualifiers() && | 
|  | !ImplicitParamType.isAtLeastAsQualifiedAs( | 
|  | withoutUnaligned(S.Context, FromTypeCanon))) { | 
|  | ICS.setBad(BadConversionSequence::bad_qualifiers, | 
|  | FromType, ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | if (FromTypeCanon.hasAddressSpace()) { | 
|  | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); | 
|  | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); | 
|  | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { | 
|  | ICS.setBad(BadConversionSequence::bad_qualifiers, | 
|  | FromType, ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that we have either the same type or a derived type. It | 
|  | // affects the conversion rank. | 
|  | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); | 
|  | ImplicitConversionKind SecondKind; | 
|  | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { | 
|  | SecondKind = ICK_Identity; | 
|  | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) { | 
|  | SecondKind = ICK_Derived_To_Base; | 
|  | } else if (!Method->isExplicitObjectMemberFunction()) { | 
|  | ICS.setBad(BadConversionSequence::unrelated_class, | 
|  | FromType, ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | // Check the ref-qualifier. | 
|  | switch (Method->getRefQualifier()) { | 
|  | case RQ_None: | 
|  | // Do nothing; we don't care about lvalueness or rvalueness. | 
|  | break; | 
|  |  | 
|  | case RQ_LValue: | 
|  | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { | 
|  | // non-const lvalue reference cannot bind to an rvalue | 
|  | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, | 
|  | ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RQ_RValue: | 
|  | if (!FromClassification.isRValue()) { | 
|  | // rvalue reference cannot bind to an lvalue | 
|  | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, | 
|  | ImplicitParamType); | 
|  | return ICS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Success. Mark this as a reference binding. | 
|  | ICS.setStandard(); | 
|  | ICS.Standard.setAsIdentityConversion(); | 
|  | ICS.Standard.Second = SecondKind; | 
|  | ICS.Standard.setFromType(FromType); | 
|  | ICS.Standard.setAllToTypes(ImplicitParamType); | 
|  | ICS.Standard.ReferenceBinding = true; | 
|  | ICS.Standard.DirectBinding = true; | 
|  | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; | 
|  | ICS.Standard.BindsToFunctionLvalue = false; | 
|  | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); | 
|  | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier | 
|  | = (Method->getRefQualifier() == RQ_None); | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | /// PerformObjectArgumentInitialization - Perform initialization of | 
|  | /// the implicit object parameter for the given Method with the given | 
|  | /// expression. | 
|  | ExprResult Sema::PerformImplicitObjectArgumentInitialization( | 
|  | Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, | 
|  | CXXMethodDecl *Method) { | 
|  | QualType FromRecordType, DestType; | 
|  | QualType ImplicitParamRecordType = Method->getFunctionObjectParameterType(); | 
|  |  | 
|  | Expr::Classification FromClassification; | 
|  | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { | 
|  | FromRecordType = PT->getPointeeType(); | 
|  | DestType = Method->getThisType(); | 
|  | FromClassification = Expr::Classification::makeSimpleLValue(); | 
|  | } else { | 
|  | FromRecordType = From->getType(); | 
|  | DestType = ImplicitParamRecordType; | 
|  | FromClassification = From->Classify(Context); | 
|  |  | 
|  | // When performing member access on a prvalue, materialize a temporary. | 
|  | if (From->isPRValue()) { | 
|  | From = CreateMaterializeTemporaryExpr(FromRecordType, From, | 
|  | Method->getRefQualifier() != | 
|  | RefQualifierKind::RQ_RValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that we always use the true parent context when performing | 
|  | // the actual argument initialization. | 
|  | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( | 
|  | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, | 
|  | Method->getParent()); | 
|  | if (ICS.isBad()) { | 
|  | switch (ICS.Bad.Kind) { | 
|  | case BadConversionSequence::bad_qualifiers: { | 
|  | Qualifiers FromQs = FromRecordType.getQualifiers(); | 
|  | Qualifiers ToQs = DestType.getQualifiers(); | 
|  | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | 
|  | if (CVR) { | 
|  | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) | 
|  | << Method->getDeclName() << FromRecordType << (CVR - 1) | 
|  | << From->getSourceRange(); | 
|  | Diag(Method->getLocation(), diag::note_previous_decl) | 
|  | << Method->getDeclName(); | 
|  | return ExprError(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case BadConversionSequence::lvalue_ref_to_rvalue: | 
|  | case BadConversionSequence::rvalue_ref_to_lvalue: { | 
|  | bool IsRValueQualified = | 
|  | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; | 
|  | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) | 
|  | << Method->getDeclName() << FromClassification.isRValue() | 
|  | << IsRValueQualified; | 
|  | Diag(Method->getLocation(), diag::note_previous_decl) | 
|  | << Method->getDeclName(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | case BadConversionSequence::no_conversion: | 
|  | case BadConversionSequence::unrelated_class: | 
|  | break; | 
|  |  | 
|  | case BadConversionSequence::too_few_initializers: | 
|  | case BadConversionSequence::too_many_initializers: | 
|  | llvm_unreachable("Lists are not objects"); | 
|  | } | 
|  |  | 
|  | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) | 
|  | << ImplicitParamRecordType << FromRecordType | 
|  | << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (ICS.Standard.Second == ICK_Derived_To_Base) { | 
|  | ExprResult FromRes = | 
|  | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); | 
|  | if (FromRes.isInvalid()) | 
|  | return ExprError(); | 
|  | From = FromRes.get(); | 
|  | } | 
|  |  | 
|  | if (!Context.hasSameType(From->getType(), DestType)) { | 
|  | CastKind CK; | 
|  | QualType PteeTy = DestType->getPointeeType(); | 
|  | LangAS DestAS = | 
|  | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); | 
|  | if (FromRecordType.getAddressSpace() != DestAS) | 
|  | CK = CK_AddressSpaceConversion; | 
|  | else | 
|  | CK = CK_NoOp; | 
|  | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); | 
|  | } | 
|  | return From; | 
|  | } | 
|  |  | 
|  | /// TryContextuallyConvertToBool - Attempt to contextually convert the | 
|  | /// expression From to bool (C++0x [conv]p3). | 
|  | static ImplicitConversionSequence | 
|  | TryContextuallyConvertToBool(Sema &S, Expr *From) { | 
|  | // C++ [dcl.init]/17.8: | 
|  | //   - Otherwise, if the initialization is direct-initialization, the source | 
|  | //     type is std::nullptr_t, and the destination type is bool, the initial | 
|  | //     value of the object being initialized is false. | 
|  | if (From->getType()->isNullPtrType()) | 
|  | return ImplicitConversionSequence::getNullptrToBool(From->getType(), | 
|  | S.Context.BoolTy, | 
|  | From->isGLValue()); | 
|  |  | 
|  | // All other direct-initialization of bool is equivalent to an implicit | 
|  | // conversion to bool in which explicit conversions are permitted. | 
|  | return TryImplicitConversion(S, From, S.Context.BoolTy, | 
|  | /*SuppressUserConversions=*/false, | 
|  | AllowedExplicit::Conversions, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowObjCConversionOnExplicit=*/false); | 
|  | } | 
|  |  | 
|  | /// PerformContextuallyConvertToBool - Perform a contextual conversion | 
|  | /// of the expression From to bool (C++0x [conv]p3). | 
|  | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { | 
|  | if (checkPlaceholderForOverload(*this, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); | 
|  | if (!ICS.isBad()) | 
|  | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); | 
|  |  | 
|  | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) | 
|  | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) | 
|  | << From->getType() << From->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | /// Check that the specified conversion is permitted in a converted constant | 
|  | /// expression, according to C++11 [expr.const]p3. Return true if the conversion | 
|  | /// is acceptable. | 
|  | static bool CheckConvertedConstantConversions(Sema &S, | 
|  | StandardConversionSequence &SCS) { | 
|  | // Since we know that the target type is an integral or unscoped enumeration | 
|  | // type, most conversion kinds are impossible. All possible First and Third | 
|  | // conversions are fine. | 
|  | switch (SCS.Second) { | 
|  | case ICK_Identity: | 
|  | case ICK_Integral_Promotion: | 
|  | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. | 
|  | case ICK_Zero_Queue_Conversion: | 
|  | return true; | 
|  |  | 
|  | case ICK_Boolean_Conversion: | 
|  | // Conversion from an integral or unscoped enumeration type to bool is | 
|  | // classified as ICK_Boolean_Conversion, but it's also arguably an integral | 
|  | // conversion, so we allow it in a converted constant expression. | 
|  | // | 
|  | // FIXME: Per core issue 1407, we should not allow this, but that breaks | 
|  | // a lot of popular code. We should at least add a warning for this | 
|  | // (non-conforming) extension. | 
|  | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && | 
|  | SCS.getToType(2)->isBooleanType(); | 
|  |  | 
|  | case ICK_Pointer_Conversion: | 
|  | case ICK_Pointer_Member: | 
|  | // C++1z: null pointer conversions and null member pointer conversions are | 
|  | // only permitted if the source type is std::nullptr_t. | 
|  | return SCS.getFromType()->isNullPtrType(); | 
|  |  | 
|  | case ICK_Floating_Promotion: | 
|  | case ICK_Complex_Promotion: | 
|  | case ICK_Floating_Conversion: | 
|  | case ICK_Complex_Conversion: | 
|  | case ICK_Floating_Integral: | 
|  | case ICK_Compatible_Conversion: | 
|  | case ICK_Derived_To_Base: | 
|  | case ICK_Vector_Conversion: | 
|  | case ICK_SVE_Vector_Conversion: | 
|  | case ICK_RVV_Vector_Conversion: | 
|  | case ICK_Vector_Splat: | 
|  | case ICK_Complex_Real: | 
|  | case ICK_Block_Pointer_Conversion: | 
|  | case ICK_TransparentUnionConversion: | 
|  | case ICK_Writeback_Conversion: | 
|  | case ICK_Zero_Event_Conversion: | 
|  | case ICK_C_Only_Conversion: | 
|  | case ICK_Incompatible_Pointer_Conversion: | 
|  | case ICK_Fixed_Point_Conversion: | 
|  | case ICK_HLSL_Vector_Truncation: | 
|  | return false; | 
|  |  | 
|  | case ICK_Lvalue_To_Rvalue: | 
|  | case ICK_Array_To_Pointer: | 
|  | case ICK_Function_To_Pointer: | 
|  | case ICK_HLSL_Array_RValue: | 
|  | llvm_unreachable("found a first conversion kind in Second"); | 
|  |  | 
|  | case ICK_Function_Conversion: | 
|  | case ICK_Qualification: | 
|  | llvm_unreachable("found a third conversion kind in Second"); | 
|  |  | 
|  | case ICK_Num_Conversion_Kinds: | 
|  | break; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown conversion kind"); | 
|  | } | 
|  |  | 
|  | /// BuildConvertedConstantExpression - Check that the expression From is a | 
|  | /// converted constant expression of type T, perform the conversion but | 
|  | /// does not evaluate the expression | 
|  | static ExprResult BuildConvertedConstantExpression(Sema &S, Expr *From, | 
|  | QualType T, | 
|  | Sema::CCEKind CCE, | 
|  | NamedDecl *Dest, | 
|  | APValue &PreNarrowingValue) { | 
|  | assert(S.getLangOpts().CPlusPlus11 && | 
|  | "converted constant expression outside C++11"); | 
|  |  | 
|  | if (checkPlaceholderForOverload(S, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++1z [expr.const]p3: | 
|  | //  A converted constant expression of type T is an expression, | 
|  | //  implicitly converted to type T, where the converted | 
|  | //  expression is a constant expression and the implicit conversion | 
|  | //  sequence contains only [... list of conversions ...]. | 
|  | ImplicitConversionSequence ICS = | 
|  | (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept) | 
|  | ? TryContextuallyConvertToBool(S, From) | 
|  | : TryCopyInitialization(S, From, T, | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowExplicit=*/false); | 
|  | StandardConversionSequence *SCS = nullptr; | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | SCS = &ICS.Standard; | 
|  | break; | 
|  | case ImplicitConversionSequence::UserDefinedConversion: | 
|  | if (T->isRecordType()) | 
|  | SCS = &ICS.UserDefined.Before; | 
|  | else | 
|  | SCS = &ICS.UserDefined.After; | 
|  | break; | 
|  | case ImplicitConversionSequence::AmbiguousConversion: | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) | 
|  | return S.Diag(From->getBeginLoc(), | 
|  | diag::err_typecheck_converted_constant_expression) | 
|  | << From->getType() << From->getSourceRange() << T; | 
|  | return ExprError(); | 
|  |  | 
|  | case ImplicitConversionSequence::EllipsisConversion: | 
|  | case ImplicitConversionSequence::StaticObjectArgumentConversion: | 
|  | llvm_unreachable("bad conversion in converted constant expression"); | 
|  | } | 
|  |  | 
|  | // Check that we would only use permitted conversions. | 
|  | if (!CheckConvertedConstantConversions(S, *SCS)) { | 
|  | return S.Diag(From->getBeginLoc(), | 
|  | diag::err_typecheck_converted_constant_expression_disallowed) | 
|  | << From->getType() << From->getSourceRange() << T; | 
|  | } | 
|  | // [...] and where the reference binding (if any) binds directly. | 
|  | if (SCS->ReferenceBinding && !SCS->DirectBinding) { | 
|  | return S.Diag(From->getBeginLoc(), | 
|  | diag::err_typecheck_converted_constant_expression_indirect) | 
|  | << From->getType() << From->getSourceRange() << T; | 
|  | } | 
|  | // 'TryCopyInitialization' returns incorrect info for attempts to bind | 
|  | // a reference to a bit-field due to C++ [over.ics.ref]p4. Namely, | 
|  | // 'SCS->DirectBinding' occurs to be set to 'true' despite it is not | 
|  | // the direct binding according to C++ [dcl.init.ref]p5. Hence, check this | 
|  | // case explicitly. | 
|  | if (From->refersToBitField() && T.getTypePtr()->isReferenceType()) { | 
|  | return S.Diag(From->getBeginLoc(), | 
|  | diag::err_reference_bind_to_bitfield_in_cce) | 
|  | << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // Usually we can simply apply the ImplicitConversionSequence we formed | 
|  | // earlier, but that's not guaranteed to work when initializing an object of | 
|  | // class type. | 
|  | ExprResult Result; | 
|  | if (T->isRecordType()) { | 
|  | assert(CCE == Sema::CCEK_TemplateArg && | 
|  | "unexpected class type converted constant expr"); | 
|  | Result = S.PerformCopyInitialization( | 
|  | InitializedEntity::InitializeTemplateParameter( | 
|  | T, cast<NonTypeTemplateParmDecl>(Dest)), | 
|  | SourceLocation(), From); | 
|  | } else { | 
|  | Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); | 
|  | } | 
|  | if (Result.isInvalid()) | 
|  | return Result; | 
|  |  | 
|  | // C++2a [intro.execution]p5: | 
|  | //   A full-expression is [...] a constant-expression [...] | 
|  | Result = S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), | 
|  | /*DiscardedValue=*/false, /*IsConstexpr=*/true, | 
|  | CCE == Sema::CCEKind::CCEK_TemplateArg); | 
|  | if (Result.isInvalid()) | 
|  | return Result; | 
|  |  | 
|  | // Check for a narrowing implicit conversion. | 
|  | bool ReturnPreNarrowingValue = false; | 
|  | QualType PreNarrowingType; | 
|  | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, | 
|  | PreNarrowingType)) { | 
|  | case NK_Dependent_Narrowing: | 
|  | // Implicit conversion to a narrower type, but the expression is | 
|  | // value-dependent so we can't tell whether it's actually narrowing. | 
|  | case NK_Variable_Narrowing: | 
|  | // Implicit conversion to a narrower type, and the value is not a constant | 
|  | // expression. We'll diagnose this in a moment. | 
|  | case NK_Not_Narrowing: | 
|  | break; | 
|  |  | 
|  | case NK_Constant_Narrowing: | 
|  | if (CCE == Sema::CCEK_ArrayBound && | 
|  | PreNarrowingType->isIntegralOrEnumerationType() && | 
|  | PreNarrowingValue.isInt()) { | 
|  | // Don't diagnose array bound narrowing here; we produce more precise | 
|  | // errors by allowing the un-narrowed value through. | 
|  | ReturnPreNarrowingValue = true; | 
|  | break; | 
|  | } | 
|  | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) | 
|  | << CCE << /*Constant*/ 1 | 
|  | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; | 
|  | break; | 
|  |  | 
|  | case NK_Type_Narrowing: | 
|  | // FIXME: It would be better to diagnose that the expression is not a | 
|  | // constant expression. | 
|  | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) | 
|  | << CCE << /*Constant*/ 0 << From->getType() << T; | 
|  | break; | 
|  | } | 
|  | if (!ReturnPreNarrowingValue) | 
|  | PreNarrowingValue = {}; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// CheckConvertedConstantExpression - Check that the expression From is a | 
|  | /// converted constant expression of type T, perform the conversion and produce | 
|  | /// the converted expression, per C++11 [expr.const]p3. | 
|  | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, | 
|  | QualType T, APValue &Value, | 
|  | Sema::CCEKind CCE, | 
|  | bool RequireInt, | 
|  | NamedDecl *Dest) { | 
|  |  | 
|  | APValue PreNarrowingValue; | 
|  | ExprResult Result = BuildConvertedConstantExpression(S, From, T, CCE, Dest, | 
|  | PreNarrowingValue); | 
|  | if (Result.isInvalid() || Result.get()->isValueDependent()) { | 
|  | Value = APValue(); | 
|  | return Result; | 
|  | } | 
|  | return S.EvaluateConvertedConstantExpression(Result.get(), T, Value, CCE, | 
|  | RequireInt, PreNarrowingValue); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildConvertedConstantExpression(Expr *From, QualType T, | 
|  | CCEKind CCE, | 
|  | NamedDecl *Dest) { | 
|  | APValue PreNarrowingValue; | 
|  | return ::BuildConvertedConstantExpression(*this, From, T, CCE, Dest, | 
|  | PreNarrowingValue); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | 
|  | APValue &Value, CCEKind CCE, | 
|  | NamedDecl *Dest) { | 
|  | return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, | 
|  | Dest); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | 
|  | llvm::APSInt &Value, | 
|  | CCEKind CCE) { | 
|  | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); | 
|  |  | 
|  | APValue V; | 
|  | auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, | 
|  | /*Dest=*/nullptr); | 
|  | if (!R.isInvalid() && !R.get()->isValueDependent()) | 
|  | Value = V.getInt(); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// EvaluateConvertedConstantExpression - Evaluate an Expression | 
|  | /// That is a converted constant expression | 
|  | /// (which was built with BuildConvertedConstantExpression) | 
|  | ExprResult | 
|  | Sema::EvaluateConvertedConstantExpression(Expr *E, QualType T, APValue &Value, | 
|  | Sema::CCEKind CCE, bool RequireInt, | 
|  | const APValue &PreNarrowingValue) { | 
|  |  | 
|  | ExprResult Result = E; | 
|  | // Check the expression is a constant expression. | 
|  | SmallVector<PartialDiagnosticAt, 8> Notes; | 
|  | Expr::EvalResult Eval; | 
|  | Eval.Diag = &Notes; | 
|  |  | 
|  | ConstantExprKind Kind; | 
|  | if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) | 
|  | Kind = ConstantExprKind::ClassTemplateArgument; | 
|  | else if (CCE == Sema::CCEK_TemplateArg) | 
|  | Kind = ConstantExprKind::NonClassTemplateArgument; | 
|  | else | 
|  | Kind = ConstantExprKind::Normal; | 
|  |  | 
|  | if (!E->EvaluateAsConstantExpr(Eval, Context, Kind) || | 
|  | (RequireInt && !Eval.Val.isInt())) { | 
|  | // The expression can't be folded, so we can't keep it at this position in | 
|  | // the AST. | 
|  | Result = ExprError(); | 
|  | } else { | 
|  | Value = Eval.Val; | 
|  |  | 
|  | if (Notes.empty()) { | 
|  | // It's a constant expression. | 
|  | Expr *E = Result.get(); | 
|  | if (const auto *CE = dyn_cast<ConstantExpr>(E)) { | 
|  | // We expect a ConstantExpr to have a value associated with it | 
|  | // by this point. | 
|  | assert(CE->getResultStorageKind() != ConstantResultStorageKind::None && | 
|  | "ConstantExpr has no value associated with it"); | 
|  | (void)CE; | 
|  | } else { | 
|  | E = ConstantExpr::Create(Context, Result.get(), Value); | 
|  | } | 
|  | if (!PreNarrowingValue.isAbsent()) | 
|  | Value = std::move(PreNarrowingValue); | 
|  | return E; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It's not a constant expression. Produce an appropriate diagnostic. | 
|  | if (Notes.size() == 1 && | 
|  | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { | 
|  | Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; | 
|  | } else if (!Notes.empty() && Notes[0].second.getDiagID() == | 
|  | diag::note_constexpr_invalid_template_arg) { | 
|  | Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); | 
|  | for (unsigned I = 0; I < Notes.size(); ++I) | 
|  | Diag(Notes[I].first, Notes[I].second); | 
|  | } else { | 
|  | Diag(E->getBeginLoc(), diag::err_expr_not_cce) | 
|  | << CCE << E->getSourceRange(); | 
|  | for (unsigned I = 0; I < Notes.size(); ++I) | 
|  | Diag(Notes[I].first, Notes[I].second); | 
|  | } | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | /// dropPointerConversions - If the given standard conversion sequence | 
|  | /// involves any pointer conversions, remove them.  This may change | 
|  | /// the result type of the conversion sequence. | 
|  | static void dropPointerConversion(StandardConversionSequence &SCS) { | 
|  | if (SCS.Second == ICK_Pointer_Conversion) { | 
|  | SCS.Second = ICK_Identity; | 
|  | SCS.Element = ICK_Identity; | 
|  | SCS.Third = ICK_Identity; | 
|  | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// TryContextuallyConvertToObjCPointer - Attempt to contextually | 
|  | /// convert the expression From to an Objective-C pointer type. | 
|  | static ImplicitConversionSequence | 
|  | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { | 
|  | // Do an implicit conversion to 'id'. | 
|  | QualType Ty = S.Context.getObjCIdType(); | 
|  | ImplicitConversionSequence ICS | 
|  | = TryImplicitConversion(S, From, Ty, | 
|  | // FIXME: Are these flags correct? | 
|  | /*SuppressUserConversions=*/false, | 
|  | AllowedExplicit::Conversions, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*CStyle=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false, | 
|  | /*AllowObjCConversionOnExplicit=*/true); | 
|  |  | 
|  | // Strip off any final conversions to 'id'. | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | case ImplicitConversionSequence::AmbiguousConversion: | 
|  | case ImplicitConversionSequence::EllipsisConversion: | 
|  | case ImplicitConversionSequence::StaticObjectArgumentConversion: | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::UserDefinedConversion: | 
|  | dropPointerConversion(ICS.UserDefined.After); | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | dropPointerConversion(ICS.Standard); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ICS; | 
|  | } | 
|  |  | 
|  | /// PerformContextuallyConvertToObjCPointer - Perform a contextual | 
|  | /// conversion of the expression From to an Objective-C pointer type. | 
|  | /// Returns a valid but null ExprResult if no conversion sequence exists. | 
|  | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { | 
|  | if (checkPlaceholderForOverload(*this, From)) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType Ty = Context.getObjCIdType(); | 
|  | ImplicitConversionSequence ICS = | 
|  | TryContextuallyConvertToObjCPointer(*this, From); | 
|  | if (!ICS.isBad()) | 
|  | return PerformImplicitConversion(From, Ty, ICS, AA_Converting); | 
|  | return ExprResult(); | 
|  | } | 
|  |  | 
|  | static QualType GetExplicitObjectType(Sema &S, const Expr *MemExprE) { | 
|  | const Expr *Base = nullptr; | 
|  | assert((isa<UnresolvedMemberExpr, MemberExpr>(MemExprE)) && | 
|  | "expected a member expression"); | 
|  |  | 
|  | if (const auto M = dyn_cast<UnresolvedMemberExpr>(MemExprE); | 
|  | M && !M->isImplicitAccess()) | 
|  | Base = M->getBase(); | 
|  | else if (const auto M = dyn_cast<MemberExpr>(MemExprE); | 
|  | M && !M->isImplicitAccess()) | 
|  | Base = M->getBase(); | 
|  |  | 
|  | QualType T = Base ? Base->getType() : S.getCurrentThisType(); | 
|  |  | 
|  | if (T->isPointerType()) | 
|  | T = T->getPointeeType(); | 
|  |  | 
|  | return T; | 
|  | } | 
|  |  | 
|  | static Expr *GetExplicitObjectExpr(Sema &S, Expr *Obj, | 
|  | const FunctionDecl *Fun) { | 
|  | QualType ObjType = Obj->getType(); | 
|  | if (ObjType->isPointerType()) { | 
|  | ObjType = ObjType->getPointeeType(); | 
|  | Obj = UnaryOperator::Create(S.getASTContext(), Obj, UO_Deref, ObjType, | 
|  | VK_LValue, OK_Ordinary, SourceLocation(), | 
|  | /*CanOverflow=*/false, FPOptionsOverride()); | 
|  | } | 
|  | if (Obj->Classify(S.getASTContext()).isPRValue()) { | 
|  | Obj = S.CreateMaterializeTemporaryExpr( | 
|  | ObjType, Obj, | 
|  | !Fun->getParamDecl(0)->getType()->isRValueReferenceType()); | 
|  | } | 
|  | return Obj; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::InitializeExplicitObjectArgument(Sema &S, Expr *Obj, | 
|  | FunctionDecl *Fun) { | 
|  | Obj = GetExplicitObjectExpr(S, Obj, Fun); | 
|  | return S.PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(S.Context, Fun->getParamDecl(0)), | 
|  | Obj->getExprLoc(), Obj); | 
|  | } | 
|  |  | 
|  | static void PrepareExplicitObjectArgument(Sema &S, CXXMethodDecl *Method, | 
|  | Expr *Object, MultiExprArg &Args, | 
|  | SmallVectorImpl<Expr *> &NewArgs) { | 
|  | assert(Method->isExplicitObjectMemberFunction() && | 
|  | "Method is not an explicit member function"); | 
|  | assert(NewArgs.empty() && "NewArgs should be empty"); | 
|  | NewArgs.reserve(Args.size() + 1); | 
|  | Expr *This = GetExplicitObjectExpr(S, Object, Method); | 
|  | NewArgs.push_back(This); | 
|  | NewArgs.append(Args.begin(), Args.end()); | 
|  | Args = NewArgs; | 
|  | } | 
|  |  | 
|  | /// Determine whether the provided type is an integral type, or an enumeration | 
|  | /// type of a permitted flavor. | 
|  | bool Sema::ICEConvertDiagnoser::match(QualType T) { | 
|  | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() | 
|  | : T->isIntegralOrUnscopedEnumerationType(); | 
|  | } | 
|  |  | 
|  | static ExprResult | 
|  | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, | 
|  | Sema::ContextualImplicitConverter &Converter, | 
|  | QualType T, UnresolvedSetImpl &ViableConversions) { | 
|  |  | 
|  | if (Converter.Suppress) | 
|  | return ExprError(); | 
|  |  | 
|  | Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); | 
|  | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | 
|  | CXXConversionDecl *Conv = | 
|  | cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); | 
|  | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); | 
|  | Converter.noteAmbiguous(SemaRef, Conv, ConvTy); | 
|  | } | 
|  | return From; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | 
|  | Sema::ContextualImplicitConverter &Converter, | 
|  | QualType T, bool HadMultipleCandidates, | 
|  | UnresolvedSetImpl &ExplicitConversions) { | 
|  | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { | 
|  | DeclAccessPair Found = ExplicitConversions[0]; | 
|  | CXXConversionDecl *Conversion = | 
|  | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | 
|  |  | 
|  | // The user probably meant to invoke the given explicit | 
|  | // conversion; use it. | 
|  | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); | 
|  | std::string TypeStr; | 
|  | ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); | 
|  |  | 
|  | Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) | 
|  | << FixItHint::CreateInsertion(From->getBeginLoc(), | 
|  | "static_cast<" + TypeStr + ">(") | 
|  | << FixItHint::CreateInsertion( | 
|  | SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); | 
|  | Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); | 
|  |  | 
|  | // If we aren't in a SFINAE context, build a call to the | 
|  | // explicit conversion function. | 
|  | if (SemaRef.isSFINAEContext()) | 
|  | return true; | 
|  |  | 
|  | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | 
|  | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | 
|  | HadMultipleCandidates); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Replace the conversion with a RecoveryExpr, so we don't try to | 
|  | // instantiate it later, but can further diagnose here. | 
|  | Result = SemaRef.CreateRecoveryExpr(From->getBeginLoc(), From->getEndLoc(), | 
|  | From, Result.get()->getType()); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | From = Result.get(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | 
|  | Sema::ContextualImplicitConverter &Converter, | 
|  | QualType T, bool HadMultipleCandidates, | 
|  | DeclAccessPair &Found) { | 
|  | CXXConversionDecl *Conversion = | 
|  | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | 
|  | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | 
|  |  | 
|  | QualType ToType = Conversion->getConversionType().getNonReferenceType(); | 
|  | if (!Converter.SuppressConversion) { | 
|  | if (SemaRef.isSFINAEContext()) | 
|  | return true; | 
|  |  | 
|  | Converter.diagnoseConversion(SemaRef, Loc, T, ToType) | 
|  | << From->getSourceRange(); | 
|  | } | 
|  |  | 
|  | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | 
|  | HadMultipleCandidates); | 
|  | if (Result.isInvalid()) | 
|  | return true; | 
|  | // Record usage of conversion in an implicit cast. | 
|  | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | 
|  | CK_UserDefinedConversion, Result.get(), | 
|  | nullptr, Result.get()->getValueKind(), | 
|  | SemaRef.CurFPFeatureOverrides()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static ExprResult finishContextualImplicitConversion( | 
|  | Sema &SemaRef, SourceLocation Loc, Expr *From, | 
|  | Sema::ContextualImplicitConverter &Converter) { | 
|  | if (!Converter.match(From->getType()) && !Converter.Suppress) | 
|  | Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) | 
|  | << From->getSourceRange(); | 
|  |  | 
|  | return SemaRef.DefaultLvalueConversion(From); | 
|  | } | 
|  |  | 
|  | static void | 
|  | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, | 
|  | UnresolvedSetImpl &ViableConversions, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | 
|  | DeclAccessPair FoundDecl = ViableConversions[I]; | 
|  | NamedDecl *D = FoundDecl.getDecl(); | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | CXXConversionDecl *Conv; | 
|  | FunctionTemplateDecl *ConvTemplate; | 
|  | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | 
|  | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | Conv = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | if (ConvTemplate) | 
|  | SemaRef.AddTemplateConversionCandidate( | 
|  | ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); | 
|  | else | 
|  | SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, | 
|  | ToType, CandidateSet, | 
|  | /*AllowObjCConversionOnExplicit=*/false, | 
|  | /*AllowExplicit*/ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Attempt to convert the given expression to a type which is accepted | 
|  | /// by the given converter. | 
|  | /// | 
|  | /// This routine will attempt to convert an expression of class type to a | 
|  | /// type accepted by the specified converter. In C++11 and before, the class | 
|  | /// must have a single non-explicit conversion function converting to a matching | 
|  | /// type. In C++1y, there can be multiple such conversion functions, but only | 
|  | /// one target type. | 
|  | /// | 
|  | /// \param Loc The source location of the construct that requires the | 
|  | /// conversion. | 
|  | /// | 
|  | /// \param From The expression we're converting from. | 
|  | /// | 
|  | /// \param Converter Used to control and diagnose the conversion process. | 
|  | /// | 
|  | /// \returns The expression, converted to an integral or enumeration type if | 
|  | /// successful. | 
|  | ExprResult Sema::PerformContextualImplicitConversion( | 
|  | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { | 
|  | // We can't perform any more checking for type-dependent expressions. | 
|  | if (From->isTypeDependent()) | 
|  | return From; | 
|  |  | 
|  | // Process placeholders immediately. | 
|  | if (From->hasPlaceholderType()) { | 
|  | ExprResult result = CheckPlaceholderExpr(From); | 
|  | if (result.isInvalid()) | 
|  | return result; | 
|  | From = result.get(); | 
|  | } | 
|  |  | 
|  | // Try converting the expression to an Lvalue first, to get rid of qualifiers. | 
|  | ExprResult Converted = DefaultLvalueConversion(From); | 
|  | QualType T = Converted.isUsable() ? Converted.get()->getType() : QualType(); | 
|  | // If the expression already has a matching type, we're golden. | 
|  | if (Converter.match(T)) | 
|  | return Converted; | 
|  |  | 
|  | // FIXME: Check for missing '()' if T is a function type? | 
|  |  | 
|  | // We can only perform contextual implicit conversions on objects of class | 
|  | // type. | 
|  | const RecordType *RecordTy = T->getAs<RecordType>(); | 
|  | if (!RecordTy || !getLangOpts().CPlusPlus) { | 
|  | if (!Converter.Suppress) | 
|  | Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); | 
|  | return From; | 
|  | } | 
|  |  | 
|  | // We must have a complete class type. | 
|  | struct TypeDiagnoserPartialDiag : TypeDiagnoser { | 
|  | ContextualImplicitConverter &Converter; | 
|  | Expr *From; | 
|  |  | 
|  | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) | 
|  | : Converter(Converter), From(From) {} | 
|  |  | 
|  | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | 
|  | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); | 
|  | } | 
|  | } IncompleteDiagnoser(Converter, From); | 
|  |  | 
|  | if (Converter.Suppress ? !isCompleteType(Loc, T) | 
|  | : RequireCompleteType(Loc, T, IncompleteDiagnoser)) | 
|  | return From; | 
|  |  | 
|  | // Look for a conversion to an integral or enumeration type. | 
|  | UnresolvedSet<4> | 
|  | ViableConversions; // These are *potentially* viable in C++1y. | 
|  | UnresolvedSet<4> ExplicitConversions; | 
|  | const auto &Conversions = | 
|  | cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); | 
|  |  | 
|  | bool HadMultipleCandidates = | 
|  | (std::distance(Conversions.begin(), Conversions.end()) > 1); | 
|  |  | 
|  | // To check that there is only one target type, in C++1y: | 
|  | QualType ToType; | 
|  | bool HasUniqueTargetType = true; | 
|  |  | 
|  | // Collect explicit or viable (potentially in C++1y) conversions. | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | 
|  | NamedDecl *D = (*I)->getUnderlyingDecl(); | 
|  | CXXConversionDecl *Conversion; | 
|  | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | 
|  | if (ConvTemplate) { | 
|  | if (getLangOpts().CPlusPlus14) | 
|  | Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
|  | else | 
|  | continue; // C++11 does not consider conversion operator templates(?). | 
|  | } else | 
|  | Conversion = cast<CXXConversionDecl>(D); | 
|  |  | 
|  | assert((!ConvTemplate || getLangOpts().CPlusPlus14) && | 
|  | "Conversion operator templates are considered potentially " | 
|  | "viable in C++1y"); | 
|  |  | 
|  | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); | 
|  | if (Converter.match(CurToType) || ConvTemplate) { | 
|  |  | 
|  | if (Conversion->isExplicit()) { | 
|  | // FIXME: For C++1y, do we need this restriction? | 
|  | // cf. diagnoseNoViableConversion() | 
|  | if (!ConvTemplate) | 
|  | ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); | 
|  | } else { | 
|  | if (!ConvTemplate && getLangOpts().CPlusPlus14) { | 
|  | if (ToType.isNull()) | 
|  | ToType = CurToType.getUnqualifiedType(); | 
|  | else if (HasUniqueTargetType && | 
|  | (CurToType.getUnqualifiedType() != ToType)) | 
|  | HasUniqueTargetType = false; | 
|  | } | 
|  | ViableConversions.addDecl(I.getDecl(), I.getAccess()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getLangOpts().CPlusPlus14) { | 
|  | // C++1y [conv]p6: | 
|  | // ... An expression e of class type E appearing in such a context | 
|  | // is said to be contextually implicitly converted to a specified | 
|  | // type T and is well-formed if and only if e can be implicitly | 
|  | // converted to a type T that is determined as follows: E is searched | 
|  | // for conversion functions whose return type is cv T or reference to | 
|  | // cv T such that T is allowed by the context. There shall be | 
|  | // exactly one such T. | 
|  |  | 
|  | // If no unique T is found: | 
|  | if (ToType.isNull()) { | 
|  | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, | 
|  | ExplicitConversions)) | 
|  | return ExprError(); | 
|  | return finishContextualImplicitConversion(*this, Loc, From, Converter); | 
|  | } | 
|  |  | 
|  | // If more than one unique Ts are found: | 
|  | if (!HasUniqueTargetType) | 
|  | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | 
|  | ViableConversions); | 
|  |  | 
|  | // If one unique T is found: | 
|  | // First, build a candidate set from the previously recorded | 
|  | // potentially viable conversions. | 
|  | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); | 
|  | collectViableConversionCandidates(*this, From, ToType, ViableConversions, | 
|  | CandidateSet); | 
|  |  | 
|  | // Then, perform overload resolution over the candidate set. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { | 
|  | case OR_Success: { | 
|  | // Apply this conversion. | 
|  | DeclAccessPair Found = | 
|  | DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); | 
|  | if (recordConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, Found)) | 
|  | return ExprError(); | 
|  | break; | 
|  | } | 
|  | case OR_Ambiguous: | 
|  | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | 
|  | ViableConversions); | 
|  | case OR_No_Viable_Function: | 
|  | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, | 
|  | ExplicitConversions)) | 
|  | return ExprError(); | 
|  | [[fallthrough]]; | 
|  | case OR_Deleted: | 
|  | // We'll complain below about a non-integral condition type. | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (ViableConversions.size()) { | 
|  | case 0: { | 
|  | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, | 
|  | ExplicitConversions)) | 
|  | return ExprError(); | 
|  |  | 
|  | // We'll complain below about a non-integral condition type. | 
|  | break; | 
|  | } | 
|  | case 1: { | 
|  | // Apply this conversion. | 
|  | DeclAccessPair Found = ViableConversions[0]; | 
|  | if (recordConversion(*this, Loc, From, Converter, T, | 
|  | HadMultipleCandidates, Found)) | 
|  | return ExprError(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | 
|  | ViableConversions); | 
|  | } | 
|  | } | 
|  |  | 
|  | return finishContextualImplicitConversion(*this, Loc, From, Converter); | 
|  | } | 
|  |  | 
|  | /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is | 
|  | /// an acceptable non-member overloaded operator for a call whose | 
|  | /// arguments have types T1 (and, if non-empty, T2). This routine | 
|  | /// implements the check in C++ [over.match.oper]p3b2 concerning | 
|  | /// enumeration types. | 
|  | static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, | 
|  | FunctionDecl *Fn, | 
|  | ArrayRef<Expr *> Args) { | 
|  | QualType T1 = Args[0]->getType(); | 
|  | QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); | 
|  |  | 
|  | if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) | 
|  | return true; | 
|  |  | 
|  | if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) | 
|  | return true; | 
|  |  | 
|  | const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); | 
|  | if (Proto->getNumParams() < 1) | 
|  | return false; | 
|  |  | 
|  | if (T1->isEnumeralType()) { | 
|  | QualType ArgType = Proto->getParamType(0).getNonReferenceType(); | 
|  | if (Context.hasSameUnqualifiedType(T1, ArgType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Proto->getNumParams() < 2) | 
|  | return false; | 
|  |  | 
|  | if (!T2.isNull() && T2->isEnumeralType()) { | 
|  | QualType ArgType = Proto->getParamType(1).getNonReferenceType(); | 
|  | if (Context.hasSameUnqualifiedType(T2, ArgType)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isNonViableMultiVersionOverload(FunctionDecl *FD) { | 
|  | if (FD->isTargetMultiVersionDefault()) | 
|  | return false; | 
|  |  | 
|  | if (!FD->getASTContext().getTargetInfo().getTriple().isAArch64()) | 
|  | return FD->isTargetMultiVersion(); | 
|  |  | 
|  | if (!FD->isMultiVersion()) | 
|  | return false; | 
|  |  | 
|  | // Among multiple target versions consider either the default, | 
|  | // or the first non-default in the absence of default version. | 
|  | unsigned SeenAt = 0; | 
|  | unsigned I = 0; | 
|  | bool HasDefault = false; | 
|  | FD->getASTContext().forEachMultiversionedFunctionVersion( | 
|  | FD, [&](const FunctionDecl *CurFD) { | 
|  | if (FD == CurFD) | 
|  | SeenAt = I; | 
|  | else if (CurFD->isTargetMultiVersionDefault()) | 
|  | HasDefault = true; | 
|  | ++I; | 
|  | }); | 
|  | return HasDefault || SeenAt != 0; | 
|  | } | 
|  |  | 
|  | /// AddOverloadCandidate - Adds the given function to the set of | 
|  | /// candidate functions, using the given function call arguments.  If | 
|  | /// @p SuppressUserConversions, then don't allow user-defined | 
|  | /// conversions via constructors or conversion operators. | 
|  | /// | 
|  | /// \param PartialOverloading true if we are performing "partial" overloading | 
|  | /// based on an incomplete set of function arguments. This feature is used by | 
|  | /// code completion. | 
|  | void Sema::AddOverloadCandidate( | 
|  | FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, | 
|  | bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, | 
|  | ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, | 
|  | OverloadCandidateParamOrder PO, bool AggregateCandidateDeduction) { | 
|  | const FunctionProtoType *Proto | 
|  | = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); | 
|  | assert(Proto && "Functions without a prototype cannot be overloaded"); | 
|  | assert(!Function->getDescribedFunctionTemplate() && | 
|  | "Use AddTemplateOverloadCandidate for function templates"); | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { | 
|  | if (!isa<CXXConstructorDecl>(Method)) { | 
|  | // If we get here, it's because we're calling a member function | 
|  | // that is named without a member access expression (e.g., | 
|  | // "this->f") that was either written explicitly or created | 
|  | // implicitly. This can happen with a qualified call to a member | 
|  | // function, e.g., X::f(). We use an empty type for the implied | 
|  | // object argument (C++ [over.call.func]p3), and the acting context | 
|  | // is irrelevant. | 
|  | AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), | 
|  | Expr::Classification::makeSimpleLValue(), Args, | 
|  | CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading, EarlyConversions, PO); | 
|  | return; | 
|  | } | 
|  | // We treat a constructor like a non-member function, since its object | 
|  | // argument doesn't participate in overload resolution. | 
|  | } | 
|  |  | 
|  | if (!CandidateSet.isNewCandidate(Function, PO)) | 
|  | return; | 
|  |  | 
|  | // C++11 [class.copy]p11: [DR1402] | 
|  | //   A defaulted move constructor that is defined as deleted is ignored by | 
|  | //   overload resolution. | 
|  | CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); | 
|  | if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && | 
|  | Constructor->isMoveConstructor()) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::Unevaluated); | 
|  |  | 
|  | // C++ [over.match.oper]p3: | 
|  | //   if no operand has a class type, only those non-member functions in the | 
|  | //   lookup set that have a first parameter of type T1 or "reference to | 
|  | //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there | 
|  | //   is a right operand) a second parameter of type T2 or "reference to | 
|  | //   (possibly cv-qualified) T2", when T2 is an enumeration type, are | 
|  | //   candidate functions. | 
|  | if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && | 
|  | !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) | 
|  | return; | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = | 
|  | CandidateSet.addCandidate(Args.size(), EarlyConversions); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = Function; | 
|  | Candidate.Viable = true; | 
|  | Candidate.RewriteKind = | 
|  | CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IsADLCandidate = IsADLCandidate; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  |  | 
|  | // Explicit functions are not actually candidates at all if we're not | 
|  | // allowing them in this context, but keep them around so we can point | 
|  | // to them in diagnostics. | 
|  | if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_explicit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Functions with internal linkage are only viable in the same module unit. | 
|  | if (getLangOpts().CPlusPlusModules && Function->isInAnotherModuleUnit()) { | 
|  | /// FIXME: Currently, the semantics of linkage in clang is slightly | 
|  | /// different from the semantics in C++ spec. In C++ spec, only names | 
|  | /// have linkage. So that all entities of the same should share one | 
|  | /// linkage. But in clang, different entities of the same could have | 
|  | /// different linkage. | 
|  | NamedDecl *ND = Function; | 
|  | if (auto *SpecInfo = Function->getTemplateSpecializationInfo()) | 
|  | ND = SpecInfo->getTemplate(); | 
|  |  | 
|  | if (ND->getFormalLinkage() == Linkage::Internal) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_module_mismatched; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isNonViableMultiVersionOverload(Function)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_non_default_multiversion_function; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Constructor) { | 
|  | // C++ [class.copy]p3: | 
|  | //   A member function template is never instantiated to perform the copy | 
|  | //   of a class object to an object of its class type. | 
|  | QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); | 
|  | if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && | 
|  | (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || | 
|  | IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), | 
|  | ClassType))) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_illegal_constructor; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++ [over.match.funcs]p8: (proposed DR resolution) | 
|  | //   A constructor inherited from class type C that has a first parameter | 
|  | //   of type "reference to P" (including such a constructor instantiated | 
|  | //   from a template) is excluded from the set of candidate functions when | 
|  | //   constructing an object of type cv D if the argument list has exactly | 
|  | //   one argument and D is reference-related to P and P is reference-related | 
|  | //   to C. | 
|  | auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); | 
|  | if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && | 
|  | Constructor->getParamDecl(0)->getType()->isReferenceType()) { | 
|  | QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); | 
|  | QualType C = Context.getRecordType(Constructor->getParent()); | 
|  | QualType D = Context.getRecordType(Shadow->getParent()); | 
|  | SourceLocation Loc = Args.front()->getExprLoc(); | 
|  | if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && | 
|  | (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_inhctor_slice; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the constructor is capable of constructing an object in the | 
|  | // destination address space. | 
|  | if (!Qualifiers::isAddressSpaceSupersetOf( | 
|  | Constructor->getMethodQualifiers().getAddressSpace(), | 
|  | CandidateSet.getDestAS())) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having fewer than m | 
|  | // parameters is viable only if it has an ellipsis in its parameter | 
|  | // list (8.3.5). | 
|  | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && | 
|  | !Proto->isVariadic() && | 
|  | shouldEnforceArgLimit(PartialOverloading, Function)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_many_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having more than m parameters | 
|  | // is viable only if the (m+1)st parameter has a default argument | 
|  | // (8.3.6). For the purposes of overload resolution, the | 
|  | // parameter list is truncated on the right, so that there are | 
|  | // exactly m parameters. | 
|  | unsigned MinRequiredArgs = Function->getMinRequiredArguments(); | 
|  | if (!AggregateCandidateDeduction && Args.size() < MinRequiredArgs && | 
|  | !PartialOverloading) { | 
|  | // Not enough arguments. | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_few_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (CUDA B.1): Check for invalid calls between targets. | 
|  | if (getLangOpts().CUDA) { | 
|  | const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); | 
|  | // Skip the check for callers that are implicit members, because in this | 
|  | // case we may not yet know what the member's target is; the target is | 
|  | // inferred for the member automatically, based on the bases and fields of | 
|  | // the class. | 
|  | if (!(Caller && Caller->isImplicit()) && | 
|  | !CUDA().IsAllowedCall(Caller, Function)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_target; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Function->getTrailingRequiresClause()) { | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (CheckFunctionConstraints(Function, Satisfaction, /*Loc*/ {}, | 
|  | /*ForOverloadResolution*/ true) || | 
|  | !Satisfaction.IsSatisfied) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { | 
|  | unsigned ConvIdx = | 
|  | PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; | 
|  | if (Candidate.Conversions[ConvIdx].isInitialized()) { | 
|  | // We already formed a conversion sequence for this parameter during | 
|  | // template argument deduction. | 
|  | } else if (ArgIdx < NumParams) { | 
|  | // (C++ 13.3.2p3): for F to be a viable function, there shall | 
|  | // exist for each argument an implicit conversion sequence | 
|  | // (13.3.3.1) that converts that argument to the corresponding | 
|  | // parameter of F. | 
|  | QualType ParamType = Proto->getParamType(ArgIdx); | 
|  | Candidate.Conversions[ConvIdx] = TryCopyInitialization( | 
|  | *this, Args[ArgIdx], ParamType, SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); | 
|  | if (Candidate.Conversions[ConvIdx].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
|  | // argument for which there is no corresponding parameter is | 
|  | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
|  | Candidate.Conversions[ConvIdx].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = | 
|  | CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ObjCMethodDecl * | 
|  | Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, | 
|  | SmallVectorImpl<ObjCMethodDecl *> &Methods) { | 
|  | if (Methods.size() <= 1) | 
|  | return nullptr; | 
|  |  | 
|  | for (unsigned b = 0, e = Methods.size(); b < e; b++) { | 
|  | bool Match = true; | 
|  | ObjCMethodDecl *Method = Methods[b]; | 
|  | unsigned NumNamedArgs = Sel.getNumArgs(); | 
|  | // Method might have more arguments than selector indicates. This is due | 
|  | // to addition of c-style arguments in method. | 
|  | if (Method->param_size() > NumNamedArgs) | 
|  | NumNamedArgs = Method->param_size(); | 
|  | if (Args.size() < NumNamedArgs) | 
|  | continue; | 
|  |  | 
|  | for (unsigned i = 0; i < NumNamedArgs; i++) { | 
|  | // We can't do any type-checking on a type-dependent argument. | 
|  | if (Args[i]->isTypeDependent()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ParmVarDecl *param = Method->parameters()[i]; | 
|  | Expr *argExpr = Args[i]; | 
|  | assert(argExpr && "SelectBestMethod(): missing expression"); | 
|  |  | 
|  | // Strip the unbridged-cast placeholder expression off unless it's | 
|  | // a consumed argument. | 
|  | if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && | 
|  | !param->hasAttr<CFConsumedAttr>()) | 
|  | argExpr = stripARCUnbridgedCast(argExpr); | 
|  |  | 
|  | // If the parameter is __unknown_anytype, move on to the next method. | 
|  | if (param->getType() == Context.UnknownAnyTy) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ImplicitConversionSequence ConversionState | 
|  | = TryCopyInitialization(*this, argExpr, param->getType(), | 
|  | /*SuppressUserConversions*/false, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount, | 
|  | /*AllowExplicit*/false); | 
|  | // This function looks for a reasonably-exact match, so we consider | 
|  | // incompatible pointer conversions to be a failure here. | 
|  | if (ConversionState.isBad() || | 
|  | (ConversionState.isStandard() && | 
|  | ConversionState.Standard.Second == | 
|  | ICK_Incompatible_Pointer_Conversion)) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Promote additional arguments to variadic methods. | 
|  | if (Match && Method->isVariadic()) { | 
|  | for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { | 
|  | if (Args[i]->isTypeDependent()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, | 
|  | nullptr); | 
|  | if (Arg.isInvalid()) { | 
|  | Match = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Check for extra arguments to non-variadic methods. | 
|  | if (Args.size() != NumNamedArgs) | 
|  | Match = false; | 
|  | else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { | 
|  | // Special case when selectors have no argument. In this case, select | 
|  | // one with the most general result type of 'id'. | 
|  | for (unsigned b = 0, e = Methods.size(); b < e; b++) { | 
|  | QualType ReturnT = Methods[b]->getReturnType(); | 
|  | if (ReturnT->isObjCIdType()) | 
|  | return Methods[b]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Match) | 
|  | return Method; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool convertArgsForAvailabilityChecks( | 
|  | Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, | 
|  | ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, | 
|  | Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { | 
|  | if (ThisArg) { | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); | 
|  | assert(!isa<CXXConstructorDecl>(Method) && | 
|  | "Shouldn't have `this` for ctors!"); | 
|  | assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); | 
|  | ExprResult R = S.PerformImplicitObjectArgumentInitialization( | 
|  | ThisArg, /*Qualifier=*/nullptr, Method, Method); | 
|  | if (R.isInvalid()) | 
|  | return false; | 
|  | ConvertedThis = R.get(); | 
|  | } else { | 
|  | if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { | 
|  | (void)MD; | 
|  | assert((MissingImplicitThis || MD->isStatic() || | 
|  | isa<CXXConstructorDecl>(MD)) && | 
|  | "Expected `this` for non-ctor instance methods"); | 
|  | } | 
|  | ConvertedThis = nullptr; | 
|  | } | 
|  |  | 
|  | // Ignore any variadic arguments. Converting them is pointless, since the | 
|  | // user can't refer to them in the function condition. | 
|  | unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); | 
|  |  | 
|  | // Convert the arguments. | 
|  | for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { | 
|  | ExprResult R; | 
|  | R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | S.Context, Function->getParamDecl(I)), | 
|  | SourceLocation(), Args[I]); | 
|  |  | 
|  | if (R.isInvalid()) | 
|  | return false; | 
|  |  | 
|  | ConvertedArgs.push_back(R.get()); | 
|  | } | 
|  |  | 
|  | if (Trap.hasErrorOccurred()) | 
|  | return false; | 
|  |  | 
|  | // Push default arguments if needed. | 
|  | if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { | 
|  | for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { | 
|  | ParmVarDecl *P = Function->getParamDecl(i); | 
|  | if (!P->hasDefaultArg()) | 
|  | return false; | 
|  | ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); | 
|  | if (R.isInvalid()) | 
|  | return false; | 
|  | ConvertedArgs.push_back(R.get()); | 
|  | } | 
|  |  | 
|  | if (Trap.hasErrorOccurred()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, | 
|  | SourceLocation CallLoc, | 
|  | ArrayRef<Expr *> Args, | 
|  | bool MissingImplicitThis) { | 
|  | auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); | 
|  | if (EnableIfAttrs.begin() == EnableIfAttrs.end()) | 
|  | return nullptr; | 
|  |  | 
|  | SFINAETrap Trap(*this); | 
|  | SmallVector<Expr *, 16> ConvertedArgs; | 
|  | // FIXME: We should look into making enable_if late-parsed. | 
|  | Expr *DiscardedThis; | 
|  | if (!convertArgsForAvailabilityChecks( | 
|  | *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, | 
|  | /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) | 
|  | return *EnableIfAttrs.begin(); | 
|  |  | 
|  | for (auto *EIA : EnableIfAttrs) { | 
|  | APValue Result; | 
|  | // FIXME: This doesn't consider value-dependent cases, because doing so is | 
|  | // very difficult. Ideally, we should handle them more gracefully. | 
|  | if (EIA->getCond()->isValueDependent() || | 
|  | !EIA->getCond()->EvaluateWithSubstitution( | 
|  | Result, Context, Function, llvm::ArrayRef(ConvertedArgs))) | 
|  | return EIA; | 
|  |  | 
|  | if (!Result.isInt() || !Result.getInt().getBoolValue()) | 
|  | return EIA; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <typename CheckFn> | 
|  | static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, | 
|  | bool ArgDependent, SourceLocation Loc, | 
|  | CheckFn &&IsSuccessful) { | 
|  | SmallVector<const DiagnoseIfAttr *, 8> Attrs; | 
|  | for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { | 
|  | if (ArgDependent == DIA->getArgDependent()) | 
|  | Attrs.push_back(DIA); | 
|  | } | 
|  |  | 
|  | // Common case: No diagnose_if attributes, so we can quit early. | 
|  | if (Attrs.empty()) | 
|  | return false; | 
|  |  | 
|  | auto WarningBegin = std::stable_partition( | 
|  | Attrs.begin(), Attrs.end(), | 
|  | [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); | 
|  |  | 
|  | // Note that diagnose_if attributes are late-parsed, so they appear in the | 
|  | // correct order (unlike enable_if attributes). | 
|  | auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), | 
|  | IsSuccessful); | 
|  | if (ErrAttr != WarningBegin) { | 
|  | const DiagnoseIfAttr *DIA = *ErrAttr; | 
|  | S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); | 
|  | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) | 
|  | << DIA->getParent() << DIA->getCond()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) | 
|  | if (IsSuccessful(DIA)) { | 
|  | S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); | 
|  | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) | 
|  | << DIA->getParent() << DIA->getCond()->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, | 
|  | const Expr *ThisArg, | 
|  | ArrayRef<const Expr *> Args, | 
|  | SourceLocation Loc) { | 
|  | return diagnoseDiagnoseIfAttrsWith( | 
|  | *this, Function, /*ArgDependent=*/true, Loc, | 
|  | [&](const DiagnoseIfAttr *DIA) { | 
|  | APValue Result; | 
|  | // It's sane to use the same Args for any redecl of this function, since | 
|  | // EvaluateWithSubstitution only cares about the position of each | 
|  | // argument in the arg list, not the ParmVarDecl* it maps to. | 
|  | if (!DIA->getCond()->EvaluateWithSubstitution( | 
|  | Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) | 
|  | return false; | 
|  | return Result.isInt() && Result.getInt().getBoolValue(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, | 
|  | SourceLocation Loc) { | 
|  | return diagnoseDiagnoseIfAttrsWith( | 
|  | *this, ND, /*ArgDependent=*/false, Loc, | 
|  | [&](const DiagnoseIfAttr *DIA) { | 
|  | bool Result; | 
|  | return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && | 
|  | Result; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Add all of the function declarations in the given function set to | 
|  | /// the overload candidate set. | 
|  | void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading, | 
|  | bool FirstArgumentIsBase) { | 
|  | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { | 
|  | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); | 
|  | ArrayRef<Expr *> FunctionArgs = Args; | 
|  |  | 
|  | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | 
|  | FunctionDecl *FD = | 
|  | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); | 
|  |  | 
|  | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { | 
|  | QualType ObjectType; | 
|  | Expr::Classification ObjectClassification; | 
|  | if (Args.size() > 0) { | 
|  | if (Expr *E = Args[0]) { | 
|  | // Use the explicit base to restrict the lookup: | 
|  | ObjectType = E->getType(); | 
|  | // Pointers in the object arguments are implicitly dereferenced, so we | 
|  | // always classify them as l-values. | 
|  | if (!ObjectType.isNull() && ObjectType->isPointerType()) | 
|  | ObjectClassification = Expr::Classification::makeSimpleLValue(); | 
|  | else | 
|  | ObjectClassification = E->Classify(Context); | 
|  | } // .. else there is an implicit base. | 
|  | FunctionArgs = Args.slice(1); | 
|  | } | 
|  | if (FunTmpl) { | 
|  | AddMethodTemplateCandidate( | 
|  | FunTmpl, F.getPair(), | 
|  | cast<CXXRecordDecl>(FunTmpl->getDeclContext()), | 
|  | ExplicitTemplateArgs, ObjectType, ObjectClassification, | 
|  | FunctionArgs, CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading); | 
|  | } else { | 
|  | AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), | 
|  | cast<CXXMethodDecl>(FD)->getParent(), ObjectType, | 
|  | ObjectClassification, FunctionArgs, CandidateSet, | 
|  | SuppressUserConversions, PartialOverloading); | 
|  | } | 
|  | } else { | 
|  | // This branch handles both standalone functions and static methods. | 
|  |  | 
|  | // Slice the first argument (which is the base) when we access | 
|  | // static method as non-static. | 
|  | if (Args.size() > 0 && | 
|  | (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && | 
|  | !isa<CXXConstructorDecl>(FD)))) { | 
|  | assert(cast<CXXMethodDecl>(FD)->isStatic()); | 
|  | FunctionArgs = Args.slice(1); | 
|  | } | 
|  | if (FunTmpl) { | 
|  | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), | 
|  | ExplicitTemplateArgs, FunctionArgs, | 
|  | CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading); | 
|  | } else { | 
|  | AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, | 
|  | SuppressUserConversions, PartialOverloading); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddMethodCandidate - Adds a named decl (which is some kind of | 
|  | /// method) as a method candidate to the given overload set. | 
|  | void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool SuppressUserConversions, | 
|  | OverloadCandidateParamOrder PO) { | 
|  | NamedDecl *Decl = FoundDecl.getDecl(); | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); | 
|  |  | 
|  | if (isa<UsingShadowDecl>(Decl)) | 
|  | Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); | 
|  |  | 
|  | if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { | 
|  | assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && | 
|  | "Expected a member function template"); | 
|  | AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, | 
|  | /*ExplicitArgs*/ nullptr, ObjectType, | 
|  | ObjectClassification, Args, CandidateSet, | 
|  | SuppressUserConversions, false, PO); | 
|  | } else { | 
|  | AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, | 
|  | ObjectType, ObjectClassification, Args, CandidateSet, | 
|  | SuppressUserConversions, false, std::nullopt, PO); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddMethodCandidate - Adds the given C++ member function to the set | 
|  | /// of candidate functions, using the given function call arguments | 
|  | /// and the object argument (@c Object). For example, in a call | 
|  | /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain | 
|  | /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't | 
|  | /// allow user-defined conversions via constructors or conversion | 
|  | /// operators. | 
|  | void | 
|  | Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool SuppressUserConversions, | 
|  | bool PartialOverloading, | 
|  | ConversionSequenceList EarlyConversions, | 
|  | OverloadCandidateParamOrder PO) { | 
|  | const FunctionProtoType *Proto | 
|  | = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); | 
|  | assert(Proto && "Methods without a prototype cannot be overloaded"); | 
|  | assert(!isa<CXXConstructorDecl>(Method) && | 
|  | "Use AddOverloadCandidate for constructors"); | 
|  |  | 
|  | if (!CandidateSet.isNewCandidate(Method, PO)) | 
|  | return; | 
|  |  | 
|  | // C++11 [class.copy]p23: [DR1402] | 
|  | //   A defaulted move assignment operator that is defined as deleted is | 
|  | //   ignored by overload resolution. | 
|  | if (Method->isDefaulted() && Method->isDeleted() && | 
|  | Method->isMoveAssignmentOperator()) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = | 
|  | CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = Method; | 
|  | Candidate.RewriteKind = | 
|  | CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  |  | 
|  | unsigned NumParams = Method->getNumExplicitParams(); | 
|  | unsigned ExplicitOffset = Method->isExplicitObjectMemberFunction() ? 1 : 0; | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having fewer than m | 
|  | // parameters is viable only if it has an ellipsis in its parameter | 
|  | // list (8.3.5). | 
|  | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && | 
|  | !Proto->isVariadic() && | 
|  | shouldEnforceArgLimit(PartialOverloading, Method)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_many_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having more than m parameters | 
|  | // is viable only if the (m+1)st parameter has a default argument | 
|  | // (8.3.6). For the purposes of overload resolution, the | 
|  | // parameter list is truncated on the right, so that there are | 
|  | // exactly m parameters. | 
|  | unsigned MinRequiredArgs = Method->getMinRequiredExplicitArguments(); | 
|  | if (Args.size() < MinRequiredArgs && !PartialOverloading) { | 
|  | // Not enough arguments. | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_few_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Candidate.Viable = true; | 
|  |  | 
|  | unsigned FirstConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; | 
|  | if (ObjectType.isNull()) | 
|  | Candidate.IgnoreObjectArgument = true; | 
|  | else if (Method->isStatic()) { | 
|  | // [over.best.ics.general]p8 | 
|  | // When the parameter is the implicit object parameter of a static member | 
|  | // function, the implicit conversion sequence is a standard conversion | 
|  | // sequence that is neither better nor worse than any other standard | 
|  | // conversion sequence. | 
|  | // | 
|  | // This is a rule that was introduced in C++23 to support static lambdas. We | 
|  | // apply it retroactively because we want to support static lambdas as an | 
|  | // extension and it doesn't hurt previous code. | 
|  | Candidate.Conversions[FirstConvIdx].setStaticObjectArgument(); | 
|  | } else { | 
|  | // Determine the implicit conversion sequence for the object | 
|  | // parameter. | 
|  | Candidate.Conversions[FirstConvIdx] = TryObjectArgumentInitialization( | 
|  | *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, | 
|  | Method, ActingContext, /*InOverloadResolution=*/true); | 
|  | if (Candidate.Conversions[FirstConvIdx].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (CUDA B.1): Check for invalid calls between targets. | 
|  | if (getLangOpts().CUDA) | 
|  | if (!CUDA().IsAllowedCall(getCurFunctionDecl(/*AllowLambda=*/true), | 
|  | Method)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_target; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Method->getTrailingRequiresClause()) { | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (CheckFunctionConstraints(Method, Satisfaction, /*Loc*/ {}, | 
|  | /*ForOverloadResolution*/ true) || | 
|  | !Satisfaction.IsSatisfied) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { | 
|  | unsigned ConvIdx = | 
|  | PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); | 
|  | if (Candidate.Conversions[ConvIdx].isInitialized()) { | 
|  | // We already formed a conversion sequence for this parameter during | 
|  | // template argument deduction. | 
|  | } else if (ArgIdx < NumParams) { | 
|  | // (C++ 13.3.2p3): for F to be a viable function, there shall | 
|  | // exist for each argument an implicit conversion sequence | 
|  | // (13.3.3.1) that converts that argument to the corresponding | 
|  | // parameter of F. | 
|  | QualType ParamType = Proto->getParamType(ArgIdx + ExplicitOffset); | 
|  | Candidate.Conversions[ConvIdx] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
|  | SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount); | 
|  | if (Candidate.Conversions[ConvIdx].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
|  | // argument for which there is no corresponding parameter is | 
|  | // considered to "match the ellipsis" (C+ 13.3.3.1.3). | 
|  | Candidate.Conversions[ConvIdx].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = | 
|  | CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isNonViableMultiVersionOverload(Method)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_non_default_multiversion_function; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add a C++ member function template as a candidate to the candidate | 
|  | /// set, using template argument deduction to produce an appropriate member | 
|  | /// function template specialization. | 
|  | void Sema::AddMethodTemplateCandidate( | 
|  | FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, | 
|  | bool PartialOverloading, OverloadCandidateParamOrder PO) { | 
|  | if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) | 
|  | return; | 
|  |  | 
|  | // C++ [over.match.funcs]p7: | 
|  | //   In each case where a candidate is a function template, candidate | 
|  | //   function template specializations are generated using template argument | 
|  | //   deduction (14.8.3, 14.8.2). Those candidates are then handled as | 
|  | //   candidate functions in the usual way.113) A given name can refer to one | 
|  | //   or more function templates and also to a set of overloaded non-template | 
|  | //   functions. In such a case, the candidate functions generated from each | 
|  | //   function template are combined with the set of non-template candidate | 
|  | //   functions. | 
|  | TemplateDeductionInfo Info(CandidateSet.getLocation()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | ConversionSequenceList Conversions; | 
|  | if (TemplateDeductionResult Result = DeduceTemplateArguments( | 
|  | MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, | 
|  | PartialOverloading, /*AggregateDeductionCandidate=*/false, ObjectType, | 
|  | ObjectClassification, | 
|  | [&](ArrayRef<QualType> ParamTypes) { | 
|  | return CheckNonDependentConversions( | 
|  | MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, | 
|  | SuppressUserConversions, ActingContext, ObjectType, | 
|  | ObjectClassification, PO); | 
|  | }); | 
|  | Result != TemplateDeductionResult::Success) { | 
|  | OverloadCandidate &Candidate = | 
|  | CandidateSet.addCandidate(Conversions.size(), Conversions); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = MethodTmpl->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.RewriteKind = | 
|  | CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = | 
|  | cast<CXXMethodDecl>(Candidate.Function)->isStatic() || | 
|  | ObjectType.isNull(); | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  | if (Result == TemplateDeductionResult::NonDependentConversionFailure) | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | else { | 
|  | Candidate.FailureKind = ovl_fail_bad_deduction; | 
|  | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | 
|  | Info); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add the function template specialization produced by template argument | 
|  | // deduction as a candidate. | 
|  | assert(Specialization && "Missing member function template specialization?"); | 
|  | assert(isa<CXXMethodDecl>(Specialization) && | 
|  | "Specialization is not a member function?"); | 
|  | AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, | 
|  | ActingContext, ObjectType, ObjectClassification, Args, | 
|  | CandidateSet, SuppressUserConversions, PartialOverloading, | 
|  | Conversions, PO); | 
|  | } | 
|  |  | 
|  | /// Determine whether a given function template has a simple explicit specifier | 
|  | /// or a non-value-dependent explicit-specification that evaluates to true. | 
|  | static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { | 
|  | return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); | 
|  | } | 
|  |  | 
|  | /// Add a C++ function template specialization as a candidate | 
|  | /// in the candidate set, using template argument deduction to produce | 
|  | /// an appropriate function template specialization. | 
|  | void Sema::AddTemplateOverloadCandidate( | 
|  | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, | 
|  | bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, | 
|  | OverloadCandidateParamOrder PO, bool AggregateCandidateDeduction) { | 
|  | if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) | 
|  | return; | 
|  |  | 
|  | // If the function template has a non-dependent explicit specification, | 
|  | // exclude it now if appropriate; we are not permitted to perform deduction | 
|  | // and substitution in this case. | 
|  | if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_explicit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++ [over.match.funcs]p7: | 
|  | //   In each case where a candidate is a function template, candidate | 
|  | //   function template specializations are generated using template argument | 
|  | //   deduction (14.8.3, 14.8.2). Those candidates are then handled as | 
|  | //   candidate functions in the usual way.113) A given name can refer to one | 
|  | //   or more function templates and also to a set of overloaded non-template | 
|  | //   functions. In such a case, the candidate functions generated from each | 
|  | //   function template are combined with the set of non-template candidate | 
|  | //   functions. | 
|  | TemplateDeductionInfo Info(CandidateSet.getLocation(), | 
|  | FunctionTemplate->getTemplateDepth()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | ConversionSequenceList Conversions; | 
|  | if (TemplateDeductionResult Result = DeduceTemplateArguments( | 
|  | FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, | 
|  | PartialOverloading, AggregateCandidateDeduction, | 
|  | /*ObjectType=*/QualType(), | 
|  | /*ObjectClassification=*/Expr::Classification(), | 
|  | [&](ArrayRef<QualType> ParamTypes) { | 
|  | return CheckNonDependentConversions( | 
|  | FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, | 
|  | SuppressUserConversions, nullptr, QualType(), {}, PO); | 
|  | }); | 
|  | Result != TemplateDeductionResult::Success) { | 
|  | OverloadCandidate &Candidate = | 
|  | CandidateSet.addCandidate(Conversions.size(), Conversions); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.RewriteKind = | 
|  | CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IsADLCandidate = IsADLCandidate; | 
|  | // Ignore the object argument if there is one, since we don't have an object | 
|  | // type. | 
|  | Candidate.IgnoreObjectArgument = | 
|  | isa<CXXMethodDecl>(Candidate.Function) && | 
|  | !isa<CXXConstructorDecl>(Candidate.Function); | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  | if (Result == TemplateDeductionResult::NonDependentConversionFailure) | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | else { | 
|  | Candidate.FailureKind = ovl_fail_bad_deduction; | 
|  | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | 
|  | Info); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add the function template specialization produced by template argument | 
|  | // deduction as a candidate. | 
|  | assert(Specialization && "Missing function template specialization?"); | 
|  | AddOverloadCandidate( | 
|  | Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, | 
|  | PartialOverloading, AllowExplicit, | 
|  | /*AllowExplicitConversions=*/false, IsADLCandidate, Conversions, PO, | 
|  | Info.AggregateDeductionCandidateHasMismatchedArity); | 
|  | } | 
|  |  | 
|  | /// Check that implicit conversion sequences can be formed for each argument | 
|  | /// whose corresponding parameter has a non-dependent type, per DR1391's | 
|  | /// [temp.deduct.call]p10. | 
|  | bool Sema::CheckNonDependentConversions( | 
|  | FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, | 
|  | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, | 
|  | ConversionSequenceList &Conversions, bool SuppressUserConversions, | 
|  | CXXRecordDecl *ActingContext, QualType ObjectType, | 
|  | Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { | 
|  | // FIXME: The cases in which we allow explicit conversions for constructor | 
|  | // arguments never consider calling a constructor template. It's not clear | 
|  | // that is correct. | 
|  | const bool AllowExplicit = false; | 
|  |  | 
|  | auto *FD = FunctionTemplate->getTemplatedDecl(); | 
|  | auto *Method = dyn_cast<CXXMethodDecl>(FD); | 
|  | bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); | 
|  | unsigned ThisConversions = HasThisConversion ? 1 : 0; | 
|  |  | 
|  | Conversions = | 
|  | CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::Unevaluated); | 
|  |  | 
|  | // For a method call, check the 'this' conversion here too. DR1391 doesn't | 
|  | // require that, but this check should never result in a hard error, and | 
|  | // overload resolution is permitted to sidestep instantiations. | 
|  | if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && | 
|  | !ObjectType.isNull()) { | 
|  | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; | 
|  | if (!FD->hasCXXExplicitFunctionObjectParameter() || | 
|  | !ParamTypes[0]->isDependentType()) { | 
|  | Conversions[ConvIdx] = TryObjectArgumentInitialization( | 
|  | *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, | 
|  | Method, ActingContext, /*InOverloadResolution=*/true, | 
|  | FD->hasCXXExplicitFunctionObjectParameter() ? ParamTypes[0] | 
|  | : QualType()); | 
|  | if (Conversions[ConvIdx].isBad()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Offset = | 
|  | Method && Method->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; | 
|  |  | 
|  | for (unsigned I = 0, N = std::min(ParamTypes.size() - Offset, Args.size()); | 
|  | I != N; ++I) { | 
|  | QualType ParamType = ParamTypes[I + Offset]; | 
|  | if (!ParamType->isDependentType()) { | 
|  | unsigned ConvIdx; | 
|  | if (PO == OverloadCandidateParamOrder::Reversed) { | 
|  | ConvIdx = Args.size() - 1 - I; | 
|  | assert(Args.size() + ThisConversions == 2 && | 
|  | "number of args (including 'this') must be exactly 2 for " | 
|  | "reversed order"); | 
|  | // For members, there would be only one arg 'Args[0]' whose ConvIdx | 
|  | // would also be 0. 'this' got ConvIdx = 1 previously. | 
|  | assert(!HasThisConversion || (ConvIdx == 0 && I == 0)); | 
|  | } else { | 
|  | // For members, 'this' got ConvIdx = 0 previously. | 
|  | ConvIdx = ThisConversions + I; | 
|  | } | 
|  | Conversions[ConvIdx] | 
|  | = TryCopyInitialization(*this, Args[I], ParamType, | 
|  | SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount, | 
|  | AllowExplicit); | 
|  | if (Conversions[ConvIdx].isBad()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether this is an allowable conversion from the result | 
|  | /// of an explicit conversion operator to the expected type, per C++ | 
|  | /// [over.match.conv]p1 and [over.match.ref]p1. | 
|  | /// | 
|  | /// \param ConvType The return type of the conversion function. | 
|  | /// | 
|  | /// \param ToType The type we are converting to. | 
|  | /// | 
|  | /// \param AllowObjCPointerConversion Allow a conversion from one | 
|  | /// Objective-C pointer to another. | 
|  | /// | 
|  | /// \returns true if the conversion is allowable, false otherwise. | 
|  | static bool isAllowableExplicitConversion(Sema &S, | 
|  | QualType ConvType, QualType ToType, | 
|  | bool AllowObjCPointerConversion) { | 
|  | QualType ToNonRefType = ToType.getNonReferenceType(); | 
|  |  | 
|  | // Easy case: the types are the same. | 
|  | if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) | 
|  | return true; | 
|  |  | 
|  | // Allow qualification conversions. | 
|  | bool ObjCLifetimeConversion; | 
|  | if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, | 
|  | ObjCLifetimeConversion)) | 
|  | return true; | 
|  |  | 
|  | // If we're not allowed to consider Objective-C pointer conversions, | 
|  | // we're done. | 
|  | if (!AllowObjCPointerConversion) | 
|  | return false; | 
|  |  | 
|  | // Is this an Objective-C pointer conversion? | 
|  | bool IncompatibleObjC = false; | 
|  | QualType ConvertedType; | 
|  | return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, | 
|  | IncompatibleObjC); | 
|  | } | 
|  |  | 
|  | /// AddConversionCandidate - Add a C++ conversion function as a | 
|  | /// candidate in the candidate set (C++ [over.match.conv], | 
|  | /// C++ [over.match.copy]). From is the expression we're converting from, | 
|  | /// and ToType is the type that we're eventually trying to convert to | 
|  | /// (which may or may not be the same type as the type that the | 
|  | /// conversion function produces). | 
|  | void Sema::AddConversionCandidate( | 
|  | CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, | 
|  | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, | 
|  | bool AllowExplicit, bool AllowResultConversion) { | 
|  | assert(!Conversion->getDescribedFunctionTemplate() && | 
|  | "Conversion function templates use AddTemplateConversionCandidate"); | 
|  | QualType ConvType = Conversion->getConversionType().getNonReferenceType(); | 
|  | if (!CandidateSet.isNewCandidate(Conversion)) | 
|  | return; | 
|  |  | 
|  | // If the conversion function has an undeduced return type, trigger its | 
|  | // deduction now. | 
|  | if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { | 
|  | if (DeduceReturnType(Conversion, From->getExprLoc())) | 
|  | return; | 
|  | ConvType = Conversion->getConversionType().getNonReferenceType(); | 
|  | } | 
|  |  | 
|  | // If we don't allow any conversion of the result type, ignore conversion | 
|  | // functions that don't convert to exactly (possibly cv-qualified) T. | 
|  | if (!AllowResultConversion && | 
|  | !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) | 
|  | return; | 
|  |  | 
|  | // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion | 
|  | // operator is only a candidate if its return type is the target type or | 
|  | // can be converted to the target type with a qualification conversion. | 
|  | // | 
|  | // FIXME: Include such functions in the candidate list and explain why we | 
|  | // can't select them. | 
|  | if (Conversion->isExplicit() && | 
|  | !isAllowableExplicitConversion(*this, ConvType, ToType, | 
|  | AllowObjCConversionOnExplicit)) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(1); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = Conversion; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.FinalConversion.setAsIdentityConversion(); | 
|  | Candidate.FinalConversion.setFromType(ConvType); | 
|  | Candidate.FinalConversion.setAllToTypes(ToType); | 
|  | Candidate.Viable = true; | 
|  | Candidate.ExplicitCallArguments = 1; | 
|  |  | 
|  | // Explicit functions are not actually candidates at all if we're not | 
|  | // allowing them in this context, but keep them around so we can point | 
|  | // to them in diagnostics. | 
|  | if (!AllowExplicit && Conversion->isExplicit()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_explicit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++ [over.match.funcs]p4: | 
|  | //   For conversion functions, the function is considered to be a member of | 
|  | //   the class of the implicit implied object argument for the purpose of | 
|  | //   defining the type of the implicit object parameter. | 
|  | // | 
|  | // Determine the implicit conversion sequence for the implicit | 
|  | // object parameter. | 
|  | QualType ObjectType = From->getType(); | 
|  | if (const auto *FromPtrType = ObjectType->getAs<PointerType>()) | 
|  | ObjectType = FromPtrType->getPointeeType(); | 
|  | const auto *ConversionContext = | 
|  | cast<CXXRecordDecl>(ObjectType->castAs<RecordType>()->getDecl()); | 
|  |  | 
|  | // C++23 [over.best.ics.general] | 
|  | // However, if the target is [...] | 
|  | // - the object parameter of a user-defined conversion function | 
|  | // [...] user-defined conversion sequences are not considered. | 
|  | Candidate.Conversions[0] = TryObjectArgumentInitialization( | 
|  | *this, CandidateSet.getLocation(), From->getType(), | 
|  | From->Classify(Context), Conversion, ConversionContext, | 
|  | /*InOverloadResolution*/ false, /*ExplicitParameterType=*/QualType(), | 
|  | /*SuppressUserConversion*/ true); | 
|  |  | 
|  | if (Candidate.Conversions[0].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Conversion->getTrailingRequiresClause()) { | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (CheckFunctionConstraints(Conversion, Satisfaction) || | 
|  | !Satisfaction.IsSatisfied) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We won't go through a user-defined type conversion function to convert a | 
|  | // derived to base as such conversions are given Conversion Rank. They only | 
|  | // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] | 
|  | QualType FromCanon | 
|  | = Context.getCanonicalType(From->getType().getUnqualifiedType()); | 
|  | QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); | 
|  | if (FromCanon == ToCanon || | 
|  | IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_trivial_conversion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // To determine what the conversion from the result of calling the | 
|  | // conversion function to the type we're eventually trying to | 
|  | // convert to (ToType), we need to synthesize a call to the | 
|  | // conversion function and attempt copy initialization from it. This | 
|  | // makes sure that we get the right semantics with respect to | 
|  | // lvalues/rvalues and the type. Fortunately, we can allocate this | 
|  | // call on the stack and we don't need its arguments to be | 
|  | // well-formed. | 
|  | DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), | 
|  | VK_LValue, From->getBeginLoc()); | 
|  | ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, | 
|  | Context.getPointerType(Conversion->getType()), | 
|  | CK_FunctionToPointerDecay, &ConversionRef, | 
|  | VK_PRValue, FPOptionsOverride()); | 
|  |  | 
|  | QualType ConversionType = Conversion->getConversionType(); | 
|  | if (!isCompleteType(From->getBeginLoc(), ConversionType)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExprValueKind VK = Expr::getValueKindForType(ConversionType); | 
|  |  | 
|  | // Note that it is safe to allocate CallExpr on the stack here because | 
|  | // there are 0 arguments (i.e., nothing is allocated using ASTContext's | 
|  | // allocator). | 
|  | QualType CallResultType = ConversionType.getNonLValueExprType(Context); | 
|  |  | 
|  | alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; | 
|  | CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( | 
|  | Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); | 
|  |  | 
|  | ImplicitConversionSequence ICS = | 
|  | TryCopyInitialization(*this, TheTemporaryCall, ToType, | 
|  | /*SuppressUserConversions=*/true, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/false); | 
|  |  | 
|  | switch (ICS.getKind()) { | 
|  | case ImplicitConversionSequence::StandardConversion: | 
|  | Candidate.FinalConversion = ICS.Standard; | 
|  |  | 
|  | // C++ [over.ics.user]p3: | 
|  | //   If the user-defined conversion is specified by a specialization of a | 
|  | //   conversion function template, the second standard conversion sequence | 
|  | //   shall have exact match rank. | 
|  | if (Conversion->getPrimaryTemplate() && | 
|  | GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_final_conversion_not_exact; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++0x [dcl.init.ref]p5: | 
|  | //    In the second case, if the reference is an rvalue reference and | 
|  | //    the second standard conversion sequence of the user-defined | 
|  | //    conversion sequence includes an lvalue-to-rvalue conversion, the | 
|  | //    program is ill-formed. | 
|  | if (ToType->isRValueReferenceType() && | 
|  | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::BadConversion: | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
|  | return; | 
|  |  | 
|  | default: | 
|  | llvm_unreachable( | 
|  | "Can only end up with a standard conversion sequence or failure"); | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = | 
|  | CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isNonViableMultiVersionOverload(Conversion)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_non_default_multiversion_function; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Adds a conversion function template specialization | 
|  | /// candidate to the overload set, using template argument deduction | 
|  | /// to deduce the template arguments of the conversion function | 
|  | /// template from the type that we are converting to (C++ | 
|  | /// [temp.deduct.conv]). | 
|  | void Sema::AddTemplateConversionCandidate( | 
|  | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingDC, Expr *From, QualType ToType, | 
|  | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, | 
|  | bool AllowExplicit, bool AllowResultConversion) { | 
|  | assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && | 
|  | "Only conversion function templates permitted here"); | 
|  |  | 
|  | if (!CandidateSet.isNewCandidate(FunctionTemplate)) | 
|  | return; | 
|  |  | 
|  | // If the function template has a non-dependent explicit specification, | 
|  | // exclude it now if appropriate; we are not permitted to perform deduction | 
|  | // and substitution in this case. | 
|  | if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_explicit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | QualType ObjectType = From->getType(); | 
|  | Expr::Classification ObjectClassification = From->Classify(getASTContext()); | 
|  |  | 
|  | TemplateDeductionInfo Info(CandidateSet.getLocation()); | 
|  | CXXConversionDecl *Specialization = nullptr; | 
|  | if (TemplateDeductionResult Result = DeduceTemplateArguments( | 
|  | FunctionTemplate, ObjectType, ObjectClassification, ToType, | 
|  | Specialization, Info); | 
|  | Result != TemplateDeductionResult::Success) { | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_deduction; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = 1; | 
|  | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | 
|  | Info); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add the conversion function template specialization produced by | 
|  | // template argument deduction as a candidate. | 
|  | assert(Specialization && "Missing function template specialization?"); | 
|  | AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, | 
|  | CandidateSet, AllowObjCConversionOnExplicit, | 
|  | AllowExplicit, AllowResultConversion); | 
|  | } | 
|  |  | 
|  | /// AddSurrogateCandidate - Adds a "surrogate" candidate function that | 
|  | /// converts the given @c Object to a function pointer via the | 
|  | /// conversion function @c Conversion, and then attempts to call it | 
|  | /// with the given arguments (C++ [over.call.object]p2-4). Proto is | 
|  | /// the type of function that we'll eventually be calling. | 
|  | void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, | 
|  | DeclAccessPair FoundDecl, | 
|  | CXXRecordDecl *ActingContext, | 
|  | const FunctionProtoType *Proto, | 
|  | Expr *Object, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet) { | 
|  | if (!CandidateSet.isNewCandidate(Conversion)) | 
|  | return; | 
|  |  | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::Unevaluated); | 
|  |  | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); | 
|  | Candidate.FoundDecl = FoundDecl; | 
|  | Candidate.Function = nullptr; | 
|  | Candidate.Surrogate = Conversion; | 
|  | Candidate.Viable = true; | 
|  | Candidate.IsSurrogate = true; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  |  | 
|  | // Determine the implicit conversion sequence for the implicit | 
|  | // object parameter. | 
|  | ImplicitConversionSequence ObjectInit; | 
|  | if (Conversion->hasCXXExplicitFunctionObjectParameter()) { | 
|  | ObjectInit = TryCopyInitialization(*this, Object, | 
|  | Conversion->getParamDecl(0)->getType(), | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*InOverloadResolution=*/true, false); | 
|  | } else { | 
|  | ObjectInit = TryObjectArgumentInitialization( | 
|  | *this, CandidateSet.getLocation(), Object->getType(), | 
|  | Object->Classify(Context), Conversion, ActingContext); | 
|  | } | 
|  |  | 
|  | if (ObjectInit.isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | Candidate.Conversions[0] = ObjectInit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The first conversion is actually a user-defined conversion whose | 
|  | // first conversion is ObjectInit's standard conversion (which is | 
|  | // effectively a reference binding). Record it as such. | 
|  | Candidate.Conversions[0].setUserDefined(); | 
|  | Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; | 
|  | Candidate.Conversions[0].UserDefined.EllipsisConversion = false; | 
|  | Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; | 
|  | Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; | 
|  | Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; | 
|  | Candidate.Conversions[0].UserDefined.After | 
|  | = Candidate.Conversions[0].UserDefined.Before; | 
|  | Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); | 
|  |  | 
|  | // Find the | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | // (C++ 13.3.2p2): A candidate function having fewer than m | 
|  | // parameters is viable only if it has an ellipsis in its parameter | 
|  | // list (8.3.5). | 
|  | if (Args.size() > NumParams && !Proto->isVariadic()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_many_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Function types don't have any default arguments, so just check if | 
|  | // we have enough arguments. | 
|  | if (Args.size() < NumParams) { | 
|  | // Not enough arguments. | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_too_few_arguments; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | if (ArgIdx < NumParams) { | 
|  | // (C++ 13.3.2p3): for F to be a viable function, there shall | 
|  | // exist for each argument an implicit conversion sequence | 
|  | // (13.3.3.1) that converts that argument to the corresponding | 
|  | // parameter of F. | 
|  | QualType ParamType = Proto->getParamType(ArgIdx); | 
|  | Candidate.Conversions[ArgIdx + 1] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
|  | /*SuppressUserConversions=*/false, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount); | 
|  | if (Candidate.Conversions[ArgIdx + 1].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
|  | // argument for which there is no corresponding parameter is | 
|  | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
|  | Candidate.Conversions[ArgIdx + 1].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Conversion->getTrailingRequiresClause()) { | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (CheckFunctionConstraints(Conversion, Satisfaction, /*Loc*/ {}, | 
|  | /*ForOverloadResolution*/ true) || | 
|  | !Satisfaction.IsSatisfied) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EnableIfAttr *FailedAttr = | 
|  | CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_enable_if; | 
|  | Candidate.DeductionFailure.Data = FailedAttr; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add all of the non-member operator function declarations in the given | 
|  | /// function set to the overload candidate set. | 
|  | void Sema::AddNonMemberOperatorCandidates( | 
|  | const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs) { | 
|  | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { | 
|  | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); | 
|  | ArrayRef<Expr *> FunctionArgs = Args; | 
|  |  | 
|  | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | 
|  | FunctionDecl *FD = | 
|  | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); | 
|  |  | 
|  | // Don't consider rewritten functions if we're not rewriting. | 
|  | if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) | 
|  | continue; | 
|  |  | 
|  | assert(!isa<CXXMethodDecl>(FD) && | 
|  | "unqualified operator lookup found a member function"); | 
|  |  | 
|  | if (FunTmpl) { | 
|  | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, | 
|  | FunctionArgs, CandidateSet); | 
|  | if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) | 
|  | AddTemplateOverloadCandidate( | 
|  | FunTmpl, F.getPair(), ExplicitTemplateArgs, | 
|  | {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, | 
|  | true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); | 
|  | } else { | 
|  | if (ExplicitTemplateArgs) | 
|  | continue; | 
|  | AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); | 
|  | if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) | 
|  | AddOverloadCandidate( | 
|  | FD, F.getPair(), {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, | 
|  | false, false, true, false, ADLCallKind::NotADL, std::nullopt, | 
|  | OverloadCandidateParamOrder::Reversed); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add overload candidates for overloaded operators that are | 
|  | /// member functions. | 
|  | /// | 
|  | /// Add the overloaded operator candidates that are member functions | 
|  | /// for the operator Op that was used in an operator expression such | 
|  | /// as "x Op y". , Args/NumArgs provides the operator arguments, and | 
|  | /// CandidateSet will store the added overload candidates. (C++ | 
|  | /// [over.match.oper]). | 
|  | void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, | 
|  | SourceLocation OpLoc, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | OverloadCandidateParamOrder PO) { | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  |  | 
|  | // C++ [over.match.oper]p3: | 
|  | //   For a unary operator @ with an operand of a type whose | 
|  | //   cv-unqualified version is T1, and for a binary operator @ with | 
|  | //   a left operand of a type whose cv-unqualified version is T1 and | 
|  | //   a right operand of a type whose cv-unqualified version is T2, | 
|  | //   three sets of candidate functions, designated member | 
|  | //   candidates, non-member candidates and built-in candidates, are | 
|  | //   constructed as follows: | 
|  | QualType T1 = Args[0]->getType(); | 
|  |  | 
|  | //     -- If T1 is a complete class type or a class currently being | 
|  | //        defined, the set of member candidates is the result of the | 
|  | //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, | 
|  | //        the set of member candidates is empty. | 
|  | if (const RecordType *T1Rec = T1->getAs<RecordType>()) { | 
|  | // Complete the type if it can be completed. | 
|  | if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) | 
|  | return; | 
|  | // If the type is neither complete nor being defined, bail out now. | 
|  | if (!T1Rec->getDecl()->getDefinition()) | 
|  | return; | 
|  |  | 
|  | LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(Operators, T1Rec->getDecl()); | 
|  | Operators.suppressAccessDiagnostics(); | 
|  |  | 
|  | for (LookupResult::iterator Oper = Operators.begin(), | 
|  | OperEnd = Operators.end(); | 
|  | Oper != OperEnd; ++Oper) { | 
|  | if (Oper->getAsFunction() && | 
|  | PO == OverloadCandidateParamOrder::Reversed && | 
|  | !CandidateSet.getRewriteInfo().shouldAddReversed( | 
|  | *this, {Args[1], Args[0]}, Oper->getAsFunction())) | 
|  | continue; | 
|  | AddMethodCandidate(Oper.getPair(), Args[0]->getType(), | 
|  | Args[0]->Classify(Context), Args.slice(1), | 
|  | CandidateSet, /*SuppressUserConversion=*/false, PO); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddBuiltinCandidate - Add a candidate for a built-in | 
|  | /// operator. ResultTy and ParamTys are the result and parameter types | 
|  | /// of the built-in candidate, respectively. Args and NumArgs are the | 
|  | /// arguments being passed to the candidate. IsAssignmentOperator | 
|  | /// should be true when this built-in candidate is an assignment | 
|  | /// operator. NumContextualBoolArguments is the number of arguments | 
|  | /// (at the beginning of the argument list) that will be contextually | 
|  | /// converted to bool. | 
|  | void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool IsAssignmentOperator, | 
|  | unsigned NumContextualBoolArguments) { | 
|  | // Overload resolution is always an unevaluated context. | 
|  | EnterExpressionEvaluationContext Unevaluated( | 
|  | *this, Sema::ExpressionEvaluationContext::Unevaluated); | 
|  |  | 
|  | // Add this candidate | 
|  | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); | 
|  | Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); | 
|  | Candidate.Function = nullptr; | 
|  | Candidate.IsSurrogate = false; | 
|  | Candidate.IgnoreObjectArgument = false; | 
|  | std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); | 
|  |  | 
|  | // Determine the implicit conversion sequences for each of the | 
|  | // arguments. | 
|  | Candidate.Viable = true; | 
|  | Candidate.ExplicitCallArguments = Args.size(); | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | // C++ [over.match.oper]p4: | 
|  | //   For the built-in assignment operators, conversions of the | 
|  | //   left operand are restricted as follows: | 
|  | //     -- no temporaries are introduced to hold the left operand, and | 
|  | //     -- no user-defined conversions are applied to the left | 
|  | //        operand to achieve a type match with the left-most | 
|  | //        parameter of a built-in candidate. | 
|  | // | 
|  | // We block these conversions by turning off user-defined | 
|  | // conversions, since that is the only way that initialization of | 
|  | // a reference to a non-class type can occur from something that | 
|  | // is not of the same type. | 
|  | if (ArgIdx < NumContextualBoolArguments) { | 
|  | assert(ParamTys[ArgIdx] == Context.BoolTy && | 
|  | "Contextual conversion to bool requires bool type"); | 
|  | Candidate.Conversions[ArgIdx] | 
|  | = TryContextuallyConvertToBool(*this, Args[ArgIdx]); | 
|  | } else { | 
|  | Candidate.Conversions[ArgIdx] | 
|  | = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], | 
|  | ArgIdx == 0 && IsAssignmentOperator, | 
|  | /*InOverloadResolution=*/false, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | getLangOpts().ObjCAutoRefCount); | 
|  | } | 
|  | if (Candidate.Conversions[ArgIdx].isBad()) { | 
|  | Candidate.Viable = false; | 
|  | Candidate.FailureKind = ovl_fail_bad_conversion; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// BuiltinCandidateTypeSet - A set of types that will be used for the | 
|  | /// candidate operator functions for built-in operators (C++ | 
|  | /// [over.built]). The types are separated into pointer types and | 
|  | /// enumeration types. | 
|  | class BuiltinCandidateTypeSet  { | 
|  | /// TypeSet - A set of types. | 
|  | typedef llvm::SmallSetVector<QualType, 8> TypeSet; | 
|  |  | 
|  | /// PointerTypes - The set of pointer types that will be used in the | 
|  | /// built-in candidates. | 
|  | TypeSet PointerTypes; | 
|  |  | 
|  | /// MemberPointerTypes - The set of member pointer types that will be | 
|  | /// used in the built-in candidates. | 
|  | TypeSet MemberPointerTypes; | 
|  |  | 
|  | /// EnumerationTypes - The set of enumeration types that will be | 
|  | /// used in the built-in candidates. | 
|  | TypeSet EnumerationTypes; | 
|  |  | 
|  | /// The set of vector types that will be used in the built-in | 
|  | /// candidates. | 
|  | TypeSet VectorTypes; | 
|  |  | 
|  | /// The set of matrix types that will be used in the built-in | 
|  | /// candidates. | 
|  | TypeSet MatrixTypes; | 
|  |  | 
|  | /// The set of _BitInt types that will be used in the built-in candidates. | 
|  | TypeSet BitIntTypes; | 
|  |  | 
|  | /// A flag indicating non-record types are viable candidates | 
|  | bool HasNonRecordTypes; | 
|  |  | 
|  | /// A flag indicating whether either arithmetic or enumeration types | 
|  | /// were present in the candidate set. | 
|  | bool HasArithmeticOrEnumeralTypes; | 
|  |  | 
|  | /// A flag indicating whether the nullptr type was present in the | 
|  | /// candidate set. | 
|  | bool HasNullPtrType; | 
|  |  | 
|  | /// Sema - The semantic analysis instance where we are building the | 
|  | /// candidate type set. | 
|  | Sema &SemaRef; | 
|  |  | 
|  | /// Context - The AST context in which we will build the type sets. | 
|  | ASTContext &Context; | 
|  |  | 
|  | bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | 
|  | const Qualifiers &VisibleQuals); | 
|  | bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); | 
|  |  | 
|  | public: | 
|  | /// iterator - Iterates through the types that are part of the set. | 
|  | typedef TypeSet::iterator iterator; | 
|  |  | 
|  | BuiltinCandidateTypeSet(Sema &SemaRef) | 
|  | : HasNonRecordTypes(false), | 
|  | HasArithmeticOrEnumeralTypes(false), | 
|  | HasNullPtrType(false), | 
|  | SemaRef(SemaRef), | 
|  | Context(SemaRef.Context) { } | 
|  |  | 
|  | void AddTypesConvertedFrom(QualType Ty, | 
|  | SourceLocation Loc, | 
|  | bool AllowUserConversions, | 
|  | bool AllowExplicitConversions, | 
|  | const Qualifiers &VisibleTypeConversionsQuals); | 
|  |  | 
|  | llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } | 
|  | llvm::iterator_range<iterator> member_pointer_types() { | 
|  | return MemberPointerTypes; | 
|  | } | 
|  | llvm::iterator_range<iterator> enumeration_types() { | 
|  | return EnumerationTypes; | 
|  | } | 
|  | llvm::iterator_range<iterator> vector_types() { return VectorTypes; } | 
|  | llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } | 
|  | llvm::iterator_range<iterator> bitint_types() { return BitIntTypes; } | 
|  |  | 
|  | bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } | 
|  | bool hasNonRecordTypes() { return HasNonRecordTypes; } | 
|  | bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } | 
|  | bool hasNullPtrType() const { return HasNullPtrType; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to | 
|  | /// the set of pointer types along with any more-qualified variants of | 
|  | /// that type. For example, if @p Ty is "int const *", this routine | 
|  | /// will add "int const *", "int const volatile *", "int const | 
|  | /// restrict *", and "int const volatile restrict *" to the set of | 
|  | /// pointer types. Returns true if the add of @p Ty itself succeeded, | 
|  | /// false otherwise. | 
|  | /// | 
|  | /// FIXME: what to do about extended qualifiers? | 
|  | bool | 
|  | BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | 
|  | const Qualifiers &VisibleQuals) { | 
|  |  | 
|  | // Insert this type. | 
|  | if (!PointerTypes.insert(Ty)) | 
|  | return false; | 
|  |  | 
|  | QualType PointeeTy; | 
|  | const PointerType *PointerTy = Ty->getAs<PointerType>(); | 
|  | bool buildObjCPtr = false; | 
|  | if (!PointerTy) { | 
|  | const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); | 
|  | PointeeTy = PTy->getPointeeType(); | 
|  | buildObjCPtr = true; | 
|  | } else { | 
|  | PointeeTy = PointerTy->getPointeeType(); | 
|  | } | 
|  |  | 
|  | // Don't add qualified variants of arrays. For one, they're not allowed | 
|  | // (the qualifier would sink to the element type), and for another, the | 
|  | // only overload situation where it matters is subscript or pointer +- int, | 
|  | // and those shouldn't have qualifier variants anyway. | 
|  | if (PointeeTy->isArrayType()) | 
|  | return true; | 
|  |  | 
|  | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | 
|  | bool hasVolatile = VisibleQuals.hasVolatile(); | 
|  | bool hasRestrict = VisibleQuals.hasRestrict(); | 
|  |  | 
|  | // Iterate through all strict supersets of BaseCVR. | 
|  | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | 
|  | if ((CVR | BaseCVR) != CVR) continue; | 
|  | // Skip over volatile if no volatile found anywhere in the types. | 
|  | if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; | 
|  |  | 
|  | // Skip over restrict if no restrict found anywhere in the types, or if | 
|  | // the type cannot be restrict-qualified. | 
|  | if ((CVR & Qualifiers::Restrict) && | 
|  | (!hasRestrict || | 
|  | (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) | 
|  | continue; | 
|  |  | 
|  | // Build qualified pointee type. | 
|  | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | 
|  |  | 
|  | // Build qualified pointer type. | 
|  | QualType QPointerTy; | 
|  | if (!buildObjCPtr) | 
|  | QPointerTy = Context.getPointerType(QPointeeTy); | 
|  | else | 
|  | QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); | 
|  |  | 
|  | // Insert qualified pointer type. | 
|  | PointerTypes.insert(QPointerTy); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty | 
|  | /// to the set of pointer types along with any more-qualified variants of | 
|  | /// that type. For example, if @p Ty is "int const *", this routine | 
|  | /// will add "int const *", "int const volatile *", "int const | 
|  | /// restrict *", and "int const volatile restrict *" to the set of | 
|  | /// pointer types. Returns true if the add of @p Ty itself succeeded, | 
|  | /// false otherwise. | 
|  | /// | 
|  | /// FIXME: what to do about extended qualifiers? | 
|  | bool | 
|  | BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( | 
|  | QualType Ty) { | 
|  | // Insert this type. | 
|  | if (!MemberPointerTypes.insert(Ty)) | 
|  | return false; | 
|  |  | 
|  | const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); | 
|  | assert(PointerTy && "type was not a member pointer type!"); | 
|  |  | 
|  | QualType PointeeTy = PointerTy->getPointeeType(); | 
|  | // Don't add qualified variants of arrays. For one, they're not allowed | 
|  | // (the qualifier would sink to the element type), and for another, the | 
|  | // only overload situation where it matters is subscript or pointer +- int, | 
|  | // and those shouldn't have qualifier variants anyway. | 
|  | if (PointeeTy->isArrayType()) | 
|  | return true; | 
|  | const Type *ClassTy = PointerTy->getClass(); | 
|  |  | 
|  | // Iterate through all strict supersets of the pointee type's CVR | 
|  | // qualifiers. | 
|  | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | 
|  | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | 
|  | if ((CVR | BaseCVR) != CVR) continue; | 
|  |  | 
|  | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | 
|  | MemberPointerTypes.insert( | 
|  | Context.getMemberPointerType(QPointeeTy, ClassTy)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AddTypesConvertedFrom - Add each of the types to which the type @p | 
|  | /// Ty can be implicit converted to the given set of @p Types. We're | 
|  | /// primarily interested in pointer types and enumeration types. We also | 
|  | /// take member pointer types, for the conditional operator. | 
|  | /// AllowUserConversions is true if we should look at the conversion | 
|  | /// functions of a class type, and AllowExplicitConversions if we | 
|  | /// should also include the explicit conversion functions of a class | 
|  | /// type. | 
|  | void | 
|  | BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, | 
|  | SourceLocation Loc, | 
|  | bool AllowUserConversions, | 
|  | bool AllowExplicitConversions, | 
|  | const Qualifiers &VisibleQuals) { | 
|  | // Only deal with canonical types. | 
|  | Ty = Context.getCanonicalType(Ty); | 
|  |  | 
|  | // Look through reference types; they aren't part of the type of an | 
|  | // expression for the purposes of conversions. | 
|  | if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) | 
|  | Ty = RefTy->getPointeeType(); | 
|  |  | 
|  | // If we're dealing with an array type, decay to the pointer. | 
|  | if (Ty->isArrayType()) | 
|  | Ty = SemaRef.Context.getArrayDecayedType(Ty); | 
|  |  | 
|  | // Otherwise, we don't care about qualifiers on the type. | 
|  | Ty = Ty.getLocalUnqualifiedType(); | 
|  |  | 
|  | // Flag if we ever add a non-record type. | 
|  | const RecordType *TyRec = Ty->getAs<RecordType>(); | 
|  | HasNonRecordTypes = HasNonRecordTypes || !TyRec; | 
|  |  | 
|  | // Flag if we encounter an arithmetic type. | 
|  | HasArithmeticOrEnumeralTypes = | 
|  | HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); | 
|  |  | 
|  | if (Ty->isObjCIdType() || Ty->isObjCClassType()) | 
|  | PointerTypes.insert(Ty); | 
|  | else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { | 
|  | // Insert our type, and its more-qualified variants, into the set | 
|  | // of types. | 
|  | if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) | 
|  | return; | 
|  | } else if (Ty->isMemberPointerType()) { | 
|  | // Member pointers are far easier, since the pointee can't be converted. | 
|  | if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) | 
|  | return; | 
|  | } else if (Ty->isEnumeralType()) { | 
|  | HasArithmeticOrEnumeralTypes = true; | 
|  | EnumerationTypes.insert(Ty); | 
|  | } else if (Ty->isBitIntType()) { | 
|  | HasArithmeticOrEnumeralTypes = true; | 
|  | BitIntTypes.insert(Ty); | 
|  | } else if (Ty->isVectorType()) { | 
|  | // We treat vector types as arithmetic types in many contexts as an | 
|  | // extension. | 
|  | HasArithmeticOrEnumeralTypes = true; | 
|  | VectorTypes.insert(Ty); | 
|  | } else if (Ty->isMatrixType()) { | 
|  | // Similar to vector types, we treat vector types as arithmetic types in | 
|  | // many contexts as an extension. | 
|  | HasArithmeticOrEnumeralTypes = true; | 
|  | MatrixTypes.insert(Ty); | 
|  | } else if (Ty->isNullPtrType()) { | 
|  | HasNullPtrType = true; | 
|  | } else if (AllowUserConversions && TyRec) { | 
|  | // No conversion functions in incomplete types. | 
|  | if (!SemaRef.isCompleteType(Loc, Ty)) | 
|  | return; | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | 
|  | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | // Skip conversion function templates; they don't tell us anything | 
|  | // about which builtin types we can convert to. | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
|  | if (AllowExplicitConversions || !Conv->isExplicit()) { | 
|  | AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, | 
|  | VisibleQuals); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | /// Helper function for adjusting address spaces for the pointer or reference | 
|  | /// operands of builtin operators depending on the argument. | 
|  | static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, | 
|  | Expr *Arg) { | 
|  | return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); | 
|  | } | 
|  |  | 
|  | /// Helper function for AddBuiltinOperatorCandidates() that adds | 
|  | /// the volatile- and non-volatile-qualified assignment operators for the | 
|  | /// given type to the candidate set. | 
|  | static void AddBuiltinAssignmentOperatorCandidates(Sema &S, | 
|  | QualType T, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | QualType ParamTypes[2]; | 
|  |  | 
|  | // T& operator=(T&, T) | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType( | 
|  | AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); | 
|  | ParamTypes[1] = T; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  |  | 
|  | if (!S.Context.getCanonicalType(T).isVolatileQualified()) { | 
|  | // volatile T& operator=(volatile T&, T) | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType( | 
|  | AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), | 
|  | Args[0])); | 
|  | ParamTypes[1] = T; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, | 
|  | /// if any, found in visible type conversion functions found in ArgExpr's type. | 
|  | static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { | 
|  | Qualifiers VRQuals; | 
|  | const RecordType *TyRec; | 
|  | if (const MemberPointerType *RHSMPType = | 
|  | ArgExpr->getType()->getAs<MemberPointerType>()) | 
|  | TyRec = RHSMPType->getClass()->getAs<RecordType>(); | 
|  | else | 
|  | TyRec = ArgExpr->getType()->getAs<RecordType>(); | 
|  | if (!TyRec) { | 
|  | // Just to be safe, assume the worst case. | 
|  | VRQuals.addVolatile(); | 
|  | VRQuals.addRestrict(); | 
|  | return VRQuals; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | 
|  | if (!ClassDecl->hasDefinition()) | 
|  | return VRQuals; | 
|  |  | 
|  | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  | if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { | 
|  | QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); | 
|  | if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) | 
|  | CanTy = ResTypeRef->getPointeeType(); | 
|  | // Need to go down the pointer/mempointer chain and add qualifiers | 
|  | // as see them. | 
|  | bool done = false; | 
|  | while (!done) { | 
|  | if (CanTy.isRestrictQualified()) | 
|  | VRQuals.addRestrict(); | 
|  | if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) | 
|  | CanTy = ResTypePtr->getPointeeType(); | 
|  | else if (const MemberPointerType *ResTypeMPtr = | 
|  | CanTy->getAs<MemberPointerType>()) | 
|  | CanTy = ResTypeMPtr->getPointeeType(); | 
|  | else | 
|  | done = true; | 
|  | if (CanTy.isVolatileQualified()) | 
|  | VRQuals.addVolatile(); | 
|  | if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) | 
|  | return VRQuals; | 
|  | } | 
|  | } | 
|  | } | 
|  | return VRQuals; | 
|  | } | 
|  |  | 
|  | // Note: We're currently only handling qualifiers that are meaningful for the | 
|  | // LHS of compound assignment overloading. | 
|  | static void forAllQualifierCombinationsImpl( | 
|  | QualifiersAndAtomic Available, QualifiersAndAtomic Applied, | 
|  | llvm::function_ref<void(QualifiersAndAtomic)> Callback) { | 
|  | // _Atomic | 
|  | if (Available.hasAtomic()) { | 
|  | Available.removeAtomic(); | 
|  | forAllQualifierCombinationsImpl(Available, Applied.withAtomic(), Callback); | 
|  | forAllQualifierCombinationsImpl(Available, Applied, Callback); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // volatile | 
|  | if (Available.hasVolatile()) { | 
|  | Available.removeVolatile(); | 
|  | assert(!Applied.hasVolatile()); | 
|  | forAllQualifierCombinationsImpl(Available, Applied.withVolatile(), | 
|  | Callback); | 
|  | forAllQualifierCombinationsImpl(Available, Applied, Callback); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Callback(Applied); | 
|  | } | 
|  |  | 
|  | static void forAllQualifierCombinations( | 
|  | QualifiersAndAtomic Quals, | 
|  | llvm::function_ref<void(QualifiersAndAtomic)> Callback) { | 
|  | return forAllQualifierCombinationsImpl(Quals, QualifiersAndAtomic(), | 
|  | Callback); | 
|  | } | 
|  |  | 
|  | static QualType makeQualifiedLValueReferenceType(QualType Base, | 
|  | QualifiersAndAtomic Quals, | 
|  | Sema &S) { | 
|  | if (Quals.hasAtomic()) | 
|  | Base = S.Context.getAtomicType(Base); | 
|  | if (Quals.hasVolatile()) | 
|  | Base = S.Context.getVolatileType(Base); | 
|  | return S.Context.getLValueReferenceType(Base); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Helper class to manage the addition of builtin operator overload | 
|  | /// candidates. It provides shared state and utility methods used throughout | 
|  | /// the process, as well as a helper method to add each group of builtin | 
|  | /// operator overloads from the standard to a candidate set. | 
|  | class BuiltinOperatorOverloadBuilder { | 
|  | // Common instance state available to all overload candidate addition methods. | 
|  | Sema &S; | 
|  | ArrayRef<Expr *> Args; | 
|  | QualifiersAndAtomic VisibleTypeConversionsQuals; | 
|  | bool HasArithmeticOrEnumeralCandidateType; | 
|  | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; | 
|  | OverloadCandidateSet &CandidateSet; | 
|  |  | 
|  | static constexpr int ArithmeticTypesCap = 26; | 
|  | SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; | 
|  |  | 
|  | // Define some indices used to iterate over the arithmetic types in | 
|  | // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic | 
|  | // types are that preserved by promotion (C++ [over.built]p2). | 
|  | unsigned FirstIntegralType, | 
|  | LastIntegralType; | 
|  | unsigned FirstPromotedIntegralType, | 
|  | LastPromotedIntegralType; | 
|  | unsigned FirstPromotedArithmeticType, | 
|  | LastPromotedArithmeticType; | 
|  | unsigned NumArithmeticTypes; | 
|  |  | 
|  | void InitArithmeticTypes() { | 
|  | // Start of promoted types. | 
|  | FirstPromotedArithmeticType = 0; | 
|  | ArithmeticTypes.push_back(S.Context.FloatTy); | 
|  | ArithmeticTypes.push_back(S.Context.DoubleTy); | 
|  | ArithmeticTypes.push_back(S.Context.LongDoubleTy); | 
|  | if (S.Context.getTargetInfo().hasFloat128Type()) | 
|  | ArithmeticTypes.push_back(S.Context.Float128Ty); | 
|  | if (S.Context.getTargetInfo().hasIbm128Type()) | 
|  | ArithmeticTypes.push_back(S.Context.Ibm128Ty); | 
|  |  | 
|  | // Start of integral types. | 
|  | FirstIntegralType = ArithmeticTypes.size(); | 
|  | FirstPromotedIntegralType = ArithmeticTypes.size(); | 
|  | ArithmeticTypes.push_back(S.Context.IntTy); | 
|  | ArithmeticTypes.push_back(S.Context.LongTy); | 
|  | ArithmeticTypes.push_back(S.Context.LongLongTy); | 
|  | if (S.Context.getTargetInfo().hasInt128Type() || | 
|  | (S.Context.getAuxTargetInfo() && | 
|  | S.Context.getAuxTargetInfo()->hasInt128Type())) | 
|  | ArithmeticTypes.push_back(S.Context.Int128Ty); | 
|  | ArithmeticTypes.push_back(S.Context.UnsignedIntTy); | 
|  | ArithmeticTypes.push_back(S.Context.UnsignedLongTy); | 
|  | ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); | 
|  | if (S.Context.getTargetInfo().hasInt128Type() || | 
|  | (S.Context.getAuxTargetInfo() && | 
|  | S.Context.getAuxTargetInfo()->hasInt128Type())) | 
|  | ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); | 
|  |  | 
|  | /// We add candidates for the unique, unqualified _BitInt types present in | 
|  | /// the candidate type set. The candidate set already handled ensuring the | 
|  | /// type is unqualified and canonical, but because we're adding from N | 
|  | /// different sets, we need to do some extra work to unique things. Insert | 
|  | /// the candidates into a unique set, then move from that set into the list | 
|  | /// of arithmetic types. | 
|  | llvm::SmallSetVector<CanQualType, 2> BitIntCandidates; | 
|  | llvm::for_each(CandidateTypes, [&BitIntCandidates]( | 
|  | BuiltinCandidateTypeSet &Candidate) { | 
|  | for (QualType BitTy : Candidate.bitint_types()) | 
|  | BitIntCandidates.insert(CanQualType::CreateUnsafe(BitTy)); | 
|  | }); | 
|  | llvm::move(BitIntCandidates, std::back_inserter(ArithmeticTypes)); | 
|  | LastPromotedIntegralType = ArithmeticTypes.size(); | 
|  | LastPromotedArithmeticType = ArithmeticTypes.size(); | 
|  | // End of promoted types. | 
|  |  | 
|  | ArithmeticTypes.push_back(S.Context.BoolTy); | 
|  | ArithmeticTypes.push_back(S.Context.CharTy); | 
|  | ArithmeticTypes.push_back(S.Context.WCharTy); | 
|  | if (S.Context.getLangOpts().Char8) | 
|  | ArithmeticTypes.push_back(S.Context.Char8Ty); | 
|  | ArithmeticTypes.push_back(S.Context.Char16Ty); | 
|  | ArithmeticTypes.push_back(S.Context.Char32Ty); | 
|  | ArithmeticTypes.push_back(S.Context.SignedCharTy); | 
|  | ArithmeticTypes.push_back(S.Context.ShortTy); | 
|  | ArithmeticTypes.push_back(S.Context.UnsignedCharTy); | 
|  | ArithmeticTypes.push_back(S.Context.UnsignedShortTy); | 
|  | LastIntegralType = ArithmeticTypes.size(); | 
|  | NumArithmeticTypes = ArithmeticTypes.size(); | 
|  | // End of integral types. | 
|  | // FIXME: What about complex? What about half? | 
|  |  | 
|  | // We don't know for sure how many bit-precise candidates were involved, so | 
|  | // we subtract those from the total when testing whether we're under the | 
|  | // cap or not. | 
|  | assert(ArithmeticTypes.size() - BitIntCandidates.size() <= | 
|  | ArithmeticTypesCap && | 
|  | "Enough inline storage for all arithmetic types."); | 
|  | } | 
|  |  | 
|  | /// Helper method to factor out the common pattern of adding overloads | 
|  | /// for '++' and '--' builtin operators. | 
|  | void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, | 
|  | bool HasVolatile, | 
|  | bool HasRestrict) { | 
|  | QualType ParamTypes[2] = { | 
|  | S.Context.getLValueReferenceType(CandidateTy), | 
|  | S.Context.IntTy | 
|  | }; | 
|  |  | 
|  | // Non-volatile version. | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  |  | 
|  | // Use a heuristic to reduce number of builtin candidates in the set: | 
|  | // add volatile version only if there are conversions to a volatile type. | 
|  | if (HasVolatile) { | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType( | 
|  | S.Context.getVolatileType(CandidateTy)); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // Add restrict version only if there are conversions to a restrict type | 
|  | // and our candidate type is a non-restrict-qualified pointer. | 
|  | if (HasRestrict && CandidateTy->isAnyPointerType() && | 
|  | !CandidateTy.isRestrictQualified()) { | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType( | 
|  | S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  |  | 
|  | if (HasVolatile) { | 
|  | ParamTypes[0] | 
|  | = S.Context.getLValueReferenceType( | 
|  | S.Context.getCVRQualifiedType(CandidateTy, | 
|  | (Qualifiers::Volatile | | 
|  | Qualifiers::Restrict))); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /// Helper to add an overload candidate for a binary builtin with types \p L | 
|  | /// and \p R. | 
|  | void AddCandidate(QualType L, QualType R) { | 
|  | QualType LandR[2] = {L, R}; | 
|  | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | public: | 
|  | BuiltinOperatorOverloadBuilder( | 
|  | Sema &S, ArrayRef<Expr *> Args, | 
|  | QualifiersAndAtomic VisibleTypeConversionsQuals, | 
|  | bool HasArithmeticOrEnumeralCandidateType, | 
|  | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, | 
|  | OverloadCandidateSet &CandidateSet) | 
|  | : S(S), Args(Args), | 
|  | VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), | 
|  | HasArithmeticOrEnumeralCandidateType( | 
|  | HasArithmeticOrEnumeralCandidateType), | 
|  | CandidateTypes(CandidateTypes), | 
|  | CandidateSet(CandidateSet) { | 
|  |  | 
|  | InitArithmeticTypes(); | 
|  | } | 
|  |  | 
|  | // Increment is deprecated for bool since C++17. | 
|  | // | 
|  | // C++ [over.built]p3: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is an arithmetic type other | 
|  | //   than bool, and VQ is either volatile or empty, there exist | 
|  | //   candidate operator functions of the form | 
|  | // | 
|  | //       VQ T&      operator++(VQ T&); | 
|  | //       T          operator++(VQ T&, int); | 
|  | // | 
|  | // C++ [over.built]p4: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is an arithmetic type other | 
|  | //   than bool, and VQ is either volatile or empty, there exist | 
|  | //   candidate operator functions of the form | 
|  | // | 
|  | //       VQ T&      operator--(VQ T&); | 
|  | //       T          operator--(VQ T&, int); | 
|  | void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { | 
|  | const auto TypeOfT = ArithmeticTypes[Arith]; | 
|  | if (TypeOfT == S.Context.BoolTy) { | 
|  | if (Op == OO_MinusMinus) | 
|  | continue; | 
|  | if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) | 
|  | continue; | 
|  | } | 
|  | addPlusPlusMinusMinusStyleOverloads( | 
|  | TypeOfT, | 
|  | VisibleTypeConversionsQuals.hasVolatile(), | 
|  | VisibleTypeConversionsQuals.hasRestrict()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p5: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is a cv-qualified or | 
|  | //   cv-unqualified object type, and VQ is either volatile or | 
|  | //   empty, there exist candidate operator functions of the form | 
|  | // | 
|  | //       T*VQ&      operator++(T*VQ&); | 
|  | //       T*VQ&      operator--(T*VQ&); | 
|  | //       T*         operator++(T*VQ&, int); | 
|  | //       T*         operator--(T*VQ&, int); | 
|  | void addPlusPlusMinusMinusPointerOverloads() { | 
|  | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | 
|  | // Skip pointer types that aren't pointers to object types. | 
|  | if (!PtrTy->getPointeeType()->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | addPlusPlusMinusMinusStyleOverloads( | 
|  | PtrTy, | 
|  | (!PtrTy.isVolatileQualified() && | 
|  | VisibleTypeConversionsQuals.hasVolatile()), | 
|  | (!PtrTy.isRestrictQualified() && | 
|  | VisibleTypeConversionsQuals.hasRestrict())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p6: | 
|  | //   For every cv-qualified or cv-unqualified object type T, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //       T&         operator*(T*); | 
|  | // | 
|  | // C++ [over.built]p7: | 
|  | //   For every function type T that does not have cv-qualifiers or a | 
|  | //   ref-qualifier, there exist candidate operator functions of the form | 
|  | //       T&         operator*(T*); | 
|  | void addUnaryStarPointerOverloads() { | 
|  | for (QualType ParamTy : CandidateTypes[0].pointer_types()) { | 
|  | QualType PointeeTy = ParamTy->getPointeeType(); | 
|  | if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) | 
|  | continue; | 
|  |  | 
|  | if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) | 
|  | if (Proto->getMethodQuals() || Proto->getRefQualifier()) | 
|  | continue; | 
|  |  | 
|  | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p9: | 
|  | //  For every promoted arithmetic type T, there exist candidate | 
|  | //  operator functions of the form | 
|  | // | 
|  | //       T         operator+(T); | 
|  | //       T         operator-(T); | 
|  | void addUnaryPlusOrMinusArithmeticOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Arith = FirstPromotedArithmeticType; | 
|  | Arith < LastPromotedArithmeticType; ++Arith) { | 
|  | QualType ArithTy = ArithmeticTypes[Arith]; | 
|  | S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // Extension: We also add these operators for vector types. | 
|  | for (QualType VecTy : CandidateTypes[0].vector_types()) | 
|  | S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p8: | 
|  | //   For every type T, there exist candidate operator functions of | 
|  | //   the form | 
|  | // | 
|  | //       T*         operator+(T*); | 
|  | void addUnaryPlusPointerOverloads() { | 
|  | for (QualType ParamTy : CandidateTypes[0].pointer_types()) | 
|  | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p10: | 
|  | //   For every promoted integral type T, there exist candidate | 
|  | //   operator functions of the form | 
|  | // | 
|  | //        T         operator~(T); | 
|  | void addUnaryTildePromotedIntegralOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Int = FirstPromotedIntegralType; | 
|  | Int < LastPromotedIntegralType; ++Int) { | 
|  | QualType IntTy = ArithmeticTypes[Int]; | 
|  | S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // Extension: We also add this operator for vector types. | 
|  | for (QualType VecTy : CandidateTypes[0].vector_types()) | 
|  | S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | // C++ [over.match.oper]p16: | 
|  | //   For every pointer to member type T or type std::nullptr_t, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //        bool operator==(T,T); | 
|  | //        bool operator!=(T,T); | 
|  | void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { | 
|  | // Don't add the same builtin candidate twice. | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | if (CandidateTypes[ArgIdx].hasNullPtrType()) { | 
|  | CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); | 
|  | if (AddedTypes.insert(NullPtrTy).second) { | 
|  | QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p15: | 
|  | // | 
|  | //   For every T, where T is an enumeration type or a pointer type, | 
|  | //   there exist candidate operator functions of the form | 
|  | // | 
|  | //        bool       operator<(T, T); | 
|  | //        bool       operator>(T, T); | 
|  | //        bool       operator<=(T, T); | 
|  | //        bool       operator>=(T, T); | 
|  | //        bool       operator==(T, T); | 
|  | //        bool       operator!=(T, T); | 
|  | //           R       operator<=>(T, T) | 
|  | void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { | 
|  | // C++ [over.match.oper]p3: | 
|  | //   [...]the built-in candidates include all of the candidate operator | 
|  | //   functions defined in 13.6 that, compared to the given operator, [...] | 
|  | //   do not have the same parameter-type-list as any non-template non-member | 
|  | //   candidate. | 
|  | // | 
|  | // Note that in practice, this only affects enumeration types because there | 
|  | // aren't any built-in candidates of record type, and a user-defined operator | 
|  | // must have an operand of record or enumeration type. Also, the only other | 
|  | // overloaded operator with enumeration arguments, operator=, | 
|  | // cannot be overloaded for enumeration types, so this is the only place | 
|  | // where we must suppress candidates like this. | 
|  | llvm::DenseSet<std::pair<CanQualType, CanQualType> > | 
|  | UserDefinedBinaryOperators; | 
|  |  | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { | 
|  | for (OverloadCandidateSet::iterator C = CandidateSet.begin(), | 
|  | CEnd = CandidateSet.end(); | 
|  | C != CEnd; ++C) { | 
|  | if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) | 
|  | continue; | 
|  |  | 
|  | if (C->Function->isFunctionTemplateSpecialization()) | 
|  | continue; | 
|  |  | 
|  | // We interpret "same parameter-type-list" as applying to the | 
|  | // "synthesized candidate, with the order of the two parameters | 
|  | // reversed", not to the original function. | 
|  | bool Reversed = C->isReversed(); | 
|  | QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) | 
|  | ->getType() | 
|  | .getUnqualifiedType(); | 
|  | QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) | 
|  | ->getType() | 
|  | .getUnqualifiedType(); | 
|  |  | 
|  | // Skip if either parameter isn't of enumeral type. | 
|  | if (!FirstParamType->isEnumeralType() || | 
|  | !SecondParamType->isEnumeralType()) | 
|  | continue; | 
|  |  | 
|  | // Add this operator to the set of known user-defined operators. | 
|  | UserDefinedBinaryOperators.insert( | 
|  | std::make_pair(S.Context.getCanonicalType(FirstParamType), | 
|  | S.Context.getCanonicalType(SecondParamType))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { | 
|  | // Don't add the same builtin candidate twice. | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | 
|  | continue; | 
|  | if (IsSpaceship && PtrTy->isFunctionPointerType()) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = {PtrTy, PtrTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { | 
|  | CanQualType CanonType = S.Context.getCanonicalType(EnumTy); | 
|  |  | 
|  | // Don't add the same builtin candidate twice, or if a user defined | 
|  | // candidate exists. | 
|  | if (!AddedTypes.insert(CanonType).second || | 
|  | UserDefinedBinaryOperators.count(std::make_pair(CanonType, | 
|  | CanonType))) | 
|  | continue; | 
|  | QualType ParamTypes[2] = {EnumTy, EnumTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p13: | 
|  | // | 
|  | //   For every cv-qualified or cv-unqualified object type T | 
|  | //   there exist candidate operator functions of the form | 
|  | // | 
|  | //      T*         operator+(T*, ptrdiff_t); | 
|  | //      T&         operator[](T*, ptrdiff_t);    [BELOW] | 
|  | //      T*         operator-(T*, ptrdiff_t); | 
|  | //      T*         operator+(ptrdiff_t, T*); | 
|  | //      T&         operator[](ptrdiff_t, T*);    [BELOW] | 
|  | // | 
|  | // C++ [over.built]p14: | 
|  | // | 
|  | //   For every T, where T is a pointer to object type, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //      ptrdiff_t  operator-(T, T); | 
|  | void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (int Arg = 0; Arg < 2; ++Arg) { | 
|  | QualType AsymmetricParamTypes[2] = { | 
|  | S.Context.getPointerDiffType(), | 
|  | S.Context.getPointerDiffType(), | 
|  | }; | 
|  | for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { | 
|  | QualType PointeeTy = PtrTy->getPointeeType(); | 
|  | if (!PointeeTy->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | AsymmetricParamTypes[Arg] = PtrTy; | 
|  | if (Arg == 0 || Op == OO_Plus) { | 
|  | // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) | 
|  | // T* operator+(ptrdiff_t, T*); | 
|  | S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); | 
|  | } | 
|  | if (Op == OO_Minus) { | 
|  | // ptrdiff_t operator-(T, T); | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = {PtrTy, PtrTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p12: | 
|  | // | 
|  | //   For every pair of promoted arithmetic types L and R, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //        LR         operator*(L, R); | 
|  | //        LR         operator/(L, R); | 
|  | //        LR         operator+(L, R); | 
|  | //        LR         operator-(L, R); | 
|  | //        bool       operator<(L, R); | 
|  | //        bool       operator>(L, R); | 
|  | //        bool       operator<=(L, R); | 
|  | //        bool       operator>=(L, R); | 
|  | //        bool       operator==(L, R); | 
|  | //        bool       operator!=(L, R); | 
|  | // | 
|  | //   where LR is the result of the usual arithmetic conversions | 
|  | //   between types L and R. | 
|  | // | 
|  | // C++ [over.built]p24: | 
|  | // | 
|  | //   For every pair of promoted arithmetic types L and R, there exist | 
|  | //   candidate operator functions of the form | 
|  | // | 
|  | //        LR       operator?(bool, L, R); | 
|  | // | 
|  | //   where LR is the result of the usual arithmetic conversions | 
|  | //   between types L and R. | 
|  | // Our candidates ignore the first parameter. | 
|  | void addGenericBinaryArithmeticOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = FirstPromotedArithmeticType; | 
|  | Left < LastPromotedArithmeticType; ++Left) { | 
|  | for (unsigned Right = FirstPromotedArithmeticType; | 
|  | Right < LastPromotedArithmeticType; ++Right) { | 
|  | QualType LandR[2] = { ArithmeticTypes[Left], | 
|  | ArithmeticTypes[Right] }; | 
|  | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the | 
|  | // conditional operator for vector types. | 
|  | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) | 
|  | for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { | 
|  | QualType LandR[2] = {Vec1Ty, Vec2Ty}; | 
|  | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add binary operator overloads for each candidate matrix type M1, M2: | 
|  | ///  * (M1, M1) -> M1 | 
|  | ///  * (M1, M1.getElementType()) -> M1 | 
|  | ///  * (M2.getElementType(), M2) -> M2 | 
|  | ///  * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. | 
|  | void addMatrixBinaryArithmeticOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (QualType M1 : CandidateTypes[0].matrix_types()) { | 
|  | AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); | 
|  | AddCandidate(M1, M1); | 
|  | } | 
|  |  | 
|  | for (QualType M2 : CandidateTypes[1].matrix_types()) { | 
|  | AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); | 
|  | if (!CandidateTypes[0].containsMatrixType(M2)) | 
|  | AddCandidate(M2, M2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++2a [over.built]p14: | 
|  | // | 
|  | //   For every integral type T there exists a candidate operator function | 
|  | //   of the form | 
|  | // | 
|  | //        std::strong_ordering operator<=>(T, T) | 
|  | // | 
|  | // C++2a [over.built]p15: | 
|  | // | 
|  | //   For every pair of floating-point types L and R, there exists a candidate | 
|  | //   operator function of the form | 
|  | // | 
|  | //       std::partial_ordering operator<=>(L, R); | 
|  | // | 
|  | // FIXME: The current specification for integral types doesn't play nice with | 
|  | // the direction of p0946r0, which allows mixed integral and unscoped-enum | 
|  | // comparisons. Under the current spec this can lead to ambiguity during | 
|  | // overload resolution. For example: | 
|  | // | 
|  | //   enum A : int {a}; | 
|  | //   auto x = (a <=> (long)42); | 
|  | // | 
|  | //   error: call is ambiguous for arguments 'A' and 'long'. | 
|  | //   note: candidate operator<=>(int, int) | 
|  | //   note: candidate operator<=>(long, long) | 
|  | // | 
|  | // To avoid this error, this function deviates from the specification and adds | 
|  | // the mixed overloads `operator<=>(L, R)` where L and R are promoted | 
|  | // arithmetic types (the same as the generic relational overloads). | 
|  | // | 
|  | // For now this function acts as a placeholder. | 
|  | void addThreeWayArithmeticOverloads() { | 
|  | addGenericBinaryArithmeticOverloads(); | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p17: | 
|  | // | 
|  | //   For every pair of promoted integral types L and R, there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //      LR         operator%(L, R); | 
|  | //      LR         operator&(L, R); | 
|  | //      LR         operator^(L, R); | 
|  | //      LR         operator|(L, R); | 
|  | //      L          operator<<(L, R); | 
|  | //      L          operator>>(L, R); | 
|  | // | 
|  | //   where LR is the result of the usual arithmetic conversions | 
|  | //   between types L and R. | 
|  | void addBinaryBitwiseArithmeticOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = FirstPromotedIntegralType; | 
|  | Left < LastPromotedIntegralType; ++Left) { | 
|  | for (unsigned Right = FirstPromotedIntegralType; | 
|  | Right < LastPromotedIntegralType; ++Right) { | 
|  | QualType LandR[2] = { ArithmeticTypes[Left], | 
|  | ArithmeticTypes[Right] }; | 
|  | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p20: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is an enumeration or | 
|  | //   pointer to member type and VQ is either volatile or | 
|  | //   empty, there exist candidate operator functions of the form | 
|  | // | 
|  | //        VQ T&      operator=(VQ T&, T); | 
|  | void addAssignmentMemberPointerOrEnumeralOverloads() { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | 
|  | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) | 
|  | continue; | 
|  |  | 
|  | AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) | 
|  | continue; | 
|  |  | 
|  | AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p19: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is any type and VQ is either | 
|  | //   volatile or empty, there exist candidate operator functions | 
|  | //   of the form | 
|  | // | 
|  | //        T*VQ&      operator=(T*VQ&, T*); | 
|  | // | 
|  | // C++ [over.built]p21: | 
|  | // | 
|  | //   For every pair (T, VQ), where T is a cv-qualified or | 
|  | //   cv-unqualified object type and VQ is either volatile or | 
|  | //   empty, there exist candidate operator functions of the form | 
|  | // | 
|  | //        T*VQ&      operator+=(T*VQ&, ptrdiff_t); | 
|  | //        T*VQ&      operator-=(T*VQ&, ptrdiff_t); | 
|  | void addAssignmentPointerOverloads(bool isEqualOp) { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | 
|  | // If this is operator=, keep track of the builtin candidates we added. | 
|  | if (isEqualOp) | 
|  | AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); | 
|  | else if (!PtrTy->getPointeeType()->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | // non-volatile version | 
|  | QualType ParamTypes[2] = { | 
|  | S.Context.getLValueReferenceType(PtrTy), | 
|  | isEqualOp ? PtrTy : S.Context.getPointerDiffType(), | 
|  | }; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/ isEqualOp); | 
|  |  | 
|  | bool NeedVolatile = !PtrTy.isVolatileQualified() && | 
|  | VisibleTypeConversionsQuals.hasVolatile(); | 
|  | if (NeedVolatile) { | 
|  | // volatile version | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/isEqualOp); | 
|  | } | 
|  |  | 
|  | if (!PtrTy.isRestrictQualified() && | 
|  | VisibleTypeConversionsQuals.hasRestrict()) { | 
|  | // restrict version | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/isEqualOp); | 
|  |  | 
|  | if (NeedVolatile) { | 
|  | // volatile restrict version | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( | 
|  | PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/isEqualOp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isEqualOp) { | 
|  | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { | 
|  | // Make sure we don't add the same candidate twice. | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = { | 
|  | S.Context.getLValueReferenceType(PtrTy), | 
|  | PtrTy, | 
|  | }; | 
|  |  | 
|  | // non-volatile version | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  |  | 
|  | bool NeedVolatile = !PtrTy.isVolatileQualified() && | 
|  | VisibleTypeConversionsQuals.hasVolatile(); | 
|  | if (NeedVolatile) { | 
|  | // volatile version | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType( | 
|  | S.Context.getVolatileType(PtrTy)); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  | } | 
|  |  | 
|  | if (!PtrTy.isRestrictQualified() && | 
|  | VisibleTypeConversionsQuals.hasRestrict()) { | 
|  | // restrict version | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType( | 
|  | S.Context.getRestrictType(PtrTy)); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  |  | 
|  | if (NeedVolatile) { | 
|  | // volatile restrict version | 
|  | ParamTypes[0] = | 
|  | S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( | 
|  | PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p18: | 
|  | // | 
|  | //   For every triple (L, VQ, R), where L is an arithmetic type, | 
|  | //   VQ is either volatile or empty, and R is a promoted | 
|  | //   arithmetic type, there exist candidate operator functions of | 
|  | //   the form | 
|  | // | 
|  | //        VQ L&      operator=(VQ L&, R); | 
|  | //        VQ L&      operator*=(VQ L&, R); | 
|  | //        VQ L&      operator/=(VQ L&, R); | 
|  | //        VQ L&      operator+=(VQ L&, R); | 
|  | //        VQ L&      operator-=(VQ L&, R); | 
|  | void addAssignmentArithmeticOverloads(bool isEqualOp) { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { | 
|  | for (unsigned Right = FirstPromotedArithmeticType; | 
|  | Right < LastPromotedArithmeticType; ++Right) { | 
|  | QualType ParamTypes[2]; | 
|  | ParamTypes[1] = ArithmeticTypes[Right]; | 
|  | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( | 
|  | S, ArithmeticTypes[Left], Args[0]); | 
|  |  | 
|  | forAllQualifierCombinations( | 
|  | VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) { | 
|  | ParamTypes[0] = | 
|  | makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/isEqualOp); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. | 
|  | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) | 
|  | for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { | 
|  | QualType ParamTypes[2]; | 
|  | ParamTypes[1] = Vec2Ty; | 
|  | // Add this built-in operator as a candidate (VQ is empty). | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/isEqualOp); | 
|  |  | 
|  | // Add this built-in operator as a candidate (VQ is 'volatile'). | 
|  | if (VisibleTypeConversionsQuals.hasVolatile()) { | 
|  | ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); | 
|  | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/isEqualOp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p22: | 
|  | // | 
|  | //   For every triple (L, VQ, R), where L is an integral type, VQ | 
|  | //   is either volatile or empty, and R is a promoted integral | 
|  | //   type, there exist candidate operator functions of the form | 
|  | // | 
|  | //        VQ L&       operator%=(VQ L&, R); | 
|  | //        VQ L&       operator<<=(VQ L&, R); | 
|  | //        VQ L&       operator>>=(VQ L&, R); | 
|  | //        VQ L&       operator&=(VQ L&, R); | 
|  | //        VQ L&       operator^=(VQ L&, R); | 
|  | //        VQ L&       operator|=(VQ L&, R); | 
|  | void addAssignmentIntegralOverloads() { | 
|  | if (!HasArithmeticOrEnumeralCandidateType) | 
|  | return; | 
|  |  | 
|  | for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { | 
|  | for (unsigned Right = FirstPromotedIntegralType; | 
|  | Right < LastPromotedIntegralType; ++Right) { | 
|  | QualType ParamTypes[2]; | 
|  | ParamTypes[1] = ArithmeticTypes[Right]; | 
|  | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( | 
|  | S, ArithmeticTypes[Left], Args[0]); | 
|  |  | 
|  | forAllQualifierCombinations( | 
|  | VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) { | 
|  | ParamTypes[0] = | 
|  | makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | }); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.operator]p23: | 
|  | // | 
|  | //   There also exist candidate operator functions of the form | 
|  | // | 
|  | //        bool        operator!(bool); | 
|  | //        bool        operator&&(bool, bool); | 
|  | //        bool        operator||(bool, bool); | 
|  | void addExclaimOverload() { | 
|  | QualType ParamTy = S.Context.BoolTy; | 
|  | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/false, | 
|  | /*NumContextualBoolArguments=*/1); | 
|  | } | 
|  | void addAmpAmpOrPipePipeOverload() { | 
|  | QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | 
|  | /*IsAssignmentOperator=*/false, | 
|  | /*NumContextualBoolArguments=*/2); | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p13: | 
|  | // | 
|  | //   For every cv-qualified or cv-unqualified object type T there | 
|  | //   exist candidate operator functions of the form | 
|  | // | 
|  | //        T*         operator+(T*, ptrdiff_t);     [ABOVE] | 
|  | //        T&         operator[](T*, ptrdiff_t); | 
|  | //        T*         operator-(T*, ptrdiff_t);     [ABOVE] | 
|  | //        T*         operator+(ptrdiff_t, T*);     [ABOVE] | 
|  | //        T&         operator[](ptrdiff_t, T*); | 
|  | void addSubscriptOverloads() { | 
|  | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | 
|  | QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; | 
|  | QualType PointeeType = PtrTy->getPointeeType(); | 
|  | if (!PointeeType->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | // T& operator[](T*, ptrdiff_t) | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { | 
|  | QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; | 
|  | QualType PointeeType = PtrTy->getPointeeType(); | 
|  | if (!PointeeType->isObjectType()) | 
|  | continue; | 
|  |  | 
|  | // T& operator[](ptrdiff_t, T*) | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.built]p11: | 
|  | //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, | 
|  | //    C1 is the same type as C2 or is a derived class of C2, T is an object | 
|  | //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs, | 
|  | //    there exist candidate operator functions of the form | 
|  | // | 
|  | //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*); | 
|  | // | 
|  | //    where CV12 is the union of CV1 and CV2. | 
|  | void addArrowStarOverloads() { | 
|  | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | 
|  | QualType C1Ty = PtrTy; | 
|  | QualType C1; | 
|  | QualifierCollector Q1; | 
|  | C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); | 
|  | if (!isa<RecordType>(C1)) | 
|  | continue; | 
|  | // heuristic to reduce number of builtin candidates in the set. | 
|  | // Add volatile/restrict version only if there are conversions to a | 
|  | // volatile/restrict type. | 
|  | if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) | 
|  | continue; | 
|  | if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) | 
|  | continue; | 
|  | for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { | 
|  | const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); | 
|  | QualType C2 = QualType(mptr->getClass(), 0); | 
|  | C2 = C2.getUnqualifiedType(); | 
|  | if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) | 
|  | break; | 
|  | QualType ParamTypes[2] = {PtrTy, MemPtrTy}; | 
|  | // build CV12 T& | 
|  | QualType T = mptr->getPointeeType(); | 
|  | if (!VisibleTypeConversionsQuals.hasVolatile() && | 
|  | T.isVolatileQualified()) | 
|  | continue; | 
|  | if (!VisibleTypeConversionsQuals.hasRestrict() && | 
|  | T.isRestrictQualified()) | 
|  | continue; | 
|  | T = Q1.apply(S.Context, T); | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that we don't consider the first argument, since it has been | 
|  | // contextually converted to bool long ago. The candidates below are | 
|  | // therefore added as binary. | 
|  | // | 
|  | // C++ [over.built]p25: | 
|  | //   For every type T, where T is a pointer, pointer-to-member, or scoped | 
|  | //   enumeration type, there exist candidate operator functions of the form | 
|  | // | 
|  | //        T        operator?(bool, T, T); | 
|  | // | 
|  | void addConditionalOperatorOverloads() { | 
|  | /// Set of (canonical) types that we've already handled. | 
|  | llvm::SmallPtrSet<QualType, 8> AddedTypes; | 
|  |  | 
|  | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | 
|  | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = {PtrTy, PtrTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | if (S.getLangOpts().CPlusPlus11) { | 
|  | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { | 
|  | if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) | 
|  | continue; | 
|  |  | 
|  | if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) | 
|  | continue; | 
|  |  | 
|  | QualType ParamTypes[2] = {EnumTy, EnumTy}; | 
|  | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// AddBuiltinOperatorCandidates - Add the appropriate built-in | 
|  | /// operator overloads to the candidate set (C++ [over.built]), based | 
|  | /// on the operator @p Op and the arguments given. For example, if the | 
|  | /// operator is a binary '+', this routine might add "int | 
|  | /// operator+(int, int)" to cover integer addition. | 
|  | void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, | 
|  | SourceLocation OpLoc, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet) { | 
|  | // Find all of the types that the arguments can convert to, but only | 
|  | // if the operator we're looking at has built-in operator candidates | 
|  | // that make use of these types. Also record whether we encounter non-record | 
|  | // candidate types or either arithmetic or enumeral candidate types. | 
|  | QualifiersAndAtomic VisibleTypeConversionsQuals; | 
|  | VisibleTypeConversionsQuals.addConst(); | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); | 
|  | if (Args[ArgIdx]->getType()->isAtomicType()) | 
|  | VisibleTypeConversionsQuals.addAtomic(); | 
|  | } | 
|  |  | 
|  | bool HasNonRecordCandidateType = false; | 
|  | bool HasArithmeticOrEnumeralCandidateType = false; | 
|  | SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | CandidateTypes.emplace_back(*this); | 
|  | CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), | 
|  | OpLoc, | 
|  | true, | 
|  | (Op == OO_Exclaim || | 
|  | Op == OO_AmpAmp || | 
|  | Op == OO_PipePipe), | 
|  | VisibleTypeConversionsQuals); | 
|  | HasNonRecordCandidateType = HasNonRecordCandidateType || | 
|  | CandidateTypes[ArgIdx].hasNonRecordTypes(); | 
|  | HasArithmeticOrEnumeralCandidateType = | 
|  | HasArithmeticOrEnumeralCandidateType || | 
|  | CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); | 
|  | } | 
|  |  | 
|  | // Exit early when no non-record types have been added to the candidate set | 
|  | // for any of the arguments to the operator. | 
|  | // | 
|  | // We can't exit early for !, ||, or &&, since there we have always have | 
|  | // 'bool' overloads. | 
|  | if (!HasNonRecordCandidateType && | 
|  | !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) | 
|  | return; | 
|  |  | 
|  | // Setup an object to manage the common state for building overloads. | 
|  | BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, | 
|  | VisibleTypeConversionsQuals, | 
|  | HasArithmeticOrEnumeralCandidateType, | 
|  | CandidateTypes, CandidateSet); | 
|  |  | 
|  | // Dispatch over the operation to add in only those overloads which apply. | 
|  | switch (Op) { | 
|  | case OO_None: | 
|  | case NUM_OVERLOADED_OPERATORS: | 
|  | llvm_unreachable("Expected an overloaded operator"); | 
|  |  | 
|  | case OO_New: | 
|  | case OO_Delete: | 
|  | case OO_Array_New: | 
|  | case OO_Array_Delete: | 
|  | case OO_Call: | 
|  | llvm_unreachable( | 
|  | "Special operators don't use AddBuiltinOperatorCandidates"); | 
|  |  | 
|  | case OO_Comma: | 
|  | case OO_Arrow: | 
|  | case OO_Coawait: | 
|  | // C++ [over.match.oper]p3: | 
|  | //   -- For the operator ',', the unary operator '&', the | 
|  | //      operator '->', or the operator 'co_await', the | 
|  | //      built-in candidates set is empty. | 
|  | break; | 
|  |  | 
|  | case OO_Plus: // '+' is either unary or binary | 
|  | if (Args.size() == 1) | 
|  | OpBuilder.addUnaryPlusPointerOverloads(); | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case OO_Minus: // '-' is either unary or binary | 
|  | if (Args.size() == 1) { | 
|  | OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); | 
|  | } else { | 
|  | OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(); | 
|  | OpBuilder.addMatrixBinaryArithmeticOverloads(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OO_Star: // '*' is either unary or binary | 
|  | if (Args.size() == 1) | 
|  | OpBuilder.addUnaryStarPointerOverloads(); | 
|  | else { | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(); | 
|  | OpBuilder.addMatrixBinaryArithmeticOverloads(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OO_Slash: | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_PlusPlus: | 
|  | case OO_MinusMinus: | 
|  | OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); | 
|  | OpBuilder.addPlusPlusMinusMinusPointerOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_EqualEqual: | 
|  | case OO_ExclaimEqual: | 
|  | OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); | 
|  | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Less: | 
|  | case OO_Greater: | 
|  | case OO_LessEqual: | 
|  | case OO_GreaterEqual: | 
|  | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Spaceship: | 
|  | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); | 
|  | OpBuilder.addThreeWayArithmeticOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Percent: | 
|  | case OO_Caret: | 
|  | case OO_Pipe: | 
|  | case OO_LessLess: | 
|  | case OO_GreaterGreater: | 
|  | OpBuilder.addBinaryBitwiseArithmeticOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Amp: // '&' is either unary or binary | 
|  | if (Args.size() == 1) | 
|  | // C++ [over.match.oper]p3: | 
|  | //   -- For the operator ',', the unary operator '&', or the | 
|  | //      operator '->', the built-in candidates set is empty. | 
|  | break; | 
|  |  | 
|  | OpBuilder.addBinaryBitwiseArithmeticOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Tilde: | 
|  | OpBuilder.addUnaryTildePromotedIntegralOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Equal: | 
|  | OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case OO_PlusEqual: | 
|  | case OO_MinusEqual: | 
|  | OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case OO_StarEqual: | 
|  | case OO_SlashEqual: | 
|  | OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); | 
|  | break; | 
|  |  | 
|  | case OO_PercentEqual: | 
|  | case OO_LessLessEqual: | 
|  | case OO_GreaterGreaterEqual: | 
|  | case OO_AmpEqual: | 
|  | case OO_CaretEqual: | 
|  | case OO_PipeEqual: | 
|  | OpBuilder.addAssignmentIntegralOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Exclaim: | 
|  | OpBuilder.addExclaimOverload(); | 
|  | break; | 
|  |  | 
|  | case OO_AmpAmp: | 
|  | case OO_PipePipe: | 
|  | OpBuilder.addAmpAmpOrPipePipeOverload(); | 
|  | break; | 
|  |  | 
|  | case OO_Subscript: | 
|  | if (Args.size() == 2) | 
|  | OpBuilder.addSubscriptOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_ArrowStar: | 
|  | OpBuilder.addArrowStarOverloads(); | 
|  | break; | 
|  |  | 
|  | case OO_Conditional: | 
|  | OpBuilder.addConditionalOperatorOverloads(); | 
|  | OpBuilder.addGenericBinaryArithmeticOverloads(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add function candidates found via argument-dependent lookup | 
|  | /// to the set of overloading candidates. | 
|  | /// | 
|  | /// This routine performs argument-dependent name lookup based on the | 
|  | /// given function name (which may also be an operator name) and adds | 
|  | /// all of the overload candidates found by ADL to the overload | 
|  | /// candidate set (C++ [basic.lookup.argdep]). | 
|  | void | 
|  | Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, | 
|  | SourceLocation Loc, | 
|  | ArrayRef<Expr *> Args, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | OverloadCandidateSet& CandidateSet, | 
|  | bool PartialOverloading) { | 
|  | ADLResult Fns; | 
|  |  | 
|  | // FIXME: This approach for uniquing ADL results (and removing | 
|  | // redundant candidates from the set) relies on pointer-equality, | 
|  | // which means we need to key off the canonical decl.  However, | 
|  | // always going back to the canonical decl might not get us the | 
|  | // right set of default arguments.  What default arguments are | 
|  | // we supposed to consider on ADL candidates, anyway? | 
|  |  | 
|  | // FIXME: Pass in the explicit template arguments? | 
|  | ArgumentDependentLookup(Name, Loc, Args, Fns); | 
|  |  | 
|  | // Erase all of the candidates we already knew about. | 
|  | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), | 
|  | CandEnd = CandidateSet.end(); | 
|  | Cand != CandEnd; ++Cand) | 
|  | if (Cand->Function) { | 
|  | Fns.erase(Cand->Function); | 
|  | if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) | 
|  | Fns.erase(FunTmpl); | 
|  | } | 
|  |  | 
|  | // For each of the ADL candidates we found, add it to the overload | 
|  | // set. | 
|  | for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { | 
|  | DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); | 
|  |  | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { | 
|  | if (ExplicitTemplateArgs) | 
|  | continue; | 
|  |  | 
|  | AddOverloadCandidate( | 
|  | FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, | 
|  | PartialOverloading, /*AllowExplicit=*/true, | 
|  | /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL); | 
|  | if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) { | 
|  | AddOverloadCandidate( | 
|  | FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, | 
|  | /*SuppressUserConversions=*/false, PartialOverloading, | 
|  | /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false, | 
|  | ADLCallKind::UsesADL, std::nullopt, | 
|  | OverloadCandidateParamOrder::Reversed); | 
|  | } | 
|  | } else { | 
|  | auto *FTD = cast<FunctionTemplateDecl>(*I); | 
|  | AddTemplateOverloadCandidate( | 
|  | FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/false, PartialOverloading, | 
|  | /*AllowExplicit=*/true, ADLCallKind::UsesADL); | 
|  | if (CandidateSet.getRewriteInfo().shouldAddReversed( | 
|  | *this, Args, FTD->getTemplatedDecl())) { | 
|  | AddTemplateOverloadCandidate( | 
|  | FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, | 
|  | CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, | 
|  | /*AllowExplicit=*/true, ADLCallKind::UsesADL, | 
|  | OverloadCandidateParamOrder::Reversed); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | enum class Comparison { Equal, Better, Worse }; | 
|  | } | 
|  |  | 
|  | /// Compares the enable_if attributes of two FunctionDecls, for the purposes of | 
|  | /// overload resolution. | 
|  | /// | 
|  | /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff | 
|  | /// Cand1's first N enable_if attributes have precisely the same conditions as | 
|  | /// Cand2's first N enable_if attributes (where N = the number of enable_if | 
|  | /// attributes on Cand2), and Cand1 has more than N enable_if attributes. | 
|  | /// | 
|  | /// Note that you can have a pair of candidates such that Cand1's enable_if | 
|  | /// attributes are worse than Cand2's, and Cand2's enable_if attributes are | 
|  | /// worse than Cand1's. | 
|  | static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, | 
|  | const FunctionDecl *Cand2) { | 
|  | // Common case: One (or both) decls don't have enable_if attrs. | 
|  | bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); | 
|  | bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); | 
|  | if (!Cand1Attr || !Cand2Attr) { | 
|  | if (Cand1Attr == Cand2Attr) | 
|  | return Comparison::Equal; | 
|  | return Cand1Attr ? Comparison::Better : Comparison::Worse; | 
|  | } | 
|  |  | 
|  | auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); | 
|  | auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); | 
|  |  | 
|  | llvm::FoldingSetNodeID Cand1ID, Cand2ID; | 
|  | for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { | 
|  | std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); | 
|  | std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); | 
|  |  | 
|  | // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 | 
|  | // has fewer enable_if attributes than Cand2, and vice versa. | 
|  | if (!Cand1A) | 
|  | return Comparison::Worse; | 
|  | if (!Cand2A) | 
|  | return Comparison::Better; | 
|  |  | 
|  | Cand1ID.clear(); | 
|  | Cand2ID.clear(); | 
|  |  | 
|  | (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); | 
|  | (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); | 
|  | if (Cand1ID != Cand2ID) | 
|  | return Comparison::Worse; | 
|  | } | 
|  |  | 
|  | return Comparison::Equal; | 
|  | } | 
|  |  | 
|  | static Comparison | 
|  | isBetterMultiversionCandidate(const OverloadCandidate &Cand1, | 
|  | const OverloadCandidate &Cand2) { | 
|  | if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || | 
|  | !Cand2.Function->isMultiVersion()) | 
|  | return Comparison::Equal; | 
|  |  | 
|  | // If both are invalid, they are equal. If one of them is invalid, the other | 
|  | // is better. | 
|  | if (Cand1.Function->isInvalidDecl()) { | 
|  | if (Cand2.Function->isInvalidDecl()) | 
|  | return Comparison::Equal; | 
|  | return Comparison::Worse; | 
|  | } | 
|  | if (Cand2.Function->isInvalidDecl()) | 
|  | return Comparison::Better; | 
|  |  | 
|  | // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer | 
|  | // cpu_dispatch, else arbitrarily based on the identifiers. | 
|  | bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); | 
|  | bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); | 
|  | const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); | 
|  | const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); | 
|  |  | 
|  | if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) | 
|  | return Comparison::Equal; | 
|  |  | 
|  | if (Cand1CPUDisp && !Cand2CPUDisp) | 
|  | return Comparison::Better; | 
|  | if (Cand2CPUDisp && !Cand1CPUDisp) | 
|  | return Comparison::Worse; | 
|  |  | 
|  | if (Cand1CPUSpec && Cand2CPUSpec) { | 
|  | if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) | 
|  | return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() | 
|  | ? Comparison::Better | 
|  | : Comparison::Worse; | 
|  |  | 
|  | std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> | 
|  | FirstDiff = std::mismatch( | 
|  | Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), | 
|  | Cand2CPUSpec->cpus_begin(), | 
|  | [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { | 
|  | return LHS->getName() == RHS->getName(); | 
|  | }); | 
|  |  | 
|  | assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && | 
|  | "Two different cpu-specific versions should not have the same " | 
|  | "identifier list, otherwise they'd be the same decl!"); | 
|  | return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() | 
|  | ? Comparison::Better | 
|  | : Comparison::Worse; | 
|  | } | 
|  | llvm_unreachable("No way to get here unless both had cpu_dispatch"); | 
|  | } | 
|  |  | 
|  | /// Compute the type of the implicit object parameter for the given function, | 
|  | /// if any. Returns std::nullopt if there is no implicit object parameter, and a | 
|  | /// null QualType if there is a 'matches anything' implicit object parameter. | 
|  | static std::optional<QualType> | 
|  | getImplicitObjectParamType(ASTContext &Context, const FunctionDecl *F) { | 
|  | if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) | 
|  | return std::nullopt; | 
|  |  | 
|  | auto *M = cast<CXXMethodDecl>(F); | 
|  | // Static member functions' object parameters match all types. | 
|  | if (M->isStatic()) | 
|  | return QualType(); | 
|  | return M->getFunctionObjectParameterReferenceType(); | 
|  | } | 
|  |  | 
|  | // As a Clang extension, allow ambiguity among F1 and F2 if they represent | 
|  | // represent the same entity. | 
|  | static bool allowAmbiguity(ASTContext &Context, const FunctionDecl *F1, | 
|  | const FunctionDecl *F2) { | 
|  | if (declaresSameEntity(F1, F2)) | 
|  | return true; | 
|  | auto PT1 = F1->getPrimaryTemplate(); | 
|  | auto PT2 = F2->getPrimaryTemplate(); | 
|  | if (PT1 && PT2) { | 
|  | if (declaresSameEntity(PT1, PT2) || | 
|  | declaresSameEntity(PT1->getInstantiatedFromMemberTemplate(), | 
|  | PT2->getInstantiatedFromMemberTemplate())) | 
|  | return true; | 
|  | } | 
|  | // TODO: It is not clear whether comparing parameters is necessary (i.e. | 
|  | // different functions with same params). Consider removing this (as no test | 
|  | // fail w/o it). | 
|  | auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { | 
|  | if (First) { | 
|  | if (std::optional<QualType> T = getImplicitObjectParamType(Context, F)) | 
|  | return *T; | 
|  | } | 
|  | assert(I < F->getNumParams()); | 
|  | return F->getParamDecl(I++)->getType(); | 
|  | }; | 
|  |  | 
|  | unsigned F1NumParams = F1->getNumParams() + isa<CXXMethodDecl>(F1); | 
|  | unsigned F2NumParams = F2->getNumParams() + isa<CXXMethodDecl>(F2); | 
|  |  | 
|  | if (F1NumParams != F2NumParams) | 
|  | return false; | 
|  |  | 
|  | unsigned I1 = 0, I2 = 0; | 
|  | for (unsigned I = 0; I != F1NumParams; ++I) { | 
|  | QualType T1 = NextParam(F1, I1, I == 0); | 
|  | QualType T2 = NextParam(F2, I2, I == 0); | 
|  | assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types"); | 
|  | if (!Context.hasSameUnqualifiedType(T1, T2)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We're allowed to use constraints partial ordering only if the candidates | 
|  | /// have the same parameter types: | 
|  | /// [over.match.best.general]p2.6 | 
|  | /// F1 and F2 are non-template functions with the same | 
|  | /// non-object-parameter-type-lists, and F1 is more constrained than F2 [...] | 
|  | static bool sameFunctionParameterTypeLists(Sema &S, | 
|  | const OverloadCandidate &Cand1, | 
|  | const OverloadCandidate &Cand2) { | 
|  | if (!Cand1.Function || !Cand2.Function) | 
|  | return false; | 
|  |  | 
|  | FunctionDecl *Fn1 = Cand1.Function; | 
|  | FunctionDecl *Fn2 = Cand2.Function; | 
|  |  | 
|  | if (Fn1->isVariadic() != Fn1->isVariadic()) | 
|  | return false; | 
|  |  | 
|  | if (!S.FunctionNonObjectParamTypesAreEqual( | 
|  | Fn1, Fn2, nullptr, Cand1.isReversed() ^ Cand2.isReversed())) | 
|  | return false; | 
|  |  | 
|  | auto *Mem1 = dyn_cast<CXXMethodDecl>(Fn1); | 
|  | auto *Mem2 = dyn_cast<CXXMethodDecl>(Fn2); | 
|  | if (Mem1 && Mem2) { | 
|  | // if they are member functions, both are direct members of the same class, | 
|  | // and | 
|  | if (Mem1->getParent() != Mem2->getParent()) | 
|  | return false; | 
|  | // if both are non-static member functions, they have the same types for | 
|  | // their object parameters | 
|  | if (Mem1->isInstance() && Mem2->isInstance() && | 
|  | !S.getASTContext().hasSameType( | 
|  | Mem1->getFunctionObjectParameterReferenceType(), | 
|  | Mem1->getFunctionObjectParameterReferenceType())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isBetterOverloadCandidate - Determines whether the first overload | 
|  | /// candidate is a better candidate than the second (C++ 13.3.3p1). | 
|  | bool clang::isBetterOverloadCandidate( | 
|  | Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, | 
|  | SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { | 
|  | // Define viable functions to be better candidates than non-viable | 
|  | // functions. | 
|  | if (!Cand2.Viable) | 
|  | return Cand1.Viable; | 
|  | else if (!Cand1.Viable) | 
|  | return false; | 
|  |  | 
|  | // [CUDA] A function with 'never' preference is marked not viable, therefore | 
|  | // is never shown up here. The worst preference shown up here is 'wrong side', | 
|  | // e.g. an H function called by a HD function in device compilation. This is | 
|  | // valid AST as long as the HD function is not emitted, e.g. it is an inline | 
|  | // function which is called only by an H function. A deferred diagnostic will | 
|  | // be triggered if it is emitted. However a wrong-sided function is still | 
|  | // a viable candidate here. | 
|  | // | 
|  | // If Cand1 can be emitted and Cand2 cannot be emitted in the current | 
|  | // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 | 
|  | // can be emitted, Cand1 is not better than Cand2. This rule should have | 
|  | // precedence over other rules. | 
|  | // | 
|  | // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then | 
|  | // other rules should be used to determine which is better. This is because | 
|  | // host/device based overloading resolution is mostly for determining | 
|  | // viability of a function. If two functions are both viable, other factors | 
|  | // should take precedence in preference, e.g. the standard-defined preferences | 
|  | // like argument conversion ranks or enable_if partial-ordering. The | 
|  | // preference for pass-object-size parameters is probably most similar to a | 
|  | // type-based-overloading decision and so should take priority. | 
|  | // | 
|  | // If other rules cannot determine which is better, CUDA preference will be | 
|  | // used again to determine which is better. | 
|  | // | 
|  | // TODO: Currently IdentifyPreference does not return correct values | 
|  | // for functions called in global variable initializers due to missing | 
|  | // correct context about device/host. Therefore we can only enforce this | 
|  | // rule when there is a caller. We should enforce this rule for functions | 
|  | // in global variable initializers once proper context is added. | 
|  | // | 
|  | // TODO: We can only enable the hostness based overloading resolution when | 
|  | // -fgpu-exclude-wrong-side-overloads is on since this requires deferring | 
|  | // overloading resolution diagnostics. | 
|  | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && | 
|  | S.getLangOpts().GPUExcludeWrongSideOverloads) { | 
|  | if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) { | 
|  | bool IsCallerImplicitHD = SemaCUDA::isImplicitHostDeviceFunction(Caller); | 
|  | bool IsCand1ImplicitHD = | 
|  | SemaCUDA::isImplicitHostDeviceFunction(Cand1.Function); | 
|  | bool IsCand2ImplicitHD = | 
|  | SemaCUDA::isImplicitHostDeviceFunction(Cand2.Function); | 
|  | auto P1 = S.CUDA().IdentifyPreference(Caller, Cand1.Function); | 
|  | auto P2 = S.CUDA().IdentifyPreference(Caller, Cand2.Function); | 
|  | assert(P1 != SemaCUDA::CFP_Never && P2 != SemaCUDA::CFP_Never); | 
|  | // The implicit HD function may be a function in a system header which | 
|  | // is forced by pragma. In device compilation, if we prefer HD candidates | 
|  | // over wrong-sided candidates, overloading resolution may change, which | 
|  | // may result in non-deferrable diagnostics. As a workaround, we let | 
|  | // implicit HD candidates take equal preference as wrong-sided candidates. | 
|  | // This will preserve the overloading resolution. | 
|  | // TODO: We still need special handling of implicit HD functions since | 
|  | // they may incur other diagnostics to be deferred. We should make all | 
|  | // host/device related diagnostics deferrable and remove special handling | 
|  | // of implicit HD functions. | 
|  | auto EmitThreshold = | 
|  | (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && | 
|  | (IsCand1ImplicitHD || IsCand2ImplicitHD)) | 
|  | ? SemaCUDA::CFP_Never | 
|  | : SemaCUDA::CFP_WrongSide; | 
|  | auto Cand1Emittable = P1 > EmitThreshold; | 
|  | auto Cand2Emittable = P2 > EmitThreshold; | 
|  | if (Cand1Emittable && !Cand2Emittable) | 
|  | return true; | 
|  | if (!Cand1Emittable && Cand2Emittable) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [over.match.best]p1: (Changed in C++23) | 
|  | // | 
|  | //   -- if F is a static member function, ICS1(F) is defined such | 
|  | //      that ICS1(F) is neither better nor worse than ICS1(G) for | 
|  | //      any function G, and, symmetrically, ICS1(G) is neither | 
|  | //      better nor worse than ICS1(F). | 
|  | unsigned StartArg = 0; | 
|  | if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) | 
|  | StartArg = 1; | 
|  |  | 
|  | auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { | 
|  | // We don't allow incompatible pointer conversions in C++. | 
|  | if (!S.getLangOpts().CPlusPlus) | 
|  | return ICS.isStandard() && | 
|  | ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; | 
|  |  | 
|  | // The only ill-formed conversion we allow in C++ is the string literal to | 
|  | // char* conversion, which is only considered ill-formed after C++11. | 
|  | return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | 
|  | hasDeprecatedStringLiteralToCharPtrConversion(ICS); | 
|  | }; | 
|  |  | 
|  | // Define functions that don't require ill-formed conversions for a given | 
|  | // argument to be better candidates than functions that do. | 
|  | unsigned NumArgs = Cand1.Conversions.size(); | 
|  | assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); | 
|  | bool HasBetterConversion = false; | 
|  | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { | 
|  | bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); | 
|  | bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); | 
|  | if (Cand1Bad != Cand2Bad) { | 
|  | if (Cand1Bad) | 
|  | return false; | 
|  | HasBetterConversion = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasBetterConversion) | 
|  | return true; | 
|  |  | 
|  | // C++ [over.match.best]p1: | 
|  | //   A viable function F1 is defined to be a better function than another | 
|  | //   viable function F2 if for all arguments i, ICSi(F1) is not a worse | 
|  | //   conversion sequence than ICSi(F2), and then... | 
|  | bool HasWorseConversion = false; | 
|  | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { | 
|  | switch (CompareImplicitConversionSequences(S, Loc, | 
|  | Cand1.Conversions[ArgIdx], | 
|  | Cand2.Conversions[ArgIdx])) { | 
|  | case ImplicitConversionSequence::Better: | 
|  | // Cand1 has a better conversion sequence. | 
|  | HasBetterConversion = true; | 
|  | break; | 
|  |  | 
|  | case ImplicitConversionSequence::Worse: | 
|  | if (Cand1.Function && Cand2.Function && | 
|  | Cand1.isReversed() != Cand2.isReversed() && | 
|  | allowAmbiguity(S.Context, Cand1.Function, Cand2.Function)) { | 
|  | // Work around large-scale breakage caused by considering reversed | 
|  | // forms of operator== in C++20: | 
|  | // | 
|  | // When comparing a function against a reversed function, if we have a | 
|  | // better conversion for one argument and a worse conversion for the | 
|  | // other, the implicit conversion sequences are treated as being equally | 
|  | // good. | 
|  | // | 
|  | // This prevents a comparison function from being considered ambiguous | 
|  | // with a reversed form that is written in the same way. | 
|  | // | 
|  | // We diagnose this as an extension from CreateOverloadedBinOp. | 
|  | HasWorseConversion = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Cand1 can't be better than Cand2. | 
|  | return false; | 
|  |  | 
|  | case ImplicitConversionSequence::Indistinguishable: | 
|  | // Do nothing. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | //    -- for some argument j, ICSj(F1) is a better conversion sequence than | 
|  | //       ICSj(F2), or, if not that, | 
|  | if (HasBetterConversion && !HasWorseConversion) | 
|  | return true; | 
|  |  | 
|  | //   -- the context is an initialization by user-defined conversion | 
|  | //      (see 8.5, 13.3.1.5) and the standard conversion sequence | 
|  | //      from the return type of F1 to the destination type (i.e., | 
|  | //      the type of the entity being initialized) is a better | 
|  | //      conversion sequence than the standard conversion sequence | 
|  | //      from the return type of F2 to the destination type. | 
|  | if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && | 
|  | Cand1.Function && Cand2.Function && | 
|  | isa<CXXConversionDecl>(Cand1.Function) && | 
|  | isa<CXXConversionDecl>(Cand2.Function)) { | 
|  | // First check whether we prefer one of the conversion functions over the | 
|  | // other. This only distinguishes the results in non-standard, extension | 
|  | // cases such as the conversion from a lambda closure type to a function | 
|  | // pointer or block. | 
|  | ImplicitConversionSequence::CompareKind Result = | 
|  | compareConversionFunctions(S, Cand1.Function, Cand2.Function); | 
|  | if (Result == ImplicitConversionSequence::Indistinguishable) | 
|  | Result = CompareStandardConversionSequences(S, Loc, | 
|  | Cand1.FinalConversion, | 
|  | Cand2.FinalConversion); | 
|  |  | 
|  | if (Result != ImplicitConversionSequence::Indistinguishable) | 
|  | return Result == ImplicitConversionSequence::Better; | 
|  |  | 
|  | // FIXME: Compare kind of reference binding if conversion functions | 
|  | // convert to a reference type used in direct reference binding, per | 
|  | // C++14 [over.match.best]p1 section 2 bullet 3. | 
|  | } | 
|  |  | 
|  | // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, | 
|  | // as combined with the resolution to CWG issue 243. | 
|  | // | 
|  | // When the context is initialization by constructor ([over.match.ctor] or | 
|  | // either phase of [over.match.list]), a constructor is preferred over | 
|  | // a conversion function. | 
|  | if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && | 
|  | Cand1.Function && Cand2.Function && | 
|  | isa<CXXConstructorDecl>(Cand1.Function) != | 
|  | isa<CXXConstructorDecl>(Cand2.Function)) | 
|  | return isa<CXXConstructorDecl>(Cand1.Function); | 
|  |  | 
|  | //    -- F1 is a non-template function and F2 is a function template | 
|  | //       specialization, or, if not that, | 
|  | bool Cand1IsSpecialization = Cand1.Function && | 
|  | Cand1.Function->getPrimaryTemplate(); | 
|  | bool Cand2IsSpecialization = Cand2.Function && | 
|  | Cand2.Function->getPrimaryTemplate(); | 
|  | if (Cand1IsSpecialization != Cand2IsSpecialization) | 
|  | return Cand2IsSpecialization; | 
|  |  | 
|  | //   -- F1 and F2 are function template specializations, and the function | 
|  | //      template for F1 is more specialized than the template for F2 | 
|  | //      according to the partial ordering rules described in 14.5.5.2, or, | 
|  | //      if not that, | 
|  | if (Cand1IsSpecialization && Cand2IsSpecialization) { | 
|  | const auto *Obj1Context = | 
|  | dyn_cast<CXXRecordDecl>(Cand1.FoundDecl->getDeclContext()); | 
|  | const auto *Obj2Context = | 
|  | dyn_cast<CXXRecordDecl>(Cand2.FoundDecl->getDeclContext()); | 
|  | if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( | 
|  | Cand1.Function->getPrimaryTemplate(), | 
|  | Cand2.Function->getPrimaryTemplate(), Loc, | 
|  | isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion | 
|  | : TPOC_Call, | 
|  | Cand1.ExplicitCallArguments, | 
|  | Obj1Context ? QualType(Obj1Context->getTypeForDecl(), 0) | 
|  | : QualType{}, | 
|  | Obj2Context ? QualType(Obj2Context->getTypeForDecl(), 0) | 
|  | : QualType{}, | 
|  | Cand1.isReversed() ^ Cand2.isReversed())) { | 
|  | return BetterTemplate == Cand1.Function->getPrimaryTemplate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   -— F1 and F2 are non-template functions with the same | 
|  | //      parameter-type-lists, and F1 is more constrained than F2 [...], | 
|  | if (!Cand1IsSpecialization && !Cand2IsSpecialization && | 
|  | sameFunctionParameterTypeLists(S, Cand1, Cand2)) { | 
|  | FunctionDecl *Function1 = Cand1.Function; | 
|  | FunctionDecl *Function2 = Cand2.Function; | 
|  | if (FunctionDecl *MF = Function1->getInstantiatedFromMemberFunction()) | 
|  | Function1 = MF; | 
|  | if (FunctionDecl *MF = Function2->getInstantiatedFromMemberFunction()) | 
|  | Function2 = MF; | 
|  |  | 
|  | const Expr *RC1 = Function1->getTrailingRequiresClause(); | 
|  | const Expr *RC2 = Function2->getTrailingRequiresClause(); | 
|  | if (RC1 && RC2) { | 
|  | bool AtLeastAsConstrained1, AtLeastAsConstrained2; | 
|  | if (S.IsAtLeastAsConstrained(Function1, RC1, Function2, RC2, | 
|  | AtLeastAsConstrained1) || | 
|  | S.IsAtLeastAsConstrained(Function2, RC2, Function1, RC1, | 
|  | AtLeastAsConstrained2)) | 
|  | return false; | 
|  | if (AtLeastAsConstrained1 != AtLeastAsConstrained2) | 
|  | return AtLeastAsConstrained1; | 
|  | } else if (RC1 || RC2) { | 
|  | return RC1 != nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | //   -- F1 is a constructor for a class D, F2 is a constructor for a base | 
|  | //      class B of D, and for all arguments the corresponding parameters of | 
|  | //      F1 and F2 have the same type. | 
|  | // FIXME: Implement the "all parameters have the same type" check. | 
|  | bool Cand1IsInherited = | 
|  | isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); | 
|  | bool Cand2IsInherited = | 
|  | isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); | 
|  | if (Cand1IsInherited != Cand2IsInherited) | 
|  | return Cand2IsInherited; | 
|  | else if (Cand1IsInherited) { | 
|  | assert(Cand2IsInherited); | 
|  | auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); | 
|  | auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); | 
|  | if (Cand1Class->isDerivedFrom(Cand2Class)) | 
|  | return true; | 
|  | if (Cand2Class->isDerivedFrom(Cand1Class)) | 
|  | return false; | 
|  | // Inherited from sibling base classes: still ambiguous. | 
|  | } | 
|  |  | 
|  | //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not | 
|  | //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate | 
|  | //      with reversed order of parameters and F1 is not | 
|  | // | 
|  | // We rank reversed + different operator as worse than just reversed, but | 
|  | // that comparison can never happen, because we only consider reversing for | 
|  | // the maximally-rewritten operator (== or <=>). | 
|  | if (Cand1.RewriteKind != Cand2.RewriteKind) | 
|  | return Cand1.RewriteKind < Cand2.RewriteKind; | 
|  |  | 
|  | // Check C++17 tie-breakers for deduction guides. | 
|  | { | 
|  | auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); | 
|  | auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); | 
|  | if (Guide1 && Guide2) { | 
|  | //  -- F1 is generated from a deduction-guide and F2 is not | 
|  | if (Guide1->isImplicit() != Guide2->isImplicit()) | 
|  | return Guide2->isImplicit(); | 
|  |  | 
|  | //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not | 
|  | if (Guide1->getDeductionCandidateKind() == DeductionCandidate::Copy) | 
|  | return true; | 
|  | if (Guide2->getDeductionCandidateKind() == DeductionCandidate::Copy) | 
|  | return false; | 
|  |  | 
|  | //  --F1 is generated from a non-template constructor and F2 is generated | 
|  | //  from a constructor template | 
|  | const auto *Constructor1 = Guide1->getCorrespondingConstructor(); | 
|  | const auto *Constructor2 = Guide2->getCorrespondingConstructor(); | 
|  | if (Constructor1 && Constructor2) { | 
|  | bool isC1Templated = Constructor1->getTemplatedKind() != | 
|  | FunctionDecl::TemplatedKind::TK_NonTemplate; | 
|  | bool isC2Templated = Constructor2->getTemplatedKind() != | 
|  | FunctionDecl::TemplatedKind::TK_NonTemplate; | 
|  | if (isC1Templated != isC2Templated) | 
|  | return isC2Templated; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for enable_if value-based overload resolution. | 
|  | if (Cand1.Function && Cand2.Function) { | 
|  | Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); | 
|  | if (Cmp != Comparison::Equal) | 
|  | return Cmp == Comparison::Better; | 
|  | } | 
|  |  | 
|  | bool HasPS1 = Cand1.Function != nullptr && | 
|  | functionHasPassObjectSizeParams(Cand1.Function); | 
|  | bool HasPS2 = Cand2.Function != nullptr && | 
|  | functionHasPassObjectSizeParams(Cand2.Function); | 
|  | if (HasPS1 != HasPS2 && HasPS1) | 
|  | return true; | 
|  |  | 
|  | auto MV = isBetterMultiversionCandidate(Cand1, Cand2); | 
|  | if (MV == Comparison::Better) | 
|  | return true; | 
|  | if (MV == Comparison::Worse) | 
|  | return false; | 
|  |  | 
|  | // If other rules cannot determine which is better, CUDA preference is used | 
|  | // to determine which is better. | 
|  | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { | 
|  | FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); | 
|  | return S.CUDA().IdentifyPreference(Caller, Cand1.Function) > | 
|  | S.CUDA().IdentifyPreference(Caller, Cand2.Function); | 
|  | } | 
|  |  | 
|  | // General member function overloading is handled above, so this only handles | 
|  | // constructors with address spaces. | 
|  | // This only handles address spaces since C++ has no other | 
|  | // qualifier that can be used with constructors. | 
|  | const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); | 
|  | const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); | 
|  | if (CD1 && CD2) { | 
|  | LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); | 
|  | LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); | 
|  | if (AS1 != AS2) { | 
|  | if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) | 
|  | return true; | 
|  | if (Qualifiers::isAddressSpaceSupersetOf(AS1, AS2)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether two declarations are "equivalent" for the purposes of | 
|  | /// name lookup and overload resolution. This applies when the same internal/no | 
|  | /// linkage entity is defined by two modules (probably by textually including | 
|  | /// the same header). In such a case, we don't consider the declarations to | 
|  | /// declare the same entity, but we also don't want lookups with both | 
|  | /// declarations visible to be ambiguous in some cases (this happens when using | 
|  | /// a modularized libstdc++). | 
|  | bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, | 
|  | const NamedDecl *B) { | 
|  | auto *VA = dyn_cast_or_null<ValueDecl>(A); | 
|  | auto *VB = dyn_cast_or_null<ValueDecl>(B); | 
|  | if (!VA || !VB) | 
|  | return false; | 
|  |  | 
|  | // The declarations must be declaring the same name as an internal linkage | 
|  | // entity in different modules. | 
|  | if (!VA->getDeclContext()->getRedeclContext()->Equals( | 
|  | VB->getDeclContext()->getRedeclContext()) || | 
|  | getOwningModule(VA) == getOwningModule(VB) || | 
|  | VA->isExternallyVisible() || VB->isExternallyVisible()) | 
|  | return false; | 
|  |  | 
|  | // Check that the declarations appear to be equivalent. | 
|  | // | 
|  | // FIXME: Checking the type isn't really enough to resolve the ambiguity. | 
|  | // For constants and functions, we should check the initializer or body is | 
|  | // the same. For non-constant variables, we shouldn't allow it at all. | 
|  | if (Context.hasSameType(VA->getType(), VB->getType())) | 
|  | return true; | 
|  |  | 
|  | // Enum constants within unnamed enumerations will have different types, but | 
|  | // may still be similar enough to be interchangeable for our purposes. | 
|  | if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { | 
|  | if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { | 
|  | // Only handle anonymous enums. If the enumerations were named and | 
|  | // equivalent, they would have been merged to the same type. | 
|  | auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); | 
|  | auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); | 
|  | if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || | 
|  | !Context.hasSameType(EnumA->getIntegerType(), | 
|  | EnumB->getIntegerType())) | 
|  | return false; | 
|  | // Allow this only if the value is the same for both enumerators. | 
|  | return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nothing else is sufficiently similar. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseEquivalentInternalLinkageDeclarations( | 
|  | SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { | 
|  | assert(D && "Unknown declaration"); | 
|  | Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; | 
|  |  | 
|  | Module *M = getOwningModule(D); | 
|  | Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) | 
|  | << !M << (M ? M->getFullModuleName() : ""); | 
|  |  | 
|  | for (auto *E : Equiv) { | 
|  | Module *M = getOwningModule(E); | 
|  | Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) | 
|  | << !M << (M ? M->getFullModuleName() : ""); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool OverloadCandidate::NotValidBecauseConstraintExprHasError() const { | 
|  | return FailureKind == ovl_fail_bad_deduction && | 
|  | static_cast<TemplateDeductionResult>(DeductionFailure.Result) == | 
|  | TemplateDeductionResult::ConstraintsNotSatisfied && | 
|  | static_cast<CNSInfo *>(DeductionFailure.Data) | 
|  | ->Satisfaction.ContainsErrors; | 
|  | } | 
|  |  | 
|  | /// Computes the best viable function (C++ 13.3.3) | 
|  | /// within an overload candidate set. | 
|  | /// | 
|  | /// \param Loc The location of the function name (or operator symbol) for | 
|  | /// which overload resolution occurs. | 
|  | /// | 
|  | /// \param Best If overload resolution was successful or found a deleted | 
|  | /// function, \p Best points to the candidate function found. | 
|  | /// | 
|  | /// \returns The result of overload resolution. | 
|  | OverloadingResult | 
|  | OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, | 
|  | iterator &Best) { | 
|  | llvm::SmallVector<OverloadCandidate *, 16> Candidates; | 
|  | std::transform(begin(), end(), std::back_inserter(Candidates), | 
|  | [](OverloadCandidate &Cand) { return &Cand; }); | 
|  |  | 
|  | // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but | 
|  | // are accepted by both clang and NVCC. However, during a particular | 
|  | // compilation mode only one call variant is viable. We need to | 
|  | // exclude non-viable overload candidates from consideration based | 
|  | // only on their host/device attributes. Specifically, if one | 
|  | // candidate call is WrongSide and the other is SameSide, we ignore | 
|  | // the WrongSide candidate. | 
|  | // We only need to remove wrong-sided candidates here if | 
|  | // -fgpu-exclude-wrong-side-overloads is off. When | 
|  | // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared | 
|  | // uniformly in isBetterOverloadCandidate. | 
|  | if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { | 
|  | const FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); | 
|  | bool ContainsSameSideCandidate = | 
|  | llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { | 
|  | // Check viable function only. | 
|  | return Cand->Viable && Cand->Function && | 
|  | S.CUDA().IdentifyPreference(Caller, Cand->Function) == | 
|  | SemaCUDA::CFP_SameSide; | 
|  | }); | 
|  | if (ContainsSameSideCandidate) { | 
|  | auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { | 
|  | // Check viable function only to avoid unnecessary data copying/moving. | 
|  | return Cand->Viable && Cand->Function && | 
|  | S.CUDA().IdentifyPreference(Caller, Cand->Function) == | 
|  | SemaCUDA::CFP_WrongSide; | 
|  | }; | 
|  | llvm::erase_if(Candidates, IsWrongSideCandidate); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the best viable function. | 
|  | Best = end(); | 
|  | for (auto *Cand : Candidates) { | 
|  | Cand->Best = false; | 
|  | if (Cand->Viable) { | 
|  | if (Best == end() || | 
|  | isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) | 
|  | Best = Cand; | 
|  | } else if (Cand->NotValidBecauseConstraintExprHasError()) { | 
|  | // This candidate has constraint that we were unable to evaluate because | 
|  | // it referenced an expression that contained an error. Rather than fall | 
|  | // back onto a potentially unintended candidate (made worse by | 
|  | // subsuming constraints), treat this as 'no viable candidate'. | 
|  | Best = end(); | 
|  | return OR_No_Viable_Function; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find any viable functions, abort. | 
|  | if (Best == end()) | 
|  | return OR_No_Viable_Function; | 
|  |  | 
|  | llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; | 
|  |  | 
|  | llvm::SmallVector<OverloadCandidate*, 4> PendingBest; | 
|  | PendingBest.push_back(&*Best); | 
|  | Best->Best = true; | 
|  |  | 
|  | // Make sure that this function is better than every other viable | 
|  | // function. If not, we have an ambiguity. | 
|  | while (!PendingBest.empty()) { | 
|  | auto *Curr = PendingBest.pop_back_val(); | 
|  | for (auto *Cand : Candidates) { | 
|  | if (Cand->Viable && !Cand->Best && | 
|  | !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { | 
|  | PendingBest.push_back(Cand); | 
|  | Cand->Best = true; | 
|  |  | 
|  | if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, | 
|  | Curr->Function)) | 
|  | EquivalentCands.push_back(Cand->Function); | 
|  | else | 
|  | Best = end(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found more than one best candidate, this is ambiguous. | 
|  | if (Best == end()) | 
|  | return OR_Ambiguous; | 
|  |  | 
|  | // Best is the best viable function. | 
|  | if (Best->Function && Best->Function->isDeleted()) | 
|  | return OR_Deleted; | 
|  |  | 
|  | if (!EquivalentCands.empty()) | 
|  | S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, | 
|  | EquivalentCands); | 
|  |  | 
|  | return OR_Success; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum OverloadCandidateKind { | 
|  | oc_function, | 
|  | oc_method, | 
|  | oc_reversed_binary_operator, | 
|  | oc_constructor, | 
|  | oc_implicit_default_constructor, | 
|  | oc_implicit_copy_constructor, | 
|  | oc_implicit_move_constructor, | 
|  | oc_implicit_copy_assignment, | 
|  | oc_implicit_move_assignment, | 
|  | oc_implicit_equality_comparison, | 
|  | oc_inherited_constructor | 
|  | }; | 
|  |  | 
|  | enum OverloadCandidateSelect { | 
|  | ocs_non_template, | 
|  | ocs_template, | 
|  | ocs_described_template, | 
|  | }; | 
|  |  | 
|  | static std::pair<OverloadCandidateKind, OverloadCandidateSelect> | 
|  | ClassifyOverloadCandidate(Sema &S, const NamedDecl *Found, | 
|  | const FunctionDecl *Fn, | 
|  | OverloadCandidateRewriteKind CRK, | 
|  | std::string &Description) { | 
|  |  | 
|  | bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); | 
|  | if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { | 
|  | isTemplate = true; | 
|  | Description = S.getTemplateArgumentBindingsText( | 
|  | FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); | 
|  | } | 
|  |  | 
|  | OverloadCandidateSelect Select = [&]() { | 
|  | if (!Description.empty()) | 
|  | return ocs_described_template; | 
|  | return isTemplate ? ocs_template : ocs_non_template; | 
|  | }(); | 
|  |  | 
|  | OverloadCandidateKind Kind = [&]() { | 
|  | if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) | 
|  | return oc_implicit_equality_comparison; | 
|  |  | 
|  | if (CRK & CRK_Reversed) | 
|  | return oc_reversed_binary_operator; | 
|  |  | 
|  | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { | 
|  | if (!Ctor->isImplicit()) { | 
|  | if (isa<ConstructorUsingShadowDecl>(Found)) | 
|  | return oc_inherited_constructor; | 
|  | else | 
|  | return oc_constructor; | 
|  | } | 
|  |  | 
|  | if (Ctor->isDefaultConstructor()) | 
|  | return oc_implicit_default_constructor; | 
|  |  | 
|  | if (Ctor->isMoveConstructor()) | 
|  | return oc_implicit_move_constructor; | 
|  |  | 
|  | assert(Ctor->isCopyConstructor() && | 
|  | "unexpected sort of implicit constructor"); | 
|  | return oc_implicit_copy_constructor; | 
|  | } | 
|  |  | 
|  | if (const auto *Meth = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | // This actually gets spelled 'candidate function' for now, but | 
|  | // it doesn't hurt to split it out. | 
|  | if (!Meth->isImplicit()) | 
|  | return oc_method; | 
|  |  | 
|  | if (Meth->isMoveAssignmentOperator()) | 
|  | return oc_implicit_move_assignment; | 
|  |  | 
|  | if (Meth->isCopyAssignmentOperator()) | 
|  | return oc_implicit_copy_assignment; | 
|  |  | 
|  | assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); | 
|  | return oc_method; | 
|  | } | 
|  |  | 
|  | return oc_function; | 
|  | }(); | 
|  |  | 
|  | return std::make_pair(Kind, Select); | 
|  | } | 
|  |  | 
|  | void MaybeEmitInheritedConstructorNote(Sema &S, const Decl *FoundDecl) { | 
|  | // FIXME: It'd be nice to only emit a note once per using-decl per overload | 
|  | // set. | 
|  | if (const auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) | 
|  | S.Diag(FoundDecl->getLocation(), | 
|  | diag::note_ovl_candidate_inherited_constructor) | 
|  | << Shadow->getNominatedBaseClass(); | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, | 
|  | const FunctionDecl *FD) { | 
|  | for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { | 
|  | bool AlwaysTrue; | 
|  | if (EnableIf->getCond()->isValueDependent() || | 
|  | !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) | 
|  | return false; | 
|  | if (!AlwaysTrue) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if we can take the address of the function. | 
|  | /// | 
|  | /// \param Complain - If true, we'll emit a diagnostic | 
|  | /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are | 
|  | ///   we in overload resolution? | 
|  | /// \param Loc - The location of the statement we're complaining about. Ignored | 
|  | ///   if we're not complaining, or if we're in overload resolution. | 
|  | static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, | 
|  | bool Complain, | 
|  | bool InOverloadResolution, | 
|  | SourceLocation Loc) { | 
|  | if (!isFunctionAlwaysEnabled(S.Context, FD)) { | 
|  | if (Complain) { | 
|  | if (InOverloadResolution) | 
|  | S.Diag(FD->getBeginLoc(), | 
|  | diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); | 
|  | else | 
|  | S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FD->getTrailingRequiresClause()) { | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) | 
|  | return false; | 
|  | if (!Satisfaction.IsSatisfied) { | 
|  | if (Complain) { | 
|  | if (InOverloadResolution) { | 
|  | SmallString<128> TemplateArgString; | 
|  | if (FunctionTemplateDecl *FunTmpl = FD->getPrimaryTemplate()) { | 
|  | TemplateArgString += " "; | 
|  | TemplateArgString += S.getTemplateArgumentBindingsText( | 
|  | FunTmpl->getTemplateParameters(), | 
|  | *FD->getTemplateSpecializationArgs()); | 
|  | } | 
|  |  | 
|  | S.Diag(FD->getBeginLoc(), | 
|  | diag::note_ovl_candidate_unsatisfied_constraints) | 
|  | << TemplateArgString; | 
|  | } else | 
|  | S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) | 
|  | << FD; | 
|  | S.DiagnoseUnsatisfiedConstraint(Satisfaction); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { | 
|  | return P->hasAttr<PassObjectSizeAttr>(); | 
|  | }); | 
|  | if (I == FD->param_end()) | 
|  | return true; | 
|  |  | 
|  | if (Complain) { | 
|  | // Add one to ParamNo because it's user-facing | 
|  | unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; | 
|  | if (InOverloadResolution) | 
|  | S.Diag(FD->getLocation(), | 
|  | diag::note_ovl_candidate_has_pass_object_size_params) | 
|  | << ParamNo; | 
|  | else | 
|  | S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) | 
|  | << FD << ParamNo; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool checkAddressOfCandidateIsAvailable(Sema &S, | 
|  | const FunctionDecl *FD) { | 
|  | return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*Loc=*/SourceLocation()); | 
|  | } | 
|  |  | 
|  | bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, | 
|  | bool Complain, | 
|  | SourceLocation Loc) { | 
|  | return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, | 
|  | /*InOverloadResolution=*/false, | 
|  | Loc); | 
|  | } | 
|  |  | 
|  | // Don't print candidates other than the one that matches the calling | 
|  | // convention of the call operator, since that is guaranteed to exist. | 
|  | static bool shouldSkipNotingLambdaConversionDecl(const FunctionDecl *Fn) { | 
|  | const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); | 
|  |  | 
|  | if (!ConvD) | 
|  | return false; | 
|  | const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); | 
|  | if (!RD->isLambda()) | 
|  | return false; | 
|  |  | 
|  | CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); | 
|  | CallingConv CallOpCC = | 
|  | CallOp->getType()->castAs<FunctionType>()->getCallConv(); | 
|  | QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); | 
|  | CallingConv ConvToCC = | 
|  | ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); | 
|  |  | 
|  | return ConvToCC != CallOpCC; | 
|  | } | 
|  |  | 
|  | // Notes the location of an overload candidate. | 
|  | void Sema::NoteOverloadCandidate(const NamedDecl *Found, const FunctionDecl *Fn, | 
|  | OverloadCandidateRewriteKind RewriteKind, | 
|  | QualType DestType, bool TakingAddress) { | 
|  | if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) | 
|  | return; | 
|  | if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && | 
|  | !Fn->getAttr<TargetAttr>()->isDefaultVersion()) | 
|  | return; | 
|  | if (Fn->isMultiVersion() && Fn->hasAttr<TargetVersionAttr>() && | 
|  | !Fn->getAttr<TargetVersionAttr>()->isDefaultVersion()) | 
|  | return; | 
|  | if (shouldSkipNotingLambdaConversionDecl(Fn)) | 
|  | return; | 
|  |  | 
|  | std::string FnDesc; | 
|  | std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = | 
|  | ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); | 
|  | PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) | 
|  | << (unsigned)KSPair.first << (unsigned)KSPair.second | 
|  | << Fn << FnDesc; | 
|  |  | 
|  | HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); | 
|  | Diag(Fn->getLocation(), PD); | 
|  | MaybeEmitInheritedConstructorNote(*this, Found); | 
|  | } | 
|  |  | 
|  | static void | 
|  | MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { | 
|  | // Perhaps the ambiguity was caused by two atomic constraints that are | 
|  | // 'identical' but not equivalent: | 
|  | // | 
|  | // void foo() requires (sizeof(T) > 4) { } // #1 | 
|  | // void foo() requires (sizeof(T) > 4) && T::value { } // #2 | 
|  | // | 
|  | // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause | 
|  | // #2 to subsume #1, but these constraint are not considered equivalent | 
|  | // according to the subsumption rules because they are not the same | 
|  | // source-level construct. This behavior is quite confusing and we should try | 
|  | // to help the user figure out what happened. | 
|  |  | 
|  | SmallVector<const Expr *, 3> FirstAC, SecondAC; | 
|  | FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; | 
|  | for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { | 
|  | if (!I->Function) | 
|  | continue; | 
|  | SmallVector<const Expr *, 3> AC; | 
|  | if (auto *Template = I->Function->getPrimaryTemplate()) | 
|  | Template->getAssociatedConstraints(AC); | 
|  | else | 
|  | I->Function->getAssociatedConstraints(AC); | 
|  | if (AC.empty()) | 
|  | continue; | 
|  | if (FirstCand == nullptr) { | 
|  | FirstCand = I->Function; | 
|  | FirstAC = AC; | 
|  | } else if (SecondCand == nullptr) { | 
|  | SecondCand = I->Function; | 
|  | SecondAC = AC; | 
|  | } else { | 
|  | // We have more than one pair of constrained functions - this check is | 
|  | // expensive and we'd rather not try to diagnose it. | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (!SecondCand) | 
|  | return; | 
|  | // The diagnostic can only happen if there are associated constraints on | 
|  | // both sides (there needs to be some identical atomic constraint). | 
|  | if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, | 
|  | SecondCand, SecondAC)) | 
|  | // Just show the user one diagnostic, they'll probably figure it out | 
|  | // from here. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Notes the location of all overload candidates designated through | 
|  | // OverloadedExpr | 
|  | void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, | 
|  | bool TakingAddress) { | 
|  | assert(OverloadedExpr->getType() == Context.OverloadTy); | 
|  |  | 
|  | OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); | 
|  | OverloadExpr *OvlExpr = Ovl.Expression; | 
|  |  | 
|  | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
|  | IEnd = OvlExpr->decls_end(); | 
|  | I != IEnd; ++I) { | 
|  | if (FunctionTemplateDecl *FunTmpl = | 
|  | dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { | 
|  | NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, | 
|  | TakingAddress); | 
|  | } else if (FunctionDecl *Fun | 
|  | = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { | 
|  | NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnoses an ambiguous conversion.  The partial diagnostic is the | 
|  | /// "lead" diagnostic; it will be given two arguments, the source and | 
|  | /// target types of the conversion. | 
|  | void ImplicitConversionSequence::DiagnoseAmbiguousConversion( | 
|  | Sema &S, | 
|  | SourceLocation CaretLoc, | 
|  | const PartialDiagnostic &PDiag) const { | 
|  | S.Diag(CaretLoc, PDiag) | 
|  | << Ambiguous.getFromType() << Ambiguous.getToType(); | 
|  | unsigned CandsShown = 0; | 
|  | AmbiguousConversionSequence::const_iterator I, E; | 
|  | for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { | 
|  | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) | 
|  | break; | 
|  | ++CandsShown; | 
|  | S.NoteOverloadCandidate(I->first, I->second); | 
|  | } | 
|  | S.Diags.overloadCandidatesShown(CandsShown); | 
|  | if (I != E) | 
|  | S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); | 
|  | } | 
|  |  | 
|  | static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned I, bool TakingCandidateAddress) { | 
|  | const ImplicitConversionSequence &Conv = Cand->Conversions[I]; | 
|  | assert(Conv.isBad()); | 
|  | assert(Cand->Function && "for now, candidate must be a function"); | 
|  | FunctionDecl *Fn = Cand->Function; | 
|  |  | 
|  | // There's a conversion slot for the object argument if this is a | 
|  | // non-constructor method.  Note that 'I' corresponds the | 
|  | // conversion-slot index. | 
|  | bool isObjectArgument = false; | 
|  | if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { | 
|  | if (I == 0) | 
|  | isObjectArgument = true; | 
|  | else | 
|  | I--; | 
|  | } | 
|  |  | 
|  | std::string FnDesc; | 
|  | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | 
|  | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), | 
|  | FnDesc); | 
|  |  | 
|  | Expr *FromExpr = Conv.Bad.FromExpr; | 
|  | QualType FromTy = Conv.Bad.getFromType(); | 
|  | QualType ToTy = Conv.Bad.getToType(); | 
|  | SourceRange ToParamRange = | 
|  | !isObjectArgument ? Fn->getParamDecl(I)->getSourceRange() : SourceRange(); | 
|  |  | 
|  | if (FromTy == S.Context.OverloadTy) { | 
|  | assert(FromExpr && "overload set argument came from implicit argument?"); | 
|  | Expr *E = FromExpr->IgnoreParens(); | 
|  | if (isa<UnaryOperator>(E)) | 
|  | E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); | 
|  | DeclarationName Name = cast<OverloadExpr>(E)->getName(); | 
|  |  | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << ToTy << Name << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do some hand-waving analysis to see if the non-viability is due | 
|  | // to a qualifier mismatch. | 
|  | CanQualType CFromTy = S.Context.getCanonicalType(FromTy); | 
|  | CanQualType CToTy = S.Context.getCanonicalType(ToTy); | 
|  | if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) | 
|  | CToTy = RT->getPointeeType(); | 
|  | else { | 
|  | // TODO: detect and diagnose the full richness of const mismatches. | 
|  | if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) | 
|  | if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { | 
|  | CFromTy = FromPT->getPointeeType(); | 
|  | CToTy = ToPT->getPointeeType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && | 
|  | !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { | 
|  | Qualifiers FromQs = CFromTy.getQualifiers(); | 
|  | Qualifiers ToQs = CToTy.getQualifiers(); | 
|  |  | 
|  | if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { | 
|  | if (isObjectArgument) | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | 
|  | << FnDesc << FromQs.getAddressSpace() << ToQs.getAddressSpace(); | 
|  | else | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | 
|  | << FnDesc << ToParamRange << FromQs.getAddressSpace() | 
|  | << ToQs.getAddressSpace() << ToTy->isReferenceType() << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << FromQs.getObjCLifetime() | 
|  | << ToQs.getObjCLifetime() << (unsigned)isObjectArgument << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << FromQs.getObjCGCAttr() | 
|  | << ToQs.getObjCGCAttr() << (unsigned)isObjectArgument << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | 
|  | assert(CVR && "expected qualifiers mismatch"); | 
|  |  | 
|  | if (isObjectArgument) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << FromTy << (CVR - 1); | 
|  | } else { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << (CVR - 1) << I + 1; | 
|  | } | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || | 
|  | Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << (unsigned)isObjectArgument << I + 1 | 
|  | << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) | 
|  | << ToParamRange; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special diagnostic for failure to convert an initializer list, since | 
|  | // telling the user that it has type void is not useful. | 
|  | if (FromExpr && isa<InitListExpr>(FromExpr)) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 | 
|  | << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1 | 
|  | : Conv.Bad.Kind == BadConversionSequence::too_many_initializers | 
|  | ? 2 | 
|  | : 0); | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Diagnose references or pointers to incomplete types differently, | 
|  | // since it's far from impossible that the incompleteness triggered | 
|  | // the failure. | 
|  | QualType TempFromTy = FromTy.getNonReferenceType(); | 
|  | if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) | 
|  | TempFromTy = PTy->getPointeeType(); | 
|  | if (TempFromTy->isIncompleteType()) { | 
|  | // Emit the generic diagnostic and, optionally, add the hints to it. | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 | 
|  | << (unsigned)(Cand->Fix.Kind); | 
|  |  | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Diagnose base -> derived pointer conversions. | 
|  | unsigned BaseToDerivedConversion = 0; | 
|  | if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { | 
|  | if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { | 
|  | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( | 
|  | FromPtrTy->getPointeeType()) && | 
|  | !FromPtrTy->getPointeeType()->isIncompleteType() && | 
|  | !ToPtrTy->getPointeeType()->isIncompleteType() && | 
|  | S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), | 
|  | FromPtrTy->getPointeeType())) | 
|  | BaseToDerivedConversion = 1; | 
|  | } | 
|  | } else if (const ObjCObjectPointerType *FromPtrTy | 
|  | = FromTy->getAs<ObjCObjectPointerType>()) { | 
|  | if (const ObjCObjectPointerType *ToPtrTy | 
|  | = ToTy->getAs<ObjCObjectPointerType>()) | 
|  | if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) | 
|  | if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) | 
|  | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( | 
|  | FromPtrTy->getPointeeType()) && | 
|  | FromIface->isSuperClassOf(ToIface)) | 
|  | BaseToDerivedConversion = 2; | 
|  | } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { | 
|  | if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && | 
|  | !FromTy->isIncompleteType() && | 
|  | !ToRefTy->getPointeeType()->isIncompleteType() && | 
|  | S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { | 
|  | BaseToDerivedConversion = 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseToDerivedConversion) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << (BaseToDerivedConversion - 1) << FromTy << ToTy | 
|  | << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<ObjCObjectPointerType>(CFromTy) && | 
|  | isa<PointerType>(CToTy)) { | 
|  | Qualifiers FromQs = CFromTy.getQualifiers(); | 
|  | Qualifiers ToQs = CToTy.getQualifiers(); | 
|  | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument | 
|  | << I + 1; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TakingCandidateAddress && | 
|  | !checkAddressOfCandidateIsAvailable(S, Cand->Function)) | 
|  | return; | 
|  |  | 
|  | // Emit the generic diagnostic and, optionally, add the hints to it. | 
|  | PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); | 
|  | FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 | 
|  | << (unsigned)(Cand->Fix.Kind); | 
|  |  | 
|  | // Check that location of Fn is not in system header. | 
|  | if (!S.SourceMgr.isInSystemHeader(Fn->getLocation())) { | 
|  | // If we can fix the conversion, suggest the FixIts. | 
|  | for (const FixItHint &HI : Cand->Fix.Hints) | 
|  | FDiag << HI; | 
|  | } | 
|  |  | 
|  | S.Diag(Fn->getLocation(), FDiag); | 
|  |  | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | } | 
|  |  | 
|  | /// Additional arity mismatch diagnosis specific to a function overload | 
|  | /// candidates. This is not covered by the more general DiagnoseArityMismatch() | 
|  | /// over a candidate in any candidate set. | 
|  | static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumArgs) { | 
|  | FunctionDecl *Fn = Cand->Function; | 
|  | unsigned MinParams = Fn->getMinRequiredArguments(); | 
|  |  | 
|  | // With invalid overloaded operators, it's possible that we think we | 
|  | // have an arity mismatch when in fact it looks like we have the | 
|  | // right number of arguments, because only overloaded operators have | 
|  | // the weird behavior of overloading member and non-member functions. | 
|  | // Just don't report anything. | 
|  | if (Fn->isInvalidDecl() && | 
|  | Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) | 
|  | return true; | 
|  |  | 
|  | if (NumArgs < MinParams) { | 
|  | assert((Cand->FailureKind == ovl_fail_too_few_arguments) || | 
|  | (Cand->FailureKind == ovl_fail_bad_deduction && | 
|  | Cand->DeductionFailure.getResult() == | 
|  | TemplateDeductionResult::TooFewArguments)); | 
|  | } else { | 
|  | assert((Cand->FailureKind == ovl_fail_too_many_arguments) || | 
|  | (Cand->FailureKind == ovl_fail_bad_deduction && | 
|  | Cand->DeductionFailure.getResult() == | 
|  | TemplateDeductionResult::TooManyArguments)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// General arity mismatch diagnosis over a candidate in a candidate set. | 
|  | static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, | 
|  | unsigned NumFormalArgs) { | 
|  | assert(isa<FunctionDecl>(D) && | 
|  | "The templated declaration should at least be a function" | 
|  | " when diagnosing bad template argument deduction due to too many" | 
|  | " or too few arguments"); | 
|  |  | 
|  | FunctionDecl *Fn = cast<FunctionDecl>(D); | 
|  |  | 
|  | // TODO: treat calls to a missing default constructor as a special case | 
|  | const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); | 
|  | unsigned MinParams = Fn->getMinRequiredExplicitArguments(); | 
|  |  | 
|  | // at least / at most / exactly | 
|  | bool HasExplicitObjectParam = Fn->hasCXXExplicitFunctionObjectParameter(); | 
|  | unsigned ParamCount = FnTy->getNumParams() - (HasExplicitObjectParam ? 1 : 0); | 
|  | unsigned mode, modeCount; | 
|  | if (NumFormalArgs < MinParams) { | 
|  | if (MinParams != ParamCount || FnTy->isVariadic() || | 
|  | FnTy->isTemplateVariadic()) | 
|  | mode = 0; // "at least" | 
|  | else | 
|  | mode = 2; // "exactly" | 
|  | modeCount = MinParams; | 
|  | } else { | 
|  | if (MinParams != ParamCount) | 
|  | mode = 1; // "at most" | 
|  | else | 
|  | mode = 2; // "exactly" | 
|  | modeCount = ParamCount; | 
|  | } | 
|  |  | 
|  | std::string Description; | 
|  | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | 
|  | ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); | 
|  |  | 
|  | if (modeCount == 1 && | 
|  | Fn->getParamDecl(HasExplicitObjectParam ? 1 : 0)->getDeclName()) | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | 
|  | << Description << mode | 
|  | << Fn->getParamDecl(HasExplicitObjectParam ? 1 : 0) << NumFormalArgs | 
|  | << HasExplicitObjectParam << Fn->getParametersSourceRange(); | 
|  | else | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | 
|  | << Description << mode << modeCount << NumFormalArgs | 
|  | << HasExplicitObjectParam << Fn->getParametersSourceRange(); | 
|  |  | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | } | 
|  |  | 
|  | /// Arity mismatch diagnosis specific to a function overload candidate. | 
|  | static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumFormalArgs) { | 
|  | if (!CheckArityMismatch(S, Cand, NumFormalArgs)) | 
|  | DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); | 
|  | } | 
|  |  | 
|  | static TemplateDecl *getDescribedTemplate(Decl *Templated) { | 
|  | if (TemplateDecl *TD = Templated->getDescribedTemplate()) | 
|  | return TD; | 
|  | llvm_unreachable("Unsupported: Getting the described template declaration" | 
|  | " for bad deduction diagnosis"); | 
|  | } | 
|  |  | 
|  | /// Diagnose a failed template-argument deduction. | 
|  | static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, | 
|  | DeductionFailureInfo &DeductionFailure, | 
|  | unsigned NumArgs, | 
|  | bool TakingCandidateAddress) { | 
|  | TemplateParameter Param = DeductionFailure.getTemplateParameter(); | 
|  | NamedDecl *ParamD; | 
|  | (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || | 
|  | (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || | 
|  | (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); | 
|  | switch (DeductionFailure.getResult()) { | 
|  | case TemplateDeductionResult::Success: | 
|  | llvm_unreachable( | 
|  | "TemplateDeductionResult::Success while diagnosing bad deduction"); | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | llvm_unreachable("TemplateDeductionResult::NonDependentConversionFailure " | 
|  | "while diagnosing bad deduction"); | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | return; | 
|  |  | 
|  | case TemplateDeductionResult::Incomplete: { | 
|  | assert(ParamD && "no parameter found for incomplete deduction result"); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_incomplete_deduction) | 
|  | << ParamD->getDeclName(); | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::IncompletePack: { | 
|  | assert(ParamD && "no parameter found for incomplete deduction result"); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_incomplete_deduction_pack) | 
|  | << ParamD->getDeclName() | 
|  | << (DeductionFailure.getFirstArg()->pack_size() + 1) | 
|  | << *DeductionFailure.getFirstArg(); | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::Underqualified: { | 
|  | assert(ParamD && "no parameter found for bad qualifiers deduction result"); | 
|  | TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); | 
|  |  | 
|  | QualType Param = DeductionFailure.getFirstArg()->getAsType(); | 
|  |  | 
|  | // Param will have been canonicalized, but it should just be a | 
|  | // qualified version of ParamD, so move the qualifiers to that. | 
|  | QualifierCollector Qs; | 
|  | Qs.strip(Param); | 
|  | QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); | 
|  | assert(S.Context.hasSameType(Param, NonCanonParam)); | 
|  |  | 
|  | // Arg has also been canonicalized, but there's nothing we can do | 
|  | // about that.  It also doesn't matter as much, because it won't | 
|  | // have any template parameters in it (because deduction isn't | 
|  | // done on dependent types). | 
|  | QualType Arg = DeductionFailure.getSecondArg()->getAsType(); | 
|  |  | 
|  | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) | 
|  | << ParamD->getDeclName() << Arg << NonCanonParam; | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::Inconsistent: { | 
|  | assert(ParamD && "no parameter found for inconsistent deduction result"); | 
|  | int which = 0; | 
|  | if (isa<TemplateTypeParmDecl>(ParamD)) | 
|  | which = 0; | 
|  | else if (isa<NonTypeTemplateParmDecl>(ParamD)) { | 
|  | // Deduction might have failed because we deduced arguments of two | 
|  | // different types for a non-type template parameter. | 
|  | // FIXME: Use a different TDK value for this. | 
|  | QualType T1 = | 
|  | DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); | 
|  | QualType T2 = | 
|  | DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); | 
|  | if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_inconsistent_deduction_types) | 
|  | << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 | 
|  | << *DeductionFailure.getSecondArg() << T2; | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | } | 
|  |  | 
|  | which = 1; | 
|  | } else { | 
|  | which = 2; | 
|  | } | 
|  |  | 
|  | // Tweak the diagnostic if the problem is that we deduced packs of | 
|  | // different arities. We'll print the actual packs anyway in case that | 
|  | // includes additional useful information. | 
|  | if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && | 
|  | DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && | 
|  | DeductionFailure.getFirstArg()->pack_size() != | 
|  | DeductionFailure.getSecondArg()->pack_size()) { | 
|  | which = 3; | 
|  | } | 
|  |  | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_inconsistent_deduction) | 
|  | << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() | 
|  | << *DeductionFailure.getSecondArg(); | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | assert(ParamD && "no parameter found for invalid explicit arguments"); | 
|  | if (ParamD->getDeclName()) | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_explicit_arg_mismatch_named) | 
|  | << ParamD->getDeclName(); | 
|  | else { | 
|  | int index = 0; | 
|  | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) | 
|  | index = TTP->getIndex(); | 
|  | else if (NonTypeTemplateParmDecl *NTTP | 
|  | = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) | 
|  | index = NTTP->getIndex(); | 
|  | else | 
|  | index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) | 
|  | << (index + 1); | 
|  | } | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  |  | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: { | 
|  | // Format the template argument list into the argument string. | 
|  | SmallString<128> TemplateArgString; | 
|  | TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); | 
|  | TemplateArgString = " "; | 
|  | TemplateArgString += S.getTemplateArgumentBindingsText( | 
|  | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | 
|  | if (TemplateArgString.size() == 1) | 
|  | TemplateArgString.clear(); | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_unsatisfied_constraints) | 
|  | << TemplateArgString; | 
|  |  | 
|  | S.DiagnoseUnsatisfiedConstraint( | 
|  | static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); | 
|  | return; | 
|  | } | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | DiagnoseArityMismatch(S, Found, Templated, NumArgs); | 
|  | return; | 
|  |  | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_instantiation_depth); | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  |  | 
|  | case TemplateDeductionResult::SubstitutionFailure: { | 
|  | // Format the template argument list into the argument string. | 
|  | SmallString<128> TemplateArgString; | 
|  | if (TemplateArgumentList *Args = | 
|  | DeductionFailure.getTemplateArgumentList()) { | 
|  | TemplateArgString = " "; | 
|  | TemplateArgString += S.getTemplateArgumentBindingsText( | 
|  | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | 
|  | if (TemplateArgString.size() == 1) | 
|  | TemplateArgString.clear(); | 
|  | } | 
|  |  | 
|  | // If this candidate was disabled by enable_if, say so. | 
|  | PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); | 
|  | if (PDiag && PDiag->second.getDiagID() == | 
|  | diag::err_typename_nested_not_found_enable_if) { | 
|  | // FIXME: Use the source range of the condition, and the fully-qualified | 
|  | //        name of the enable_if template. These are both present in PDiag. | 
|  | S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) | 
|  | << "'enable_if'" << TemplateArgString; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We found a specific requirement that disabled the enable_if. | 
|  | if (PDiag && PDiag->second.getDiagID() == | 
|  | diag::err_typename_nested_not_found_requirement) { | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_disabled_by_requirement) | 
|  | << PDiag->second.getStringArg(0) << TemplateArgString; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Format the SFINAE diagnostic into the argument string. | 
|  | // FIXME: Add a general mechanism to include a PartialDiagnostic *'s | 
|  | //        formatted message in another diagnostic. | 
|  | SmallString<128> SFINAEArgString; | 
|  | SourceRange R; | 
|  | if (PDiag) { | 
|  | SFINAEArgString = ": "; | 
|  | R = SourceRange(PDiag->first, PDiag->first); | 
|  | PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); | 
|  | } | 
|  |  | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_substitution_failure) | 
|  | << TemplateArgString << SFINAEArgString << R; | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: { | 
|  | // Format the template argument list into the argument string. | 
|  | SmallString<128> TemplateArgString; | 
|  | if (TemplateArgumentList *Args = | 
|  | DeductionFailure.getTemplateArgumentList()) { | 
|  | TemplateArgString = " "; | 
|  | TemplateArgString += S.getTemplateArgumentBindingsText( | 
|  | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | 
|  | if (TemplateArgString.size() == 1) | 
|  | TemplateArgString.clear(); | 
|  | } | 
|  |  | 
|  | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) | 
|  | << (*DeductionFailure.getCallArgIndex() + 1) | 
|  | << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() | 
|  | << TemplateArgString | 
|  | << (DeductionFailure.getResult() == | 
|  | TemplateDeductionResult::DeducedMismatchNested); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateDeductionResult::NonDeducedMismatch: { | 
|  | // FIXME: Provide a source location to indicate what we couldn't match. | 
|  | TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); | 
|  | TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); | 
|  | if (FirstTA.getKind() == TemplateArgument::Template && | 
|  | SecondTA.getKind() == TemplateArgument::Template) { | 
|  | TemplateName FirstTN = FirstTA.getAsTemplate(); | 
|  | TemplateName SecondTN = SecondTA.getAsTemplate(); | 
|  | if (FirstTN.getKind() == TemplateName::Template && | 
|  | SecondTN.getKind() == TemplateName::Template) { | 
|  | if (FirstTN.getAsTemplateDecl()->getName() == | 
|  | SecondTN.getAsTemplateDecl()->getName()) { | 
|  | // FIXME: This fixes a bad diagnostic where both templates are named | 
|  | // the same.  This particular case is a bit difficult since: | 
|  | // 1) It is passed as a string to the diagnostic printer. | 
|  | // 2) The diagnostic printer only attempts to find a better | 
|  | //    name for types, not decls. | 
|  | // Ideally, this should folded into the diagnostic printer. | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_non_deduced_mismatch_qualified) | 
|  | << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && | 
|  | !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) | 
|  | return; | 
|  |  | 
|  | // FIXME: For generic lambda parameters, check if the function is a lambda | 
|  | // call operator, and if so, emit a prettier and more informative | 
|  | // diagnostic that mentions 'auto' and lambda in addition to | 
|  | // (or instead of?) the canonical template type parameters. | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_ovl_candidate_non_deduced_mismatch) | 
|  | << FirstTA << SecondTA; | 
|  | return; | 
|  | } | 
|  | // TODO: diagnose these individually, then kill off | 
|  | // note_ovl_candidate_bad_deduction, which is uselessly vague. | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); | 
|  | MaybeEmitInheritedConstructorNote(S, Found); | 
|  | return; | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | S.Diag(Templated->getLocation(), | 
|  | diag::note_cuda_ovl_candidate_target_mismatch); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Diagnose a failed template-argument deduction, for function calls. | 
|  | static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumArgs, | 
|  | bool TakingCandidateAddress) { | 
|  | TemplateDeductionResult TDK = Cand->DeductionFailure.getResult(); | 
|  | if (TDK == TemplateDeductionResult::TooFewArguments || | 
|  | TDK == TemplateDeductionResult::TooManyArguments) { | 
|  | if (CheckArityMismatch(S, Cand, NumArgs)) | 
|  | return; | 
|  | } | 
|  | DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern | 
|  | Cand->DeductionFailure, NumArgs, TakingCandidateAddress); | 
|  | } | 
|  |  | 
|  | /// CUDA: diagnose an invalid call across targets. | 
|  | static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { | 
|  | FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); | 
|  | FunctionDecl *Callee = Cand->Function; | 
|  |  | 
|  | CUDAFunctionTarget CallerTarget = S.CUDA().IdentifyTarget(Caller), | 
|  | CalleeTarget = S.CUDA().IdentifyTarget(Callee); | 
|  |  | 
|  | std::string FnDesc; | 
|  | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | 
|  | ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, | 
|  | Cand->getRewriteKind(), FnDesc); | 
|  |  | 
|  | S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) | 
|  | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template | 
|  | << FnDesc /* Ignored */ | 
|  | << llvm::to_underlying(CalleeTarget) << llvm::to_underlying(CallerTarget); | 
|  |  | 
|  | // This could be an implicit constructor for which we could not infer the | 
|  | // target due to a collsion. Diagnose that case. | 
|  | CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); | 
|  | if (Meth != nullptr && Meth->isImplicit()) { | 
|  | CXXRecordDecl *ParentClass = Meth->getParent(); | 
|  | CXXSpecialMemberKind CSM; | 
|  |  | 
|  | switch (FnKindPair.first) { | 
|  | default: | 
|  | return; | 
|  | case oc_implicit_default_constructor: | 
|  | CSM = CXXSpecialMemberKind::DefaultConstructor; | 
|  | break; | 
|  | case oc_implicit_copy_constructor: | 
|  | CSM = CXXSpecialMemberKind::CopyConstructor; | 
|  | break; | 
|  | case oc_implicit_move_constructor: | 
|  | CSM = CXXSpecialMemberKind::MoveConstructor; | 
|  | break; | 
|  | case oc_implicit_copy_assignment: | 
|  | CSM = CXXSpecialMemberKind::CopyAssignment; | 
|  | break; | 
|  | case oc_implicit_move_assignment: | 
|  | CSM = CXXSpecialMemberKind::MoveAssignment; | 
|  | break; | 
|  | }; | 
|  |  | 
|  | bool ConstRHS = false; | 
|  | if (Meth->getNumParams()) { | 
|  | if (const ReferenceType *RT = | 
|  | Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { | 
|  | ConstRHS = RT->getPointeeType().isConstQualified(); | 
|  | } | 
|  | } | 
|  |  | 
|  | S.CUDA().inferTargetForImplicitSpecialMember(ParentClass, CSM, Meth, | 
|  | /* ConstRHS */ ConstRHS, | 
|  | /* Diagnose */ true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { | 
|  | FunctionDecl *Callee = Cand->Function; | 
|  | EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); | 
|  |  | 
|  | S.Diag(Callee->getLocation(), | 
|  | diag::note_ovl_candidate_disabled_by_function_cond_attr) | 
|  | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | 
|  | } | 
|  |  | 
|  | static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { | 
|  | ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); | 
|  | assert(ES.isExplicit() && "not an explicit candidate"); | 
|  |  | 
|  | unsigned Kind; | 
|  | switch (Cand->Function->getDeclKind()) { | 
|  | case Decl::Kind::CXXConstructor: | 
|  | Kind = 0; | 
|  | break; | 
|  | case Decl::Kind::CXXConversion: | 
|  | Kind = 1; | 
|  | break; | 
|  | case Decl::Kind::CXXDeductionGuide: | 
|  | Kind = Cand->Function->isImplicit() ? 0 : 2; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("invalid Decl"); | 
|  | } | 
|  |  | 
|  | // Note the location of the first (in-class) declaration; a redeclaration | 
|  | // (particularly an out-of-class definition) will typically lack the | 
|  | // 'explicit' specifier. | 
|  | // FIXME: This is probably a good thing to do for all 'candidate' notes. | 
|  | FunctionDecl *First = Cand->Function->getFirstDecl(); | 
|  | if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) | 
|  | First = Pattern->getFirstDecl(); | 
|  |  | 
|  | S.Diag(First->getLocation(), | 
|  | diag::note_ovl_candidate_explicit) | 
|  | << Kind << (ES.getExpr() ? 1 : 0) | 
|  | << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); | 
|  | } | 
|  |  | 
|  | /// Generates a 'note' diagnostic for an overload candidate.  We've | 
|  | /// already generated a primary error at the call site. | 
|  | /// | 
|  | /// It really does need to be a single diagnostic with its caret | 
|  | /// pointed at the candidate declaration.  Yes, this creates some | 
|  | /// major challenges of technical writing.  Yes, this makes pointing | 
|  | /// out problems with specific arguments quite awkward.  It's still | 
|  | /// better than generating twenty screens of text for every failed | 
|  | /// overload. | 
|  | /// | 
|  | /// It would be great to be able to express per-candidate problems | 
|  | /// more richly for those diagnostic clients that cared, but we'd | 
|  | /// still have to be just as careful with the default diagnostics. | 
|  | /// \param CtorDestAS Addr space of object being constructed (for ctor | 
|  | /// candidates only). | 
|  | static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, | 
|  | unsigned NumArgs, | 
|  | bool TakingCandidateAddress, | 
|  | LangAS CtorDestAS = LangAS::Default) { | 
|  | FunctionDecl *Fn = Cand->Function; | 
|  | if (shouldSkipNotingLambdaConversionDecl(Fn)) | 
|  | return; | 
|  |  | 
|  | // There is no physical candidate declaration to point to for OpenCL builtins. | 
|  | // Except for failed conversions, the notes are identical for each candidate, | 
|  | // so do not generate such notes. | 
|  | if (S.getLangOpts().OpenCL && Fn->isImplicit() && | 
|  | Cand->FailureKind != ovl_fail_bad_conversion) | 
|  | return; | 
|  |  | 
|  | // Note deleted candidates, but only if they're viable. | 
|  | if (Cand->Viable) { | 
|  | if (Fn->isDeleted()) { | 
|  | std::string FnDesc; | 
|  | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | 
|  | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, | 
|  | Cand->getRewriteKind(), FnDesc); | 
|  |  | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) | 
|  | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | 
|  | << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We don't really have anything else to say about viable candidates. | 
|  | S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (Cand->FailureKind) { | 
|  | case ovl_fail_too_many_arguments: | 
|  | case ovl_fail_too_few_arguments: | 
|  | return DiagnoseArityMismatch(S, Cand, NumArgs); | 
|  |  | 
|  | case ovl_fail_bad_deduction: | 
|  | return DiagnoseBadDeduction(S, Cand, NumArgs, | 
|  | TakingCandidateAddress); | 
|  |  | 
|  | case ovl_fail_illegal_constructor: { | 
|  | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) | 
|  | << (Fn->getPrimaryTemplate() ? 1 : 0); | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ovl_fail_object_addrspace_mismatch: { | 
|  | Qualifiers QualsForPrinting; | 
|  | QualsForPrinting.setAddressSpace(CtorDestAS); | 
|  | S.Diag(Fn->getLocation(), | 
|  | diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) | 
|  | << QualsForPrinting; | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ovl_fail_trivial_conversion: | 
|  | case ovl_fail_bad_final_conversion: | 
|  | case ovl_fail_final_conversion_not_exact: | 
|  | return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); | 
|  |  | 
|  | case ovl_fail_bad_conversion: { | 
|  | unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); | 
|  | for (unsigned N = Cand->Conversions.size(); I != N; ++I) | 
|  | if (Cand->Conversions[I].isBad()) | 
|  | return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); | 
|  |  | 
|  | // FIXME: this currently happens when we're called from SemaInit | 
|  | // when user-conversion overload fails.  Figure out how to handle | 
|  | // those conditions and diagnose them well. | 
|  | return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); | 
|  | } | 
|  |  | 
|  | case ovl_fail_bad_target: | 
|  | return DiagnoseBadTarget(S, Cand); | 
|  |  | 
|  | case ovl_fail_enable_if: | 
|  | return DiagnoseFailedEnableIfAttr(S, Cand); | 
|  |  | 
|  | case ovl_fail_explicit: | 
|  | return DiagnoseFailedExplicitSpec(S, Cand); | 
|  |  | 
|  | case ovl_fail_inhctor_slice: | 
|  | // It's generally not interesting to note copy/move constructors here. | 
|  | if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) | 
|  | return; | 
|  | S.Diag(Fn->getLocation(), | 
|  | diag::note_ovl_candidate_inherited_constructor_slice) | 
|  | << (Fn->getPrimaryTemplate() ? 1 : 0) | 
|  | << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); | 
|  | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | 
|  | return; | 
|  |  | 
|  | case ovl_fail_addr_not_available: { | 
|  | bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); | 
|  | (void)Available; | 
|  | assert(!Available); | 
|  | break; | 
|  | } | 
|  | case ovl_non_default_multiversion_function: | 
|  | // Do nothing, these should simply be ignored. | 
|  | break; | 
|  |  | 
|  | case ovl_fail_constraints_not_satisfied: { | 
|  | std::string FnDesc; | 
|  | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | 
|  | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, | 
|  | Cand->getRewriteKind(), FnDesc); | 
|  |  | 
|  | S.Diag(Fn->getLocation(), | 
|  | diag::note_ovl_candidate_constraints_not_satisfied) | 
|  | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template | 
|  | << FnDesc /* Ignored */; | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (S.CheckFunctionConstraints(Fn, Satisfaction)) | 
|  | break; | 
|  | S.DiagnoseUnsatisfiedConstraint(Satisfaction); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { | 
|  | if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) | 
|  | return; | 
|  |  | 
|  | // Desugar the type of the surrogate down to a function type, | 
|  | // retaining as many typedefs as possible while still showing | 
|  | // the function type (and, therefore, its parameter types). | 
|  | QualType FnType = Cand->Surrogate->getConversionType(); | 
|  | bool isLValueReference = false; | 
|  | bool isRValueReference = false; | 
|  | bool isPointer = false; | 
|  | if (const LValueReferenceType *FnTypeRef = | 
|  | FnType->getAs<LValueReferenceType>()) { | 
|  | FnType = FnTypeRef->getPointeeType(); | 
|  | isLValueReference = true; | 
|  | } else if (const RValueReferenceType *FnTypeRef = | 
|  | FnType->getAs<RValueReferenceType>()) { | 
|  | FnType = FnTypeRef->getPointeeType(); | 
|  | isRValueReference = true; | 
|  | } | 
|  | if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { | 
|  | FnType = FnTypePtr->getPointeeType(); | 
|  | isPointer = true; | 
|  | } | 
|  | // Desugar down to a function type. | 
|  | FnType = QualType(FnType->getAs<FunctionType>(), 0); | 
|  | // Reconstruct the pointer/reference as appropriate. | 
|  | if (isPointer) FnType = S.Context.getPointerType(FnType); | 
|  | if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); | 
|  | if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); | 
|  |  | 
|  | if (!Cand->Viable && | 
|  | Cand->FailureKind == ovl_fail_constraints_not_satisfied) { | 
|  | S.Diag(Cand->Surrogate->getLocation(), | 
|  | diag::note_ovl_surrogate_constraints_not_satisfied) | 
|  | << Cand->Surrogate; | 
|  | ConstraintSatisfaction Satisfaction; | 
|  | if (S.CheckFunctionConstraints(Cand->Surrogate, Satisfaction)) | 
|  | S.DiagnoseUnsatisfiedConstraint(Satisfaction); | 
|  | } else { | 
|  | S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) | 
|  | << FnType; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, | 
|  | SourceLocation OpLoc, | 
|  | OverloadCandidate *Cand) { | 
|  | assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); | 
|  | std::string TypeStr("operator"); | 
|  | TypeStr += Opc; | 
|  | TypeStr += "("; | 
|  | TypeStr += Cand->BuiltinParamTypes[0].getAsString(); | 
|  | if (Cand->Conversions.size() == 1) { | 
|  | TypeStr += ")"; | 
|  | S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; | 
|  | } else { | 
|  | TypeStr += ", "; | 
|  | TypeStr += Cand->BuiltinParamTypes[1].getAsString(); | 
|  | TypeStr += ")"; | 
|  | S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, | 
|  | OverloadCandidate *Cand) { | 
|  | for (const ImplicitConversionSequence &ICS : Cand->Conversions) { | 
|  | if (ICS.isBad()) break; // all meaningless after first invalid | 
|  | if (!ICS.isAmbiguous()) continue; | 
|  |  | 
|  | ICS.DiagnoseAmbiguousConversion( | 
|  | S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { | 
|  | if (Cand->Function) | 
|  | return Cand->Function->getLocation(); | 
|  | if (Cand->IsSurrogate) | 
|  | return Cand->Surrogate->getLocation(); | 
|  | return SourceLocation(); | 
|  | } | 
|  |  | 
|  | static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { | 
|  | switch (static_cast<TemplateDeductionResult>(DFI.Result)) { | 
|  | case TemplateDeductionResult::Success: | 
|  | case TemplateDeductionResult::NonDependentConversionFailure: | 
|  | case TemplateDeductionResult::AlreadyDiagnosed: | 
|  | llvm_unreachable("non-deduction failure while diagnosing bad deduction"); | 
|  |  | 
|  | case TemplateDeductionResult::Invalid: | 
|  | case TemplateDeductionResult::Incomplete: | 
|  | case TemplateDeductionResult::IncompletePack: | 
|  | return 1; | 
|  |  | 
|  | case TemplateDeductionResult::Underqualified: | 
|  | case TemplateDeductionResult::Inconsistent: | 
|  | return 2; | 
|  |  | 
|  | case TemplateDeductionResult::SubstitutionFailure: | 
|  | case TemplateDeductionResult::DeducedMismatch: | 
|  | case TemplateDeductionResult::ConstraintsNotSatisfied: | 
|  | case TemplateDeductionResult::DeducedMismatchNested: | 
|  | case TemplateDeductionResult::NonDeducedMismatch: | 
|  | case TemplateDeductionResult::MiscellaneousDeductionFailure: | 
|  | case TemplateDeductionResult::CUDATargetMismatch: | 
|  | return 3; | 
|  |  | 
|  | case TemplateDeductionResult::InstantiationDepth: | 
|  | return 4; | 
|  |  | 
|  | case TemplateDeductionResult::InvalidExplicitArguments: | 
|  | return 5; | 
|  |  | 
|  | case TemplateDeductionResult::TooManyArguments: | 
|  | case TemplateDeductionResult::TooFewArguments: | 
|  | return 6; | 
|  | } | 
|  | llvm_unreachable("Unhandled deduction result"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct CompareOverloadCandidatesForDisplay { | 
|  | Sema &S; | 
|  | SourceLocation Loc; | 
|  | size_t NumArgs; | 
|  | OverloadCandidateSet::CandidateSetKind CSK; | 
|  |  | 
|  | CompareOverloadCandidatesForDisplay( | 
|  | Sema &S, SourceLocation Loc, size_t NArgs, | 
|  | OverloadCandidateSet::CandidateSetKind CSK) | 
|  | : S(S), NumArgs(NArgs), CSK(CSK) {} | 
|  |  | 
|  | OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { | 
|  | // If there are too many or too few arguments, that's the high-order bit we | 
|  | // want to sort by, even if the immediate failure kind was something else. | 
|  | if (C->FailureKind == ovl_fail_too_many_arguments || | 
|  | C->FailureKind == ovl_fail_too_few_arguments) | 
|  | return static_cast<OverloadFailureKind>(C->FailureKind); | 
|  |  | 
|  | if (C->Function) { | 
|  | if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) | 
|  | return ovl_fail_too_many_arguments; | 
|  | if (NumArgs < C->Function->getMinRequiredArguments()) | 
|  | return ovl_fail_too_few_arguments; | 
|  | } | 
|  |  | 
|  | return static_cast<OverloadFailureKind>(C->FailureKind); | 
|  | } | 
|  |  | 
|  | bool operator()(const OverloadCandidate *L, | 
|  | const OverloadCandidate *R) { | 
|  | // Fast-path this check. | 
|  | if (L == R) return false; | 
|  |  | 
|  | // Order first by viability. | 
|  | if (L->Viable) { | 
|  | if (!R->Viable) return true; | 
|  |  | 
|  | if (int Ord = CompareConversions(*L, *R)) | 
|  | return Ord < 0; | 
|  | // Use other tie breakers. | 
|  | } else if (R->Viable) | 
|  | return false; | 
|  |  | 
|  | assert(L->Viable == R->Viable); | 
|  |  | 
|  | // Criteria by which we can sort non-viable candidates: | 
|  | if (!L->Viable) { | 
|  | OverloadFailureKind LFailureKind = EffectiveFailureKind(L); | 
|  | OverloadFailureKind RFailureKind = EffectiveFailureKind(R); | 
|  |  | 
|  | // 1. Arity mismatches come after other candidates. | 
|  | if (LFailureKind == ovl_fail_too_many_arguments || | 
|  | LFailureKind == ovl_fail_too_few_arguments) { | 
|  | if (RFailureKind == ovl_fail_too_many_arguments || | 
|  | RFailureKind == ovl_fail_too_few_arguments) { | 
|  | int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); | 
|  | int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); | 
|  | if (LDist == RDist) { | 
|  | if (LFailureKind == RFailureKind) | 
|  | // Sort non-surrogates before surrogates. | 
|  | return !L->IsSurrogate && R->IsSurrogate; | 
|  | // Sort candidates requiring fewer parameters than there were | 
|  | // arguments given after candidates requiring more parameters | 
|  | // than there were arguments given. | 
|  | return LFailureKind == ovl_fail_too_many_arguments; | 
|  | } | 
|  | return LDist < RDist; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (RFailureKind == ovl_fail_too_many_arguments || | 
|  | RFailureKind == ovl_fail_too_few_arguments) | 
|  | return true; | 
|  |  | 
|  | // 2. Bad conversions come first and are ordered by the number | 
|  | // of bad conversions and quality of good conversions. | 
|  | if (LFailureKind == ovl_fail_bad_conversion) { | 
|  | if (RFailureKind != ovl_fail_bad_conversion) | 
|  | return true; | 
|  |  | 
|  | // The conversion that can be fixed with a smaller number of changes, | 
|  | // comes first. | 
|  | unsigned numLFixes = L->Fix.NumConversionsFixed; | 
|  | unsigned numRFixes = R->Fix.NumConversionsFixed; | 
|  | numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; | 
|  | numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; | 
|  | if (numLFixes != numRFixes) { | 
|  | return numLFixes < numRFixes; | 
|  | } | 
|  |  | 
|  | // If there's any ordering between the defined conversions... | 
|  | if (int Ord = CompareConversions(*L, *R)) | 
|  | return Ord < 0; | 
|  | } else if (RFailureKind == ovl_fail_bad_conversion) | 
|  | return false; | 
|  |  | 
|  | if (LFailureKind == ovl_fail_bad_deduction) { | 
|  | if (RFailureKind != ovl_fail_bad_deduction) | 
|  | return true; | 
|  |  | 
|  | if (L->DeductionFailure.Result != R->DeductionFailure.Result) { | 
|  | unsigned LRank = RankDeductionFailure(L->DeductionFailure); | 
|  | unsigned RRank = RankDeductionFailure(R->DeductionFailure); | 
|  | if (LRank != RRank) | 
|  | return LRank < RRank; | 
|  | } | 
|  | } else if (RFailureKind == ovl_fail_bad_deduction) | 
|  | return false; | 
|  |  | 
|  | // TODO: others? | 
|  | } | 
|  |  | 
|  | // Sort everything else by location. | 
|  | SourceLocation LLoc = GetLocationForCandidate(L); | 
|  | SourceLocation RLoc = GetLocationForCandidate(R); | 
|  |  | 
|  | // Put candidates without locations (e.g. builtins) at the end. | 
|  | if (LLoc.isValid() && RLoc.isValid()) | 
|  | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | 
|  | if (LLoc.isValid() && !RLoc.isValid()) | 
|  | return true; | 
|  | if (RLoc.isValid() && !LLoc.isValid()) | 
|  | return false; | 
|  | assert(!LLoc.isValid() && !RLoc.isValid()); | 
|  | // For builtins and other functions without locations, fallback to the order | 
|  | // in which they were added into the candidate set. | 
|  | return L < R; | 
|  | } | 
|  |  | 
|  | private: | 
|  | struct ConversionSignals { | 
|  | unsigned KindRank = 0; | 
|  | ImplicitConversionRank Rank = ICR_Exact_Match; | 
|  |  | 
|  | static ConversionSignals ForSequence(ImplicitConversionSequence &Seq) { | 
|  | ConversionSignals Sig; | 
|  | Sig.KindRank = Seq.getKindRank(); | 
|  | if (Seq.isStandard()) | 
|  | Sig.Rank = Seq.Standard.getRank(); | 
|  | else if (Seq.isUserDefined()) | 
|  | Sig.Rank = Seq.UserDefined.After.getRank(); | 
|  | // We intend StaticObjectArgumentConversion to compare the same as | 
|  | // StandardConversion with ICR_ExactMatch rank. | 
|  | return Sig; | 
|  | } | 
|  |  | 
|  | static ConversionSignals ForObjectArgument() { | 
|  | // We intend StaticObjectArgumentConversion to compare the same as | 
|  | // StandardConversion with ICR_ExactMatch rank. Default give us that. | 
|  | return {}; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Returns -1 if conversions in L are considered better. | 
|  | //          0 if they are considered indistinguishable. | 
|  | //          1 if conversions in R are better. | 
|  | int CompareConversions(const OverloadCandidate &L, | 
|  | const OverloadCandidate &R) { | 
|  | // We cannot use `isBetterOverloadCandidate` because it is defined | 
|  | // according to the C++ standard and provides a partial order, but we need | 
|  | // a total order as this function is used in sort. | 
|  | assert(L.Conversions.size() == R.Conversions.size()); | 
|  | for (unsigned I = 0, N = L.Conversions.size(); I != N; ++I) { | 
|  | auto LS = L.IgnoreObjectArgument && I == 0 | 
|  | ? ConversionSignals::ForObjectArgument() | 
|  | : ConversionSignals::ForSequence(L.Conversions[I]); | 
|  | auto RS = R.IgnoreObjectArgument | 
|  | ? ConversionSignals::ForObjectArgument() | 
|  | : ConversionSignals::ForSequence(R.Conversions[I]); | 
|  | if (std::tie(LS.KindRank, LS.Rank) != std::tie(RS.KindRank, RS.Rank)) | 
|  | return std::tie(LS.KindRank, LS.Rank) < std::tie(RS.KindRank, RS.Rank) | 
|  | ? -1 | 
|  | : 1; | 
|  | } | 
|  | // FIXME: find a way to compare templates for being more or less | 
|  | // specialized that provides a strict weak ordering. | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// CompleteNonViableCandidate - Normally, overload resolution only | 
|  | /// computes up to the first bad conversion. Produces the FixIt set if | 
|  | /// possible. | 
|  | static void | 
|  | CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet::CandidateSetKind CSK) { | 
|  | assert(!Cand->Viable); | 
|  |  | 
|  | // Don't do anything on failures other than bad conversion. | 
|  | if (Cand->FailureKind != ovl_fail_bad_conversion) | 
|  | return; | 
|  |  | 
|  | // We only want the FixIts if all the arguments can be corrected. | 
|  | bool Unfixable = false; | 
|  | // Use a implicit copy initialization to check conversion fixes. | 
|  | Cand->Fix.setConversionChecker(TryCopyInitialization); | 
|  |  | 
|  | // Attempt to fix the bad conversion. | 
|  | unsigned ConvCount = Cand->Conversions.size(); | 
|  | for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; | 
|  | ++ConvIdx) { | 
|  | assert(ConvIdx != ConvCount && "no bad conversion in candidate"); | 
|  | if (Cand->Conversions[ConvIdx].isInitialized() && | 
|  | Cand->Conversions[ConvIdx].isBad()) { | 
|  | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: this should probably be preserved from the overload | 
|  | // operation somehow. | 
|  | bool SuppressUserConversions = false; | 
|  |  | 
|  | unsigned ConvIdx = 0; | 
|  | unsigned ArgIdx = 0; | 
|  | ArrayRef<QualType> ParamTypes; | 
|  | bool Reversed = Cand->isReversed(); | 
|  |  | 
|  | if (Cand->IsSurrogate) { | 
|  | QualType ConvType | 
|  | = Cand->Surrogate->getConversionType().getNonReferenceType(); | 
|  | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
|  | ConvType = ConvPtrType->getPointeeType(); | 
|  | ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); | 
|  | // Conversion 0 is 'this', which doesn't have a corresponding parameter. | 
|  | ConvIdx = 1; | 
|  | } else if (Cand->Function) { | 
|  | ParamTypes = | 
|  | Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); | 
|  | if (isa<CXXMethodDecl>(Cand->Function) && | 
|  | !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { | 
|  | // Conversion 0 is 'this', which doesn't have a corresponding parameter. | 
|  | ConvIdx = 1; | 
|  | if (CSK == OverloadCandidateSet::CSK_Operator && | 
|  | Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call && | 
|  | Cand->Function->getDeclName().getCXXOverloadedOperator() != | 
|  | OO_Subscript) | 
|  | // Argument 0 is 'this', which doesn't have a corresponding parameter. | 
|  | ArgIdx = 1; | 
|  | } | 
|  | } else { | 
|  | // Builtin operator. | 
|  | assert(ConvCount <= 3); | 
|  | ParamTypes = Cand->BuiltinParamTypes; | 
|  | } | 
|  |  | 
|  | // Fill in the rest of the conversions. | 
|  | for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; | 
|  | ConvIdx != ConvCount; | 
|  | ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { | 
|  | assert(ArgIdx < Args.size() && "no argument for this arg conversion"); | 
|  | if (Cand->Conversions[ConvIdx].isInitialized()) { | 
|  | // We've already checked this conversion. | 
|  | } else if (ParamIdx < ParamTypes.size()) { | 
|  | if (ParamTypes[ParamIdx]->isDependentType()) | 
|  | Cand->Conversions[ConvIdx].setAsIdentityConversion( | 
|  | Args[ArgIdx]->getType()); | 
|  | else { | 
|  | Cand->Conversions[ConvIdx] = | 
|  | TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], | 
|  | SuppressUserConversions, | 
|  | /*InOverloadResolution=*/true, | 
|  | /*AllowObjCWritebackConversion=*/ | 
|  | S.getLangOpts().ObjCAutoRefCount); | 
|  | // Store the FixIt in the candidate if it exists. | 
|  | if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) | 
|  | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); | 
|  | } | 
|  | } else | 
|  | Cand->Conversions[ConvIdx].setEllipsis(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( | 
|  | Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, | 
|  | SourceLocation OpLoc, | 
|  | llvm::function_ref<bool(OverloadCandidate &)> Filter) { | 
|  | // Sort the candidates by viability and position.  Sorting directly would | 
|  | // be prohibitive, so we make a set of pointers and sort those. | 
|  | SmallVector<OverloadCandidate*, 32> Cands; | 
|  | if (OCD == OCD_AllCandidates) Cands.reserve(size()); | 
|  | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { | 
|  | if (!Filter(*Cand)) | 
|  | continue; | 
|  | switch (OCD) { | 
|  | case OCD_AllCandidates: | 
|  | if (!Cand->Viable) { | 
|  | if (!Cand->Function && !Cand->IsSurrogate) { | 
|  | // This a non-viable builtin candidate.  We do not, in general, | 
|  | // want to list every possible builtin candidate. | 
|  | continue; | 
|  | } | 
|  | CompleteNonViableCandidate(S, Cand, Args, Kind); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OCD_ViableCandidates: | 
|  | if (!Cand->Viable) | 
|  | continue; | 
|  | break; | 
|  |  | 
|  | case OCD_AmbiguousCandidates: | 
|  | if (!Cand->Best) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Cands.push_back(Cand); | 
|  | } | 
|  |  | 
|  | llvm::stable_sort( | 
|  | Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); | 
|  |  | 
|  | return Cands; | 
|  | } | 
|  |  | 
|  | bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, | 
|  | SourceLocation OpLoc) { | 
|  | bool DeferHint = false; | 
|  | if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { | 
|  | // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or | 
|  | // host device candidates. | 
|  | auto WrongSidedCands = | 
|  | CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { | 
|  | return (Cand.Viable == false && | 
|  | Cand.FailureKind == ovl_fail_bad_target) || | 
|  | (Cand.Function && | 
|  | Cand.Function->template hasAttr<CUDAHostAttr>() && | 
|  | Cand.Function->template hasAttr<CUDADeviceAttr>()); | 
|  | }); | 
|  | DeferHint = !WrongSidedCands.empty(); | 
|  | } | 
|  | return DeferHint; | 
|  | } | 
|  |  | 
|  | /// When overload resolution fails, prints diagnostic messages containing the | 
|  | /// candidates in the candidate set. | 
|  | void OverloadCandidateSet::NoteCandidates( | 
|  | PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, | 
|  | ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, | 
|  | llvm::function_ref<bool(OverloadCandidate &)> Filter) { | 
|  |  | 
|  | auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); | 
|  |  | 
|  | S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); | 
|  |  | 
|  | // In WebAssembly we don't want to emit further diagnostics if a table is | 
|  | // passed as an argument to a function. | 
|  | bool NoteCands = true; | 
|  | for (const Expr *Arg : Args) { | 
|  | if (Arg->getType()->isWebAssemblyTableType()) | 
|  | NoteCands = false; | 
|  | } | 
|  |  | 
|  | if (NoteCands) | 
|  | NoteCandidates(S, Args, Cands, Opc, OpLoc); | 
|  |  | 
|  | if (OCD == OCD_AmbiguousCandidates) | 
|  | MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); | 
|  | } | 
|  |  | 
|  | void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, | 
|  | ArrayRef<OverloadCandidate *> Cands, | 
|  | StringRef Opc, SourceLocation OpLoc) { | 
|  | bool ReportedAmbiguousConversions = false; | 
|  |  | 
|  | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | 
|  | unsigned CandsShown = 0; | 
|  | auto I = Cands.begin(), E = Cands.end(); | 
|  | for (; I != E; ++I) { | 
|  | OverloadCandidate *Cand = *I; | 
|  |  | 
|  | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && | 
|  | ShowOverloads == Ovl_Best) { | 
|  | break; | 
|  | } | 
|  | ++CandsShown; | 
|  |  | 
|  | if (Cand->Function) | 
|  | NoteFunctionCandidate(S, Cand, Args.size(), | 
|  | /*TakingCandidateAddress=*/false, DestAS); | 
|  | else if (Cand->IsSurrogate) | 
|  | NoteSurrogateCandidate(S, Cand); | 
|  | else { | 
|  | assert(Cand->Viable && | 
|  | "Non-viable built-in candidates are not added to Cands."); | 
|  | // Generally we only see ambiguities including viable builtin | 
|  | // operators if overload resolution got screwed up by an | 
|  | // ambiguous user-defined conversion. | 
|  | // | 
|  | // FIXME: It's quite possible for different conversions to see | 
|  | // different ambiguities, though. | 
|  | if (!ReportedAmbiguousConversions) { | 
|  | NoteAmbiguousUserConversions(S, OpLoc, Cand); | 
|  | ReportedAmbiguousConversions = true; | 
|  | } | 
|  |  | 
|  | // If this is a viable builtin, print it. | 
|  | NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Inform S.Diags that we've shown an overload set with N elements.  This may | 
|  | // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). | 
|  | S.Diags.overloadCandidatesShown(CandsShown); | 
|  |  | 
|  | if (I != E) | 
|  | S.Diag(OpLoc, diag::note_ovl_too_many_candidates, | 
|  | shouldDeferDiags(S, Args, OpLoc)) | 
|  | << int(E - I); | 
|  | } | 
|  |  | 
|  | static SourceLocation | 
|  | GetLocationForCandidate(const TemplateSpecCandidate *Cand) { | 
|  | return Cand->Specialization ? Cand->Specialization->getLocation() | 
|  | : SourceLocation(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct CompareTemplateSpecCandidatesForDisplay { | 
|  | Sema &S; | 
|  | CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} | 
|  |  | 
|  | bool operator()(const TemplateSpecCandidate *L, | 
|  | const TemplateSpecCandidate *R) { | 
|  | // Fast-path this check. | 
|  | if (L == R) | 
|  | return false; | 
|  |  | 
|  | // Assuming that both candidates are not matches... | 
|  |  | 
|  | // Sort by the ranking of deduction failures. | 
|  | if (L->DeductionFailure.Result != R->DeductionFailure.Result) | 
|  | return RankDeductionFailure(L->DeductionFailure) < | 
|  | RankDeductionFailure(R->DeductionFailure); | 
|  |  | 
|  | // Sort everything else by location. | 
|  | SourceLocation LLoc = GetLocationForCandidate(L); | 
|  | SourceLocation RLoc = GetLocationForCandidate(R); | 
|  |  | 
|  | // Put candidates without locations (e.g. builtins) at the end. | 
|  | if (LLoc.isInvalid()) | 
|  | return false; | 
|  | if (RLoc.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Diagnose a template argument deduction failure. | 
|  | /// We are treating these failures as overload failures due to bad | 
|  | /// deductions. | 
|  | void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, | 
|  | bool ForTakingAddress) { | 
|  | DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern | 
|  | DeductionFailure, /*NumArgs=*/0, ForTakingAddress); | 
|  | } | 
|  |  | 
|  | void TemplateSpecCandidateSet::destroyCandidates() { | 
|  | for (iterator i = begin(), e = end(); i != e; ++i) { | 
|  | i->DeductionFailure.Destroy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TemplateSpecCandidateSet::clear() { | 
|  | destroyCandidates(); | 
|  | Candidates.clear(); | 
|  | } | 
|  |  | 
|  | /// NoteCandidates - When no template specialization match is found, prints | 
|  | /// diagnostic messages containing the non-matching specializations that form | 
|  | /// the candidate set. | 
|  | /// This is analoguous to OverloadCandidateSet::NoteCandidates() with | 
|  | /// OCD == OCD_AllCandidates and Cand->Viable == false. | 
|  | void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { | 
|  | // Sort the candidates by position (assuming no candidate is a match). | 
|  | // Sorting directly would be prohibitive, so we make a set of pointers | 
|  | // and sort those. | 
|  | SmallVector<TemplateSpecCandidate *, 32> Cands; | 
|  | Cands.reserve(size()); | 
|  | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { | 
|  | if (Cand->Specialization) | 
|  | Cands.push_back(Cand); | 
|  | // Otherwise, this is a non-matching builtin candidate.  We do not, | 
|  | // in general, want to list every possible builtin candidate. | 
|  | } | 
|  |  | 
|  | llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); | 
|  |  | 
|  | // FIXME: Perhaps rename OverloadsShown and getShowOverloads() | 
|  | // for generalization purposes (?). | 
|  | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | 
|  |  | 
|  | SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; | 
|  | unsigned CandsShown = 0; | 
|  | for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { | 
|  | TemplateSpecCandidate *Cand = *I; | 
|  |  | 
|  | // Set an arbitrary limit on the number of candidates we'll spam | 
|  | // the user with.  FIXME: This limit should depend on details of the | 
|  | // candidate list. | 
|  | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) | 
|  | break; | 
|  | ++CandsShown; | 
|  |  | 
|  | assert(Cand->Specialization && | 
|  | "Non-matching built-in candidates are not added to Cands."); | 
|  | Cand->NoteDeductionFailure(S, ForTakingAddress); | 
|  | } | 
|  |  | 
|  | if (I != E) | 
|  | S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); | 
|  | } | 
|  |  | 
|  | // [PossiblyAFunctionType]  -->   [Return] | 
|  | // NonFunctionType --> NonFunctionType | 
|  | // R (A) --> R(A) | 
|  | // R (*)(A) --> R (A) | 
|  | // R (&)(A) --> R (A) | 
|  | // R (S::*)(A) --> R (A) | 
|  | QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { | 
|  | QualType Ret = PossiblyAFunctionType; | 
|  | if (const PointerType *ToTypePtr = | 
|  | PossiblyAFunctionType->getAs<PointerType>()) | 
|  | Ret = ToTypePtr->getPointeeType(); | 
|  | else if (const ReferenceType *ToTypeRef = | 
|  | PossiblyAFunctionType->getAs<ReferenceType>()) | 
|  | Ret = ToTypeRef->getPointeeType(); | 
|  | else if (const MemberPointerType *MemTypePtr = | 
|  | PossiblyAFunctionType->getAs<MemberPointerType>()) | 
|  | Ret = MemTypePtr->getPointeeType(); | 
|  | Ret = | 
|  | Context.getCanonicalType(Ret).getUnqualifiedType(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, | 
|  | bool Complain = true) { | 
|  | if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | 
|  | S.DeduceReturnType(FD, Loc, Complain)) | 
|  | return true; | 
|  |  | 
|  | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); | 
|  | if (S.getLangOpts().CPlusPlus17 && | 
|  | isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && | 
|  | !S.ResolveExceptionSpec(Loc, FPT)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // A helper class to help with address of function resolution | 
|  | // - allows us to avoid passing around all those ugly parameters | 
|  | class AddressOfFunctionResolver { | 
|  | Sema& S; | 
|  | Expr* SourceExpr; | 
|  | const QualType& TargetType; | 
|  | QualType TargetFunctionType; // Extracted function type from target type | 
|  |  | 
|  | bool Complain; | 
|  | //DeclAccessPair& ResultFunctionAccessPair; | 
|  | ASTContext& Context; | 
|  |  | 
|  | bool TargetTypeIsNonStaticMemberFunction; | 
|  | bool FoundNonTemplateFunction; | 
|  | bool StaticMemberFunctionFromBoundPointer; | 
|  | bool HasComplained; | 
|  |  | 
|  | OverloadExpr::FindResult OvlExprInfo; | 
|  | OverloadExpr *OvlExpr; | 
|  | TemplateArgumentListInfo OvlExplicitTemplateArgs; | 
|  | SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; | 
|  | TemplateSpecCandidateSet FailedCandidates; | 
|  |  | 
|  | public: | 
|  | AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, | 
|  | const QualType &TargetType, bool Complain) | 
|  | : S(S), SourceExpr(SourceExpr), TargetType(TargetType), | 
|  | Complain(Complain), Context(S.getASTContext()), | 
|  | TargetTypeIsNonStaticMemberFunction( | 
|  | !!TargetType->getAs<MemberPointerType>()), | 
|  | FoundNonTemplateFunction(false), | 
|  | StaticMemberFunctionFromBoundPointer(false), | 
|  | HasComplained(false), | 
|  | OvlExprInfo(OverloadExpr::find(SourceExpr)), | 
|  | OvlExpr(OvlExprInfo.Expression), | 
|  | FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { | 
|  | ExtractUnqualifiedFunctionTypeFromTargetType(); | 
|  |  | 
|  | if (TargetFunctionType->isFunctionType()) { | 
|  | if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) | 
|  | if (!UME->isImplicitAccess() && | 
|  | !S.ResolveSingleFunctionTemplateSpecialization(UME)) | 
|  | StaticMemberFunctionFromBoundPointer = true; | 
|  | } else if (OvlExpr->hasExplicitTemplateArgs()) { | 
|  | DeclAccessPair dap; | 
|  | if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( | 
|  | OvlExpr, false, &dap)) { | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) | 
|  | if (!Method->isStatic()) { | 
|  | // If the target type is a non-function type and the function found | 
|  | // is a non-static member function, pretend as if that was the | 
|  | // target, it's the only possible type to end up with. | 
|  | TargetTypeIsNonStaticMemberFunction = true; | 
|  |  | 
|  | // And skip adding the function if its not in the proper form. | 
|  | // We'll diagnose this due to an empty set of functions. | 
|  | if (!OvlExprInfo.HasFormOfMemberPointer) | 
|  | return; | 
|  | } | 
|  |  | 
|  | Matches.push_back(std::make_pair(dap, Fn)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OvlExpr->hasExplicitTemplateArgs()) | 
|  | OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); | 
|  |  | 
|  | if (FindAllFunctionsThatMatchTargetTypeExactly()) { | 
|  | // C++ [over.over]p4: | 
|  | //   If more than one function is selected, [...] | 
|  | if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { | 
|  | if (FoundNonTemplateFunction) | 
|  | EliminateAllTemplateMatches(); | 
|  | else | 
|  | EliminateAllExceptMostSpecializedTemplate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (S.getLangOpts().CUDA && Matches.size() > 1) | 
|  | EliminateSuboptimalCudaMatches(); | 
|  | } | 
|  |  | 
|  | bool hasComplained() const { return HasComplained; } | 
|  |  | 
|  | private: | 
|  | bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { | 
|  | QualType Discard; | 
|  | return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || | 
|  | S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); | 
|  | } | 
|  |  | 
|  | /// \return true if A is considered a better overload candidate for the | 
|  | /// desired type than B. | 
|  | bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { | 
|  | // If A doesn't have exactly the correct type, we don't want to classify it | 
|  | // as "better" than anything else. This way, the user is required to | 
|  | // disambiguate for us if there are multiple candidates and no exact match. | 
|  | return candidateHasExactlyCorrectType(A) && | 
|  | (!candidateHasExactlyCorrectType(B) || | 
|  | compareEnableIfAttrs(S, A, B) == Comparison::Better); | 
|  | } | 
|  |  | 
|  | /// \return true if we were able to eliminate all but one overload candidate, | 
|  | /// false otherwise. | 
|  | bool eliminiateSuboptimalOverloadCandidates() { | 
|  | // Same algorithm as overload resolution -- one pass to pick the "best", | 
|  | // another pass to be sure that nothing is better than the best. | 
|  | auto Best = Matches.begin(); | 
|  | for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) | 
|  | if (isBetterCandidate(I->second, Best->second)) | 
|  | Best = I; | 
|  |  | 
|  | const FunctionDecl *BestFn = Best->second; | 
|  | auto IsBestOrInferiorToBest = [this, BestFn]( | 
|  | const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { | 
|  | return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); | 
|  | }; | 
|  |  | 
|  | // Note: We explicitly leave Matches unmodified if there isn't a clear best | 
|  | // option, so we can potentially give the user a better error | 
|  | if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) | 
|  | return false; | 
|  | Matches[0] = *Best; | 
|  | Matches.resize(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isTargetTypeAFunction() const { | 
|  | return TargetFunctionType->isFunctionType(); | 
|  | } | 
|  |  | 
|  | // [ToType]     [Return] | 
|  |  | 
|  | // R (*)(A) --> R (A), IsNonStaticMemberFunction = false | 
|  | // R (&)(A) --> R (A), IsNonStaticMemberFunction = false | 
|  | // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true | 
|  | void inline ExtractUnqualifiedFunctionTypeFromTargetType() { | 
|  | TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); | 
|  | } | 
|  |  | 
|  | // return true if any matching specializations were found | 
|  | bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, | 
|  | const DeclAccessPair& CurAccessFunPair) { | 
|  | if (CXXMethodDecl *Method | 
|  | = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { | 
|  | // Skip non-static function templates when converting to pointer, and | 
|  | // static when converting to member pointer. | 
|  | bool CanConvertToFunctionPointer = | 
|  | Method->isStatic() || Method->isExplicitObjectMemberFunction(); | 
|  | if (CanConvertToFunctionPointer == TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  | } | 
|  | else if (TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  |  | 
|  | // C++ [over.over]p2: | 
|  | //   If the name is a function template, template argument deduction is | 
|  | //   done (14.8.2.2), and if the argument deduction succeeds, the | 
|  | //   resulting template argument list is used to generate a single | 
|  | //   function template specialization, which is added to the set of | 
|  | //   overloaded functions considered. | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | 
|  | if (TemplateDeductionResult Result = S.DeduceTemplateArguments( | 
|  | FunctionTemplate, &OvlExplicitTemplateArgs, TargetFunctionType, | 
|  | Specialization, Info, /*IsAddressOfFunction*/ true); | 
|  | Result != TemplateDeductionResult::Success) { | 
|  | // Make a note of the failed deduction for diagnostics. | 
|  | FailedCandidates.addCandidate() | 
|  | .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, Result, Info)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Template argument deduction ensures that we have an exact match or | 
|  | // compatible pointer-to-function arguments that would be adjusted by ICS. | 
|  | // This function template specicalization works. | 
|  | assert(S.isSameOrCompatibleFunctionType( | 
|  | Context.getCanonicalType(Specialization->getType()), | 
|  | Context.getCanonicalType(TargetFunctionType))); | 
|  |  | 
|  | if (!S.checkAddressOfFunctionIsAvailable(Specialization)) | 
|  | return false; | 
|  |  | 
|  | Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AddMatchingNonTemplateFunction(NamedDecl* Fn, | 
|  | const DeclAccessPair& CurAccessFunPair) { | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | // Skip non-static functions when converting to pointer, and static | 
|  | // when converting to member pointer. | 
|  | bool CanConvertToFunctionPointer = | 
|  | Method->isStatic() || Method->isExplicitObjectMemberFunction(); | 
|  | if (CanConvertToFunctionPointer == TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  | } | 
|  | else if (TargetTypeIsNonStaticMemberFunction) | 
|  | return false; | 
|  |  | 
|  | if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { | 
|  | if (S.getLangOpts().CUDA) { | 
|  | FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); | 
|  | if (!(Caller && Caller->isImplicit()) && | 
|  | !S.CUDA().IsAllowedCall(Caller, FunDecl)) | 
|  | return false; | 
|  | } | 
|  | if (FunDecl->isMultiVersion()) { | 
|  | const auto *TA = FunDecl->getAttr<TargetAttr>(); | 
|  | if (TA && !TA->isDefaultVersion()) | 
|  | return false; | 
|  | const auto *TVA = FunDecl->getAttr<TargetVersionAttr>(); | 
|  | if (TVA && !TVA->isDefaultVersion()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If any candidate has a placeholder return type, trigger its deduction | 
|  | // now. | 
|  | if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), | 
|  | Complain)) { | 
|  | HasComplained |= Complain; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) | 
|  | return false; | 
|  |  | 
|  | // If we're in C, we need to support types that aren't exactly identical. | 
|  | if (!S.getLangOpts().CPlusPlus || | 
|  | candidateHasExactlyCorrectType(FunDecl)) { | 
|  | Matches.push_back(std::make_pair( | 
|  | CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); | 
|  | FoundNonTemplateFunction = true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FindAllFunctionsThatMatchTargetTypeExactly() { | 
|  | bool Ret = false; | 
|  |  | 
|  | // If the overload expression doesn't have the form of a pointer to | 
|  | // member, don't try to convert it to a pointer-to-member type. | 
|  | if (IsInvalidFormOfPointerToMemberFunction()) | 
|  | return false; | 
|  |  | 
|  | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
|  | E = OvlExpr->decls_end(); | 
|  | I != E; ++I) { | 
|  | // Look through any using declarations to find the underlying function. | 
|  | NamedDecl *Fn = (*I)->getUnderlyingDecl(); | 
|  |  | 
|  | // C++ [over.over]p3: | 
|  | //   Non-member functions and static member functions match | 
|  | //   targets of type "pointer-to-function" or "reference-to-function." | 
|  | //   Nonstatic member functions match targets of | 
|  | //   type "pointer-to-member-function." | 
|  | // Note that according to DR 247, the containing class does not matter. | 
|  | if (FunctionTemplateDecl *FunctionTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(Fn)) { | 
|  | if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) | 
|  | Ret = true; | 
|  | } | 
|  | // If we have explicit template arguments supplied, skip non-templates. | 
|  | else if (!OvlExpr->hasExplicitTemplateArgs() && | 
|  | AddMatchingNonTemplateFunction(Fn, I.getPair())) | 
|  | Ret = true; | 
|  | } | 
|  | assert(Ret || Matches.empty()); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void EliminateAllExceptMostSpecializedTemplate() { | 
|  | //   [...] and any given function template specialization F1 is | 
|  | //   eliminated if the set contains a second function template | 
|  | //   specialization whose function template is more specialized | 
|  | //   than the function template of F1 according to the partial | 
|  | //   ordering rules of 14.5.5.2. | 
|  |  | 
|  | // The algorithm specified above is quadratic. We instead use a | 
|  | // two-pass algorithm (similar to the one used to identify the | 
|  | // best viable function in an overload set) that identifies the | 
|  | // best function template (if it exists). | 
|  |  | 
|  | UnresolvedSet<4> MatchesCopy; // TODO: avoid! | 
|  | for (unsigned I = 0, E = Matches.size(); I != E; ++I) | 
|  | MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); | 
|  |  | 
|  | // TODO: It looks like FailedCandidates does not serve much purpose | 
|  | // here, since the no_viable diagnostic has index 0. | 
|  | UnresolvedSetIterator Result = S.getMostSpecialized( | 
|  | MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, | 
|  | SourceExpr->getBeginLoc(), S.PDiag(), | 
|  | S.PDiag(diag::err_addr_ovl_ambiguous) | 
|  | << Matches[0].second->getDeclName(), | 
|  | S.PDiag(diag::note_ovl_candidate) | 
|  | << (unsigned)oc_function << (unsigned)ocs_described_template, | 
|  | Complain, TargetFunctionType); | 
|  |  | 
|  | if (Result != MatchesCopy.end()) { | 
|  | // Make it the first and only element | 
|  | Matches[0].first = Matches[Result - MatchesCopy.begin()].first; | 
|  | Matches[0].second = cast<FunctionDecl>(*Result); | 
|  | Matches.resize(1); | 
|  | } else | 
|  | HasComplained |= Complain; | 
|  | } | 
|  |  | 
|  | void EliminateAllTemplateMatches() { | 
|  | //   [...] any function template specializations in the set are | 
|  | //   eliminated if the set also contains a non-template function, [...] | 
|  | for (unsigned I = 0, N = Matches.size(); I != N; ) { | 
|  | if (Matches[I].second->getPrimaryTemplate() == nullptr) | 
|  | ++I; | 
|  | else { | 
|  | Matches[I] = Matches[--N]; | 
|  | Matches.resize(N); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void EliminateSuboptimalCudaMatches() { | 
|  | S.CUDA().EraseUnwantedMatches(S.getCurFunctionDecl(/*AllowLambda=*/true), | 
|  | Matches); | 
|  | } | 
|  |  | 
|  | public: | 
|  | void ComplainNoMatchesFound() const { | 
|  | assert(Matches.empty()); | 
|  | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) | 
|  | << OvlExpr->getName() << TargetFunctionType | 
|  | << OvlExpr->getSourceRange(); | 
|  | if (FailedCandidates.empty()) | 
|  | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, | 
|  | /*TakingAddress=*/true); | 
|  | else { | 
|  | // We have some deduction failure messages. Use them to diagnose | 
|  | // the function templates, and diagnose the non-template candidates | 
|  | // normally. | 
|  | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
|  | IEnd = OvlExpr->decls_end(); | 
|  | I != IEnd; ++I) | 
|  | if (FunctionDecl *Fun = | 
|  | dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) | 
|  | if (!functionHasPassObjectSizeParams(Fun)) | 
|  | S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, | 
|  | /*TakingAddress=*/true); | 
|  | FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool IsInvalidFormOfPointerToMemberFunction() const { | 
|  | return TargetTypeIsNonStaticMemberFunction && | 
|  | !OvlExprInfo.HasFormOfMemberPointer; | 
|  | } | 
|  |  | 
|  | void ComplainIsInvalidFormOfPointerToMemberFunction() const { | 
|  | // TODO: Should we condition this on whether any functions might | 
|  | // have matched, or is it more appropriate to do that in callers? | 
|  | // TODO: a fixit wouldn't hurt. | 
|  | S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) | 
|  | << TargetType << OvlExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | bool IsStaticMemberFunctionFromBoundPointer() const { | 
|  | return StaticMemberFunctionFromBoundPointer; | 
|  | } | 
|  |  | 
|  | void ComplainIsStaticMemberFunctionFromBoundPointer() const { | 
|  | S.Diag(OvlExpr->getBeginLoc(), | 
|  | diag::err_invalid_form_pointer_member_function) | 
|  | << OvlExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | void ComplainOfInvalidConversion() const { | 
|  | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) | 
|  | << OvlExpr->getName() << TargetType; | 
|  | } | 
|  |  | 
|  | void ComplainMultipleMatchesFound() const { | 
|  | assert(Matches.size() > 1); | 
|  | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) | 
|  | << OvlExpr->getName() << OvlExpr->getSourceRange(); | 
|  | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, | 
|  | /*TakingAddress=*/true); | 
|  | } | 
|  |  | 
|  | bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } | 
|  |  | 
|  | int getNumMatches() const { return Matches.size(); } | 
|  |  | 
|  | FunctionDecl* getMatchingFunctionDecl() const { | 
|  | if (Matches.size() != 1) return nullptr; | 
|  | return Matches[0].second; | 
|  | } | 
|  |  | 
|  | const DeclAccessPair* getMatchingFunctionAccessPair() const { | 
|  | if (Matches.size() != 1) return nullptr; | 
|  | return &Matches[0].first; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// ResolveAddressOfOverloadedFunction - Try to resolve the address of | 
|  | /// an overloaded function (C++ [over.over]), where @p From is an | 
|  | /// expression with overloaded function type and @p ToType is the type | 
|  | /// we're trying to resolve to. For example: | 
|  | /// | 
|  | /// @code | 
|  | /// int f(double); | 
|  | /// int f(int); | 
|  | /// | 
|  | /// int (*pfd)(double) = f; // selects f(double) | 
|  | /// @endcode | 
|  | /// | 
|  | /// This routine returns the resulting FunctionDecl if it could be | 
|  | /// resolved, and NULL otherwise. When @p Complain is true, this | 
|  | /// routine will emit diagnostics if there is an error. | 
|  | FunctionDecl * | 
|  | Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, | 
|  | QualType TargetType, | 
|  | bool Complain, | 
|  | DeclAccessPair &FoundResult, | 
|  | bool *pHadMultipleCandidates) { | 
|  | assert(AddressOfExpr->getType() == Context.OverloadTy); | 
|  |  | 
|  | AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, | 
|  | Complain); | 
|  | int NumMatches = Resolver.getNumMatches(); | 
|  | FunctionDecl *Fn = nullptr; | 
|  | bool ShouldComplain = Complain && !Resolver.hasComplained(); | 
|  | if (NumMatches == 0 && ShouldComplain) { | 
|  | if (Resolver.IsInvalidFormOfPointerToMemberFunction()) | 
|  | Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); | 
|  | else | 
|  | Resolver.ComplainNoMatchesFound(); | 
|  | } | 
|  | else if (NumMatches > 1 && ShouldComplain) | 
|  | Resolver.ComplainMultipleMatchesFound(); | 
|  | else if (NumMatches == 1) { | 
|  | Fn = Resolver.getMatchingFunctionDecl(); | 
|  | assert(Fn); | 
|  | if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) | 
|  | ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); | 
|  | FoundResult = *Resolver.getMatchingFunctionAccessPair(); | 
|  | if (Complain) { | 
|  | if (Resolver.IsStaticMemberFunctionFromBoundPointer()) | 
|  | Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); | 
|  | else | 
|  | CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pHadMultipleCandidates) | 
|  | *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); | 
|  | return Fn; | 
|  | } | 
|  |  | 
|  | /// Given an expression that refers to an overloaded function, try to | 
|  | /// resolve that function to a single function that can have its address taken. | 
|  | /// This will modify `Pair` iff it returns non-null. | 
|  | /// | 
|  | /// This routine can only succeed if from all of the candidates in the overload | 
|  | /// set for SrcExpr that can have their addresses taken, there is one candidate | 
|  | /// that is more constrained than the rest. | 
|  | FunctionDecl * | 
|  | Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { | 
|  | OverloadExpr::FindResult R = OverloadExpr::find(E); | 
|  | OverloadExpr *Ovl = R.Expression; | 
|  | bool IsResultAmbiguous = false; | 
|  | FunctionDecl *Result = nullptr; | 
|  | DeclAccessPair DAP; | 
|  | SmallVector<FunctionDecl *, 2> AmbiguousDecls; | 
|  |  | 
|  | // Return positive for better, negative for worse, 0 for equal preference. | 
|  | auto CheckCUDAPreference = [&](FunctionDecl *FD1, FunctionDecl *FD2) { | 
|  | FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); | 
|  | return static_cast<int>(CUDA().IdentifyPreference(Caller, FD1)) - | 
|  | static_cast<int>(CUDA().IdentifyPreference(Caller, FD2)); | 
|  | }; | 
|  |  | 
|  | auto CheckMoreConstrained = [&](FunctionDecl *FD1, | 
|  | FunctionDecl *FD2) -> std::optional<bool> { | 
|  | if (FunctionDecl *MF = FD1->getInstantiatedFromMemberFunction()) | 
|  | FD1 = MF; | 
|  | if (FunctionDecl *MF = FD2->getInstantiatedFromMemberFunction()) | 
|  | FD2 = MF; | 
|  | SmallVector<const Expr *, 1> AC1, AC2; | 
|  | FD1->getAssociatedConstraints(AC1); | 
|  | FD2->getAssociatedConstraints(AC2); | 
|  | bool AtLeastAsConstrained1, AtLeastAsConstrained2; | 
|  | if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) | 
|  | return std::nullopt; | 
|  | if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) | 
|  | return std::nullopt; | 
|  | if (AtLeastAsConstrained1 == AtLeastAsConstrained2) | 
|  | return std::nullopt; | 
|  | return AtLeastAsConstrained1; | 
|  | }; | 
|  |  | 
|  | // Don't use the AddressOfResolver because we're specifically looking for | 
|  | // cases where we have one overload candidate that lacks | 
|  | // enable_if/pass_object_size/... | 
|  | for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { | 
|  | auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); | 
|  | if (!FD) | 
|  | return nullptr; | 
|  |  | 
|  | if (!checkAddressOfFunctionIsAvailable(FD)) | 
|  | continue; | 
|  |  | 
|  | // If we found a better result, update Result. | 
|  | auto FoundBetter = [&]() { | 
|  | IsResultAmbiguous = false; | 
|  | DAP = I.getPair(); | 
|  | Result = FD; | 
|  | }; | 
|  |  | 
|  | // We have more than one result - see if it is more constrained than the | 
|  | // previous one. | 
|  | if (Result) { | 
|  | // Check CUDA preference first. If the candidates have differennt CUDA | 
|  | // preference, choose the one with higher CUDA preference. Otherwise, | 
|  | // choose the one with more constraints. | 
|  | if (getLangOpts().CUDA) { | 
|  | int PreferenceByCUDA = CheckCUDAPreference(FD, Result); | 
|  | // FD has different preference than Result. | 
|  | if (PreferenceByCUDA != 0) { | 
|  | // FD is more preferable than Result. | 
|  | if (PreferenceByCUDA > 0) | 
|  | FoundBetter(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // FD has the same CUDA prefernece than Result. Continue check | 
|  | // constraints. | 
|  | std::optional<bool> MoreConstrainedThanPrevious = | 
|  | CheckMoreConstrained(FD, Result); | 
|  | if (!MoreConstrainedThanPrevious) { | 
|  | IsResultAmbiguous = true; | 
|  | AmbiguousDecls.push_back(FD); | 
|  | continue; | 
|  | } | 
|  | if (!*MoreConstrainedThanPrevious) | 
|  | continue; | 
|  | // FD is more constrained - replace Result with it. | 
|  | } | 
|  | FoundBetter(); | 
|  | } | 
|  |  | 
|  | if (IsResultAmbiguous) | 
|  | return nullptr; | 
|  |  | 
|  | if (Result) { | 
|  | SmallVector<const Expr *, 1> ResultAC; | 
|  | // We skipped over some ambiguous declarations which might be ambiguous with | 
|  | // the selected result. | 
|  | for (FunctionDecl *Skipped : AmbiguousDecls) { | 
|  | // If skipped candidate has different CUDA preference than the result, | 
|  | // there is no ambiguity. Otherwise check whether they have different | 
|  | // constraints. | 
|  | if (getLangOpts().CUDA && CheckCUDAPreference(Skipped, Result) != 0) | 
|  | continue; | 
|  | if (!CheckMoreConstrained(Skipped, Result)) | 
|  | return nullptr; | 
|  | } | 
|  | Pair = DAP; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Given an overloaded function, tries to turn it into a non-overloaded | 
|  | /// function reference using resolveAddressOfSingleOverloadCandidate. This | 
|  | /// will perform access checks, diagnose the use of the resultant decl, and, if | 
|  | /// requested, potentially perform a function-to-pointer decay. | 
|  | /// | 
|  | /// Returns false if resolveAddressOfSingleOverloadCandidate fails. | 
|  | /// Otherwise, returns true. This may emit diagnostics and return true. | 
|  | bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( | 
|  | ExprResult &SrcExpr, bool DoFunctionPointerConversion) { | 
|  | Expr *E = SrcExpr.get(); | 
|  | assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); | 
|  |  | 
|  | DeclAccessPair DAP; | 
|  | FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); | 
|  | if (!Found || Found->isCPUDispatchMultiVersion() || | 
|  | Found->isCPUSpecificMultiVersion()) | 
|  | return false; | 
|  |  | 
|  | // Emitting multiple diagnostics for a function that is both inaccessible and | 
|  | // unavailable is consistent with our behavior elsewhere. So, always check | 
|  | // for both. | 
|  | DiagnoseUseOfDecl(Found, E->getExprLoc()); | 
|  | CheckAddressOfMemberAccess(E, DAP); | 
|  | ExprResult Res = FixOverloadedFunctionReference(E, DAP, Found); | 
|  | if (Res.isInvalid()) | 
|  | return false; | 
|  | Expr *Fixed = Res.get(); | 
|  | if (DoFunctionPointerConversion && Fixed->getType()->isFunctionType()) | 
|  | SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); | 
|  | else | 
|  | SrcExpr = Fixed; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Given an expression that refers to an overloaded function, try to | 
|  | /// resolve that overloaded function expression down to a single function. | 
|  | /// | 
|  | /// This routine can only resolve template-ids that refer to a single function | 
|  | /// template, where that template-id refers to a single template whose template | 
|  | /// arguments are either provided by the template-id or have defaults, | 
|  | /// as described in C++0x [temp.arg.explicit]p3. | 
|  | /// | 
|  | /// If no template-ids are found, no diagnostics are emitted and NULL is | 
|  | /// returned. | 
|  | FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization( | 
|  | OverloadExpr *ovl, bool Complain, DeclAccessPair *FoundResult, | 
|  | TemplateSpecCandidateSet *FailedTSC) { | 
|  | // C++ [over.over]p1: | 
|  | //   [...] [Note: any redundant set of parentheses surrounding the | 
|  | //   overloaded function name is ignored (5.1). ] | 
|  | // C++ [over.over]p1: | 
|  | //   [...] The overloaded function name can be preceded by the & | 
|  | //   operator. | 
|  |  | 
|  | // If we didn't actually find any template-ids, we're done. | 
|  | if (!ovl->hasExplicitTemplateArgs()) | 
|  | return nullptr; | 
|  |  | 
|  | TemplateArgumentListInfo ExplicitTemplateArgs; | 
|  | ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); | 
|  |  | 
|  | // Look through all of the overloaded functions, searching for one | 
|  | // whose type matches exactly. | 
|  | FunctionDecl *Matched = nullptr; | 
|  | for (UnresolvedSetIterator I = ovl->decls_begin(), | 
|  | E = ovl->decls_end(); I != E; ++I) { | 
|  | // C++0x [temp.arg.explicit]p3: | 
|  | //   [...] In contexts where deduction is done and fails, or in contexts | 
|  | //   where deduction is not done, if a template argument list is | 
|  | //   specified and it, along with any default template arguments, | 
|  | //   identifies a single function template specialization, then the | 
|  | //   template-id is an lvalue for the function template specialization. | 
|  | FunctionTemplateDecl *FunctionTemplate | 
|  | = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); | 
|  |  | 
|  | // C++ [over.over]p2: | 
|  | //   If the name is a function template, template argument deduction is | 
|  | //   done (14.8.2.2), and if the argument deduction succeeds, the | 
|  | //   resulting template argument list is used to generate a single | 
|  | //   function template specialization, which is added to the set of | 
|  | //   overloaded functions considered. | 
|  | FunctionDecl *Specialization = nullptr; | 
|  | TemplateDeductionInfo Info(ovl->getNameLoc()); | 
|  | if (TemplateDeductionResult Result = DeduceTemplateArguments( | 
|  | FunctionTemplate, &ExplicitTemplateArgs, Specialization, Info, | 
|  | /*IsAddressOfFunction*/ true); | 
|  | Result != TemplateDeductionResult::Success) { | 
|  | // Make a note of the failed deduction for diagnostics. | 
|  | if (FailedTSC) | 
|  | FailedTSC->addCandidate().set( | 
|  | I.getPair(), FunctionTemplate->getTemplatedDecl(), | 
|  | MakeDeductionFailureInfo(Context, Result, Info)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(Specialization && "no specialization and no error?"); | 
|  |  | 
|  | // Multiple matches; we can't resolve to a single declaration. | 
|  | if (Matched) { | 
|  | if (Complain) { | 
|  | Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) | 
|  | << ovl->getName(); | 
|  | NoteAllOverloadCandidates(ovl); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Matched = Specialization; | 
|  | if (FoundResult) *FoundResult = I.getPair(); | 
|  | } | 
|  |  | 
|  | if (Matched && | 
|  | completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) | 
|  | return nullptr; | 
|  |  | 
|  | return Matched; | 
|  | } | 
|  |  | 
|  | // Resolve and fix an overloaded expression that can be resolved | 
|  | // because it identifies a single function template specialization. | 
|  | // | 
|  | // Last three arguments should only be supplied if Complain = true | 
|  | // | 
|  | // Return true if it was logically possible to so resolve the | 
|  | // expression, regardless of whether or not it succeeded.  Always | 
|  | // returns true if 'complain' is set. | 
|  | bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( | 
|  | ExprResult &SrcExpr, bool doFunctionPointerConversion, bool complain, | 
|  | SourceRange OpRangeForComplaining, QualType DestTypeForComplaining, | 
|  | unsigned DiagIDForComplaining) { | 
|  | assert(SrcExpr.get()->getType() == Context.OverloadTy); | 
|  |  | 
|  | OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); | 
|  |  | 
|  | DeclAccessPair found; | 
|  | ExprResult SingleFunctionExpression; | 
|  | if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( | 
|  | ovl.Expression, /*complain*/ false, &found)) { | 
|  | if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // It is only correct to resolve to an instance method if we're | 
|  | // resolving a form that's permitted to be a pointer to member. | 
|  | // Otherwise we'll end up making a bound member expression, which | 
|  | // is illegal in all the contexts we resolve like this. | 
|  | if (!ovl.HasFormOfMemberPointer && | 
|  | isa<CXXMethodDecl>(fn) && | 
|  | cast<CXXMethodDecl>(fn)->isInstance()) { | 
|  | if (!complain) return false; | 
|  |  | 
|  | Diag(ovl.Expression->getExprLoc(), | 
|  | diag::err_bound_member_function) | 
|  | << 0 << ovl.Expression->getSourceRange(); | 
|  |  | 
|  | // TODO: I believe we only end up here if there's a mix of | 
|  | // static and non-static candidates (otherwise the expression | 
|  | // would have 'bound member' type, not 'overload' type). | 
|  | // Ideally we would note which candidate was chosen and why | 
|  | // the static candidates were rejected. | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Fix the expression to refer to 'fn'. | 
|  | SingleFunctionExpression = | 
|  | FixOverloadedFunctionReference(SrcExpr.get(), found, fn); | 
|  |  | 
|  | // If desired, do function-to-pointer decay. | 
|  | if (doFunctionPointerConversion) { | 
|  | SingleFunctionExpression = | 
|  | DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); | 
|  | if (SingleFunctionExpression.isInvalid()) { | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SingleFunctionExpression.isUsable()) { | 
|  | if (complain) { | 
|  | Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) | 
|  | << ovl.Expression->getName() | 
|  | << DestTypeForComplaining | 
|  | << OpRangeForComplaining | 
|  | << ovl.Expression->getQualifierLoc().getSourceRange(); | 
|  | NoteAllOverloadCandidates(SrcExpr.get()); | 
|  |  | 
|  | SrcExpr = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SrcExpr = SingleFunctionExpression; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Add a single candidate to the overload set. | 
|  | static void AddOverloadedCallCandidate(Sema &S, | 
|  | DeclAccessPair FoundDecl, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool PartialOverloading, | 
|  | bool KnownValid) { | 
|  | NamedDecl *Callee = FoundDecl.getDecl(); | 
|  | if (isa<UsingShadowDecl>(Callee)) | 
|  | Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); | 
|  |  | 
|  | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { | 
|  | if (ExplicitTemplateArgs) { | 
|  | assert(!KnownValid && "Explicit template arguments?"); | 
|  | return; | 
|  | } | 
|  | // Prevent ill-formed function decls to be added as overload candidates. | 
|  | if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) | 
|  | return; | 
|  |  | 
|  | S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/false, | 
|  | PartialOverloading); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (FunctionTemplateDecl *FuncTemplate | 
|  | = dyn_cast<FunctionTemplateDecl>(Callee)) { | 
|  | S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, | 
|  | ExplicitTemplateArgs, Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/false, | 
|  | PartialOverloading); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!KnownValid && "unhandled case in overloaded call candidate"); | 
|  | } | 
|  |  | 
|  | /// Add the overload candidates named by callee and/or found by argument | 
|  | /// dependent lookup to the given overload set. | 
|  | void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, | 
|  | ArrayRef<Expr *> Args, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | bool PartialOverloading) { | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify that ArgumentDependentLookup is consistent with the rules | 
|  | // in C++0x [basic.lookup.argdep]p3: | 
|  | // | 
|  | //   Let X be the lookup set produced by unqualified lookup (3.4.1) | 
|  | //   and let Y be the lookup set produced by argument dependent | 
|  | //   lookup (defined as follows). If X contains | 
|  | // | 
|  | //     -- a declaration of a class member, or | 
|  | // | 
|  | //     -- a block-scope function declaration that is not a | 
|  | //        using-declaration, or | 
|  | // | 
|  | //     -- a declaration that is neither a function or a function | 
|  | //        template | 
|  | // | 
|  | //   then Y is empty. | 
|  |  | 
|  | if (ULE->requiresADL()) { | 
|  | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | 
|  | E = ULE->decls_end(); I != E; ++I) { | 
|  | assert(!(*I)->getDeclContext()->isRecord()); | 
|  | assert(isa<UsingShadowDecl>(*I) || | 
|  | !(*I)->getDeclContext()->isFunctionOrMethod()); | 
|  | assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // It would be nice to avoid this copy. | 
|  | TemplateArgumentListInfo TABuffer; | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; | 
|  | if (ULE->hasExplicitTemplateArgs()) { | 
|  | ULE->copyTemplateArgumentsInto(TABuffer); | 
|  | ExplicitTemplateArgs = &TABuffer; | 
|  | } | 
|  |  | 
|  | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | 
|  | E = ULE->decls_end(); I != E; ++I) | 
|  | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, | 
|  | CandidateSet, PartialOverloading, | 
|  | /*KnownValid*/ true); | 
|  |  | 
|  | if (ULE->requiresADL()) | 
|  | AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), | 
|  | Args, ExplicitTemplateArgs, | 
|  | CandidateSet, PartialOverloading); | 
|  | } | 
|  |  | 
|  | /// Add the call candidates from the given set of lookup results to the given | 
|  | /// overload set. Non-function lookup results are ignored. | 
|  | void Sema::AddOverloadedCallCandidates( | 
|  | LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, | 
|  | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
|  | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, | 
|  | CandidateSet, false, /*KnownValid*/ false); | 
|  | } | 
|  |  | 
|  | /// Determine whether a declaration with the specified name could be moved into | 
|  | /// a different namespace. | 
|  | static bool canBeDeclaredInNamespace(const DeclarationName &Name) { | 
|  | switch (Name.getCXXOverloadedOperator()) { | 
|  | case OO_New: case OO_Array_New: | 
|  | case OO_Delete: case OO_Array_Delete: | 
|  | return false; | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Attempt to recover from an ill-formed use of a non-dependent name in a | 
|  | /// template, where the non-dependent name was declared after the template | 
|  | /// was defined. This is common in code written for a compilers which do not | 
|  | /// correctly implement two-stage name lookup. | 
|  | /// | 
|  | /// Returns true if a viable candidate was found and a diagnostic was issued. | 
|  | static bool DiagnoseTwoPhaseLookup( | 
|  | Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, | 
|  | LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, | 
|  | CXXRecordDecl **FoundInClass = nullptr) { | 
|  | if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) | 
|  | return false; | 
|  |  | 
|  | for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { | 
|  | if (DC->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | SemaRef.LookupQualifiedName(R, DC); | 
|  |  | 
|  | if (!R.empty()) { | 
|  | R.suppressDiagnostics(); | 
|  |  | 
|  | OverloadCandidateSet Candidates(FnLoc, CSK); | 
|  | SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, | 
|  | Candidates); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | OverloadingResult OR = | 
|  | Candidates.BestViableFunction(SemaRef, FnLoc, Best); | 
|  |  | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { | 
|  | // We either found non-function declarations or a best viable function | 
|  | // at class scope. A class-scope lookup result disables ADL. Don't | 
|  | // look past this, but let the caller know that we found something that | 
|  | // either is, or might be, usable in this class. | 
|  | if (FoundInClass) { | 
|  | *FoundInClass = RD; | 
|  | if (OR == OR_Success) { | 
|  | R.clear(); | 
|  | R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); | 
|  | R.resolveKind(); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (OR != OR_Success) { | 
|  | // There wasn't a unique best function or function template. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find the namespaces where ADL would have looked, and suggest | 
|  | // declaring the function there instead. | 
|  | Sema::AssociatedNamespaceSet AssociatedNamespaces; | 
|  | Sema::AssociatedClassSet AssociatedClasses; | 
|  | SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  | Sema::AssociatedNamespaceSet SuggestedNamespaces; | 
|  | if (canBeDeclaredInNamespace(R.getLookupName())) { | 
|  | DeclContext *Std = SemaRef.getStdNamespace(); | 
|  | for (Sema::AssociatedNamespaceSet::iterator | 
|  | it = AssociatedNamespaces.begin(), | 
|  | end = AssociatedNamespaces.end(); it != end; ++it) { | 
|  | // Never suggest declaring a function within namespace 'std'. | 
|  | if (Std && Std->Encloses(*it)) | 
|  | continue; | 
|  |  | 
|  | // Never suggest declaring a function within a namespace with a | 
|  | // reserved name, like __gnu_cxx. | 
|  | NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); | 
|  | if (NS && | 
|  | NS->getQualifiedNameAsString().find("__") != std::string::npos) | 
|  | continue; | 
|  |  | 
|  | SuggestedNamespaces.insert(*it); | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName(); | 
|  | if (SuggestedNamespaces.empty()) { | 
|  | SemaRef.Diag(Best->Function->getLocation(), | 
|  | diag::note_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName() << 0; | 
|  | } else if (SuggestedNamespaces.size() == 1) { | 
|  | SemaRef.Diag(Best->Function->getLocation(), | 
|  | diag::note_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); | 
|  | } else { | 
|  | // FIXME: It would be useful to list the associated namespaces here, | 
|  | // but the diagnostics infrastructure doesn't provide a way to produce | 
|  | // a localized representation of a list of items. | 
|  | SemaRef.Diag(Best->Function->getLocation(), | 
|  | diag::note_not_found_by_two_phase_lookup) | 
|  | << R.getLookupName() << 2; | 
|  | } | 
|  |  | 
|  | // Try to recover by calling this function. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | R.clear(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Attempt to recover from ill-formed use of a non-dependent operator in a | 
|  | /// template, where the non-dependent operator was declared after the template | 
|  | /// was defined. | 
|  | /// | 
|  | /// Returns true if a viable candidate was found and a diagnostic was issued. | 
|  | static bool | 
|  | DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, | 
|  | SourceLocation OpLoc, | 
|  | ArrayRef<Expr *> Args) { | 
|  | DeclarationName OpName = | 
|  | SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); | 
|  | return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, | 
|  | OverloadCandidateSet::CSK_Operator, | 
|  | /*ExplicitTemplateArgs=*/nullptr, Args); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class BuildRecoveryCallExprRAII { | 
|  | Sema &SemaRef; | 
|  | Sema::SatisfactionStackResetRAII SatStack; | 
|  |  | 
|  | public: | 
|  | BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S), SatStack(S) { | 
|  | assert(SemaRef.IsBuildingRecoveryCallExpr == false); | 
|  | SemaRef.IsBuildingRecoveryCallExpr = true; | 
|  | } | 
|  |  | 
|  | ~BuildRecoveryCallExprRAII() { SemaRef.IsBuildingRecoveryCallExpr = false; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Attempts to recover from a call where no functions were found. | 
|  | /// | 
|  | /// This function will do one of three things: | 
|  | ///  * Diagnose, recover, and return a recovery expression. | 
|  | ///  * Diagnose, fail to recover, and return ExprError(). | 
|  | ///  * Do not diagnose, do not recover, and return ExprResult(). The caller is | 
|  | ///    expected to diagnose as appropriate. | 
|  | static ExprResult | 
|  | BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | SourceLocation LParenLoc, | 
|  | MutableArrayRef<Expr *> Args, | 
|  | SourceLocation RParenLoc, | 
|  | bool EmptyLookup, bool AllowTypoCorrection) { | 
|  | // Do not try to recover if it is already building a recovery call. | 
|  | // This stops infinite loops for template instantiations like | 
|  | // | 
|  | // template <typename T> auto foo(T t) -> decltype(foo(t)) {} | 
|  | // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} | 
|  | if (SemaRef.IsBuildingRecoveryCallExpr) | 
|  | return ExprResult(); | 
|  | BuildRecoveryCallExprRAII RCE(SemaRef); | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | SS.Adopt(ULE->getQualifierLoc()); | 
|  | SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); | 
|  |  | 
|  | TemplateArgumentListInfo TABuffer; | 
|  | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; | 
|  | if (ULE->hasExplicitTemplateArgs()) { | 
|  | ULE->copyTemplateArgumentsInto(TABuffer); | 
|  | ExplicitTemplateArgs = &TABuffer; | 
|  | } | 
|  |  | 
|  | LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), | 
|  | Sema::LookupOrdinaryName); | 
|  | CXXRecordDecl *FoundInClass = nullptr; | 
|  | if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, | 
|  | OverloadCandidateSet::CSK_Normal, | 
|  | ExplicitTemplateArgs, Args, &FoundInClass)) { | 
|  | // OK, diagnosed a two-phase lookup issue. | 
|  | } else if (EmptyLookup) { | 
|  | // Try to recover from an empty lookup with typo correction. | 
|  | R.clear(); | 
|  | NoTypoCorrectionCCC NoTypoValidator{}; | 
|  | FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), | 
|  | ExplicitTemplateArgs != nullptr, | 
|  | dyn_cast<MemberExpr>(Fn)); | 
|  | CorrectionCandidateCallback &Validator = | 
|  | AllowTypoCorrection | 
|  | ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) | 
|  | : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); | 
|  | if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, | 
|  | Args)) | 
|  | return ExprError(); | 
|  | } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { | 
|  | // We found a usable declaration of the name in a dependent base of some | 
|  | // enclosing class. | 
|  | // FIXME: We should also explain why the candidates found by name lookup | 
|  | // were not viable. | 
|  | if (SemaRef.DiagnoseDependentMemberLookup(R)) | 
|  | return ExprError(); | 
|  | } else { | 
|  | // We had viable candidates and couldn't recover; let the caller diagnose | 
|  | // this. | 
|  | return ExprResult(); | 
|  | } | 
|  |  | 
|  | // If we get here, we should have issued a diagnostic and formed a recovery | 
|  | // lookup result. | 
|  | assert(!R.empty() && "lookup results empty despite recovery"); | 
|  |  | 
|  | // If recovery created an ambiguity, just bail out. | 
|  | if (R.isAmbiguous()) { | 
|  | R.suppressDiagnostics(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Build an implicit member call if appropriate.  Just drop the | 
|  | // casts and such from the call, we don't really care. | 
|  | ExprResult NewFn = ExprError(); | 
|  | if ((*R.begin())->isCXXClassMember()) | 
|  | NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, | 
|  | ExplicitTemplateArgs, S); | 
|  | else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) | 
|  | NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, | 
|  | ExplicitTemplateArgs); | 
|  | else | 
|  | NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); | 
|  |  | 
|  | if (NewFn.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // This shouldn't cause an infinite loop because we're giving it | 
|  | // an expression with viable lookup results, which should never | 
|  | // end up here. | 
|  | return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, | 
|  | MultiExprArg(Args.data(), Args.size()), | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | /// Constructs and populates an OverloadedCandidateSet from | 
|  | /// the given function. | 
|  | /// \returns true when an the ExprResult output parameter has been set. | 
|  | bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | OverloadCandidateSet *CandidateSet, | 
|  | ExprResult *Result) { | 
|  | #ifndef NDEBUG | 
|  | if (ULE->requiresADL()) { | 
|  | // To do ADL, we must have found an unqualified name. | 
|  | assert(!ULE->getQualifier() && "qualified name with ADL"); | 
|  |  | 
|  | // We don't perform ADL for implicit declarations of builtins. | 
|  | // Verify that this was correctly set up. | 
|  | FunctionDecl *F; | 
|  | if (ULE->decls_begin() != ULE->decls_end() && | 
|  | ULE->decls_begin() + 1 == ULE->decls_end() && | 
|  | (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && | 
|  | F->getBuiltinID() && F->isImplicit()) | 
|  | llvm_unreachable("performing ADL for builtin"); | 
|  |  | 
|  | // We don't perform ADL in C. | 
|  | assert(getLangOpts().CPlusPlus && "ADL enabled in C"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { | 
|  | *Result = ExprError(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add the functions denoted by the callee to the set of candidate | 
|  | // functions, including those from argument-dependent lookup. | 
|  | AddOverloadedCallCandidates(ULE, Args, *CandidateSet); | 
|  |  | 
|  | if (getLangOpts().MSVCCompat && | 
|  | CurContext->isDependentContext() && !isSFINAEContext() && | 
|  | (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | if (CandidateSet->empty() || | 
|  | CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == | 
|  | OR_No_Viable_Function) { | 
|  | // In Microsoft mode, if we are inside a template class member function | 
|  | // then create a type dependent CallExpr. The goal is to postpone name | 
|  | // lookup to instantiation time to be able to search into type dependent | 
|  | // base classes. | 
|  | CallExpr *CE = | 
|  | CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, | 
|  | RParenLoc, CurFPFeatureOverrides()); | 
|  | CE->markDependentForPostponedNameLookup(); | 
|  | *Result = CE; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CandidateSet->empty()) | 
|  | return false; | 
|  |  | 
|  | UnbridgedCasts.restore(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Guess at what the return type for an unresolvable overload should be. | 
|  | static QualType chooseRecoveryType(OverloadCandidateSet &CS, | 
|  | OverloadCandidateSet::iterator *Best) { | 
|  | std::optional<QualType> Result; | 
|  | // Adjust Type after seeing a candidate. | 
|  | auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { | 
|  | if (!Candidate.Function) | 
|  | return; | 
|  | if (Candidate.Function->isInvalidDecl()) | 
|  | return; | 
|  | QualType T = Candidate.Function->getReturnType(); | 
|  | if (T.isNull()) | 
|  | return; | 
|  | if (!Result) | 
|  | Result = T; | 
|  | else if (Result != T) | 
|  | Result = QualType(); | 
|  | }; | 
|  |  | 
|  | // Look for an unambiguous type from a progressively larger subset. | 
|  | // e.g. if types disagree, but all *viable* overloads return int, choose int. | 
|  | // | 
|  | // First, consider only the best candidate. | 
|  | if (Best && *Best != CS.end()) | 
|  | ConsiderCandidate(**Best); | 
|  | // Next, consider only viable candidates. | 
|  | if (!Result) | 
|  | for (const auto &C : CS) | 
|  | if (C.Viable) | 
|  | ConsiderCandidate(C); | 
|  | // Finally, consider all candidates. | 
|  | if (!Result) | 
|  | for (const auto &C : CS) | 
|  | ConsiderCandidate(C); | 
|  |  | 
|  | if (!Result) | 
|  | return QualType(); | 
|  | auto Value = *Result; | 
|  | if (Value.isNull() || Value->isUndeducedType()) | 
|  | return QualType(); | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns | 
|  | /// the completed call expression. If overload resolution fails, emits | 
|  | /// diagnostics and returns ExprError() | 
|  | static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | Expr *ExecConfig, | 
|  | OverloadCandidateSet *CandidateSet, | 
|  | OverloadCandidateSet::iterator *Best, | 
|  | OverloadingResult OverloadResult, | 
|  | bool AllowTypoCorrection) { | 
|  | switch (OverloadResult) { | 
|  | case OR_Success: { | 
|  | FunctionDecl *FDecl = (*Best)->Function; | 
|  | SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); | 
|  | if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) | 
|  | return ExprError(); | 
|  | ExprResult Res = | 
|  | SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | return SemaRef.BuildResolvedCallExpr( | 
|  | Res.get(), FDecl, LParenLoc, Args, RParenLoc, ExecConfig, | 
|  | /*IsExecConfig=*/false, (*Best)->IsADLCandidate); | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | // Try to recover by looking for viable functions which the user might | 
|  | // have meant to call. | 
|  | ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, | 
|  | Args, RParenLoc, | 
|  | CandidateSet->empty(), | 
|  | AllowTypoCorrection); | 
|  | if (Recovery.isInvalid() || Recovery.isUsable()) | 
|  | return Recovery; | 
|  |  | 
|  | // If the user passes in a function that we can't take the address of, we | 
|  | // generally end up emitting really bad error messages. Here, we attempt to | 
|  | // emit better ones. | 
|  | for (const Expr *Arg : Args) { | 
|  | if (!Arg->getType()->isFunctionType()) | 
|  | continue; | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { | 
|  | auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
|  | if (FD && | 
|  | !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, | 
|  | Arg->getExprLoc())) | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CandidateSet->NoteCandidates( | 
|  | PartialDiagnosticAt( | 
|  | Fn->getBeginLoc(), | 
|  | SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) | 
|  | << ULE->getName() << Fn->getSourceRange()), | 
|  | SemaRef, OCD_AllCandidates, Args); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | CandidateSet->NoteCandidates( | 
|  | PartialDiagnosticAt(Fn->getBeginLoc(), | 
|  | SemaRef.PDiag(diag::err_ovl_ambiguous_call) | 
|  | << ULE->getName() << Fn->getSourceRange()), | 
|  | SemaRef, OCD_AmbiguousCandidates, Args); | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: { | 
|  | FunctionDecl *FDecl = (*Best)->Function; | 
|  | SemaRef.DiagnoseUseOfDeletedFunction(Fn->getBeginLoc(), | 
|  | Fn->getSourceRange(), ULE->getName(), | 
|  | *CandidateSet, FDecl, Args); | 
|  |  | 
|  | // We emitted an error for the unavailable/deleted function call but keep | 
|  | // the call in the AST. | 
|  | ExprResult Res = | 
|  | SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | return SemaRef.BuildResolvedCallExpr( | 
|  | Res.get(), FDecl, LParenLoc, Args, RParenLoc, ExecConfig, | 
|  | /*IsExecConfig=*/false, (*Best)->IsADLCandidate); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Overload resolution failed, try to recover. | 
|  | SmallVector<Expr *, 8> SubExprs = {Fn}; | 
|  | SubExprs.append(Args.begin(), Args.end()); | 
|  | return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, | 
|  | chooseRecoveryType(*CandidateSet, Best)); | 
|  | } | 
|  |  | 
|  | static void markUnaddressableCandidatesUnviable(Sema &S, | 
|  | OverloadCandidateSet &CS) { | 
|  | for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { | 
|  | if (I->Viable && | 
|  | !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { | 
|  | I->Viable = false; | 
|  | I->FailureKind = ovl_fail_addr_not_available; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// BuildOverloadedCallExpr - Given the call expression that calls Fn | 
|  | /// (which eventually refers to the declaration Func) and the call | 
|  | /// arguments Args/NumArgs, attempt to resolve the function call down | 
|  | /// to a specific function. If overload resolution succeeds, returns | 
|  | /// the call expression produced by overload resolution. | 
|  | /// Otherwise, emits diagnostics and returns ExprError. | 
|  | ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, | 
|  | UnresolvedLookupExpr *ULE, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | Expr *ExecConfig, | 
|  | bool AllowTypoCorrection, | 
|  | bool CalleesAddressIsTaken) { | 
|  | OverloadCandidateSet CandidateSet(Fn->getExprLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | ExprResult result; | 
|  |  | 
|  | if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, | 
|  | &result)) | 
|  | return result; | 
|  |  | 
|  | // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that | 
|  | // functions that aren't addressible are considered unviable. | 
|  | if (CalleesAddressIsTaken) | 
|  | markUnaddressableCandidatesUnviable(*this, CandidateSet); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | OverloadingResult OverloadResult = | 
|  | CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); | 
|  |  | 
|  | // Model the case with a call to a templated function whose definition | 
|  | // encloses the call and whose return type contains a placeholder type as if | 
|  | // the UnresolvedLookupExpr was type-dependent. | 
|  | if (OverloadResult == OR_Success) { | 
|  | const FunctionDecl *FDecl = Best->Function; | 
|  | if (FDecl && FDecl->isTemplateInstantiation() && | 
|  | FDecl->getReturnType()->isUndeducedType()) { | 
|  | if (const auto *TP = | 
|  | FDecl->getTemplateInstantiationPattern(/*ForDefinition=*/false); | 
|  | TP && TP->willHaveBody()) { | 
|  | return CallExpr::Create(Context, Fn, Args, Context.DependentTy, | 
|  | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, | 
|  | ExecConfig, &CandidateSet, &Best, | 
|  | OverloadResult, AllowTypoCorrection); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, | 
|  | NestedNameSpecifierLoc NNSLoc, | 
|  | DeclarationNameInfo DNI, | 
|  | const UnresolvedSetImpl &Fns, | 
|  | bool PerformADL) { | 
|  | return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, | 
|  | PerformADL, Fns.begin(), Fns.end(), | 
|  | /*KnownDependent=*/false); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, | 
|  | CXXConversionDecl *Method, | 
|  | bool HadMultipleCandidates) { | 
|  | // Convert the expression to match the conversion function's implicit object | 
|  | // parameter. | 
|  | ExprResult Exp; | 
|  | if (Method->isExplicitObjectMemberFunction()) | 
|  | Exp = InitializeExplicitObjectArgument(*this, E, Method); | 
|  | else | 
|  | Exp = PerformImplicitObjectArgumentInitialization(E, /*Qualifier=*/nullptr, | 
|  | FoundDecl, Method); | 
|  | if (Exp.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | if (Method->getParent()->isLambda() && | 
|  | Method->getConversionType()->isBlockPointerType()) { | 
|  | // This is a lambda conversion to block pointer; check if the argument | 
|  | // was a LambdaExpr. | 
|  | Expr *SubE = E; | 
|  | auto *CE = dyn_cast<CastExpr>(SubE); | 
|  | if (CE && CE->getCastKind() == CK_NoOp) | 
|  | SubE = CE->getSubExpr(); | 
|  | SubE = SubE->IgnoreParens(); | 
|  | if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) | 
|  | SubE = BE->getSubExpr(); | 
|  | if (isa<LambdaExpr>(SubE)) { | 
|  | // For the conversion to block pointer on a lambda expression, we | 
|  | // construct a special BlockLiteral instead; this doesn't really make | 
|  | // a difference in ARC, but outside of ARC the resulting block literal | 
|  | // follows the normal lifetime rules for block literals instead of being | 
|  | // autoreleased. | 
|  | PushExpressionEvaluationContext( | 
|  | ExpressionEvaluationContext::PotentiallyEvaluated); | 
|  | ExprResult BlockExp = BuildBlockForLambdaConversion( | 
|  | Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); | 
|  | PopExpressionEvaluationContext(); | 
|  |  | 
|  | // FIXME: This note should be produced by a CodeSynthesisContext. | 
|  | if (BlockExp.isInvalid()) | 
|  | Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); | 
|  | return BlockExp; | 
|  | } | 
|  | } | 
|  | CallExpr *CE; | 
|  | QualType ResultType = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultType); | 
|  | ResultType = ResultType.getNonLValueExprType(Context); | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | ExprResult FnExpr = | 
|  | CreateFunctionRefExpr(*this, Method, FoundDecl, Exp.get(), | 
|  | HadMultipleCandidates, E->getBeginLoc()); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | Expr *ObjectParam = Exp.get(); | 
|  | CE = CallExpr::Create(Context, FnExpr.get(), MultiExprArg(&ObjectParam, 1), | 
|  | ResultType, VK, Exp.get()->getEndLoc(), | 
|  | CurFPFeatureOverrides()); | 
|  | } else { | 
|  | MemberExpr *ME = | 
|  | BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), | 
|  | NestedNameSpecifierLoc(), SourceLocation(), Method, | 
|  | DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), | 
|  | HadMultipleCandidates, DeclarationNameInfo(), | 
|  | Context.BoundMemberTy, VK_PRValue, OK_Ordinary); | 
|  |  | 
|  | CE = CXXMemberCallExpr::Create(Context, ME, /*Args=*/{}, ResultType, VK, | 
|  | Exp.get()->getEndLoc(), | 
|  | CurFPFeatureOverrides()); | 
|  | } | 
|  |  | 
|  | if (CheckFunctionCall(Method, CE, | 
|  | Method->getType()->castAs<FunctionProtoType>())) | 
|  | return ExprError(); | 
|  |  | 
|  | return CheckForImmediateInvocation(CE, CE->getDirectCallee()); | 
|  | } | 
|  |  | 
|  | /// Create a unary operation that may resolve to an overloaded | 
|  | /// operator. | 
|  | /// | 
|  | /// \param OpLoc The location of the operator itself (e.g., '*'). | 
|  | /// | 
|  | /// \param Opc The UnaryOperatorKind that describes this operator. | 
|  | /// | 
|  | /// \param Fns The set of non-member functions that will be | 
|  | /// considered by overload resolution. The caller needs to build this | 
|  | /// set based on the context using, e.g., | 
|  | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | 
|  | /// set should not contain any member functions; those will be added | 
|  | /// by CreateOverloadedUnaryOp(). | 
|  | /// | 
|  | /// \param Input The input argument. | 
|  | ExprResult | 
|  | Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, | 
|  | const UnresolvedSetImpl &Fns, | 
|  | Expr *Input, bool PerformADL) { | 
|  | OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); | 
|  | assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | // TODO: provide better source location info. | 
|  | DeclarationNameInfo OpNameInfo(OpName, OpLoc); | 
|  |  | 
|  | if (checkPlaceholderForOverload(*this, Input)) | 
|  | return ExprError(); | 
|  |  | 
|  | Expr *Args[2] = { Input, nullptr }; | 
|  | unsigned NumArgs = 1; | 
|  |  | 
|  | // For post-increment and post-decrement, add the implicit '0' as | 
|  | // the second argument, so that we know this is a post-increment or | 
|  | // post-decrement. | 
|  | if (Opc == UO_PostInc || Opc == UO_PostDec) { | 
|  | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); | 
|  | Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, | 
|  | SourceLocation()); | 
|  | NumArgs = 2; | 
|  | } | 
|  |  | 
|  | ArrayRef<Expr *> ArgsArray(Args, NumArgs); | 
|  |  | 
|  | if (Input->isTypeDependent()) { | 
|  | ExprValueKind VK = ExprValueKind::VK_PRValue; | 
|  | // [C++26][expr.unary.op][expr.pre.incr] | 
|  | // The * operator yields an lvalue of type | 
|  | // The pre/post increment operators yied an lvalue. | 
|  | if (Opc == UO_PreDec || Opc == UO_PreInc || Opc == UO_Deref) | 
|  | VK = VK_LValue; | 
|  |  | 
|  | if (Fns.empty()) | 
|  | return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, VK, | 
|  | OK_Ordinary, OpLoc, false, | 
|  | CurFPFeatureOverrides()); | 
|  |  | 
|  | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | 
|  | ExprResult Fn = CreateUnresolvedLookupExpr( | 
|  | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); | 
|  | if (Fn.isInvalid()) | 
|  | return ExprError(); | 
|  | return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, | 
|  | Context.DependentTy, VK, OpLoc, | 
|  | CurFPFeatureOverrides()); | 
|  | } | 
|  |  | 
|  | // Build an empty overload set. | 
|  | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); | 
|  |  | 
|  | // Add the candidates from the given function set. | 
|  | AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); | 
|  |  | 
|  | // Add operator candidates that are member functions. | 
|  | AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); | 
|  |  | 
|  | // Add candidates from ADL. | 
|  | if (PerformADL) { | 
|  | AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, | 
|  | /*ExplicitTemplateArgs*/nullptr, | 
|  | CandidateSet); | 
|  | } | 
|  |  | 
|  | // Add builtin operator candidates. | 
|  | AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a built-in operator or an overloaded operator. | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  |  | 
|  | if (FnDecl) { | 
|  | Expr *Base = nullptr; | 
|  | // We matched an overloaded operator. Build a call to that | 
|  | // operator. | 
|  |  | 
|  | // Convert the arguments. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | CheckMemberOperatorAccess(OpLoc, Input, nullptr, Best->FoundDecl); | 
|  |  | 
|  | ExprResult InputInit; | 
|  | if (Method->isExplicitObjectMemberFunction()) | 
|  | InputInit = InitializeExplicitObjectArgument(*this, Input, Method); | 
|  | else | 
|  | InputInit = PerformImplicitObjectArgumentInitialization( | 
|  | Input, /*Qualifier=*/nullptr, Best->FoundDecl, Method); | 
|  | if (InputInit.isInvalid()) | 
|  | return ExprError(); | 
|  | Base = Input = InputInit.get(); | 
|  | } else { | 
|  | // Convert the arguments. | 
|  | ExprResult InputInit | 
|  | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | Context, | 
|  | FnDecl->getParamDecl(0)), | 
|  | SourceLocation(), | 
|  | Input); | 
|  | if (InputInit.isInvalid()) | 
|  | return ExprError(); | 
|  | Input = InputInit.get(); | 
|  | } | 
|  |  | 
|  | // Build the actual expression node. | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, | 
|  | Base, HadMultipleCandidates, | 
|  | OpLoc); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Determine the result type. | 
|  | QualType ResultTy = FnDecl->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | Args[0] = Input; | 
|  | CallExpr *TheCall = CXXOperatorCallExpr::Create( | 
|  | Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, | 
|  | CurFPFeatureOverrides(), Best->IsADLCandidate); | 
|  |  | 
|  | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckFunctionCall(FnDecl, TheCall, | 
|  | FnDecl->getType()->castAs<FunctionProtoType>())) | 
|  | return ExprError(); | 
|  | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); | 
|  | } else { | 
|  | // We matched a built-in operator. Convert the arguments, then | 
|  | // break out so that we will build the appropriate built-in | 
|  | // operator node. | 
|  | ExprResult InputRes = PerformImplicitConversion( | 
|  | Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, | 
|  | CheckedConversionKind::ForBuiltinOverloadedOp); | 
|  | if (InputRes.isInvalid()) | 
|  | return ExprError(); | 
|  | Input = InputRes.get(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | // This is an erroneous use of an operator which can be overloaded by | 
|  | // a non-member function. Check for non-member operators which were | 
|  | // defined too late to be candidates. | 
|  | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) | 
|  | // FIXME: Recover by calling the found function. | 
|  | return ExprError(); | 
|  |  | 
|  | // No viable function; fall through to handling this as a | 
|  | // built-in operator, which will produce an error message for us. | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(OpLoc, | 
|  | PDiag(diag::err_ovl_ambiguous_oper_unary) | 
|  | << UnaryOperator::getOpcodeStr(Opc) | 
|  | << Input->getType() << Input->getSourceRange()), | 
|  | *this, OCD_AmbiguousCandidates, ArgsArray, | 
|  | UnaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: { | 
|  | // CreateOverloadedUnaryOp fills the first element of ArgsArray with the | 
|  | // object whose method was called. Later in NoteCandidates size of ArgsArray | 
|  | // is passed further and it eventually ends up compared to number of | 
|  | // function candidate parameters which never includes the object parameter, | 
|  | // so slice ArgsArray to make sure apples are compared to apples. | 
|  | StringLiteral *Msg = Best->Function->getDeletedMessage(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) | 
|  | << UnaryOperator::getOpcodeStr(Opc) | 
|  | << (Msg != nullptr) | 
|  | << (Msg ? Msg->getString() : StringRef()) | 
|  | << Input->getSourceRange()), | 
|  | *this, OCD_AllCandidates, ArgsArray.drop_front(), | 
|  | UnaryOperator::getOpcodeStr(Opc), OpLoc); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Either we found no viable overloaded operator or we matched a | 
|  | // built-in operator. In either case, fall through to trying to | 
|  | // build a built-in operation. | 
|  | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | 
|  | } | 
|  |  | 
|  | /// Perform lookup for an overloaded binary operator. | 
|  | void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, | 
|  | OverloadedOperatorKind Op, | 
|  | const UnresolvedSetImpl &Fns, | 
|  | ArrayRef<Expr *> Args, bool PerformADL) { | 
|  | SourceLocation OpLoc = CandidateSet.getLocation(); | 
|  |  | 
|  | OverloadedOperatorKind ExtraOp = | 
|  | CandidateSet.getRewriteInfo().AllowRewrittenCandidates | 
|  | ? getRewrittenOverloadedOperator(Op) | 
|  | : OO_None; | 
|  |  | 
|  | // Add the candidates from the given function set. This also adds the | 
|  | // rewritten candidates using these functions if necessary. | 
|  | AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); | 
|  |  | 
|  | // Add operator candidates that are member functions. | 
|  | AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); | 
|  | if (CandidateSet.getRewriteInfo().allowsReversed(Op)) | 
|  | AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, | 
|  | OverloadCandidateParamOrder::Reversed); | 
|  |  | 
|  | // In C++20, also add any rewritten member candidates. | 
|  | if (ExtraOp) { | 
|  | AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); | 
|  | if (CandidateSet.getRewriteInfo().allowsReversed(ExtraOp)) | 
|  | AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, | 
|  | CandidateSet, | 
|  | OverloadCandidateParamOrder::Reversed); | 
|  | } | 
|  |  | 
|  | // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not | 
|  | // performed for an assignment operator (nor for operator[] nor operator->, | 
|  | // which don't get here). | 
|  | if (Op != OO_Equal && PerformADL) { | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, | 
|  | /*ExplicitTemplateArgs*/ nullptr, | 
|  | CandidateSet); | 
|  | if (ExtraOp) { | 
|  | DeclarationName ExtraOpName = | 
|  | Context.DeclarationNames.getCXXOperatorName(ExtraOp); | 
|  | AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, | 
|  | /*ExplicitTemplateArgs*/ nullptr, | 
|  | CandidateSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add builtin operator candidates. | 
|  | // | 
|  | // FIXME: We don't add any rewritten candidates here. This is strictly | 
|  | // incorrect; a builtin candidate could be hidden by a non-viable candidate, | 
|  | // resulting in our selecting a rewritten builtin candidate. For example: | 
|  | // | 
|  | //   enum class E { e }; | 
|  | //   bool operator!=(E, E) requires false; | 
|  | //   bool k = E::e != E::e; | 
|  | // | 
|  | // ... should select the rewritten builtin candidate 'operator==(E, E)'. But | 
|  | // it seems unreasonable to consider rewritten builtin candidates. A core | 
|  | // issue has been filed proposing to removed this requirement. | 
|  | AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); | 
|  | } | 
|  |  | 
|  | /// Create a binary operation that may resolve to an overloaded | 
|  | /// operator. | 
|  | /// | 
|  | /// \param OpLoc The location of the operator itself (e.g., '+'). | 
|  | /// | 
|  | /// \param Opc The BinaryOperatorKind that describes this operator. | 
|  | /// | 
|  | /// \param Fns The set of non-member functions that will be | 
|  | /// considered by overload resolution. The caller needs to build this | 
|  | /// set based on the context using, e.g., | 
|  | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | 
|  | /// set should not contain any member functions; those will be added | 
|  | /// by CreateOverloadedBinOp(). | 
|  | /// | 
|  | /// \param LHS Left-hand argument. | 
|  | /// \param RHS Right-hand argument. | 
|  | /// \param PerformADL Whether to consider operator candidates found by ADL. | 
|  | /// \param AllowRewrittenCandidates Whether to consider candidates found by | 
|  | ///        C++20 operator rewrites. | 
|  | /// \param DefaultedFn If we are synthesizing a defaulted operator function, | 
|  | ///        the function in question. Such a function is never a candidate in | 
|  | ///        our overload resolution. This also enables synthesizing a three-way | 
|  | ///        comparison from < and == as described in C++20 [class.spaceship]p1. | 
|  | ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, | 
|  | BinaryOperatorKind Opc, | 
|  | const UnresolvedSetImpl &Fns, Expr *LHS, | 
|  | Expr *RHS, bool PerformADL, | 
|  | bool AllowRewrittenCandidates, | 
|  | FunctionDecl *DefaultedFn) { | 
|  | Expr *Args[2] = { LHS, RHS }; | 
|  | LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus20) | 
|  | AllowRewrittenCandidates = false; | 
|  |  | 
|  | OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); | 
|  |  | 
|  | // If either side is type-dependent, create an appropriate dependent | 
|  | // expression. | 
|  | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | 
|  | if (Fns.empty()) { | 
|  | // If there are no functions to store, just build a dependent | 
|  | // BinaryOperator or CompoundAssignment. | 
|  | if (BinaryOperator::isCompoundAssignmentOp(Opc)) | 
|  | return CompoundAssignOperator::Create( | 
|  | Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, | 
|  | OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, | 
|  | Context.DependentTy); | 
|  | return BinaryOperator::Create( | 
|  | Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, | 
|  | OK_Ordinary, OpLoc, CurFPFeatureOverrides()); | 
|  | } | 
|  |  | 
|  | // FIXME: save results of ADL from here? | 
|  | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | 
|  | // TODO: provide better source location info in DNLoc component. | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | DeclarationNameInfo OpNameInfo(OpName, OpLoc); | 
|  | ExprResult Fn = CreateUnresolvedLookupExpr( | 
|  | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); | 
|  | if (Fn.isInvalid()) | 
|  | return ExprError(); | 
|  | return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, | 
|  | Context.DependentTy, VK_PRValue, OpLoc, | 
|  | CurFPFeatureOverrides()); | 
|  | } | 
|  |  | 
|  | // If this is the .* operator, which is not overloadable, just | 
|  | // create a built-in binary operator. | 
|  | if (Opc == BO_PtrMemD) { | 
|  | auto CheckPlaceholder = [&](Expr *&Arg) { | 
|  | ExprResult Res = CheckPlaceholderExpr(Arg); | 
|  | if (Res.isUsable()) | 
|  | Arg = Res.get(); | 
|  | return !Res.isUsable(); | 
|  | }; | 
|  |  | 
|  | // CreateBuiltinBinOp() doesn't like it if we tell it to create a '.*' | 
|  | // expression that contains placeholders (in either the LHS or RHS). | 
|  | if (CheckPlaceholder(Args[0]) || CheckPlaceholder(Args[1])) | 
|  | return ExprError(); | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  | } | 
|  |  | 
|  | // Always do placeholder-like conversions on the RHS. | 
|  | if (checkPlaceholderForOverload(*this, Args[1])) | 
|  | return ExprError(); | 
|  |  | 
|  | // Do placeholder-like conversion on the LHS; note that we should | 
|  | // not get here with a PseudoObject LHS. | 
|  | assert(Args[0]->getObjectKind() != OK_ObjCProperty); | 
|  | if (checkPlaceholderForOverload(*this, Args[0])) | 
|  | return ExprError(); | 
|  |  | 
|  | // If this is the assignment operator, we only perform overload resolution | 
|  | // if the left-hand side is a class or enumeration type. This is actually | 
|  | // a hack. The standard requires that we do overload resolution between the | 
|  | // various built-in candidates, but as DR507 points out, this can lead to | 
|  | // problems. So we do it this way, which pretty much follows what GCC does. | 
|  | // Note that we go the traditional code path for compound assignment forms. | 
|  | if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  |  | 
|  | // Build the overload set. | 
|  | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator, | 
|  | OverloadCandidateSet::OperatorRewriteInfo( | 
|  | Op, OpLoc, AllowRewrittenCandidates)); | 
|  | if (DefaultedFn) | 
|  | CandidateSet.exclude(DefaultedFn); | 
|  | LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a built-in operator or an overloaded operator. | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  |  | 
|  | bool IsReversed = Best->isReversed(); | 
|  | if (IsReversed) | 
|  | std::swap(Args[0], Args[1]); | 
|  |  | 
|  | if (FnDecl) { | 
|  |  | 
|  | if (FnDecl->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | Expr *Base = nullptr; | 
|  | // We matched an overloaded operator. Build a call to that | 
|  | // operator. | 
|  |  | 
|  | OverloadedOperatorKind ChosenOp = | 
|  | FnDecl->getDeclName().getCXXOverloadedOperator(); | 
|  |  | 
|  | // C++2a [over.match.oper]p9: | 
|  | //   If a rewritten operator== candidate is selected by overload | 
|  | //   resolution for an operator@, its return type shall be cv bool | 
|  | if (Best->RewriteKind && ChosenOp == OO_EqualEqual && | 
|  | !FnDecl->getReturnType()->isBooleanType()) { | 
|  | bool IsExtension = | 
|  | FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); | 
|  | Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool | 
|  | : diag::err_ovl_rewrite_equalequal_not_bool) | 
|  | << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | Diag(FnDecl->getLocation(), diag::note_declared_at); | 
|  | if (!IsExtension) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (AllowRewrittenCandidates && !IsReversed && | 
|  | CandidateSet.getRewriteInfo().isReversible()) { | 
|  | // We could have reversed this operator, but didn't. Check if some | 
|  | // reversed form was a viable candidate, and if so, if it had a | 
|  | // better conversion for either parameter. If so, this call is | 
|  | // formally ambiguous, and allowing it is an extension. | 
|  | llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; | 
|  | for (OverloadCandidate &Cand : CandidateSet) { | 
|  | if (Cand.Viable && Cand.Function && Cand.isReversed() && | 
|  | allowAmbiguity(Context, Cand.Function, FnDecl)) { | 
|  | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | 
|  | if (CompareImplicitConversionSequences( | 
|  | *this, OpLoc, Cand.Conversions[ArgIdx], | 
|  | Best->Conversions[ArgIdx]) == | 
|  | ImplicitConversionSequence::Better) { | 
|  | AmbiguousWith.push_back(Cand.Function); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!AmbiguousWith.empty()) { | 
|  | bool AmbiguousWithSelf = | 
|  | AmbiguousWith.size() == 1 && | 
|  | declaresSameEntity(AmbiguousWith.front(), FnDecl); | 
|  | Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) | 
|  | << BinaryOperator::getOpcodeStr(Opc) | 
|  | << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | if (AmbiguousWithSelf) { | 
|  | Diag(FnDecl->getLocation(), | 
|  | diag::note_ovl_ambiguous_oper_binary_reversed_self); | 
|  | // Mark member== const or provide matching != to disallow reversed | 
|  | // args. Eg. | 
|  | // struct S { bool operator==(const S&); }; | 
|  | // S()==S(); | 
|  | if (auto *MD = dyn_cast<CXXMethodDecl>(FnDecl)) | 
|  | if (Op == OverloadedOperatorKind::OO_EqualEqual && | 
|  | !MD->isConst() && | 
|  | !MD->hasCXXExplicitFunctionObjectParameter() && | 
|  | Context.hasSameUnqualifiedType( | 
|  | MD->getFunctionObjectParameterType(), | 
|  | MD->getParamDecl(0)->getType().getNonReferenceType()) && | 
|  | Context.hasSameUnqualifiedType( | 
|  | MD->getFunctionObjectParameterType(), | 
|  | Args[0]->getType()) && | 
|  | Context.hasSameUnqualifiedType( | 
|  | MD->getFunctionObjectParameterType(), | 
|  | Args[1]->getType())) | 
|  | Diag(FnDecl->getLocation(), | 
|  | diag::note_ovl_ambiguous_eqeq_reversed_self_non_const); | 
|  | } else { | 
|  | Diag(FnDecl->getLocation(), | 
|  | diag::note_ovl_ambiguous_oper_binary_selected_candidate); | 
|  | for (auto *F : AmbiguousWith) | 
|  | Diag(F->getLocation(), | 
|  | diag::note_ovl_ambiguous_oper_binary_reversed_candidate); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for nonnull = nullable. | 
|  | // This won't be caught in the arg's initialization: the parameter to | 
|  | // the assignment operator is not marked nonnull. | 
|  | if (Op == OO_Equal) | 
|  | diagnoseNullableToNonnullConversion(Args[0]->getType(), | 
|  | Args[1]->getType(), OpLoc); | 
|  |  | 
|  | // Convert the arguments. | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | // Best->Access is only meaningful for class members. | 
|  | CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); | 
|  |  | 
|  | ExprResult Arg0, Arg1; | 
|  | unsigned ParamIdx = 0; | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | Arg0 = InitializeExplicitObjectArgument(*this, Args[0], FnDecl); | 
|  | ParamIdx = 1; | 
|  | } else { | 
|  | Arg0 = PerformImplicitObjectArgumentInitialization( | 
|  | Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method); | 
|  | } | 
|  | Arg1 = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter( | 
|  | Context, FnDecl->getParamDecl(ParamIdx)), | 
|  | SourceLocation(), Args[1]); | 
|  | if (Arg0.isInvalid() || Arg1.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | Base = Args[0] = Arg0.getAs<Expr>(); | 
|  | Args[1] = RHS = Arg1.getAs<Expr>(); | 
|  | } else { | 
|  | // Convert the arguments. | 
|  | ExprResult Arg0 = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, | 
|  | FnDecl->getParamDecl(0)), | 
|  | SourceLocation(), Args[0]); | 
|  | if (Arg0.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Arg1 = | 
|  | PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, | 
|  | FnDecl->getParamDecl(1)), | 
|  | SourceLocation(), Args[1]); | 
|  | if (Arg1.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = LHS = Arg0.getAs<Expr>(); | 
|  | Args[1] = RHS = Arg1.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | // Build the actual expression node. | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, | 
|  | Best->FoundDecl, Base, | 
|  | HadMultipleCandidates, OpLoc); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Determine the result type. | 
|  | QualType ResultTy = FnDecl->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CallExpr *TheCall; | 
|  | ArrayRef<const Expr *> ArgsArray(Args, 2); | 
|  | const Expr *ImplicitThis = nullptr; | 
|  |  | 
|  | // We always create a CXXOperatorCallExpr, even for explicit object | 
|  | // members; CodeGen should take care not to emit the this pointer. | 
|  | TheCall = CXXOperatorCallExpr::Create( | 
|  | Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, | 
|  | CurFPFeatureOverrides(), Best->IsADLCandidate); | 
|  |  | 
|  | if (const auto *Method = dyn_cast<CXXMethodDecl>(FnDecl); | 
|  | Method && Method->isImplicitObjectMemberFunction()) { | 
|  | // Cut off the implicit 'this'. | 
|  | ImplicitThis = ArgsArray[0]; | 
|  | ArgsArray = ArgsArray.slice(1); | 
|  | } | 
|  |  | 
|  | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, | 
|  | FnDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Check for a self move. | 
|  | if (Op == OO_Equal) | 
|  | DiagnoseSelfMove(Args[0], Args[1], OpLoc); | 
|  |  | 
|  | if (ImplicitThis) { | 
|  | QualType ThisType = Context.getPointerType(ImplicitThis->getType()); | 
|  | QualType ThisTypeFromDecl = Context.getPointerType( | 
|  | cast<CXXMethodDecl>(FnDecl)->getFunctionObjectParameterType()); | 
|  |  | 
|  | CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, | 
|  | ThisTypeFromDecl); | 
|  | } | 
|  |  | 
|  | checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, | 
|  | isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), | 
|  | VariadicDoesNotApply); | 
|  |  | 
|  | ExprResult R = MaybeBindToTemporary(TheCall); | 
|  | if (R.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | R = CheckForImmediateInvocation(R, FnDecl); | 
|  | if (R.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // For a rewritten candidate, we've already reversed the arguments | 
|  | // if needed. Perform the rest of the rewrite now. | 
|  | if ((Best->RewriteKind & CRK_DifferentOperator) || | 
|  | (Op == OO_Spaceship && IsReversed)) { | 
|  | if (Op == OO_ExclaimEqual) { | 
|  | assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); | 
|  | R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); | 
|  | } else { | 
|  | assert(ChosenOp == OO_Spaceship && "unexpected operator name"); | 
|  | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); | 
|  | Expr *ZeroLiteral = | 
|  | IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); | 
|  |  | 
|  | Sema::CodeSynthesisContext Ctx; | 
|  | Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; | 
|  | Ctx.Entity = FnDecl; | 
|  | pushCodeSynthesisContext(Ctx); | 
|  |  | 
|  | R = CreateOverloadedBinOp( | 
|  | OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), | 
|  | IsReversed ? R.get() : ZeroLiteral, /*PerformADL=*/true, | 
|  | /*AllowRewrittenCandidates=*/false); | 
|  |  | 
|  | popCodeSynthesisContext(); | 
|  | } | 
|  | if (R.isInvalid()) | 
|  | return ExprError(); | 
|  | } else { | 
|  | assert(ChosenOp == Op && "unexpected operator name"); | 
|  | } | 
|  |  | 
|  | // Make a note in the AST if we did any rewriting. | 
|  | if (Best->RewriteKind != CRK_None) | 
|  | R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); | 
|  |  | 
|  | return R; | 
|  | } else { | 
|  | // We matched a built-in operator. Convert the arguments, then | 
|  | // break out so that we will build the appropriate built-in | 
|  | // operator node. | 
|  | ExprResult ArgsRes0 = PerformImplicitConversion( | 
|  | Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], | 
|  | AA_Passing, CheckedConversionKind::ForBuiltinOverloadedOp); | 
|  | if (ArgsRes0.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = ArgsRes0.get(); | 
|  |  | 
|  | ExprResult ArgsRes1 = PerformImplicitConversion( | 
|  | Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], | 
|  | AA_Passing, CheckedConversionKind::ForBuiltinOverloadedOp); | 
|  | if (ArgsRes1.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[1] = ArgsRes1.get(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | // C++ [over.match.oper]p9: | 
|  | //   If the operator is the operator , [...] and there are no | 
|  | //   viable functions, then the operator is assumed to be the | 
|  | //   built-in operator and interpreted according to clause 5. | 
|  | if (Opc == BO_Comma) | 
|  | break; | 
|  |  | 
|  | // When defaulting an 'operator<=>', we can try to synthesize a three-way | 
|  | // compare result using '==' and '<'. | 
|  | if (DefaultedFn && Opc == BO_Cmp) { | 
|  | ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], | 
|  | Args[1], DefaultedFn); | 
|  | if (E.isInvalid() || E.isUsable()) | 
|  | return E; | 
|  | } | 
|  |  | 
|  | // For class as left operand for assignment or compound assignment | 
|  | // operator do not fall through to handling in built-in, but report that | 
|  | // no overloaded assignment operator found | 
|  | ExprResult Result = ExprError(); | 
|  | StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); | 
|  | auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, | 
|  | Args, OpLoc); | 
|  | DeferDiagsRAII DDR(*this, | 
|  | CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); | 
|  | if (Args[0]->getType()->isRecordType() && | 
|  | Opc >= BO_Assign && Opc <= BO_OrAssign) { | 
|  | Diag(OpLoc,  diag::err_ovl_no_viable_oper) | 
|  | << BinaryOperator::getOpcodeStr(Opc) | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | if (Args[0]->getType()->isIncompleteType()) { | 
|  | Diag(OpLoc, diag::note_assign_lhs_incomplete) | 
|  | << Args[0]->getType() | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
|  | } | 
|  | } else { | 
|  | // This is an erroneous use of an operator which can be overloaded by | 
|  | // a non-member function. Check for non-member operators which were | 
|  | // defined too late to be candidates. | 
|  | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) | 
|  | // FIXME: Recover by calling the found function. | 
|  | return ExprError(); | 
|  |  | 
|  | // No viable function; try to create a built-in operation, which will | 
|  | // produce an error. Then, show the non-viable candidates. | 
|  | Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  | } | 
|  | assert(Result.isInvalid() && | 
|  | "C++ binary operator overloading is missing candidates!"); | 
|  | CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) | 
|  | << BinaryOperator::getOpcodeStr(Opc) | 
|  | << Args[0]->getType() | 
|  | << Args[1]->getType() | 
|  | << Args[0]->getSourceRange() | 
|  | << Args[1]->getSourceRange()), | 
|  | *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), | 
|  | OpLoc); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: { | 
|  | if (isImplicitlyDeleted(Best->Function)) { | 
|  | FunctionDecl *DeletedFD = Best->Function; | 
|  | DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); | 
|  | if (DFK.isSpecialMember()) { | 
|  | Diag(OpLoc, diag::err_ovl_deleted_special_oper) | 
|  | << Args[0]->getType() | 
|  | << llvm::to_underlying(DFK.asSpecialMember()); | 
|  | } else { | 
|  | assert(DFK.isComparison()); | 
|  | Diag(OpLoc, diag::err_ovl_deleted_comparison) | 
|  | << Args[0]->getType() << DeletedFD; | 
|  | } | 
|  |  | 
|  | // The user probably meant to call this special member. Just | 
|  | // explain why it's deleted. | 
|  | NoteDeletedFunction(DeletedFD); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | StringLiteral *Msg = Best->Function->getDeletedMessage(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt( | 
|  | OpLoc, | 
|  | PDiag(diag::err_ovl_deleted_oper) | 
|  | << getOperatorSpelling(Best->Function->getDeclName() | 
|  | .getCXXOverloadedOperator()) | 
|  | << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()) | 
|  | << Args[0]->getSourceRange() << Args[1]->getSourceRange()), | 
|  | *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), | 
|  | OpLoc); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We matched a built-in operator; build it. | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::BuildSynthesizedThreeWayComparison( | 
|  | SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, | 
|  | FunctionDecl *DefaultedFn) { | 
|  | const ComparisonCategoryInfo *Info = | 
|  | Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); | 
|  | // If we're not producing a known comparison category type, we can't | 
|  | // synthesize a three-way comparison. Let the caller diagnose this. | 
|  | if (!Info) | 
|  | return ExprResult((Expr*)nullptr); | 
|  |  | 
|  | // If we ever want to perform this synthesis more generally, we will need to | 
|  | // apply the temporary materialization conversion to the operands. | 
|  | assert(LHS->isGLValue() && RHS->isGLValue() && | 
|  | "cannot use prvalue expressions more than once"); | 
|  | Expr *OrigLHS = LHS; | 
|  | Expr *OrigRHS = RHS; | 
|  |  | 
|  | // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to | 
|  | // each of them multiple times below. | 
|  | LHS = new (Context) | 
|  | OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), | 
|  | LHS->getObjectKind(), LHS); | 
|  | RHS = new (Context) | 
|  | OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), | 
|  | RHS->getObjectKind(), RHS); | 
|  |  | 
|  | ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, | 
|  | DefaultedFn); | 
|  | if (Eq.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, | 
|  | true, DefaultedFn); | 
|  | if (Less.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | ExprResult Greater; | 
|  | if (Info->isPartial()) { | 
|  | Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, | 
|  | DefaultedFn); | 
|  | if (Greater.isInvalid()) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // Form the list of comparisons we're going to perform. | 
|  | struct Comparison { | 
|  | ExprResult Cmp; | 
|  | ComparisonCategoryResult Result; | 
|  | } Comparisons[4] = | 
|  | { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal | 
|  | : ComparisonCategoryResult::Equivalent}, | 
|  | {Less, ComparisonCategoryResult::Less}, | 
|  | {Greater, ComparisonCategoryResult::Greater}, | 
|  | {ExprResult(), ComparisonCategoryResult::Unordered}, | 
|  | }; | 
|  |  | 
|  | int I = Info->isPartial() ? 3 : 2; | 
|  |  | 
|  | // Combine the comparisons with suitable conditional expressions. | 
|  | ExprResult Result; | 
|  | for (; I >= 0; --I) { | 
|  | // Build a reference to the comparison category constant. | 
|  | auto *VI = Info->lookupValueInfo(Comparisons[I].Result); | 
|  | // FIXME: Missing a constant for a comparison category. Diagnose this? | 
|  | if (!VI) | 
|  | return ExprResult((Expr*)nullptr); | 
|  | ExprResult ThisResult = | 
|  | BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); | 
|  | if (ThisResult.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Build a conditional unless this is the final case. | 
|  | if (Result.get()) { | 
|  | Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), | 
|  | ThisResult.get(), Result.get()); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  | } else { | 
|  | Result = ThisResult; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to | 
|  | // bind the OpaqueValueExprs before they're (repeatedly) used. | 
|  | Expr *SyntacticForm = BinaryOperator::Create( | 
|  | Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), | 
|  | Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, | 
|  | CurFPFeatureOverrides()); | 
|  | Expr *SemanticForm[] = {LHS, RHS, Result.get()}; | 
|  | return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); | 
|  | } | 
|  |  | 
|  | static bool PrepareArgumentsForCallToObjectOfClassType( | 
|  | Sema &S, SmallVectorImpl<Expr *> &MethodArgs, CXXMethodDecl *Method, | 
|  | MultiExprArg Args, SourceLocation LParenLoc) { | 
|  |  | 
|  | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  | unsigned NumArgsSlots = | 
|  | MethodArgs.size() + std::max<unsigned>(Args.size(), NumParams); | 
|  | // Build the full argument list for the method call (the implicit object | 
|  | // parameter is placed at the beginning of the list). | 
|  | MethodArgs.reserve(MethodArgs.size() + NumArgsSlots); | 
|  | bool IsError = false; | 
|  | // Initialize the implicit object parameter. | 
|  | // Check the argument types. | 
|  | for (unsigned i = 0; i != NumParams; i++) { | 
|  | Expr *Arg; | 
|  | if (i < Args.size()) { | 
|  | Arg = Args[i]; | 
|  | ExprResult InputInit = | 
|  | S.PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
|  | S.Context, Method->getParamDecl(i)), | 
|  | SourceLocation(), Arg); | 
|  | IsError |= InputInit.isInvalid(); | 
|  | Arg = InputInit.getAs<Expr>(); | 
|  | } else { | 
|  | ExprResult DefArg = | 
|  | S.BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); | 
|  | if (DefArg.isInvalid()) { | 
|  | IsError = true; | 
|  | break; | 
|  | } | 
|  | Arg = DefArg.getAs<Expr>(); | 
|  | } | 
|  |  | 
|  | MethodArgs.push_back(Arg); | 
|  | } | 
|  | return IsError; | 
|  | } | 
|  |  | 
|  | ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, | 
|  | SourceLocation RLoc, | 
|  | Expr *Base, | 
|  | MultiExprArg ArgExpr) { | 
|  | SmallVector<Expr *, 2> Args; | 
|  | Args.push_back(Base); | 
|  | for (auto *e : ArgExpr) { | 
|  | Args.push_back(e); | 
|  | } | 
|  | DeclarationName OpName = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Subscript); | 
|  |  | 
|  | SourceRange Range = ArgExpr.empty() | 
|  | ? SourceRange{} | 
|  | : SourceRange(ArgExpr.front()->getBeginLoc(), | 
|  | ArgExpr.back()->getEndLoc()); | 
|  |  | 
|  | // If either side is type-dependent, create an appropriate dependent | 
|  | // expression. | 
|  | if (Expr::hasAnyTypeDependentArguments(Args)) { | 
|  |  | 
|  | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | 
|  | // CHECKME: no 'operator' keyword? | 
|  | DeclarationNameInfo OpNameInfo(OpName, LLoc); | 
|  | OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); | 
|  | ExprResult Fn = CreateUnresolvedLookupExpr( | 
|  | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); | 
|  | if (Fn.isInvalid()) | 
|  | return ExprError(); | 
|  | // Can't add any actual overloads yet | 
|  |  | 
|  | return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, | 
|  | Context.DependentTy, VK_PRValue, RLoc, | 
|  | CurFPFeatureOverrides()); | 
|  | } | 
|  |  | 
|  | // Handle placeholders | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { | 
|  | return ExprError(); | 
|  | } | 
|  | // Build an empty overload set. | 
|  | OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); | 
|  |  | 
|  | // Subscript can only be overloaded as a member function. | 
|  |  | 
|  | // Add operator candidates that are member functions. | 
|  | AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); | 
|  |  | 
|  | // Add builtin operator candidates. | 
|  | if (Args.size() == 2) | 
|  | AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { | 
|  | case OR_Success: { | 
|  | // We found a built-in operator or an overloaded operator. | 
|  | FunctionDecl *FnDecl = Best->Function; | 
|  |  | 
|  | if (FnDecl) { | 
|  | // We matched an overloaded operator. Build a call to that | 
|  | // operator. | 
|  |  | 
|  | CheckMemberOperatorAccess(LLoc, Args[0], ArgExpr, Best->FoundDecl); | 
|  |  | 
|  | // Convert the arguments. | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | 
|  | SmallVector<Expr *, 2> MethodArgs; | 
|  |  | 
|  | // Initialize the object parameter. | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | ExprResult Res = | 
|  | InitializeExplicitObjectArgument(*this, Args[0], Method); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = Res.get(); | 
|  | ArgExpr = Args; | 
|  | } else { | 
|  | ExprResult Arg0 = PerformImplicitObjectArgumentInitialization( | 
|  | Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method); | 
|  | if (Arg0.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | MethodArgs.push_back(Arg0.get()); | 
|  | } | 
|  |  | 
|  | bool IsError = PrepareArgumentsForCallToObjectOfClassType( | 
|  | *this, MethodArgs, Method, ArgExpr, LLoc); | 
|  | if (IsError) | 
|  | return ExprError(); | 
|  |  | 
|  | // Build the actual expression node. | 
|  | DeclarationNameInfo OpLocInfo(OpName, LLoc); | 
|  | OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); | 
|  | ExprResult FnExpr = CreateFunctionRefExpr( | 
|  | *this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates, | 
|  | OpLocInfo.getLoc(), OpLocInfo.getInfo()); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Determine the result type | 
|  | QualType ResultTy = FnDecl->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CallExpr *TheCall = CXXOperatorCallExpr::Create( | 
|  | Context, OO_Subscript, FnExpr.get(), MethodArgs, ResultTy, VK, RLoc, | 
|  | CurFPFeatureOverrides()); | 
|  |  | 
|  | if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckFunctionCall(Method, TheCall, | 
|  | Method->getType()->castAs<FunctionProtoType>())) | 
|  | return ExprError(); | 
|  |  | 
|  | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), | 
|  | FnDecl); | 
|  | } else { | 
|  | // We matched a built-in operator. Convert the arguments, then | 
|  | // break out so that we will build the appropriate built-in | 
|  | // operator node. | 
|  | ExprResult ArgsRes0 = PerformImplicitConversion( | 
|  | Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], | 
|  | AA_Passing, CheckedConversionKind::ForBuiltinOverloadedOp); | 
|  | if (ArgsRes0.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[0] = ArgsRes0.get(); | 
|  |  | 
|  | ExprResult ArgsRes1 = PerformImplicitConversion( | 
|  | Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], | 
|  | AA_Passing, CheckedConversionKind::ForBuiltinOverloadedOp); | 
|  | if (ArgsRes1.isInvalid()) | 
|  | return ExprError(); | 
|  | Args[1] = ArgsRes1.get(); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | PartialDiagnostic PD = | 
|  | CandidateSet.empty() | 
|  | ? (PDiag(diag::err_ovl_no_oper) | 
|  | << Args[0]->getType() << /*subscript*/ 0 | 
|  | << Args[0]->getSourceRange() << Range) | 
|  | : (PDiag(diag::err_ovl_no_viable_subscript) | 
|  | << Args[0]->getType() << Args[0]->getSourceRange() << Range); | 
|  | CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, | 
|  | OCD_AllCandidates, ArgExpr, "[]", LLoc); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | if (Args.size() == 2) { | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt( | 
|  | LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) | 
|  | << "[]" << Args[0]->getType() << Args[1]->getType() | 
|  | << Args[0]->getSourceRange() << Range), | 
|  | *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); | 
|  | } else { | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(LLoc, | 
|  | PDiag(diag::err_ovl_ambiguous_subscript_call) | 
|  | << Args[0]->getType() | 
|  | << Args[0]->getSourceRange() << Range), | 
|  | *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); | 
|  | } | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: { | 
|  | StringLiteral *Msg = Best->Function->getDeletedMessage(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(LLoc, | 
|  | PDiag(diag::err_ovl_deleted_oper) | 
|  | << "[]" << (Msg != nullptr) | 
|  | << (Msg ? Msg->getString() : StringRef()) | 
|  | << Args[0]->getSourceRange() << Range), | 
|  | *this, OCD_AllCandidates, Args, "[]", LLoc); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We matched a built-in operator; build it. | 
|  | return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); | 
|  | } | 
|  |  | 
|  | /// BuildCallToMemberFunction - Build a call to a member | 
|  | /// function. MemExpr is the expression that refers to the member | 
|  | /// function (and includes the object parameter), Args/NumArgs are the | 
|  | /// arguments to the function call (not including the object | 
|  | /// parameter). The caller needs to validate that the member | 
|  | /// expression refers to a non-static member function or an overloaded | 
|  | /// member function. | 
|  | ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc, | 
|  | Expr *ExecConfig, bool IsExecConfig, | 
|  | bool AllowRecovery) { | 
|  | assert(MemExprE->getType() == Context.BoundMemberTy || | 
|  | MemExprE->getType() == Context.OverloadTy); | 
|  |  | 
|  | // Dig out the member expression. This holds both the object | 
|  | // argument and the member function we're referring to. | 
|  | Expr *NakedMemExpr = MemExprE->IgnoreParens(); | 
|  |  | 
|  | // Determine whether this is a call to a pointer-to-member function. | 
|  | if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { | 
|  | assert(op->getType() == Context.BoundMemberTy); | 
|  | assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); | 
|  |  | 
|  | QualType fnType = | 
|  | op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); | 
|  |  | 
|  | const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); | 
|  | QualType resultType = proto->getCallResultType(Context); | 
|  | ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); | 
|  |  | 
|  | // Check that the object type isn't more qualified than the | 
|  | // member function we're calling. | 
|  | Qualifiers funcQuals = proto->getMethodQuals(); | 
|  |  | 
|  | QualType objectType = op->getLHS()->getType(); | 
|  | if (op->getOpcode() == BO_PtrMemI) | 
|  | objectType = objectType->castAs<PointerType>()->getPointeeType(); | 
|  | Qualifiers objectQuals = objectType.getQualifiers(); | 
|  |  | 
|  | Qualifiers difference = objectQuals - funcQuals; | 
|  | difference.removeObjCGCAttr(); | 
|  | difference.removeAddressSpace(); | 
|  | if (difference) { | 
|  | std::string qualsString = difference.getAsString(); | 
|  | Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) | 
|  | << fnType.getUnqualifiedType() | 
|  | << qualsString | 
|  | << (qualsString.find(' ') == std::string::npos ? 1 : 2); | 
|  | } | 
|  |  | 
|  | CXXMemberCallExpr *call = CXXMemberCallExpr::Create( | 
|  | Context, MemExprE, Args, resultType, valueKind, RParenLoc, | 
|  | CurFPFeatureOverrides(), proto->getNumParams()); | 
|  |  | 
|  | if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), | 
|  | call, nullptr)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckOtherCall(call, proto)) | 
|  | return ExprError(); | 
|  |  | 
|  | return MaybeBindToTemporary(call); | 
|  | } | 
|  |  | 
|  | // We only try to build a recovery expr at this level if we can preserve | 
|  | // the return type, otherwise we return ExprError() and let the caller | 
|  | // recover. | 
|  | auto BuildRecoveryExpr = [&](QualType Type) { | 
|  | if (!AllowRecovery) | 
|  | return ExprError(); | 
|  | std::vector<Expr *> SubExprs = {MemExprE}; | 
|  | llvm::append_range(SubExprs, Args); | 
|  | return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, | 
|  | Type); | 
|  | }; | 
|  | if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) | 
|  | return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, | 
|  | RParenLoc, CurFPFeatureOverrides()); | 
|  |  | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) | 
|  | return ExprError(); | 
|  |  | 
|  | MemberExpr *MemExpr; | 
|  | CXXMethodDecl *Method = nullptr; | 
|  | bool HadMultipleCandidates = false; | 
|  | DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); | 
|  | NestedNameSpecifier *Qualifier = nullptr; | 
|  | if (isa<MemberExpr>(NakedMemExpr)) { | 
|  | MemExpr = cast<MemberExpr>(NakedMemExpr); | 
|  | Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); | 
|  | FoundDecl = MemExpr->getFoundDecl(); | 
|  | Qualifier = MemExpr->getQualifier(); | 
|  | UnbridgedCasts.restore(); | 
|  | } else { | 
|  | UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); | 
|  | Qualifier = UnresExpr->getQualifier(); | 
|  |  | 
|  | QualType ObjectType = UnresExpr->getBaseType(); | 
|  | Expr::Classification ObjectClassification | 
|  | = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() | 
|  | : UnresExpr->getBase()->Classify(Context); | 
|  |  | 
|  | // Add overload candidates | 
|  | OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  |  | 
|  | // FIXME: avoid copy. | 
|  | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | 
|  | if (UnresExpr->hasExplicitTemplateArgs()) { | 
|  | UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
|  | TemplateArgs = &TemplateArgsBuffer; | 
|  | } | 
|  |  | 
|  | for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), | 
|  | E = UnresExpr->decls_end(); I != E; ++I) { | 
|  |  | 
|  | QualType ExplicitObjectType = ObjectType; | 
|  |  | 
|  | NamedDecl *Func = *I; | 
|  | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(Func)) | 
|  | Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); | 
|  |  | 
|  | bool HasExplicitParameter = false; | 
|  | if (const auto *M = dyn_cast<FunctionDecl>(Func); | 
|  | M && M->hasCXXExplicitFunctionObjectParameter()) | 
|  | HasExplicitParameter = true; | 
|  | else if (const auto *M = dyn_cast<FunctionTemplateDecl>(Func); | 
|  | M && | 
|  | M->getTemplatedDecl()->hasCXXExplicitFunctionObjectParameter()) | 
|  | HasExplicitParameter = true; | 
|  |  | 
|  | if (HasExplicitParameter) | 
|  | ExplicitObjectType = GetExplicitObjectType(*this, UnresExpr); | 
|  |  | 
|  | // Microsoft supports direct constructor calls. | 
|  | if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { | 
|  | AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, | 
|  | CandidateSet, | 
|  | /*SuppressUserConversions*/ false); | 
|  | } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { | 
|  | // If explicit template arguments were provided, we can't call a | 
|  | // non-template member function. | 
|  | if (TemplateArgs) | 
|  | continue; | 
|  |  | 
|  | AddMethodCandidate(Method, I.getPair(), ActingDC, ExplicitObjectType, | 
|  | ObjectClassification, Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/false); | 
|  | } else { | 
|  | AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), | 
|  | I.getPair(), ActingDC, TemplateArgs, | 
|  | ExplicitObjectType, ObjectClassification, | 
|  | Args, CandidateSet, | 
|  | /*SuppressUserConversions=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | DeclarationName DeclName = UnresExpr->getMemberName(); | 
|  |  | 
|  | UnbridgedCasts.restore(); | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | bool Succeeded = false; | 
|  | switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), | 
|  | Best)) { | 
|  | case OR_Success: | 
|  | Method = cast<CXXMethodDecl>(Best->Function); | 
|  | FoundDecl = Best->FoundDecl; | 
|  | CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); | 
|  | if (DiagnoseUseOfOverloadedDecl(Best->FoundDecl, UnresExpr->getNameLoc())) | 
|  | break; | 
|  | // If FoundDecl is different from Method (such as if one is a template | 
|  | // and the other a specialization), make sure DiagnoseUseOfDecl is | 
|  | // called on both. | 
|  | // FIXME: This would be more comprehensively addressed by modifying | 
|  | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | 
|  | // being used. | 
|  | if (Method != FoundDecl.getDecl() && | 
|  | DiagnoseUseOfOverloadedDecl(Method, UnresExpr->getNameLoc())) | 
|  | break; | 
|  | Succeeded = true; | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt( | 
|  | UnresExpr->getMemberLoc(), | 
|  | PDiag(diag::err_ovl_no_viable_member_function_in_call) | 
|  | << DeclName << MemExprE->getSourceRange()), | 
|  | *this, OCD_AllCandidates, Args); | 
|  | break; | 
|  | case OR_Ambiguous: | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(UnresExpr->getMemberLoc(), | 
|  | PDiag(diag::err_ovl_ambiguous_member_call) | 
|  | << DeclName << MemExprE->getSourceRange()), | 
|  | *this, OCD_AmbiguousCandidates, Args); | 
|  | break; | 
|  | case OR_Deleted: | 
|  | DiagnoseUseOfDeletedFunction( | 
|  | UnresExpr->getMemberLoc(), MemExprE->getSourceRange(), DeclName, | 
|  | CandidateSet, Best->Function, Args, /*IsMember=*/true); | 
|  | break; | 
|  | } | 
|  | // Overload resolution fails, try to recover. | 
|  | if (!Succeeded) | 
|  | return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); | 
|  |  | 
|  | ExprResult Res = | 
|  | FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); | 
|  | if (Res.isInvalid()) | 
|  | return ExprError(); | 
|  | MemExprE = Res.get(); | 
|  |  | 
|  | // If overload resolution picked a static member | 
|  | // build a non-member call based on that function. | 
|  | if (Method->isStatic()) { | 
|  | return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc, | 
|  | ExecConfig, IsExecConfig); | 
|  | } | 
|  |  | 
|  | MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); | 
|  | } | 
|  |  | 
|  | QualType ResultType = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultType); | 
|  | ResultType = ResultType.getNonLValueExprType(Context); | 
|  |  | 
|  | assert(Method && "Member call to something that isn't a method?"); | 
|  | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); | 
|  |  | 
|  | CallExpr *TheCall = nullptr; | 
|  | llvm::SmallVector<Expr *, 8> NewArgs; | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | PrepareExplicitObjectArgument(*this, Method, MemExpr->getBase(), Args, | 
|  | NewArgs); | 
|  | // Build the actual expression node. | 
|  | ExprResult FnExpr = | 
|  | CreateFunctionRefExpr(*this, Method, FoundDecl, MemExpr, | 
|  | HadMultipleCandidates, MemExpr->getExprLoc()); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | TheCall = | 
|  | CallExpr::Create(Context, FnExpr.get(), Args, ResultType, VK, RParenLoc, | 
|  | CurFPFeatureOverrides(), Proto->getNumParams()); | 
|  | } else { | 
|  | // Convert the object argument (for a non-static member function call). | 
|  | // We only need to do this if there was actually an overload; otherwise | 
|  | // it was done at lookup. | 
|  | ExprResult ObjectArg = PerformImplicitObjectArgumentInitialization( | 
|  | MemExpr->getBase(), Qualifier, FoundDecl, Method); | 
|  | if (ObjectArg.isInvalid()) | 
|  | return ExprError(); | 
|  | MemExpr->setBase(ObjectArg.get()); | 
|  | TheCall = CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK, | 
|  | RParenLoc, CurFPFeatureOverrides(), | 
|  | Proto->getNumParams()); | 
|  | } | 
|  |  | 
|  | // Check for a valid return type. | 
|  | if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), | 
|  | TheCall, Method)) | 
|  | return BuildRecoveryExpr(ResultType); | 
|  |  | 
|  | // Convert the rest of the arguments | 
|  | if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, | 
|  | RParenLoc)) | 
|  | return BuildRecoveryExpr(ResultType); | 
|  |  | 
|  | DiagnoseSentinelCalls(Method, LParenLoc, Args); | 
|  |  | 
|  | if (CheckFunctionCall(Method, TheCall, Proto)) | 
|  | return ExprError(); | 
|  |  | 
|  | // In the case the method to call was not selected by the overloading | 
|  | // resolution process, we still need to handle the enable_if attribute. Do | 
|  | // that here, so it will not hide previous -- and more relevant -- errors. | 
|  | if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { | 
|  | if (const EnableIfAttr *Attr = | 
|  | CheckEnableIf(Method, LParenLoc, Args, true)) { | 
|  | Diag(MemE->getMemberLoc(), | 
|  | diag::err_ovl_no_viable_member_function_in_call) | 
|  | << Method << Method->getSourceRange(); | 
|  | Diag(Method->getLocation(), | 
|  | diag::note_ovl_candidate_disabled_by_function_cond_attr) | 
|  | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<CXXConstructorDecl, CXXDestructorDecl>(CurContext) && | 
|  | TheCall->getDirectCallee()->isPureVirtual()) { | 
|  | const FunctionDecl *MD = TheCall->getDirectCallee(); | 
|  |  | 
|  | if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && | 
|  | MemExpr->performsVirtualDispatch(getLangOpts())) { | 
|  | Diag(MemExpr->getBeginLoc(), | 
|  | diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) | 
|  | << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) | 
|  | << MD->getParent(); | 
|  |  | 
|  | Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); | 
|  | if (getLangOpts().AppleKext) | 
|  | Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) | 
|  | << MD->getParent() << MD->getDeclName(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *DD = dyn_cast<CXXDestructorDecl>(TheCall->getDirectCallee())) { | 
|  | // a->A::f() doesn't go through the vtable, except in AppleKext mode. | 
|  | bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; | 
|  | CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, | 
|  | CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, | 
|  | MemExpr->getMemberLoc()); | 
|  | } | 
|  |  | 
|  | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), | 
|  | TheCall->getDirectCallee()); | 
|  | } | 
|  |  | 
|  | /// BuildCallToObjectOfClassType - Build a call to an object of class | 
|  | /// type (C++ [over.call.object]), which can end up invoking an | 
|  | /// overloaded function call operator (@c operator()) or performing a | 
|  | /// user-defined conversion on the object argument. | 
|  | ExprResult | 
|  | Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Args, | 
|  | SourceLocation RParenLoc) { | 
|  | if (checkPlaceholderForOverload(*this, Obj)) | 
|  | return ExprError(); | 
|  | ExprResult Object = Obj; | 
|  |  | 
|  | UnbridgedCastsSet UnbridgedCasts; | 
|  | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) | 
|  | return ExprError(); | 
|  |  | 
|  | assert(Object.get()->getType()->isRecordType() && | 
|  | "Requires object type argument"); | 
|  |  | 
|  | // C++ [over.call.object]p1: | 
|  | //  If the primary-expression E in the function call syntax | 
|  | //  evaluates to a class object of type "cv T", then the set of | 
|  | //  candidate functions includes at least the function call | 
|  | //  operators of T. The function call operators of T are obtained by | 
|  | //  ordinary lookup of the name operator() in the context of | 
|  | //  (E).operator(). | 
|  | OverloadCandidateSet CandidateSet(LParenLoc, | 
|  | OverloadCandidateSet::CSK_Operator); | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); | 
|  |  | 
|  | if (RequireCompleteType(LParenLoc, Object.get()->getType(), | 
|  | diag::err_incomplete_object_call, Object.get())) | 
|  | return true; | 
|  |  | 
|  | const auto *Record = Object.get()->getType()->castAs<RecordType>(); | 
|  | LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(R, Record->getDecl()); | 
|  | R.suppressAccessDiagnostics(); | 
|  |  | 
|  | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | 
|  | Oper != OperEnd; ++Oper) { | 
|  | AddMethodCandidate(Oper.getPair(), Object.get()->getType(), | 
|  | Object.get()->Classify(Context), Args, CandidateSet, | 
|  | /*SuppressUserConversion=*/false); | 
|  | } | 
|  |  | 
|  | // When calling a lambda, both the call operator, and | 
|  | // the conversion operator to function pointer | 
|  | // are considered. But when constraint checking | 
|  | // on the call operator fails, it will also fail on the | 
|  | // conversion operator as the constraints are always the same. | 
|  | // As the user probably does not intend to perform a surrogate call, | 
|  | // we filter them out to produce better error diagnostics, ie to avoid | 
|  | // showing 2 failed overloads instead of one. | 
|  | bool IgnoreSurrogateFunctions = false; | 
|  | if (CandidateSet.size() == 1 && Record->getAsCXXRecordDecl()->isLambda()) { | 
|  | const OverloadCandidate &Candidate = *CandidateSet.begin(); | 
|  | if (!Candidate.Viable && | 
|  | Candidate.FailureKind == ovl_fail_constraints_not_satisfied) | 
|  | IgnoreSurrogateFunctions = true; | 
|  | } | 
|  |  | 
|  | // C++ [over.call.object]p2: | 
|  | //   In addition, for each (non-explicit in C++0x) conversion function | 
|  | //   declared in T of the form | 
|  | // | 
|  | //        operator conversion-type-id () cv-qualifier; | 
|  | // | 
|  | //   where cv-qualifier is the same cv-qualification as, or a | 
|  | //   greater cv-qualification than, cv, and where conversion-type-id | 
|  | //   denotes the type "pointer to function of (P1,...,Pn) returning | 
|  | //   R", or the type "reference to pointer to function of | 
|  | //   (P1,...,Pn) returning R", or the type "reference to function | 
|  | //   of (P1,...,Pn) returning R", a surrogate call function [...] | 
|  | //   is also considered as a candidate function. Similarly, | 
|  | //   surrogate call functions are added to the set of candidate | 
|  | //   functions for each conversion function declared in an | 
|  | //   accessible base class provided the function is not hidden | 
|  | //   within T by another intervening declaration. | 
|  | const auto &Conversions = | 
|  | cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); | 
|  | for (auto I = Conversions.begin(), E = Conversions.end(); | 
|  | !IgnoreSurrogateFunctions && I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  |  | 
|  | // Skip over templated conversion functions; they aren't | 
|  | // surrogates. | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
|  | if (!Conv->isExplicit()) { | 
|  | // Strip the reference type (if any) and then the pointer type (if | 
|  | // any) to get down to what might be a function type. | 
|  | QualType ConvType = Conv->getConversionType().getNonReferenceType(); | 
|  | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
|  | ConvType = ConvPtrType->getPointeeType(); | 
|  |  | 
|  | if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) | 
|  | { | 
|  | AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, | 
|  | Object.get(), Args, CandidateSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), | 
|  | Best)) { | 
|  | case OR_Success: | 
|  | // Overload resolution succeeded; we'll build the appropriate call | 
|  | // below. | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | PartialDiagnostic PD = | 
|  | CandidateSet.empty() | 
|  | ? (PDiag(diag::err_ovl_no_oper) | 
|  | << Object.get()->getType() << /*call*/ 1 | 
|  | << Object.get()->getSourceRange()) | 
|  | : (PDiag(diag::err_ovl_no_viable_object_call) | 
|  | << Object.get()->getType() << Object.get()->getSourceRange()); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, | 
|  | OCD_AllCandidates, Args); | 
|  | break; | 
|  | } | 
|  | case OR_Ambiguous: | 
|  | if (!R.isAmbiguous()) | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(Object.get()->getBeginLoc(), | 
|  | PDiag(diag::err_ovl_ambiguous_object_call) | 
|  | << Object.get()->getType() | 
|  | << Object.get()->getSourceRange()), | 
|  | *this, OCD_AmbiguousCandidates, Args); | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: { | 
|  | // FIXME: Is this diagnostic here really necessary? It seems that | 
|  | //   1. we don't have any tests for this diagnostic, and | 
|  | //   2. we already issue err_deleted_function_use for this later on anyway. | 
|  | StringLiteral *Msg = Best->Function->getDeletedMessage(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(Object.get()->getBeginLoc(), | 
|  | PDiag(diag::err_ovl_deleted_object_call) | 
|  | << Object.get()->getType() << (Msg != nullptr) | 
|  | << (Msg ? Msg->getString() : StringRef()) | 
|  | << Object.get()->getSourceRange()), | 
|  | *this, OCD_AllCandidates, Args); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Best == CandidateSet.end()) | 
|  | return true; | 
|  |  | 
|  | UnbridgedCasts.restore(); | 
|  |  | 
|  | if (Best->Function == nullptr) { | 
|  | // Since there is no function declaration, this is one of the | 
|  | // surrogate candidates. Dig out the conversion function. | 
|  | CXXConversionDecl *Conv | 
|  | = cast<CXXConversionDecl>( | 
|  | Best->Conversions[0].UserDefined.ConversionFunction); | 
|  |  | 
|  | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, | 
|  | Best->FoundDecl); | 
|  | if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) | 
|  | return ExprError(); | 
|  | assert(Conv == Best->FoundDecl.getDecl() && | 
|  | "Found Decl & conversion-to-functionptr should be same, right?!"); | 
|  | // We selected one of the surrogate functions that converts the | 
|  | // object parameter to a function pointer. Perform the conversion | 
|  | // on the object argument, then let BuildCallExpr finish the job. | 
|  |  | 
|  | // Create an implicit member expr to refer to the conversion operator. | 
|  | // and then call it. | 
|  | ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, | 
|  | Conv, HadMultipleCandidates); | 
|  | if (Call.isInvalid()) | 
|  | return ExprError(); | 
|  | // Record usage of conversion in an implicit cast. | 
|  | Call = ImplicitCastExpr::Create( | 
|  | Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), | 
|  | nullptr, VK_PRValue, CurFPFeatureOverrides()); | 
|  |  | 
|  | return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); | 
|  | } | 
|  |  | 
|  | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); | 
|  |  | 
|  | // We found an overloaded operator(). Build a CXXOperatorCallExpr | 
|  | // that calls this method, using Object for the implicit object | 
|  | // parameter and passing along the remaining arguments. | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
|  |  | 
|  | // An error diagnostic has already been printed when parsing the declaration. | 
|  | if (Method->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); | 
|  | unsigned NumParams = Proto->getNumParams(); | 
|  |  | 
|  | DeclarationNameInfo OpLocInfo( | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); | 
|  | OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); | 
|  | ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, | 
|  | Obj, HadMultipleCandidates, | 
|  | OpLocInfo.getLoc(), | 
|  | OpLocInfo.getInfo()); | 
|  | if (NewFn.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | SmallVector<Expr *, 8> MethodArgs; | 
|  | MethodArgs.reserve(NumParams + 1); | 
|  |  | 
|  | bool IsError = false; | 
|  |  | 
|  | // Initialize the object parameter. | 
|  | llvm::SmallVector<Expr *, 8> NewArgs; | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | // FIXME: we should do that during the definition of the lambda when we can. | 
|  | DiagnoseInvalidExplicitObjectParameterInLambda(Method); | 
|  | PrepareExplicitObjectArgument(*this, Method, Obj, Args, NewArgs); | 
|  | } else { | 
|  | ExprResult ObjRes = PerformImplicitObjectArgumentInitialization( | 
|  | Object.get(), /*Qualifier=*/nullptr, Best->FoundDecl, Method); | 
|  | if (ObjRes.isInvalid()) | 
|  | IsError = true; | 
|  | else | 
|  | Object = ObjRes; | 
|  | MethodArgs.push_back(Object.get()); | 
|  | } | 
|  |  | 
|  | IsError |= PrepareArgumentsForCallToObjectOfClassType( | 
|  | *this, MethodArgs, Method, Args, LParenLoc); | 
|  |  | 
|  | // If this is a variadic call, handle args passed through "...". | 
|  | if (Proto->isVariadic()) { | 
|  | // Promote the arguments (C99 6.5.2.2p7). | 
|  | for (unsigned i = NumParams, e = Args.size(); i < e; i++) { | 
|  | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, | 
|  | nullptr); | 
|  | IsError |= Arg.isInvalid(); | 
|  | MethodArgs.push_back(Arg.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsError) | 
|  | return true; | 
|  |  | 
|  | DiagnoseSentinelCalls(Method, LParenLoc, Args); | 
|  |  | 
|  | // Once we've built TheCall, all of the expressions are properly owned. | 
|  | QualType ResultTy = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CallExpr *TheCall = CXXOperatorCallExpr::Create( | 
|  | Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, | 
|  | CurFPFeatureOverrides()); | 
|  |  | 
|  | if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) | 
|  | return true; | 
|  |  | 
|  | if (CheckFunctionCall(Method, TheCall, Proto)) | 
|  | return true; | 
|  |  | 
|  | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); | 
|  | } | 
|  |  | 
|  | /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> | 
|  | ///  (if one exists), where @c Base is an expression of class type and | 
|  | /// @c Member is the name of the member we're trying to find. | 
|  | ExprResult | 
|  | Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, | 
|  | bool *NoArrowOperatorFound) { | 
|  | assert(Base->getType()->isRecordType() && | 
|  | "left-hand side must have class type"); | 
|  |  | 
|  | if (checkPlaceholderForOverload(*this, Base)) | 
|  | return ExprError(); | 
|  |  | 
|  | SourceLocation Loc = Base->getExprLoc(); | 
|  |  | 
|  | // C++ [over.ref]p1: | 
|  | // | 
|  | //   [...] An expression x->m is interpreted as (x.operator->())->m | 
|  | //   for a class object x of type T if T::operator->() exists and if | 
|  | //   the operator is selected as the best match function by the | 
|  | //   overload resolution mechanism (13.3). | 
|  | DeclarationName OpName = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Arrow); | 
|  | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); | 
|  |  | 
|  | if (RequireCompleteType(Loc, Base->getType(), | 
|  | diag::err_typecheck_incomplete_tag, Base)) | 
|  | return ExprError(); | 
|  |  | 
|  | LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); | 
|  | LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); | 
|  | R.suppressAccessDiagnostics(); | 
|  |  | 
|  | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | 
|  | Oper != OperEnd; ++Oper) { | 
|  | AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), | 
|  | std::nullopt, CandidateSet, | 
|  | /*SuppressUserConversion=*/false); | 
|  | } | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | 
|  | case OR_Success: | 
|  | // Overload resolution succeeded; we'll build the call below. | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: { | 
|  | auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); | 
|  | if (CandidateSet.empty()) { | 
|  | QualType BaseType = Base->getType(); | 
|  | if (NoArrowOperatorFound) { | 
|  | // Report this specific error to the caller instead of emitting a | 
|  | // diagnostic, as requested. | 
|  | *NoArrowOperatorFound = true; | 
|  | return ExprError(); | 
|  | } | 
|  | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) | 
|  | << BaseType << Base->getSourceRange(); | 
|  | if (BaseType->isRecordType() && !BaseType->isPointerType()) { | 
|  | Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) | 
|  | << FixItHint::CreateReplacement(OpLoc, "."); | 
|  | } | 
|  | } else | 
|  | Diag(OpLoc, diag::err_ovl_no_viable_oper) | 
|  | << "operator->" << Base->getSourceRange(); | 
|  | CandidateSet.NoteCandidates(*this, Base, Cands); | 
|  | return ExprError(); | 
|  | } | 
|  | case OR_Ambiguous: | 
|  | if (!R.isAmbiguous()) | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) | 
|  | << "->" << Base->getType() | 
|  | << Base->getSourceRange()), | 
|  | *this, OCD_AmbiguousCandidates, Base); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Deleted: { | 
|  | StringLiteral *Msg = Best->Function->getDeletedMessage(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) | 
|  | << "->" << (Msg != nullptr) | 
|  | << (Msg ? Msg->getString() : StringRef()) | 
|  | << Base->getSourceRange()), | 
|  | *this, OCD_AllCandidates, Base); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); | 
|  |  | 
|  | // Convert the object parameter. | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
|  |  | 
|  | if (Method->isExplicitObjectMemberFunction()) { | 
|  | ExprResult R = InitializeExplicitObjectArgument(*this, Base, Method); | 
|  | if (R.isInvalid()) | 
|  | return ExprError(); | 
|  | Base = R.get(); | 
|  | } else { | 
|  | ExprResult BaseResult = PerformImplicitObjectArgumentInitialization( | 
|  | Base, /*Qualifier=*/nullptr, Best->FoundDecl, Method); | 
|  | if (BaseResult.isInvalid()) | 
|  | return ExprError(); | 
|  | Base = BaseResult.get(); | 
|  | } | 
|  |  | 
|  | // Build the operator call. | 
|  | ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, | 
|  | Base, HadMultipleCandidates, OpLoc); | 
|  | if (FnExpr.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType ResultTy = Method->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | CallExpr *TheCall = | 
|  | CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, | 
|  | ResultTy, VK, OpLoc, CurFPFeatureOverrides()); | 
|  |  | 
|  | if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckFunctionCall(Method, TheCall, | 
|  | Method->getType()->castAs<FunctionProtoType>())) | 
|  | return ExprError(); | 
|  |  | 
|  | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); | 
|  | } | 
|  |  | 
|  | /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to | 
|  | /// a literal operator described by the provided lookup results. | 
|  | ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, | 
|  | DeclarationNameInfo &SuffixInfo, | 
|  | ArrayRef<Expr*> Args, | 
|  | SourceLocation LitEndLoc, | 
|  | TemplateArgumentListInfo *TemplateArgs) { | 
|  | SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); | 
|  |  | 
|  | OverloadCandidateSet CandidateSet(UDSuffixLoc, | 
|  | OverloadCandidateSet::CSK_Normal); | 
|  | AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, | 
|  | TemplateArgs); | 
|  |  | 
|  | bool HadMultipleCandidates = (CandidateSet.size() > 1); | 
|  |  | 
|  | // Perform overload resolution. This will usually be trivial, but might need | 
|  | // to perform substitutions for a literal operator template. | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { | 
|  | case OR_Success: | 
|  | case OR_Deleted: | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(UDSuffixLoc, | 
|  | PDiag(diag::err_ovl_no_viable_function_in_call) | 
|  | << R.getLookupName()), | 
|  | *this, OCD_AllCandidates, Args); | 
|  | return ExprError(); | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) | 
|  | << R.getLookupName()), | 
|  | *this, OCD_AmbiguousCandidates, Args); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | FunctionDecl *FD = Best->Function; | 
|  | ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, | 
|  | nullptr, HadMultipleCandidates, | 
|  | SuffixInfo.getLoc(), | 
|  | SuffixInfo.getInfo()); | 
|  | if (Fn.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | // Check the argument types. This should almost always be a no-op, except | 
|  | // that array-to-pointer decay is applied to string literals. | 
|  | Expr *ConvArgs[2]; | 
|  | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | 
|  | ExprResult InputInit = PerformCopyInitialization( | 
|  | InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), | 
|  | SourceLocation(), Args[ArgIdx]); | 
|  | if (InputInit.isInvalid()) | 
|  | return true; | 
|  | ConvArgs[ArgIdx] = InputInit.get(); | 
|  | } | 
|  |  | 
|  | QualType ResultTy = FD->getReturnType(); | 
|  | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | 
|  | ResultTy = ResultTy.getNonLValueExprType(Context); | 
|  |  | 
|  | UserDefinedLiteral *UDL = UserDefinedLiteral::Create( | 
|  | Context, Fn.get(), llvm::ArrayRef(ConvArgs, Args.size()), ResultTy, VK, | 
|  | LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); | 
|  |  | 
|  | if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckFunctionCall(FD, UDL, nullptr)) | 
|  | return ExprError(); | 
|  |  | 
|  | return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); | 
|  | } | 
|  |  | 
|  | /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the | 
|  | /// given LookupResult is non-empty, it is assumed to describe a member which | 
|  | /// will be invoked. Otherwise, the function will be found via argument | 
|  | /// dependent lookup. | 
|  | /// CallExpr is set to a valid expression and FRS_Success returned on success, | 
|  | /// otherwise CallExpr is set to ExprError() and some non-success value | 
|  | /// is returned. | 
|  | Sema::ForRangeStatus | 
|  | Sema::BuildForRangeBeginEndCall(SourceLocation Loc, | 
|  | SourceLocation RangeLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | LookupResult &MemberLookup, | 
|  | OverloadCandidateSet *CandidateSet, | 
|  | Expr *Range, ExprResult *CallExpr) { | 
|  | Scope *S = nullptr; | 
|  |  | 
|  | CandidateSet->clear(OverloadCandidateSet::CSK_Normal); | 
|  | if (!MemberLookup.empty()) { | 
|  | ExprResult MemberRef = | 
|  | BuildMemberReferenceExpr(Range, Range->getType(), Loc, | 
|  | /*IsPtr=*/false, CXXScopeSpec(), | 
|  | /*TemplateKWLoc=*/SourceLocation(), | 
|  | /*FirstQualifierInScope=*/nullptr, | 
|  | MemberLookup, | 
|  | /*TemplateArgs=*/nullptr, S); | 
|  | if (MemberRef.isInvalid()) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_DiagnosticIssued; | 
|  | } | 
|  | *CallExpr = | 
|  | BuildCallExpr(S, MemberRef.get(), Loc, std::nullopt, Loc, nullptr); | 
|  | if (CallExpr->isInvalid()) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_DiagnosticIssued; | 
|  | } | 
|  | } else { | 
|  | ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, | 
|  | NestedNameSpecifierLoc(), | 
|  | NameInfo, UnresolvedSet<0>()); | 
|  | if (FnR.isInvalid()) | 
|  | return FRS_DiagnosticIssued; | 
|  | UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); | 
|  |  | 
|  | bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, | 
|  | CandidateSet, CallExpr); | 
|  | if (CandidateSet->empty() || CandidateSetError) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_NoViableFunction; | 
|  | } | 
|  | OverloadCandidateSet::iterator Best; | 
|  | OverloadingResult OverloadResult = | 
|  | CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); | 
|  |  | 
|  | if (OverloadResult == OR_No_Viable_Function) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_NoViableFunction; | 
|  | } | 
|  | *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, | 
|  | Loc, nullptr, CandidateSet, &Best, | 
|  | OverloadResult, | 
|  | /*AllowTypoCorrection=*/false); | 
|  | if (CallExpr->isInvalid() || OverloadResult != OR_Success) { | 
|  | *CallExpr = ExprError(); | 
|  | return FRS_DiagnosticIssued; | 
|  | } | 
|  | } | 
|  | return FRS_Success; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FixOverloadedFunctionReference - E is an expression that refers to | 
|  | /// a C++ overloaded function (possibly with some parentheses and | 
|  | /// perhaps a '&' around it). We have resolved the overloaded function | 
|  | /// to the function declaration Fn, so patch up the expression E to | 
|  | /// refer (possibly indirectly) to Fn. Returns the new expr. | 
|  | ExprResult Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, | 
|  | FunctionDecl *Fn) { | 
|  | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | 
|  | ExprResult SubExpr = | 
|  | FixOverloadedFunctionReference(PE->getSubExpr(), Found, Fn); | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | if (SubExpr.get() == PE->getSubExpr()) | 
|  | return PE; | 
|  |  | 
|  | return new (Context) | 
|  | ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); | 
|  | } | 
|  |  | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | ExprResult SubExpr = | 
|  | FixOverloadedFunctionReference(ICE->getSubExpr(), Found, Fn); | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | assert(Context.hasSameType(ICE->getSubExpr()->getType(), | 
|  | SubExpr.get()->getType()) && | 
|  | "Implicit cast type cannot be determined from overload"); | 
|  | assert(ICE->path_empty() && "fixing up hierarchy conversion?"); | 
|  | if (SubExpr.get() == ICE->getSubExpr()) | 
|  | return ICE; | 
|  |  | 
|  | return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), | 
|  | SubExpr.get(), nullptr, ICE->getValueKind(), | 
|  | CurFPFeatureOverrides()); | 
|  | } | 
|  |  | 
|  | if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { | 
|  | if (!GSE->isResultDependent()) { | 
|  | ExprResult SubExpr = | 
|  | FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | if (SubExpr.get() == GSE->getResultExpr()) | 
|  | return GSE; | 
|  |  | 
|  | // Replace the resulting type information before rebuilding the generic | 
|  | // selection expression. | 
|  | ArrayRef<Expr *> A = GSE->getAssocExprs(); | 
|  | SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); | 
|  | unsigned ResultIdx = GSE->getResultIndex(); | 
|  | AssocExprs[ResultIdx] = SubExpr.get(); | 
|  |  | 
|  | if (GSE->isExprPredicate()) | 
|  | return GenericSelectionExpr::Create( | 
|  | Context, GSE->getGenericLoc(), GSE->getControllingExpr(), | 
|  | GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), | 
|  | GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), | 
|  | ResultIdx); | 
|  | return GenericSelectionExpr::Create( | 
|  | Context, GSE->getGenericLoc(), GSE->getControllingType(), | 
|  | GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), | 
|  | GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), | 
|  | ResultIdx); | 
|  | } | 
|  | // Rather than fall through to the unreachable, return the original generic | 
|  | // selection expression. | 
|  | return GSE; | 
|  | } | 
|  |  | 
|  | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { | 
|  | assert(UnOp->getOpcode() == UO_AddrOf && | 
|  | "Can only take the address of an overloaded function"); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
|  | if (Method->isStatic()) { | 
|  | // Do nothing: static member functions aren't any different | 
|  | // from non-member functions. | 
|  | } else { | 
|  | // Fix the subexpression, which really has to be an | 
|  | // UnresolvedLookupExpr holding an overloaded member function | 
|  | // or template. | 
|  | ExprResult SubExpr = | 
|  | FixOverloadedFunctionReference(UnOp->getSubExpr(), Found, Fn); | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | if (SubExpr.get() == UnOp->getSubExpr()) | 
|  | return UnOp; | 
|  |  | 
|  | if (CheckUseOfCXXMethodAsAddressOfOperand(UnOp->getBeginLoc(), | 
|  | SubExpr.get(), Method)) | 
|  | return ExprError(); | 
|  |  | 
|  | assert(isa<DeclRefExpr>(SubExpr.get()) && | 
|  | "fixed to something other than a decl ref"); | 
|  | assert(cast<DeclRefExpr>(SubExpr.get())->getQualifier() && | 
|  | "fixed to a member ref with no nested name qualifier"); | 
|  |  | 
|  | // We have taken the address of a pointer to member | 
|  | // function. Perform the computation here so that we get the | 
|  | // appropriate pointer to member type. | 
|  | QualType ClassType | 
|  | = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
|  | QualType MemPtrType | 
|  | = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); | 
|  | // Under the MS ABI, lock down the inheritance model now. | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); | 
|  |  | 
|  | return UnaryOperator::Create(Context, SubExpr.get(), UO_AddrOf, | 
|  | MemPtrType, VK_PRValue, OK_Ordinary, | 
|  | UnOp->getOperatorLoc(), false, | 
|  | CurFPFeatureOverrides()); | 
|  | } | 
|  | } | 
|  | ExprResult SubExpr = | 
|  | FixOverloadedFunctionReference(UnOp->getSubExpr(), Found, Fn); | 
|  | if (SubExpr.isInvalid()) | 
|  | return ExprError(); | 
|  | if (SubExpr.get() == UnOp->getSubExpr()) | 
|  | return UnOp; | 
|  |  | 
|  | return CreateBuiltinUnaryOp(UnOp->getOperatorLoc(), UO_AddrOf, | 
|  | SubExpr.get()); | 
|  | } | 
|  |  | 
|  | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
|  | // FIXME: avoid copy. | 
|  | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | 
|  | if (ULE->hasExplicitTemplateArgs()) { | 
|  | ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
|  | TemplateArgs = &TemplateArgsBuffer; | 
|  | } | 
|  |  | 
|  | QualType Type = Fn->getType(); | 
|  | ExprValueKind ValueKind = getLangOpts().CPlusPlus ? VK_LValue : VK_PRValue; | 
|  |  | 
|  | // FIXME: Duplicated from BuildDeclarationNameExpr. | 
|  | if (unsigned BID = Fn->getBuiltinID()) { | 
|  | if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { | 
|  | Type = Context.BuiltinFnTy; | 
|  | ValueKind = VK_PRValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DRE = BuildDeclRefExpr( | 
|  | Fn, Type, ValueKind, ULE->getNameInfo(), ULE->getQualifierLoc(), | 
|  | Found.getDecl(), ULE->getTemplateKeywordLoc(), TemplateArgs); | 
|  | DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); | 
|  | return DRE; | 
|  | } | 
|  |  | 
|  | if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { | 
|  | // FIXME: avoid copy. | 
|  | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | 
|  | if (MemExpr->hasExplicitTemplateArgs()) { | 
|  | MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
|  | TemplateArgs = &TemplateArgsBuffer; | 
|  | } | 
|  |  | 
|  | Expr *Base; | 
|  |  | 
|  | // If we're filling in a static method where we used to have an | 
|  | // implicit member access, rewrite to a simple decl ref. | 
|  | if (MemExpr->isImplicitAccess()) { | 
|  | if (cast<CXXMethodDecl>(Fn)->isStatic()) { | 
|  | DeclRefExpr *DRE = BuildDeclRefExpr( | 
|  | Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), | 
|  | MemExpr->getQualifierLoc(), Found.getDecl(), | 
|  | MemExpr->getTemplateKeywordLoc(), TemplateArgs); | 
|  | DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); | 
|  | return DRE; | 
|  | } else { | 
|  | SourceLocation Loc = MemExpr->getMemberLoc(); | 
|  | if (MemExpr->getQualifier()) | 
|  | Loc = MemExpr->getQualifierLoc().getBeginLoc(); | 
|  | Base = | 
|  | BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); | 
|  | } | 
|  | } else | 
|  | Base = MemExpr->getBase(); | 
|  |  | 
|  | ExprValueKind valueKind; | 
|  | QualType type; | 
|  | if (cast<CXXMethodDecl>(Fn)->isStatic()) { | 
|  | valueKind = VK_LValue; | 
|  | type = Fn->getType(); | 
|  | } else { | 
|  | valueKind = VK_PRValue; | 
|  | type = Context.BoundMemberTy; | 
|  | } | 
|  |  | 
|  | return BuildMemberExpr( | 
|  | Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), | 
|  | MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, | 
|  | /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), | 
|  | type, valueKind, OK_Ordinary, TemplateArgs); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid reference to overloaded function"); | 
|  | } | 
|  |  | 
|  | ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, | 
|  | DeclAccessPair Found, | 
|  | FunctionDecl *Fn) { | 
|  | return FixOverloadedFunctionReference(E.get(), Found, Fn); | 
|  | } | 
|  |  | 
|  | bool clang::shouldEnforceArgLimit(bool PartialOverloading, | 
|  | FunctionDecl *Function) { | 
|  | if (!PartialOverloading || !Function) | 
|  | return true; | 
|  | if (Function->isVariadic()) | 
|  | return false; | 
|  | if (const auto *Proto = | 
|  | dyn_cast<FunctionProtoType>(Function->getFunctionType())) | 
|  | if (Proto->isTemplateVariadic()) | 
|  | return false; | 
|  | if (auto *Pattern = Function->getTemplateInstantiationPattern()) | 
|  | if (const auto *Proto = | 
|  | dyn_cast<FunctionProtoType>(Pattern->getFunctionType())) | 
|  | if (Proto->isTemplateVariadic()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseUseOfDeletedFunction(SourceLocation Loc, SourceRange Range, | 
|  | DeclarationName Name, | 
|  | OverloadCandidateSet &CandidateSet, | 
|  | FunctionDecl *Fn, MultiExprArg Args, | 
|  | bool IsMember) { | 
|  | StringLiteral *Msg = Fn->getDeletedMessage(); | 
|  | CandidateSet.NoteCandidates( | 
|  | PartialDiagnosticAt(Loc, PDiag(diag::err_ovl_deleted_call) | 
|  | << IsMember << Name << (Msg != nullptr) | 
|  | << (Msg ? Msg->getString() : StringRef()) | 
|  | << Range), | 
|  | *this, OCD_AllCandidates, Args); | 
|  | } |