blob: 0d85afeebbaadceed466c880ae3fffc4244c6f10 [file] [log] [blame]
//===-- ExecutorUtil.cpp --------------------------------------------------===//
//
// The KLEE Symbolic Virtual Machine
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Executor.h"
#include "Context.h"
#include "klee/Expr.h"
#include "klee/Interpreter.h"
#include "klee/Solver.h"
#include "klee/Config/Version.h"
#include "klee/Internal/Module/KModule.h"
#include "klee/util/GetElementPtrTypeIterator.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#if LLVM_VERSION_CODE < LLVM_VERSION(2, 7)
#include "llvm/ModuleProvider.h"
#endif
#include "llvm/Support/CallSite.h"
#if LLVM_VERSION_CODE <= LLVM_VERSION(3, 1)
#include "llvm/Target/TargetData.h"
#else
#include "llvm/DataLayout.h"
#endif
#include <iostream>
#include <cassert>
using namespace klee;
using namespace llvm;
namespace klee {
ref<ConstantExpr> Executor::evalConstantExpr(const llvm::ConstantExpr *ce) {
LLVM_TYPE_Q llvm::Type *type = ce->getType();
ref<ConstantExpr> op1(0), op2(0), op3(0);
int numOperands = ce->getNumOperands();
if (numOperands > 0) op1 = evalConstant(ce->getOperand(0));
if (numOperands > 1) op2 = evalConstant(ce->getOperand(1));
if (numOperands > 2) op3 = evalConstant(ce->getOperand(2));
switch (ce->getOpcode()) {
default :
ce->dump();
std::cerr << "error: unknown ConstantExpr type\n"
<< "opcode: " << ce->getOpcode() << "\n";
abort();
case Instruction::Trunc:
return op1->Extract(0, getWidthForLLVMType(type));
case Instruction::ZExt: return op1->ZExt(getWidthForLLVMType(type));
case Instruction::SExt: return op1->SExt(getWidthForLLVMType(type));
case Instruction::Add: return op1->Add(op2);
case Instruction::Sub: return op1->Sub(op2);
case Instruction::Mul: return op1->Mul(op2);
case Instruction::SDiv: return op1->SDiv(op2);
case Instruction::UDiv: return op1->UDiv(op2);
case Instruction::SRem: return op1->SRem(op2);
case Instruction::URem: return op1->URem(op2);
case Instruction::And: return op1->And(op2);
case Instruction::Or: return op1->Or(op2);
case Instruction::Xor: return op1->Xor(op2);
case Instruction::Shl: return op1->Shl(op2);
case Instruction::LShr: return op1->LShr(op2);
case Instruction::AShr: return op1->AShr(op2);
case Instruction::BitCast: return op1;
case Instruction::IntToPtr:
return op1->ZExt(getWidthForLLVMType(type));
case Instruction::PtrToInt:
return op1->ZExt(getWidthForLLVMType(type));
case Instruction::GetElementPtr: {
ref<ConstantExpr> base = op1->ZExt(Context::get().getPointerWidth());
for (gep_type_iterator ii = gep_type_begin(ce), ie = gep_type_end(ce);
ii != ie; ++ii) {
ref<ConstantExpr> addend =
ConstantExpr::alloc(0, Context::get().getPointerWidth());
if (LLVM_TYPE_Q StructType *st = dyn_cast<StructType>(*ii)) {
const StructLayout *sl = kmodule->targetData->getStructLayout(st);
const ConstantInt *ci = cast<ConstantInt>(ii.getOperand());
addend = ConstantExpr::alloc(sl->getElementOffset((unsigned)
ci->getZExtValue()),
Context::get().getPointerWidth());
} else {
const SequentialType *set = cast<SequentialType>(*ii);
ref<ConstantExpr> index =
evalConstant(cast<Constant>(ii.getOperand()));
unsigned elementSize =
kmodule->targetData->getTypeStoreSize(set->getElementType());
index = index->ZExt(Context::get().getPointerWidth());
addend = index->Mul(ConstantExpr::alloc(elementSize,
Context::get().getPointerWidth()));
}
base = base->Add(addend);
}
return base;
}
case Instruction::ICmp: {
switch(ce->getPredicate()) {
default: assert(0 && "unhandled ICmp predicate");
case ICmpInst::ICMP_EQ: return op1->Eq(op2);
case ICmpInst::ICMP_NE: return op1->Ne(op2);
case ICmpInst::ICMP_UGT: return op1->Ugt(op2);
case ICmpInst::ICMP_UGE: return op1->Uge(op2);
case ICmpInst::ICMP_ULT: return op1->Ult(op2);
case ICmpInst::ICMP_ULE: return op1->Ule(op2);
case ICmpInst::ICMP_SGT: return op1->Sgt(op2);
case ICmpInst::ICMP_SGE: return op1->Sge(op2);
case ICmpInst::ICMP_SLT: return op1->Slt(op2);
case ICmpInst::ICMP_SLE: return op1->Sle(op2);
}
}
case Instruction::Select:
return op1->isTrue() ? op2 : op3;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FCmp:
assert(0 && "floating point ConstantExprs unsupported");
}
}
}