| //===- BitTracker.cpp -----------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // SSA-based bit propagation. |
| // |
| // The purpose of this code is, for a given virtual register, to provide |
| // information about the value of each bit in the register. The values |
| // of bits are represented by the class BitValue, and take one of four |
| // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the |
| // "ref" value means that the bit is a copy of another bit (which itself |
| // cannot be a copy of yet another bit---such chains are not allowed). |
| // A "ref" value is associated with a BitRef structure, which indicates |
| // which virtual register, and which bit in that register is the origin |
| // of the value. For example, given an instruction |
| // %2 = ASL %1, 1 |
| // assuming that nothing is known about bits of %1, bit 1 of %2 |
| // will be a "ref" to (%1, 0). If there is a subsequent instruction |
| // %3 = ASL %2, 2 |
| // then bit 3 of %3 will be a "ref" to (%1, 0) as well. |
| // The "bottom" case means that the bit's value cannot be determined, |
| // and that this virtual register actually defines it. The "bottom" case |
| // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref |
| // to self", so for the %1 above, the bit 0 of it will be a "ref" to |
| // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. |
| // |
| // The tracker implements the Wegman-Zadeck algorithm, originally developed |
| // for SSA-based constant propagation. Each register is represented as |
| // a sequence of bits, with the convention that bit 0 is the least signi- |
| // ficant bit. Each bit is propagated individually. The class RegisterCell |
| // implements the register's representation, and is also the subject of |
| // the lattice operations in the tracker. |
| // |
| // The intended usage of the bit tracker is to create a target-specific |
| // machine instruction evaluator, pass the evaluator to the BitTracker |
| // object, and run the tracker. The tracker will then collect the bit |
| // value information for a given machine function. After that, it can be |
| // queried for the cells for each virtual register. |
| // Sample code: |
| // const TargetSpecificEvaluator TSE(TRI, MRI); |
| // BitTracker BT(TSE, MF); |
| // BT.run(); |
| // ... |
| // unsigned Reg = interestingRegister(); |
| // RegisterCell RC = BT.get(Reg); |
| // if (RC[3].is(1)) |
| // Reg0bit3 = 1; |
| // |
| // The code below is intended to be fully target-independent. |
| |
| #include "BitTracker.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| |
| using namespace llvm; |
| |
| using BT = BitTracker; |
| |
| namespace { |
| |
| // Local trickery to pretty print a register (without the whole "%number" |
| // business). |
| struct printv { |
| printv(unsigned r) : R(r) {} |
| |
| unsigned R; |
| }; |
| |
| raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { |
| if (PV.R) |
| OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); |
| else |
| OS << 's'; |
| return OS; |
| } |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { |
| switch (BV.Type) { |
| case BT::BitValue::Top: |
| OS << 'T'; |
| break; |
| case BT::BitValue::Zero: |
| OS << '0'; |
| break; |
| case BT::BitValue::One: |
| OS << '1'; |
| break; |
| case BT::BitValue::Ref: |
| OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; |
| break; |
| } |
| return OS; |
| } |
| |
| raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { |
| unsigned n = RC.Bits.size(); |
| OS << "{ w:" << n; |
| // Instead of printing each bit value individually, try to group them |
| // into logical segments, such as sequences of 0 or 1 bits or references |
| // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). |
| // "Start" will be the index of the beginning of the most recent segment. |
| unsigned Start = 0; |
| bool SeqRef = false; // A sequence of refs to consecutive bits. |
| bool ConstRef = false; // A sequence of refs to the same bit. |
| |
| for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { |
| const BT::BitValue &V = RC[i]; |
| const BT::BitValue &SV = RC[Start]; |
| bool IsRef = (V.Type == BT::BitValue::Ref); |
| // If the current value is the same as Start, skip to the next one. |
| if (!IsRef && V == SV) |
| continue; |
| if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { |
| if (Start+1 == i) { |
| SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); |
| ConstRef = (V.RefI.Pos == SV.RefI.Pos); |
| } |
| if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) |
| continue; |
| if (ConstRef && V.RefI.Pos == SV.RefI.Pos) |
| continue; |
| } |
| |
| // The current value is different. Print the previous one and reset |
| // the Start. |
| OS << " [" << Start; |
| unsigned Count = i - Start; |
| if (Count == 1) { |
| OS << "]:" << SV; |
| } else { |
| OS << '-' << i-1 << "]:"; |
| if (SV.Type == BT::BitValue::Ref && SeqRef) |
| OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
| << SV.RefI.Pos+(Count-1) << ']'; |
| else |
| OS << SV; |
| } |
| Start = i; |
| SeqRef = ConstRef = false; |
| } |
| |
| OS << " [" << Start; |
| unsigned Count = n - Start; |
| if (n-Start == 1) { |
| OS << "]:" << RC[Start]; |
| } else { |
| OS << '-' << n-1 << "]:"; |
| const BT::BitValue &SV = RC[Start]; |
| if (SV.Type == BT::BitValue::Ref && SeqRef) |
| OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
| << SV.RefI.Pos+(Count-1) << ']'; |
| else |
| OS << SV; |
| } |
| OS << " }"; |
| |
| return OS; |
| } |
| |
| } // end namespace llvm |
| |
| void BitTracker::print_cells(raw_ostream &OS) const { |
| for (const std::pair<unsigned, RegisterCell> P : Map) |
| dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n"; |
| } |
| |
| BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) |
| : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { |
| } |
| |
| BitTracker::~BitTracker() { |
| delete ⤅ |
| } |
| |
| // If we were allowed to update a cell for a part of a register, the meet |
| // operation would need to be parametrized by the register number and the |
| // exact part of the register, so that the computer BitRefs correspond to |
| // the actual bits of the "self" register. |
| // While this cannot happen in the current implementation, I'm not sure |
| // if this should be ruled out in the future. |
| bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { |
| // An example when "meet" can be invoked with SelfR == 0 is a phi node |
| // with a physical register as an operand. |
| assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); |
| bool Changed = false; |
| for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { |
| const BitValue &RCV = RC[i]; |
| Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); |
| } |
| return Changed; |
| } |
| |
| // Insert the entire cell RC into the current cell at position given by M. |
| BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, |
| const BitMask &M) { |
| uint16_t B = M.first(), E = M.last(), W = width(); |
| // Sanity: M must be a valid mask for *this. |
| assert(B < W && E < W); |
| // Sanity: the masked part of *this must have the same number of bits |
| // as the source. |
| assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. |
| assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. |
| if (B <= E) { |
| for (uint16_t i = 0; i <= E-B; ++i) |
| Bits[i+B] = RC[i]; |
| } else { |
| for (uint16_t i = 0; i < W-B; ++i) |
| Bits[i+B] = RC[i]; |
| for (uint16_t i = 0; i <= E; ++i) |
| Bits[i] = RC[i+(W-B)]; |
| } |
| return *this; |
| } |
| |
| BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { |
| uint16_t B = M.first(), E = M.last(), W = width(); |
| assert(B < W && E < W); |
| if (B <= E) { |
| RegisterCell RC(E-B+1); |
| for (uint16_t i = B; i <= E; ++i) |
| RC.Bits[i-B] = Bits[i]; |
| return RC; |
| } |
| |
| RegisterCell RC(E+(W-B)+1); |
| for (uint16_t i = 0; i < W-B; ++i) |
| RC.Bits[i] = Bits[i+B]; |
| for (uint16_t i = 0; i <= E; ++i) |
| RC.Bits[i+(W-B)] = Bits[i]; |
| return RC; |
| } |
| |
| BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { |
| // Rotate left (i.e. towards increasing bit indices). |
| // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] |
| uint16_t W = width(); |
| Sh = Sh % W; |
| if (Sh == 0) |
| return *this; |
| |
| RegisterCell Tmp(W-Sh); |
| // Tmp = [0..W-Sh-1]. |
| for (uint16_t i = 0; i < W-Sh; ++i) |
| Tmp[i] = Bits[i]; |
| // Shift [W-Sh..W-1] to [0..Sh-1]. |
| for (uint16_t i = 0; i < Sh; ++i) |
| Bits[i] = Bits[W-Sh+i]; |
| // Copy Tmp to [Sh..W-1]. |
| for (uint16_t i = 0; i < W-Sh; ++i) |
| Bits[i+Sh] = Tmp.Bits[i]; |
| return *this; |
| } |
| |
| BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, |
| const BitValue &V) { |
| assert(B <= E); |
| while (B < E) |
| Bits[B++] = V; |
| return *this; |
| } |
| |
| BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { |
| // Append the cell given as the argument to the "this" cell. |
| // Bit 0 of RC becomes bit W of the result, where W is this->width(). |
| uint16_t W = width(), WRC = RC.width(); |
| Bits.resize(W+WRC); |
| for (uint16_t i = 0; i < WRC; ++i) |
| Bits[i+W] = RC.Bits[i]; |
| return *this; |
| } |
| |
| uint16_t BT::RegisterCell::ct(bool B) const { |
| uint16_t W = width(); |
| uint16_t C = 0; |
| BitValue V = B; |
| while (C < W && Bits[C] == V) |
| C++; |
| return C; |
| } |
| |
| uint16_t BT::RegisterCell::cl(bool B) const { |
| uint16_t W = width(); |
| uint16_t C = 0; |
| BitValue V = B; |
| while (C < W && Bits[W-(C+1)] == V) |
| C++; |
| return C; |
| } |
| |
| bool BT::RegisterCell::operator== (const RegisterCell &RC) const { |
| uint16_t W = Bits.size(); |
| if (RC.Bits.size() != W) |
| return false; |
| for (uint16_t i = 0; i < W; ++i) |
| if (Bits[i] != RC[i]) |
| return false; |
| return true; |
| } |
| |
| BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { |
| for (unsigned i = 0, n = width(); i < n; ++i) { |
| const BitValue &V = Bits[i]; |
| if (V.Type == BitValue::Ref && V.RefI.Reg == 0) |
| Bits[i].RefI = BitRef(R, i); |
| } |
| return *this; |
| } |
| |
| uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { |
| // The general problem is with finding a register class that corresponds |
| // to a given reference reg:sub. There can be several such classes, and |
| // since we only care about the register size, it does not matter which |
| // such class we would find. |
| // The easiest way to accomplish what we want is to |
| // 1. find a physical register PhysR from the same class as RR.Reg, |
| // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, |
| // 3. find a register class that contains PhysS. |
| if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { |
| const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub); |
| return TRI.getRegSizeInBits(VC); |
| } |
| assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); |
| unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub); |
| return getPhysRegBitWidth(PhysR); |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, |
| const CellMapType &M) const { |
| uint16_t BW = getRegBitWidth(RR); |
| |
| // Physical registers are assumed to be present in the map with an unknown |
| // value. Don't actually insert anything in the map, just return the cell. |
| if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) |
| return RegisterCell::self(0, BW); |
| |
| assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); |
| // For virtual registers that belong to a class that is not tracked, |
| // generate an "unknown" value as well. |
| const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); |
| if (!track(C)) |
| return RegisterCell::self(0, BW); |
| |
| CellMapType::const_iterator F = M.find(RR.Reg); |
| if (F != M.end()) { |
| if (!RR.Sub) |
| return F->second; |
| BitMask M = mask(RR.Reg, RR.Sub); |
| return F->second.extract(M); |
| } |
| // If not found, create a "top" entry, but do not insert it in the map. |
| return RegisterCell::top(BW); |
| } |
| |
| void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, |
| CellMapType &M) const { |
| // While updating the cell map can be done in a meaningful way for |
| // a part of a register, it makes little sense to implement it as the |
| // SSA representation would never contain such "partial definitions". |
| if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) |
| return; |
| assert(RR.Sub == 0 && "Unexpected sub-register in definition"); |
| // Eliminate all ref-to-reg-0 bit values: replace them with "self". |
| M[RR.Reg] = RC.regify(RR.Reg); |
| } |
| |
| // Check if the cell represents a compile-time integer value. |
| bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { |
| uint16_t W = A.width(); |
| for (uint16_t i = 0; i < W; ++i) |
| if (!A[i].is(0) && !A[i].is(1)) |
| return false; |
| return true; |
| } |
| |
| // Convert a cell to the integer value. The result must fit in uint64_t. |
| uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { |
| assert(isInt(A)); |
| uint64_t Val = 0; |
| uint16_t W = A.width(); |
| for (uint16_t i = 0; i < W; ++i) { |
| Val <<= 1; |
| Val |= A[i].is(1); |
| } |
| return Val; |
| } |
| |
| // Evaluator helper functions. These implement some common operation on |
| // register cells that can be used to implement target-specific instructions |
| // in a target-specific evaluator. |
| |
| BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { |
| RegisterCell Res(W); |
| // For bits beyond the 63rd, this will generate the sign bit of V. |
| for (uint16_t i = 0; i < W; ++i) { |
| Res[i] = BitValue(V & 1); |
| V >>= 1; |
| } |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { |
| const APInt &A = CI->getValue(); |
| uint16_t BW = A.getBitWidth(); |
| assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); |
| RegisterCell Res(BW); |
| for (uint16_t i = 0; i < BW; ++i) |
| Res[i] = A[i]; |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width(); |
| assert(W == A2.width()); |
| RegisterCell Res(W); |
| bool Carry = false; |
| uint16_t I; |
| for (I = 0; I < W; ++I) { |
| const BitValue &V1 = A1[I]; |
| const BitValue &V2 = A2[I]; |
| if (!V1.num() || !V2.num()) |
| break; |
| unsigned S = bool(V1) + bool(V2) + Carry; |
| Res[I] = BitValue(S & 1); |
| Carry = (S > 1); |
| } |
| for (; I < W; ++I) { |
| const BitValue &V1 = A1[I]; |
| const BitValue &V2 = A2[I]; |
| // If the next bit is same as Carry, the result will be 0 plus the |
| // other bit. The Carry bit will remain unchanged. |
| if (V1.is(Carry)) |
| Res[I] = BitValue::ref(V2); |
| else if (V2.is(Carry)) |
| Res[I] = BitValue::ref(V1); |
| else |
| break; |
| } |
| for (; I < W; ++I) |
| Res[I] = BitValue::self(); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width(); |
| assert(W == A2.width()); |
| RegisterCell Res(W); |
| bool Borrow = false; |
| uint16_t I; |
| for (I = 0; I < W; ++I) { |
| const BitValue &V1 = A1[I]; |
| const BitValue &V2 = A2[I]; |
| if (!V1.num() || !V2.num()) |
| break; |
| unsigned S = bool(V1) - bool(V2) - Borrow; |
| Res[I] = BitValue(S & 1); |
| Borrow = (S > 1); |
| } |
| for (; I < W; ++I) { |
| const BitValue &V1 = A1[I]; |
| const BitValue &V2 = A2[I]; |
| if (V1.is(Borrow)) { |
| Res[I] = BitValue::ref(V2); |
| break; |
| } |
| if (V2.is(Borrow)) |
| Res[I] = BitValue::ref(V1); |
| else |
| break; |
| } |
| for (; I < W; ++I) |
| Res[I] = BitValue::self(); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width() + A2.width(); |
| uint16_t Z = A1.ct(false) + A2.ct(false); |
| RegisterCell Res(W); |
| Res.fill(0, Z, BitValue::Zero); |
| Res.fill(Z, W, BitValue::self()); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width() + A2.width(); |
| uint16_t Z = A1.ct(false) + A2.ct(false); |
| RegisterCell Res(W); |
| Res.fill(0, Z, BitValue::Zero); |
| Res.fill(Z, W, BitValue::self()); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, |
| uint16_t Sh) const { |
| assert(Sh <= A1.width()); |
| RegisterCell Res = RegisterCell::ref(A1); |
| Res.rol(Sh); |
| Res.fill(0, Sh, BitValue::Zero); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, |
| uint16_t Sh) const { |
| uint16_t W = A1.width(); |
| assert(Sh <= W); |
| RegisterCell Res = RegisterCell::ref(A1); |
| Res.rol(W-Sh); |
| Res.fill(W-Sh, W, BitValue::Zero); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, |
| uint16_t Sh) const { |
| uint16_t W = A1.width(); |
| assert(Sh <= W); |
| RegisterCell Res = RegisterCell::ref(A1); |
| BitValue Sign = Res[W-1]; |
| Res.rol(W-Sh); |
| Res.fill(W-Sh, W, Sign); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width(); |
| assert(W == A2.width()); |
| RegisterCell Res(W); |
| for (uint16_t i = 0; i < W; ++i) { |
| const BitValue &V1 = A1[i]; |
| const BitValue &V2 = A2[i]; |
| if (V1.is(1)) |
| Res[i] = BitValue::ref(V2); |
| else if (V2.is(1)) |
| Res[i] = BitValue::ref(V1); |
| else if (V1.is(0) || V2.is(0)) |
| Res[i] = BitValue::Zero; |
| else if (V1 == V2) |
| Res[i] = V1; |
| else |
| Res[i] = BitValue::self(); |
| } |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width(); |
| assert(W == A2.width()); |
| RegisterCell Res(W); |
| for (uint16_t i = 0; i < W; ++i) { |
| const BitValue &V1 = A1[i]; |
| const BitValue &V2 = A2[i]; |
| if (V1.is(1) || V2.is(1)) |
| Res[i] = BitValue::One; |
| else if (V1.is(0)) |
| Res[i] = BitValue::ref(V2); |
| else if (V2.is(0)) |
| Res[i] = BitValue::ref(V1); |
| else if (V1 == V2) |
| Res[i] = V1; |
| else |
| Res[i] = BitValue::self(); |
| } |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, |
| const RegisterCell &A2) const { |
| uint16_t W = A1.width(); |
| assert(W == A2.width()); |
| RegisterCell Res(W); |
| for (uint16_t i = 0; i < W; ++i) { |
| const BitValue &V1 = A1[i]; |
| const BitValue &V2 = A2[i]; |
| if (V1.is(0)) |
| Res[i] = BitValue::ref(V2); |
| else if (V2.is(0)) |
| Res[i] = BitValue::ref(V1); |
| else if (V1 == V2) |
| Res[i] = BitValue::Zero; |
| else |
| Res[i] = BitValue::self(); |
| } |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { |
| uint16_t W = A1.width(); |
| RegisterCell Res(W); |
| for (uint16_t i = 0; i < W; ++i) { |
| const BitValue &V = A1[i]; |
| if (V.is(0)) |
| Res[i] = BitValue::One; |
| else if (V.is(1)) |
| Res[i] = BitValue::Zero; |
| else |
| Res[i] = BitValue::self(); |
| } |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, |
| uint16_t BitN) const { |
| assert(BitN < A1.width()); |
| RegisterCell Res = RegisterCell::ref(A1); |
| Res[BitN] = BitValue::One; |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, |
| uint16_t BitN) const { |
| assert(BitN < A1.width()); |
| RegisterCell Res = RegisterCell::ref(A1); |
| Res[BitN] = BitValue::Zero; |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, |
| uint16_t W) const { |
| uint16_t C = A1.cl(B), AW = A1.width(); |
| // If the last leading non-B bit is not a constant, then we don't know |
| // the real count. |
| if ((C < AW && A1[AW-1-C].num()) || C == AW) |
| return eIMM(C, W); |
| return RegisterCell::self(0, W); |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, |
| uint16_t W) const { |
| uint16_t C = A1.ct(B), AW = A1.width(); |
| // If the last trailing non-B bit is not a constant, then we don't know |
| // the real count. |
| if ((C < AW && A1[C].num()) || C == AW) |
| return eIMM(C, W); |
| return RegisterCell::self(0, W); |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, |
| uint16_t FromN) const { |
| uint16_t W = A1.width(); |
| assert(FromN <= W); |
| RegisterCell Res = RegisterCell::ref(A1); |
| BitValue Sign = Res[FromN-1]; |
| // Sign-extend "inreg". |
| Res.fill(FromN, W, Sign); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, |
| uint16_t FromN) const { |
| uint16_t W = A1.width(); |
| assert(FromN <= W); |
| RegisterCell Res = RegisterCell::ref(A1); |
| Res.fill(FromN, W, BitValue::Zero); |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, |
| uint16_t B, uint16_t E) const { |
| uint16_t W = A1.width(); |
| assert(B < W && E <= W); |
| if (B == E) |
| return RegisterCell(0); |
| uint16_t Last = (E > 0) ? E-1 : W-1; |
| RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); |
| // Return shorter cell. |
| return Res; |
| } |
| |
| BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, |
| const RegisterCell &A2, uint16_t AtN) const { |
| uint16_t W1 = A1.width(), W2 = A2.width(); |
| (void)W1; |
| assert(AtN < W1 && AtN+W2 <= W1); |
| // Copy bits from A1, insert A2 at position AtN. |
| RegisterCell Res = RegisterCell::ref(A1); |
| if (W2 > 0) |
| Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); |
| return Res; |
| } |
| |
| BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { |
| assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); |
| uint16_t W = getRegBitWidth(Reg); |
| assert(W > 0 && "Cannot generate mask for empty register"); |
| return BitMask(0, W-1); |
| } |
| |
| uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const { |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg)); |
| const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); |
| return TRI.getRegSizeInBits(PC); |
| } |
| |
| bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, |
| const CellMapType &Inputs, |
| CellMapType &Outputs) const { |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::REG_SEQUENCE: { |
| RegisterRef RD = MI.getOperand(0); |
| assert(RD.Sub == 0); |
| RegisterRef RS = MI.getOperand(1); |
| unsigned SS = MI.getOperand(2).getImm(); |
| RegisterRef RT = MI.getOperand(3); |
| unsigned ST = MI.getOperand(4).getImm(); |
| assert(SS != ST); |
| |
| uint16_t W = getRegBitWidth(RD); |
| RegisterCell Res(W); |
| Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); |
| Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); |
| putCell(RD, Res, Outputs); |
| break; |
| } |
| |
| case TargetOpcode::COPY: { |
| // COPY can transfer a smaller register into a wider one. |
| // If that is the case, fill the remaining high bits with 0. |
| RegisterRef RD = MI.getOperand(0); |
| RegisterRef RS = MI.getOperand(1); |
| assert(RD.Sub == 0); |
| uint16_t WD = getRegBitWidth(RD); |
| uint16_t WS = getRegBitWidth(RS); |
| assert(WD >= WS); |
| RegisterCell Src = getCell(RS, Inputs); |
| RegisterCell Res(WD); |
| Res.insert(Src, BitMask(0, WS-1)); |
| Res.fill(WS, WD, BitValue::Zero); |
| putCell(RD, Res, Outputs); |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, |
| const MachineInstr *InstB) const { |
| // This is a comparison function for a priority queue: give higher priority |
| // to earlier instructions. |
| // This operator is used as "less", so returning "true" gives InstB higher |
| // priority (because then InstA < InstB). |
| if (InstA == InstB) |
| return false; |
| const MachineBasicBlock *BA = InstA->getParent(); |
| const MachineBasicBlock *BB = InstB->getParent(); |
| if (BA != BB) { |
| // If the blocks are different, ideally the dominating block would |
| // have a higher priority, but it may be too expensive to check. |
| return BA->getNumber() > BB->getNumber(); |
| } |
| |
| auto getDist = [this] (const MachineInstr *MI) { |
| auto F = Dist.find(MI); |
| if (F != Dist.end()) |
| return F->second; |
| MachineBasicBlock::const_iterator I = MI->getParent()->begin(); |
| MachineBasicBlock::const_iterator E = MI->getIterator(); |
| unsigned D = std::distance(I, E); |
| Dist.insert(std::make_pair(MI, D)); |
| return D; |
| }; |
| |
| return getDist(InstA) > getDist(InstB); |
| } |
| |
| // Main W-Z implementation. |
| |
| void BT::visitPHI(const MachineInstr &PI) { |
| int ThisN = PI.getParent()->getNumber(); |
| if (Trace) |
| dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI; |
| |
| const MachineOperand &MD = PI.getOperand(0); |
| assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); |
| RegisterRef DefRR(MD); |
| uint16_t DefBW = ME.getRegBitWidth(DefRR); |
| |
| RegisterCell DefC = ME.getCell(DefRR, Map); |
| if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow |
| return; |
| |
| bool Changed = false; |
| |
| for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { |
| const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); |
| int PredN = PB->getNumber(); |
| if (Trace) |
| dbgs() << " edge " << printMBBReference(*PB) << "->" |
| << printMBBReference(*PI.getParent()); |
| if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { |
| if (Trace) |
| dbgs() << " not executable\n"; |
| continue; |
| } |
| |
| RegisterRef RU = PI.getOperand(i); |
| RegisterCell ResC = ME.getCell(RU, Map); |
| if (Trace) |
| dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) |
| << " cell: " << ResC << "\n"; |
| Changed |= DefC.meet(ResC, DefRR.Reg); |
| } |
| |
| if (Changed) { |
| if (Trace) |
| dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub) |
| << " cell: " << DefC << "\n"; |
| ME.putCell(DefRR, DefC, Map); |
| visitUsesOf(DefRR.Reg); |
| } |
| } |
| |
| void BT::visitNonBranch(const MachineInstr &MI) { |
| if (Trace) |
| dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI; |
| if (MI.isDebugInstr()) |
| return; |
| assert(!MI.isBranch() && "Unexpected branch instruction"); |
| |
| CellMapType ResMap; |
| bool Eval = ME.evaluate(MI, Map, ResMap); |
| |
| if (Trace && Eval) { |
| for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| RegisterRef RU(MO); |
| dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) |
| << " cell: " << ME.getCell(RU, Map) << "\n"; |
| } |
| dbgs() << "Outputs:\n"; |
| for (const std::pair<unsigned, RegisterCell> &P : ResMap) { |
| RegisterRef RD(P.first); |
| dbgs() << " " << printReg(P.first, &ME.TRI) << " cell: " |
| << ME.getCell(RD, ResMap) << "\n"; |
| } |
| } |
| |
| // Iterate over all definitions of the instruction, and update the |
| // cells accordingly. |
| for (const MachineOperand &MO : MI.operands()) { |
| // Visit register defs only. |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| RegisterRef RD(MO); |
| assert(RD.Sub == 0 && "Unexpected sub-register in definition"); |
| if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) |
| continue; |
| |
| bool Changed = false; |
| if (!Eval || ResMap.count(RD.Reg) == 0) { |
| // Set to "ref" (aka "bottom"). |
| uint16_t DefBW = ME.getRegBitWidth(RD); |
| RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); |
| if (RefC != ME.getCell(RD, Map)) { |
| ME.putCell(RD, RefC, Map); |
| Changed = true; |
| } |
| } else { |
| RegisterCell DefC = ME.getCell(RD, Map); |
| RegisterCell ResC = ME.getCell(RD, ResMap); |
| // This is a non-phi instruction, so the values of the inputs come |
| // from the same registers each time this instruction is evaluated. |
| // During the propagation, the values of the inputs can become lowered |
| // in the sense of the lattice operation, which may cause different |
| // results to be calculated in subsequent evaluations. This should |
| // not cause the bottoming of the result in the map, since the new |
| // result is already reflecting the lowered inputs. |
| for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { |
| BitValue &V = DefC[i]; |
| // Bits that are already "bottom" should not be updated. |
| if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) |
| continue; |
| // Same for those that are identical in DefC and ResC. |
| if (V == ResC[i]) |
| continue; |
| V = ResC[i]; |
| Changed = true; |
| } |
| if (Changed) |
| ME.putCell(RD, DefC, Map); |
| } |
| if (Changed) |
| visitUsesOf(RD.Reg); |
| } |
| } |
| |
| void BT::visitBranchesFrom(const MachineInstr &BI) { |
| const MachineBasicBlock &B = *BI.getParent(); |
| MachineBasicBlock::const_iterator It = BI, End = B.end(); |
| BranchTargetList Targets, BTs; |
| bool FallsThrough = true, DefaultToAll = false; |
| int ThisN = B.getNumber(); |
| |
| do { |
| BTs.clear(); |
| const MachineInstr &MI = *It; |
| if (Trace) |
| dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI; |
| assert(MI.isBranch() && "Expecting branch instruction"); |
| InstrExec.insert(&MI); |
| bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); |
| if (!Eval) { |
| // If the evaluation failed, we will add all targets. Keep going in |
| // the loop to mark all executable branches as such. |
| DefaultToAll = true; |
| FallsThrough = true; |
| if (Trace) |
| dbgs() << " failed to evaluate: will add all CFG successors\n"; |
| } else if (!DefaultToAll) { |
| // If evaluated successfully add the targets to the cumulative list. |
| if (Trace) { |
| dbgs() << " adding targets:"; |
| for (unsigned i = 0, n = BTs.size(); i < n; ++i) |
| dbgs() << " " << printMBBReference(*BTs[i]); |
| if (FallsThrough) |
| dbgs() << "\n falls through\n"; |
| else |
| dbgs() << "\n does not fall through\n"; |
| } |
| Targets.insert(BTs.begin(), BTs.end()); |
| } |
| ++It; |
| } while (FallsThrough && It != End); |
| |
| if (!DefaultToAll) { |
| // Need to add all CFG successors that lead to EH landing pads. |
| // There won't be explicit branches to these blocks, but they must |
| // be processed. |
| for (const MachineBasicBlock *SB : B.successors()) { |
| if (SB->isEHPad()) |
| Targets.insert(SB); |
| } |
| if (FallsThrough) { |
| MachineFunction::const_iterator BIt = B.getIterator(); |
| MachineFunction::const_iterator Next = std::next(BIt); |
| if (Next != MF.end()) |
| Targets.insert(&*Next); |
| } |
| } else { |
| for (const MachineBasicBlock *SB : B.successors()) |
| Targets.insert(SB); |
| } |
| |
| for (const MachineBasicBlock *TB : Targets) |
| FlowQ.push(CFGEdge(ThisN, TB->getNumber())); |
| } |
| |
| void BT::visitUsesOf(unsigned Reg) { |
| if (Trace) |
| dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI) |
| << " cell: " << ME.getCell(Reg, Map) << '\n'; |
| |
| for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) |
| UseQ.push(&UseI); |
| } |
| |
| BT::RegisterCell BT::get(RegisterRef RR) const { |
| return ME.getCell(RR, Map); |
| } |
| |
| void BT::put(RegisterRef RR, const RegisterCell &RC) { |
| ME.putCell(RR, RC, Map); |
| } |
| |
| // Replace all references to bits from OldRR with the corresponding bits |
| // in NewRR. |
| void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { |
| assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); |
| BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); |
| BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); |
| uint16_t OMB = OM.first(), OME = OM.last(); |
| uint16_t NMB = NM.first(), NME = NM.last(); |
| (void)NME; |
| assert((OME-OMB == NME-NMB) && |
| "Substituting registers of different lengths"); |
| for (std::pair<const unsigned, RegisterCell> &P : Map) { |
| RegisterCell &RC = P.second; |
| for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
| BitValue &V = RC[i]; |
| if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) |
| continue; |
| if (V.RefI.Pos < OMB || V.RefI.Pos > OME) |
| continue; |
| V.RefI.Reg = NewRR.Reg; |
| V.RefI.Pos += NMB-OMB; |
| } |
| } |
| } |
| |
| // Check if the block has been "executed" during propagation. (If not, the |
| // block is dead, but it may still appear to be reachable.) |
| bool BT::reached(const MachineBasicBlock *B) const { |
| int BN = B->getNumber(); |
| assert(BN >= 0); |
| return ReachedBB.count(BN); |
| } |
| |
| // Visit an individual instruction. This could be a newly added instruction, |
| // or one that has been modified by an optimization. |
| void BT::visit(const MachineInstr &MI) { |
| assert(!MI.isBranch() && "Only non-branches are allowed"); |
| InstrExec.insert(&MI); |
| visitNonBranch(MI); |
| // Make sure to flush all the pending use updates. |
| runUseQueue(); |
| // The call to visitNonBranch could propagate the changes until a branch |
| // is actually visited. This could result in adding CFG edges to the flow |
| // queue. Since the queue won't be processed, clear it. |
| while (!FlowQ.empty()) |
| FlowQ.pop(); |
| } |
| |
| void BT::reset() { |
| EdgeExec.clear(); |
| InstrExec.clear(); |
| Map.clear(); |
| ReachedBB.clear(); |
| ReachedBB.reserve(MF.size()); |
| } |
| |
| void BT::runEdgeQueue(BitVector &BlockScanned) { |
| while (!FlowQ.empty()) { |
| CFGEdge Edge = FlowQ.front(); |
| FlowQ.pop(); |
| |
| if (EdgeExec.count(Edge)) |
| return; |
| EdgeExec.insert(Edge); |
| ReachedBB.insert(Edge.second); |
| |
| const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); |
| MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); |
| // Visit PHI nodes first. |
| while (It != End && It->isPHI()) { |
| const MachineInstr &PI = *It++; |
| InstrExec.insert(&PI); |
| visitPHI(PI); |
| } |
| |
| // If this block has already been visited through a flow graph edge, |
| // then the instructions have already been processed. Any updates to |
| // the cells would now only happen through visitUsesOf... |
| if (BlockScanned[Edge.second]) |
| return; |
| BlockScanned[Edge.second] = true; |
| |
| // Visit non-branch instructions. |
| while (It != End && !It->isBranch()) { |
| const MachineInstr &MI = *It++; |
| InstrExec.insert(&MI); |
| visitNonBranch(MI); |
| } |
| // If block end has been reached, add the fall-through edge to the queue. |
| if (It == End) { |
| MachineFunction::const_iterator BIt = B.getIterator(); |
| MachineFunction::const_iterator Next = std::next(BIt); |
| if (Next != MF.end() && B.isSuccessor(&*Next)) { |
| int ThisN = B.getNumber(); |
| int NextN = Next->getNumber(); |
| FlowQ.push(CFGEdge(ThisN, NextN)); |
| } |
| } else { |
| // Handle the remaining sequence of branches. This function will update |
| // the work queue. |
| visitBranchesFrom(*It); |
| } |
| } // while (!FlowQ->empty()) |
| } |
| |
| void BT::runUseQueue() { |
| while (!UseQ.empty()) { |
| MachineInstr &UseI = *UseQ.front(); |
| UseQ.pop(); |
| |
| if (!InstrExec.count(&UseI)) |
| continue; |
| if (UseI.isPHI()) |
| visitPHI(UseI); |
| else if (!UseI.isBranch()) |
| visitNonBranch(UseI); |
| else |
| visitBranchesFrom(UseI); |
| } |
| } |
| |
| void BT::run() { |
| reset(); |
| assert(FlowQ.empty()); |
| |
| using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; |
| const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); |
| |
| unsigned MaxBN = 0; |
| for (const MachineBasicBlock &B : MF) { |
| assert(B.getNumber() >= 0 && "Disconnected block"); |
| unsigned BN = B.getNumber(); |
| if (BN > MaxBN) |
| MaxBN = BN; |
| } |
| |
| // Keep track of visited blocks. |
| BitVector BlockScanned(MaxBN+1); |
| |
| int EntryN = Entry->getNumber(); |
| // Generate a fake edge to get something to start with. |
| FlowQ.push(CFGEdge(-1, EntryN)); |
| |
| while (!FlowQ.empty() || !UseQ.empty()) { |
| runEdgeQueue(BlockScanned); |
| runUseQueue(); |
| } |
| UseQ.reset(); |
| |
| if (Trace) |
| print_cells(dbgs() << "Cells after propagation:\n"); |
| } |