blob: 35dbc83d45958ccb98abc3e32e8ee5991a9c0aa9 [file] [log] [blame]
//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements convenience types for working with super-vectorization
// operations, in particular super-vector loads and stores.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/VectorOps/VectorUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/StringSet.h"
#include <numeric>
using namespace mlir;
using namespace mlir::vector;
//===----------------------------------------------------------------------===//
// VectorOpsDialect
//===----------------------------------------------------------------------===//
VectorOpsDialect::VectorOpsDialect(MLIRContext *context)
: Dialect(getDialectNamespace(), context) {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *VectorOpsDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<ConstantOp>(loc, type, value);
}
IntegerType vector::getVectorSubscriptType(Builder &builder) {
return builder.getIntegerType(64);
}
ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
ArrayRef<int64_t> values) {
return builder.getI64ArrayAttr(values);
}
//===----------------------------------------------------------------------===//
// ReductionOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReductionOp op) {
// Verify for 1-D vector.
int64_t rank = op.getVectorType().getRank();
if (rank != 1)
return op.emitOpError("unsupported reduction rank: ") << rank;
// Verify supported reduction kind.
auto kind = op.kind();
Type eltType = op.dest().getType();
if (kind == "add" || kind == "mul" || kind == "min" || kind == "max") {
if (eltType.isF32() || eltType.isF64() || eltType.isSignlessInteger(32) ||
eltType.isSignlessInteger(64))
return success();
return op.emitOpError("unsupported reduction type");
}
if (kind == "and" || kind == "or" || kind == "xor") {
if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64))
return success();
return op.emitOpError("unsupported reduction type");
}
return op.emitOpError("unknown reduction kind: ") << kind;
}
//===----------------------------------------------------------------------===//
// ContractionOp
//===----------------------------------------------------------------------===//
void vector::ContractionOp::build(Builder *builder, OperationState &result,
Value lhs, Value rhs, Value acc,
ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
ArrayRef<StringRef> iteratorTypes) {
result.addOperands({lhs, rhs, acc});
result.addTypes(acc.getType());
result.addAttribute(getIndexingMapsAttrName(),
builder->getAffineMapArrayAttr(
AffineMap::inferFromExprList(indexingExprs)));
result.addAttribute(getIteratorTypesAttrName(),
builder->getStrArrayAttr(iteratorTypes));
}
void vector::ContractionOp::build(Builder *builder, OperationState &result,
Value lhs, Value rhs, Value acc,
ArrayAttr indexingMaps,
ArrayAttr iteratorTypes) {
result.addOperands({lhs, rhs, acc});
result.addTypes(acc.getType());
result.addAttribute(getIndexingMapsAttrName(), indexingMaps);
result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
}
static ParseResult parseContractionOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType lhsInfo;
OpAsmParser::OperandType rhsInfo;
OpAsmParser::OperandType accInfo;
SmallVector<OpAsmParser::OperandType, 2> masksInfo;
SmallVector<Type, 2> types;
Type resultType;
auto loc = parser.getCurrentLocation();
DictionaryAttr dictAttr;
// TODO(andydavis, ntv) Unify linalg op attribute parsing.
if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
parser.parseOperand(lhsInfo) || parser.parseComma() ||
parser.parseOperand(rhsInfo) || parser.parseComma() ||
parser.parseOperand(accInfo) ||
parser.parseTrailingOperandList(masksInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonTypeList(types) ||
parser.parseKeywordType("into", resultType) ||
parser.resolveOperand(lhsInfo, types[0], result.operands) ||
parser.resolveOperand(rhsInfo, types[1], result.operands) ||
parser.resolveOperand(accInfo, resultType, result.operands) ||
parser.addTypeToList(resultType, result.types))
return failure();
result.attributes.assign(dictAttr.getValue().begin(),
dictAttr.getValue().end());
if (masksInfo.empty())
return success();
if (masksInfo.size() != 2)
return parser.emitError(parser.getNameLoc(),
"expected zero or exactly 2 vector mask operands");
auto lhsType = types[0].cast<VectorType>();
auto rhsType = types[1].cast<VectorType>();
auto maskElementType = parser.getBuilder().getI1Type();
SmallVector<Type, 2> maskTypes;
maskTypes.push_back(VectorType::get(lhsType.getShape(), maskElementType));
maskTypes.push_back(VectorType::get(rhsType.getShape(), maskElementType));
if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ContractionOp op) {
// TODO(andydavis, ntv) Unify printing code with linalg ops.
auto attrNames = op.getTraitAttrNames();
llvm::StringSet<> traitAttrsSet;
traitAttrsSet.insert(attrNames.begin(), attrNames.end());
SmallVector<NamedAttribute, 8> attrs;
for (auto attr : op.getAttrs())
if (traitAttrsSet.count(attr.first.strref()) > 0)
attrs.push_back(attr);
auto dictAttr = DictionaryAttr::get(attrs, op.getContext());
p << op.getOperationName() << " " << dictAttr << " " << op.lhs() << ", ";
p << op.rhs() << ", " << op.acc();
if (op.masks().size() == 2)
p << ", " << op.masks();
p.printOptionalAttrDict(op.getAttrs(), attrNames);
p << " : " << op.lhs().getType() << ", " << op.rhs().getType() << " into "
<< op.getResultType();
}
static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
const std::vector<std::pair<int64_t, int64_t>> &map) {
for (auto &dimPair : map) {
if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
return false;
}
return true;
}
static bool verifyOutputShape(
VectorType lhsType, VectorType rhsType, Type accType, Type resType,
const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
DenseSet<int64_t> lhsContractingDimSet;
DenseSet<int64_t> rhsContractingDimSet;
for (auto &dimPair : contractingDimMap) {
lhsContractingDimSet.insert(dimPair.first);
rhsContractingDimSet.insert(dimPair.second);
}
DenseSet<int64_t> rhsBatchDimSet;
for (auto &dimPair : batchDimMap)
rhsBatchDimSet.insert(dimPair.second);
// Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
SmallVector<int64_t, 4> expectedResultDims;
for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
if (lhsContractingDimSet.count(i) > 0)
continue;
expectedResultDims.push_back(lhsType.getDimSize(i));
}
// Add free dimensions from 'rhsType' to 'expectedResultDims'.
for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
continue;
expectedResultDims.push_back(rhsType.getDimSize(i));
}
// Verify 'expectedResultDims'.
if (expectedResultDims.size() == 0) {
// No batch or free dimension implies a scalar result.
if (resType.isa<VectorType>() || accType.isa<VectorType>())
return false;
} else {
// At least one batch or free dimension implies a vector result.
auto resVectorType = resType.dyn_cast<VectorType>();
auto accVectorType = accType.dyn_cast<VectorType>();
if (!resVectorType || !accVectorType)
return false;
// Verify dimension from 'resType' against 'expectedResultDims'.
if (resVectorType.getShape().size() != expectedResultDims.size() ||
accVectorType.getShape().size() != expectedResultDims.size())
return false;
for (int64_t i = 0, e = resVectorType.getRank(); i < e; ++i) {
if (resVectorType.getDimSize(i) != expectedResultDims[i] ||
accVectorType.getDimSize(i) != expectedResultDims[i])
return false;
}
}
return true;
}
static LogicalResult verify(ContractionOp op) {
auto lhsType = op.getLhsType();
auto rhsType = op.getRhsType();
auto accType = op.getAccType();
auto resType = op.getResultType();
// Verify that an indexing map was specified for each vector operand.
if (op.indexing_maps().size() != 3)
return op.emitOpError("expected an indexing map for each vector operand");
// Verify that each index map has 'numIterators' inputs, no symbols, and
// that the number of map outputs equals the rank of its associated
// vector operand.
unsigned numIterators = op.iterator_types().getValue().size();
for (auto it : llvm::enumerate(op.indexing_maps())) {
auto index = it.index();
auto map = it.value().cast<AffineMapAttr>().getValue();
if (map.getNumSymbols() != 0)
return op.emitOpError("expected indexing map ")
<< index << " to have no symbols";
auto vectorType = op.getOperand(index).getType().dyn_cast<VectorType>();
unsigned rank = vectorType ? vectorType.getShape().size() : 0;
// Since (...) -> () is parsed into an empty map, we need to add
// a special case for this situation: continue the verification
// of an empty map if the resulting rank is indeed zero, i.e. this
// is a reduction into a scalar.
if (map.getNumDims() == 0 && map.getNumResults() == 0 && rank == 0)
continue;
// Verify that the map has the right number of inputs, outputs, and indices.
if (map.getNumDims() != numIterators)
return op.emitOpError("expected indexing map ")
<< index << " to have " << numIterators << " number of inputs";
if (map.getNumResults() != rank)
return op.emitOpError("expected indexing map ")
<< index << " to have " << rank << " number of outputs";
if (!map.isProjectedPermutation())
return op.emitOpError("expected indexing map ")
<< index << " to be a projected permutation of its inputs";
}
auto contractingDimMap = op.getContractingDimMap();
auto batchDimMap = op.getBatchDimMap();
// Verify at least one contracting dimension pair was specified.
if (contractingDimMap.empty())
return op.emitOpError("expected at least one contracting dimension pair");
// Verify contracting dimension map was properly constructed.
if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
return op.emitOpError("invalid contracting dimension map");
// Verify batch dimension map was properly constructed.
if (!verifyDimMap(lhsType, rhsType, batchDimMap))
return op.emitOpError("invalid batch dimension map");
// Verify 'accType' and 'resType' shape.
if (!verifyOutputShape(lhsType, rhsType, accType, resType, contractingDimMap,
batchDimMap))
return op.emitOpError("invalid accumulator/result vector shape");
// Verify that either two vector masks are set or none are set.
auto lhsMaskType = op.getLHSVectorMaskType();
auto rhsMaskType = op.getRHSVectorMaskType();
if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
return op.emitOpError("invalid number of vector masks specified");
if (lhsMaskType && rhsMaskType) {
// Verify mask rank == argument rank.
if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
rhsMaskType.getShape().size() != rhsType.getShape().size())
return op.emitOpError("invalid vector mask rank");
}
return success();
}
ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
static constexpr StringRef names[2] = {getIndexingMapsAttrName(),
getIteratorTypesAttrName()};
return llvm::makeArrayRef(names);
}
static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
if (targetExpr == map.getResult(i))
return i;
return -1;
}
static std::vector<std::pair<int64_t, int64_t>>
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
StringRef targetIteratorTypeName, MLIRContext *context) {
std::vector<std::pair<int64_t, int64_t>> dimMap;
for (auto it : llvm::enumerate(iteratorTypes)) {
auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
if (iteratorTypeName != targetIteratorTypeName)
continue;
// Search lhs/rhs map results for 'targetExpr'.
auto targetExpr = getAffineDimExpr(it.index(), context);
int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
if (lhsDim >= 0 && rhsDim >= 0)
dimMap.push_back({lhsDim, rhsDim});
}
return dimMap;
}
void ContractionOp::getIterationBounds(
SmallVectorImpl<int64_t> &iterationBounds) {
auto lhsShape = getLhsType().getShape();
auto resVectorType = getResultType().dyn_cast<VectorType>();
SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
SmallVector<int64_t, 2> iterationShape;
for (auto it : llvm::enumerate(iterator_types())) {
// Search lhs/rhs map results for 'targetExpr'.
auto targetExpr = getAffineDimExpr(it.index(), getContext());
auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
if (iteratorTypeName == getReductionIteratorTypeName()) {
// Get reduction dim size from lhs shape (same size in rhsShape).
int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
assert(lhsDimIndex >= 0);
iterationBounds.push_back(lhsShape[lhsDimIndex]);
continue;
}
// Get parallel dimension size from result shape.
int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
assert(resDimIndex >= 0);
assert(resVectorType != nullptr);
iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
}
}
void ContractionOp::getIterationIndexMap(
std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
unsigned numMaps = indexing_maps().getValue().size();
iterationIndexMap.resize(numMaps);
for (auto it : llvm::enumerate(indexing_maps())) {
auto index = it.index();
auto map = it.value().cast<AffineMapAttr>().getValue();
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
auto dim = map.getResult(i).cast<AffineDimExpr>();
iterationIndexMap[index][dim.getPosition()] = i;
}
}
}
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
return getDimMap(indexingMaps, iterator_types(),
getReductionIteratorTypeName(), getContext());
}
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
return getDimMap(indexingMaps, iterator_types(),
getParallelIteratorTypeName(), getContext());
}
SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() {
SmallVector<AffineMap, 4> res;
auto mapAttrs = indexing_maps().getValue();
res.reserve(mapAttrs.size());
for (auto mapAttr : mapAttrs)
res.push_back(mapAttr.cast<AffineMapAttr>().getValue());
return res;
}
//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, vector::ExtractElementOp op) {
p << op.getOperationName() << " " << op.vector() << "[" << op.position()
<< " : " << op.position().getType() << "]";
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.vector().getType();
}
static ParseResult parseExtractElementOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType vector, position;
Type positionType;
VectorType vectorType;
if (parser.parseOperand(vector) || parser.parseLSquare() ||
parser.parseOperand(position) || parser.parseColonType(positionType) ||
parser.parseRSquare() ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(vectorType))
return failure();
Type resultType = vectorType.getElementType();
return failure(
parser.resolveOperand(vector, vectorType, result.operands) ||
parser.resolveOperand(position, positionType, result.operands) ||
parser.addTypeToList(resultType, result.types));
}
static LogicalResult verify(vector::ExtractElementOp op) {
VectorType vectorType = op.getVectorType();
if (vectorType.getRank() != 1)
return op.emitOpError("expected 1-D vector");
return success();
}
//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//
static Type inferExtractOpResultType(VectorType vectorType,
ArrayAttr position) {
if (static_cast<int64_t>(position.size()) == vectorType.getRank())
return vectorType.getElementType();
return VectorType::get(vectorType.getShape().drop_front(position.size()),
vectorType.getElementType());
}
void vector::ExtractOp::build(Builder *builder, OperationState &result,
Value source, ArrayRef<int64_t> position) {
result.addOperands(source);
auto positionAttr = getVectorSubscriptAttr(*builder, position);
result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(),
positionAttr));
result.addAttribute(getPositionAttrName(), positionAttr);
}
static void print(OpAsmPrinter &p, vector::ExtractOp op) {
p << op.getOperationName() << " " << op.vector() << op.position();
p.printOptionalAttrDict(op.getAttrs(), {"position"});
p << " : " << op.vector().getType();
}
static ParseResult parseExtractOp(OpAsmParser &parser, OperationState &result) {
llvm::SMLoc attributeLoc, typeLoc;
SmallVector<NamedAttribute, 4> attrs;
OpAsmParser::OperandType vector;
Type type;
Attribute attr;
if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
parser.parseAttribute(attr, "position", attrs) ||
parser.parseOptionalAttrDict(attrs) ||
parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
return failure();
auto vectorType = type.dyn_cast<VectorType>();
if (!vectorType)
return parser.emitError(typeLoc, "expected vector type");
auto positionAttr = attr.dyn_cast<ArrayAttr>();
if (!positionAttr ||
static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
return parser.emitError(
attributeLoc,
"expected position attribute of rank smaller than vector rank");
Type resType = inferExtractOpResultType(vectorType, positionAttr);
result.attributes = attrs;
return failure(parser.resolveOperand(vector, type, result.operands) ||
parser.addTypeToList(resType, result.types));
}
static LogicalResult verify(vector::ExtractOp op) {
auto positionAttr = op.position().getValue();
if (positionAttr.empty())
return op.emitOpError("expected non-empty position attribute");
if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
return op.emitOpError(
"expected position attribute of rank smaller than vector rank");
for (auto en : llvm::enumerate(positionAttr)) {
auto attr = en.value().dyn_cast<IntegerAttr>();
if (!attr || attr.getInt() < 0 ||
attr.getInt() >= op.getVectorType().getDimSize(en.index()))
return op.emitOpError("expected position attribute #")
<< (en.index() + 1)
<< " to be a non-negative integer smaller than the corresponding "
"vector dimension";
}
return success();
}
//===----------------------------------------------------------------------===//
// ExtractSlicesOp
//===----------------------------------------------------------------------===//
void ExtractSlicesOp::build(Builder *builder, OperationState &result,
TupleType tupleType, Value vector,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
result.addOperands(vector);
auto sizesAttr = getVectorSubscriptAttr(*builder, sizes);
auto stridesAttr = getVectorSubscriptAttr(*builder, strides);
result.addTypes(tupleType);
result.addAttribute(getSizesAttrName(), sizesAttr);
result.addAttribute(getStridesAttrName(), stridesAttr);
}
static LogicalResult
isValidExtractOrInsertSlicesType(Operation *op, VectorType vectorType,
TupleType tupleType, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
// Check for non-unit strides.
// TODO(b/144845578) Support non-1 strides.
if (llvm::any_of(strides, [](int64_t s) { return s != 1; }))
return op->emitError("requires unit strides");
// Check that 'vectorType' rank matches rank of tuple element vectors.
unsigned rank = vectorType.getRank();
auto is_vector_type_of_rank = [&](Type t) {
return t.isa<VectorType>() && t.cast<VectorType>().getRank() == rank;
};
if (!llvm::all_of(tupleType.getTypes(), is_vector_type_of_rank))
return op->emitError("requires vector tuple elements of rank ") << rank;
// Check that 'sizes' and 'strides' are of size == 'rank'.
if (sizes.size() != rank || strides.size() != rank)
return op->emitError("requires sizes and strides of rank ") << rank;
// Generate each slice shape based on 'sizes', 'strides' and 'vectorType',
// and verify that the same matches the corresponding tuple element 'i'.
auto shape = vectorType.getShape();
auto sliceStrides = computeStrides(shape, sizes);
for (int64_t i = 0, e = tupleType.size(); i < e; ++i) {
auto vectorOffsets = delinearize(sliceStrides, i);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
// Create slice VectorType type.
auto sliceVectorType =
VectorType::get(sliceSizes, vectorType.getElementType());
// Verify that 'sliceVectorType' matches tupleType.getTypes(i)
if (sliceVectorType != tupleType.getType(i))
return op->emitError("invalid tuple element type ") << sliceVectorType;
}
return success();
}
static LogicalResult verify(ExtractSlicesOp op) {
SmallVector<int64_t, 4> sizes;
op.getSizes(sizes);
SmallVector<int64_t, 4> strides;
op.getStrides(strides);
return isValidExtractOrInsertSlicesType(
op.getOperation(), op.getSourceVectorType(), op.getResultTupleType(),
sizes, strides);
}
static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
SmallVectorImpl<int64_t> &results) {
for (auto attr : arrayAttr)
results.push_back(attr.cast<IntegerAttr>().getInt());
}
void ExtractSlicesOp::getSizes(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(sizes(), results);
}
void ExtractSlicesOp::getStrides(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(strides(), results);
}
//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(BroadcastOp op) {
VectorType srcVectorType = op.getSourceType().dyn_cast<VectorType>();
VectorType dstVectorType = op.getVectorType();
// Scalar to vector broadcast is always valid. A vector
// to vector broadcast needs some additional checking.
if (srcVectorType) {
int64_t srcRank = srcVectorType.getRank();
int64_t dstRank = dstVectorType.getRank();
if (srcRank > dstRank)
return op.emitOpError("source rank higher than destination rank");
// Source has an exact match or singleton value for all trailing dimensions
// (all leading dimensions are simply duplicated).
int64_t lead = dstRank - srcRank;
for (int64_t r = 0; r < srcRank; ++r) {
int64_t srcDim = srcVectorType.getDimSize(r);
int64_t dstDim = dstVectorType.getDimSize(lead + r);
if (srcDim != 1 && srcDim != dstDim)
return op.emitOpError("dimension mismatch (")
<< srcDim << " vs. " << dstDim << ")";
}
}
return success();
}
//===----------------------------------------------------------------------===//
// ShuffleOp
//===----------------------------------------------------------------------===//
void ShuffleOp::build(Builder *builder, OperationState &result, Value v1,
Value v2, ArrayRef<int64_t> mask) {
result.addOperands({v1, v2});
auto maskAttr = getVectorSubscriptAttr(*builder, mask);
result.addTypes(v1.getType());
result.addAttribute(getMaskAttrName(), maskAttr);
}
static void print(OpAsmPrinter &p, ShuffleOp op) {
p << op.getOperationName() << " " << op.v1() << ", " << op.v2() << " "
<< op.mask();
p.printOptionalAttrDict(op.getAttrs(), {ShuffleOp::getMaskAttrName()});
p << " : " << op.v1().getType() << ", " << op.v2().getType();
}
static LogicalResult verify(ShuffleOp op) {
VectorType resultType = op.getVectorType();
VectorType v1Type = op.getV1VectorType();
VectorType v2Type = op.getV2VectorType();
// Verify ranks.
int64_t resRank = resultType.getRank();
int64_t v1Rank = v1Type.getRank();
int64_t v2Rank = v2Type.getRank();
if (resRank != v1Rank || v1Rank != v2Rank)
return op.emitOpError("rank mismatch");
// Verify all but leading dimension sizes.
for (int64_t r = 1; r < v1Rank; ++r) {
int64_t resDim = resultType.getDimSize(r);
int64_t v1Dim = v1Type.getDimSize(r);
int64_t v2Dim = v2Type.getDimSize(r);
if (resDim != v1Dim || v1Dim != v2Dim)
return op.emitOpError("dimension mismatch");
}
// Verify mask length.
auto maskAttr = op.mask().getValue();
int64_t maskLength = maskAttr.size();
if (maskLength != resultType.getDimSize(0))
return op.emitOpError("mask length mismatch");
// Verify all indices.
int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
for (auto en : llvm::enumerate(maskAttr)) {
auto attr = en.value().dyn_cast<IntegerAttr>();
if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
return op.emitOpError("mask index #")
<< (en.index() + 1) << " out of range";
}
return success();
}
static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType v1, v2;
Attribute attr;
VectorType v1Type, v2Type;
if (parser.parseOperand(v1) || parser.parseComma() ||
parser.parseOperand(v2) ||
parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(),
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(v1Type) || parser.parseComma() ||
parser.parseType(v2Type) ||
parser.resolveOperand(v1, v1Type, result.operands) ||
parser.resolveOperand(v2, v2Type, result.operands))
return failure();
// Construct resulting type: leading dimension matches mask length,
// all trailing dimensions match the operands.
auto maskAttr = attr.dyn_cast<ArrayAttr>();
if (!maskAttr)
return parser.emitError(parser.getNameLoc(), "missing mask attribute");
int64_t maskLength = maskAttr.size();
if (maskLength <= 0)
return parser.emitError(parser.getNameLoc(), "invalid mask length");
int64_t v1Rank = v1Type.getRank();
SmallVector<int64_t, 4> shape;
shape.reserve(v1Rank);
shape.push_back(maskLength);
for (int64_t r = 1; r < v1Rank; ++r)
shape.push_back(v1Type.getDimSize(r));
VectorType resType = VectorType::get(shape, v1Type.getElementType());
parser.addTypeToList(resType, result.types);
return success();
}
//===----------------------------------------------------------------------===//
// InsertElementOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, InsertElementOp op) {
p << op.getOperationName() << " " << op.source() << ", " << op.dest() << "["
<< op.position() << " : " << op.position().getType() << "]";
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.dest().getType();
}
static ParseResult parseInsertElementOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType source, dest, position;
Type positionType;
VectorType destType;
if (parser.parseOperand(source) || parser.parseComma() ||
parser.parseOperand(dest) || parser.parseLSquare() ||
parser.parseOperand(position) || parser.parseColonType(positionType) ||
parser.parseRSquare() ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(destType))
return failure();
Type sourceType = destType.getElementType();
return failure(
parser.resolveOperand(source, sourceType, result.operands) ||
parser.resolveOperand(dest, destType, result.operands) ||
parser.resolveOperand(position, positionType, result.operands) ||
parser.addTypeToList(destType, result.types));
}
static LogicalResult verify(InsertElementOp op) {
auto dstVectorType = op.getDestVectorType();
if (dstVectorType.getRank() != 1)
return op.emitOpError("expected 1-D vector");
return success();
}
//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//
void InsertOp::build(Builder *builder, OperationState &result, Value source,
Value dest, ArrayRef<int64_t> position) {
result.addOperands({source, dest});
auto positionAttr = getVectorSubscriptAttr(*builder, position);
result.addTypes(dest.getType());
result.addAttribute(getPositionAttrName(), positionAttr);
}
static LogicalResult verify(InsertOp op) {
auto positionAttr = op.position().getValue();
if (positionAttr.empty())
return op.emitOpError("expected non-empty position attribute");
auto destVectorType = op.getDestVectorType();
if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
return op.emitOpError(
"expected position attribute of rank smaller than dest vector rank");
auto srcVectorType = op.getSourceType().dyn_cast<VectorType>();
if (srcVectorType &&
(static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
static_cast<unsigned>(destVectorType.getRank())))
return op.emitOpError("expected position attribute rank + source rank to "
"match dest vector rank");
else if (!srcVectorType && (positionAttr.size() !=
static_cast<unsigned>(destVectorType.getRank())))
return op.emitOpError(
"expected position attribute rank to match the dest vector rank");
for (auto en : llvm::enumerate(positionAttr)) {
auto attr = en.value().dyn_cast<IntegerAttr>();
if (!attr || attr.getInt() < 0 ||
attr.getInt() >= destVectorType.getDimSize(en.index()))
return op.emitOpError("expected position attribute #")
<< (en.index() + 1)
<< " to be a non-negative integer smaller than the corresponding "
"dest vector dimension";
}
return success();
}
//===----------------------------------------------------------------------===//
// InsertSlicesOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(InsertSlicesOp op) {
SmallVector<int64_t, 4> sizes;
op.getSizes(sizes);
SmallVector<int64_t, 4> strides;
op.getStrides(strides);
return isValidExtractOrInsertSlicesType(
op.getOperation(), op.getResultVectorType(), op.getSourceTupleType(),
sizes, strides);
}
void InsertSlicesOp::getSizes(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(sizes(), results);
}
void InsertSlicesOp::getStrides(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(strides(), results);
}
//===----------------------------------------------------------------------===//
// InsertStridedSliceOp
//===----------------------------------------------------------------------===//
void InsertStridedSliceOp::build(Builder *builder, OperationState &result,
Value source, Value dest,
ArrayRef<int64_t> offsets,
ArrayRef<int64_t> strides) {
result.addOperands({source, dest});
auto offsetsAttr = getVectorSubscriptAttr(*builder, offsets);
auto stridesAttr = getVectorSubscriptAttr(*builder, strides);
result.addTypes(dest.getType());
result.addAttribute(getOffsetsAttrName(), offsetsAttr);
result.addAttribute(getStridesAttrName(), stridesAttr);
}
// TODO(ntv) Should be moved to Tablegen Confined attributes.
template <typename OpType>
static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
ArrayAttr arrayAttr,
ArrayRef<int64_t> shape,
StringRef attrName) {
if (arrayAttr.size() > shape.size())
return op.emitOpError("expected ")
<< attrName << " attribute of rank smaller than vector rank";
return success();
}
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult
isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
int64_t max, StringRef attrName,
bool halfOpen = true) {
for (auto attr : arrayAttr) {
auto val = attr.cast<IntegerAttr>().getInt();
auto upper = max;
if (!halfOpen)
upper += 1;
if (val < min || val >= upper)
return op.emitOpError("expected ") << attrName << " to be confined to ["
<< min << ", " << upper << ")";
}
return success();
}
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
ArrayRef<int64_t> shape, StringRef attrName,
bool halfOpen = true, int64_t min = 0) {
assert(arrayAttr.size() <= shape.size());
unsigned index = 0;
for (auto it : llvm::zip(arrayAttr, shape)) {
auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
auto max = std::get<1>(it);
if (!halfOpen)
max += 1;
if (val < min || val >= max)
return op.emitOpError("expected ")
<< attrName << " dimension " << index << " to be confined to ["
<< min << ", " << max << ")";
++index;
}
return success();
}
// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
bool halfOpen = true, int64_t min = 1) {
assert(arrayAttr1.size() <= shape.size());
assert(arrayAttr2.size() <= shape.size());
unsigned index = 0;
for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
auto max = std::get<2>(it);
if (!halfOpen)
max += 1;
if (val1 + val2 < 0 || val1 + val2 >= max)
return op.emitOpError("expected sum(")
<< attrName1 << ", " << attrName2 << ") dimension " << index
<< " to be confined to [" << min << ", " << max << ")";
++index;
}
return success();
}
static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
MLIRContext *context) {
auto attrs = functional::map(
[context](int64_t v) -> Attribute {
return IntegerAttr::get(IntegerType::get(64, context), APInt(64, v));
},
values);
return ArrayAttr::get(attrs, context);
}
static LogicalResult verify(InsertStridedSliceOp op) {
auto sourceVectorType = op.getSourceVectorType();
auto destVectorType = op.getDestVectorType();
auto offsets = op.offsets();
auto strides = op.strides();
if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
return op.emitOpError(
"expected offsets of same size as destination vector rank");
if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
return op.emitOpError(
"expected strides of same size as source vector rank");
if (sourceVectorType.getRank() > destVectorType.getRank())
return op.emitOpError(
"expected source rank to be smaller than destination rank");
auto sourceShape = sourceVectorType.getShape();
auto destShape = destVectorType.getShape();
SmallVector<int64_t, 4> sourceShapeAsDestShape(
destShape.size() - sourceShape.size(), 0);
sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
auto offName = InsertStridedSliceOp::getOffsetsAttrName();
auto stridesName = InsertStridedSliceOp::getStridesAttrName();
if (failed(
isIntegerArrayAttrConfinedToShape(op, offsets, destShape, offName)) ||
failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
/*halfOpen=*/false)) ||
failed(isSumOfIntegerArrayAttrConfinedToShape(
op, offsets,
makeI64ArrayAttr(sourceShapeAsDestShape, op.getContext()), destShape,
offName, "source vector shape",
/*halfOpen=*/false, /*min=*/1)))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// OuterProductOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, OuterProductOp op) {
p << op.getOperationName() << " " << op.lhs() << ", " << op.rhs();
if (!op.acc().empty())
p << ", " << op.acc();
p << " : " << op.lhs().getType() << ", " << op.rhs().getType();
}
static ParseResult parseOuterProductOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
Type tLHS, tRHS;
if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
parser.parseComma() || parser.parseType(tRHS))
return failure();
if (operandsInfo.size() < 2)
return parser.emitError(parser.getNameLoc(),
"expected at least 2 operands");
VectorType vLHS = tLHS.dyn_cast<VectorType>();
VectorType vRHS = tRHS.dyn_cast<VectorType>();
if (!vLHS || !vRHS)
return parser.emitError(parser.getNameLoc(), "expected 2 vector types");
VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
vLHS.getElementType());
return failure(
parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
(operandsInfo.size() > 2 &&
parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
parser.addTypeToList(resType, result.types));
}
static LogicalResult verify(OuterProductOp op) {
VectorType vLHS = op.getOperandVectorTypeLHS(),
vRHS = op.getOperandVectorTypeRHS(),
vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();
if (vLHS.getRank() != 1)
return op.emitOpError("expected 1-d vector for operand #1");
if (vRHS.getRank() != 1)
return op.emitOpError("expected 1-d vector for operand #2");
if (vRES.getRank() != 2)
return op.emitOpError("expected 2-d vector result");
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
return op.emitOpError("expected #1 operand dim to match result dim #1");
if (vRHS.getDimSize(0) != vRES.getDimSize(1))
return op.emitOpError("expected #2 operand dim to match result dim #2");
if (vACC && vACC != vRES)
return op.emitOpError("expected operand #3 of same type as result type");
return success();
}
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ReshapeOp op) {
p << op.getOperationName() << " " << op.vector() << ", [" << op.input_shape()
<< "], [" << op.output_shape() << "], " << op.fixed_vector_sizes();
std::array<StringRef, 2> elidedAttrs = {
ReshapeOp::getOperandSegmentSizeAttr(),
ReshapeOp::getFixedVectorSizesAttrName()};
p.printOptionalAttrDict(op.getAttrs(), elidedAttrs);
p << " : " << op.getInputVectorType() << " to " << op.getOutputVectorType();
}
// TODO(b/146516564) Consider passing number of inner vector dimensions that
// are fixed, instead of their values in 'fixesVectorSizes' array attr.
//
// operation ::= ssa-id `=` `vector.reshape` ssa-use, `[` ssa-use-list `]`,
// `[` ssa-use-list `]`, `[` array-attribute `]`
// `:` vector-type 'to' vector-type
//
static ParseResult parseReshapeOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType inputInfo;
SmallVector<OpAsmParser::OperandType, 4> inputShapeInfo;
SmallVector<OpAsmParser::OperandType, 4> outputShapeInfo;
ArrayAttr fixedVectorSizesAttr;
StringRef attrName = ReshapeOp::getFixedVectorSizesAttrName();
auto indexType = parser.getBuilder().getIndexType();
if (parser.parseOperand(inputInfo) || parser.parseComma() ||
parser.parseOperandList(inputShapeInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() ||
parser.parseOperandList(outputShapeInfo,
OpAsmParser::Delimiter::Square) ||
parser.parseComma()) {
return failure();
}
auto builder = parser.getBuilder();
result.addAttribute(
ReshapeOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({1, static_cast<int32_t>(inputShapeInfo.size()),
static_cast<int32_t>(outputShapeInfo.size())}));
Type inputType;
Type outputType;
return failure(
parser.parseAttribute(fixedVectorSizesAttr, attrName,
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(inputType) ||
parser.resolveOperand(inputInfo, inputType, result.operands) ||
parser.resolveOperands(inputShapeInfo, indexType, result.operands) ||
parser.resolveOperands(outputShapeInfo, indexType, result.operands) ||
parser.parseKeywordType("to", outputType) ||
parser.addTypeToList(outputType, result.types));
}
static LogicalResult verify(ReshapeOp op) {
// Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
auto inputVectorType = op.getInputVectorType();
auto outputVectorType = op.getOutputVectorType();
int64_t inputShapeRank = op.getNumInputShapeSizes();
int64_t outputShapeRank = op.getNumOutputShapeSizes();
SmallVector<int64_t, 4> fixedVectorSizes;
op.getFixedVectorSizes(fixedVectorSizes);
int64_t numFixedVectorSizes = fixedVectorSizes.size();
if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
return op.emitError("invalid input shape for vector type ")
<< inputVectorType;
if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
return op.emitError("invalid output shape for vector type ")
<< outputVectorType;
// Verify that the 'fixedVectorSizes' match a input/output vector shape
// suffix.
unsigned inputVectorRank = inputVectorType.getRank();
for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
unsigned index = inputVectorRank - numFixedVectorSizes - i;
if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
return op.emitError("fixed vector size must match input vector for dim ")
<< i;
}
unsigned outputVectorRank = outputVectorType.getRank();
for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
unsigned index = outputVectorRank - numFixedVectorSizes - i;
if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
return op.emitError("fixed vector size must match output vector for dim ")
<< i;
}
// If all shape operands are produced by constant ops, verify that product
// of dimensions for input/output shape match.
auto isDefByConstant = [](Value operand) {
return isa_and_nonnull<ConstantIndexOp>(operand.getDefiningOp());
};
if (llvm::all_of(op.input_shape(), isDefByConstant) &&
llvm::all_of(op.output_shape(), isDefByConstant)) {
int64_t numInputElements = 1;
for (auto operand : op.input_shape())
numInputElements *=
cast<ConstantIndexOp>(operand.getDefiningOp()).getValue();
int64_t numOutputElements = 1;
for (auto operand : op.output_shape())
numOutputElements *=
cast<ConstantIndexOp>(operand.getDefiningOp()).getValue();
if (numInputElements != numOutputElements)
return op.emitError("product of input and output shape sizes must match");
}
return success();
}
void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(fixed_vector_sizes(), results);
}
//===----------------------------------------------------------------------===//
// StridedSliceOp
//===----------------------------------------------------------------------===//
// Inference works as follows:
// 1. Add 'sizes' from prefix of dims in 'offsets'.
// 2. Add sizes from 'vectorType' for remaining dims.
static Type inferStridedSliceOpResultType(VectorType vectorType,
ArrayAttr offsets, ArrayAttr sizes,
ArrayAttr strides) {
assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
SmallVector<int64_t, 4> shape;
shape.reserve(vectorType.getRank());
unsigned idx = 0;
for (unsigned e = offsets.size(); idx < e; ++idx)
shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
shape.push_back(vectorType.getShape()[idx]);
return VectorType::get(shape, vectorType.getElementType());
}
void StridedSliceOp::build(Builder *builder, OperationState &result,
Value source, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides) {
result.addOperands(source);
auto offsetsAttr = getVectorSubscriptAttr(*builder, offsets);
auto sizesAttr = getVectorSubscriptAttr(*builder, sizes);
auto stridesAttr = getVectorSubscriptAttr(*builder, strides);
result.addTypes(
inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
offsetsAttr, sizesAttr, stridesAttr));
result.addAttribute(getOffsetsAttrName(), offsetsAttr);
result.addAttribute(getSizesAttrName(), sizesAttr);
result.addAttribute(getStridesAttrName(), stridesAttr);
}
static LogicalResult verify(StridedSliceOp op) {
auto type = op.getVectorType();
auto offsets = op.offsets();
auto sizes = op.sizes();
auto strides = op.strides();
if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
op.emitOpError(
"expected offsets, sizes and strides attributes of same size");
return failure();
}
auto shape = type.getShape();
auto offName = StridedSliceOp::getOffsetsAttrName();
auto sizesName = StridedSliceOp::getSizesAttrName();
auto stridesName = StridedSliceOp::getStridesAttrName();
if (failed(isIntegerArrayAttrSmallerThanShape(op, offsets, shape, offName)) ||
failed(isIntegerArrayAttrSmallerThanShape(op, sizes, shape, sizesName)) ||
failed(isIntegerArrayAttrSmallerThanShape(op, strides, shape,
stridesName)) ||
failed(isIntegerArrayAttrConfinedToShape(op, offsets, shape, offName)) ||
failed(isIntegerArrayAttrConfinedToShape(op, sizes, shape, sizesName,
/*halfOpen=*/false,
/*min=*/1)) ||
failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
/*halfOpen=*/false)) ||
failed(isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, shape,
offName, sizesName,
/*halfOpen=*/false)))
return failure();
auto resultType = inferStridedSliceOpResultType(
op.getVectorType(), op.offsets(), op.sizes(), op.strides());
if (op.getResult().getType() != resultType) {
op.emitOpError("expected result type to be ") << resultType;
return failure();
}
return success();
}
void StridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(offsets(), results);
}
namespace {
// Pattern to rewrite a StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp.
class StridedSliceConstantMaskFolder final
: public OpRewritePattern<StridedSliceOp> {
public:
using OpRewritePattern<StridedSliceOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(StridedSliceOp stridedSliceOp,
PatternRewriter &rewriter) const override {
// Return if 'stridedSliceOp' operand is not defined by a ConstantMaskOp.
auto defOp = stridedSliceOp.vector().getDefiningOp();
auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
if (!constantMaskOp)
return matchFailure();
// Return if 'stridedSliceOp' has non-unit strides.
if (llvm::any_of(stridedSliceOp.strides(), [](Attribute attr) {
return attr.cast<IntegerAttr>().getInt() != 1;
}))
return matchFailure();
// Gather constant mask dimension sizes.
SmallVector<int64_t, 4> maskDimSizes;
populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes);
// Gather strided slice offsets and sizes.
SmallVector<int64_t, 4> sliceOffsets;
populateFromInt64AttrArray(stridedSliceOp.offsets(), sliceOffsets);
SmallVector<int64_t, 4> sliceSizes;
populateFromInt64AttrArray(stridedSliceOp.sizes(), sliceSizes);
// Compute slice of vector mask region.
SmallVector<int64_t, 4> sliceMaskDimSizes;
assert(sliceOffsets.size() == maskDimSizes.size());
for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
int64_t maskDimSize = std::get<0>(it);
int64_t sliceOffset = std::get<1>(it);
int64_t sliceSize = std::get<2>(it);
int64_t sliceMaskDimSize = std::max(
static_cast<int64_t>(0),
std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
sliceMaskDimSizes.push_back(sliceMaskDimSize);
}
// If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
// region is a conjunction of mask dim intervals).
if (llvm::any_of(sliceMaskDimSizes, [](int64_t sz) { return sz == 0; }))
sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
// Replace 'stridedSliceOp' with ConstantMaskOp with sliced mask region.
rewriter.replaceOpWithNewOp<ConstantMaskOp>(
stridedSliceOp, stridedSliceOp.getResult().getType(),
vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
return matchSuccess();
}
};
} // end anonymous namespace
void StridedSliceOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
// Pattern to rewrite a StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp.
results.insert<StridedSliceConstantMaskFolder>(context);
}
//===----------------------------------------------------------------------===//
// TransferReadOp
//===----------------------------------------------------------------------===//
template <typename EmitFun>
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
EmitFun emitOpError) {
SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
for (auto expr : permutationMap.getResults()) {
auto dim = expr.dyn_cast<AffineDimExpr>();
auto zero = expr.dyn_cast<AffineConstantExpr>();
if (zero) {
if (zero.getValue() != 0) {
return emitOpError(
"requires a projected permutation_map (at most one dim or the zero "
"constant can appear in each result)");
}
continue;
}
if (!dim) {
return emitOpError("requires a projected permutation_map (at most one "
"dim or the zero constant can appear in each result)");
}
if (seen[dim.getPosition()]) {
return emitOpError(
"requires a permutation_map that is a permutation (found one dim "
"used more than once)");
}
seen[dim.getPosition()] = true;
}
return success();
}
static LogicalResult verifyTransferOp(Operation *op, MemRefType memrefType,
VectorType vectorType,
AffineMap permutationMap) {
auto memrefElementType = memrefType.getElementType();
if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
// Memref has vector element type.
// Check that 'memrefVectorElementType' and vector element types match.
if (memrefVectorElementType.getElementType() != vectorType.getElementType())
return op->emitOpError(
"requires memref and vector types of the same elemental type");
// Check that memref vector type is a suffix of 'vectorType.
unsigned memrefVecEltRank = memrefVectorElementType.getRank();
unsigned resultVecRank = vectorType.getRank();
if (memrefVecEltRank > resultVecRank)
return op->emitOpError(
"requires memref vector element and vector result ranks to match.");
// TODO(b/146516564) Move this to isSuffix in VectorOps/Utils.h.
unsigned rankOffset = resultVecRank - memrefVecEltRank;
auto memrefVecEltShape = memrefVectorElementType.getShape();
auto resultVecShape = vectorType.getShape();
for (unsigned i = 0; i < memrefVecEltRank; ++i)
if (memrefVecEltShape[i] != resultVecShape[rankOffset + i])
return op->emitOpError(
"requires memref vector element shape to match suffix of "
"vector result shape.");
// Check that permutation map results match 'rankOffset' of vector type.
if (permutationMap.getNumResults() != rankOffset)
return op->emitOpError("requires a permutation_map with result dims of "
"the same rank as the vector type");
} else {
// Memref has scalar element type.
// Check that memref and vector element types match.
if (memrefType.getElementType() != vectorType.getElementType())
return op->emitOpError(
"requires memref and vector types of the same elemental type");
// Check that permutation map results match rank of vector type.
if (permutationMap.getNumResults() != vectorType.getRank())
return op->emitOpError("requires a permutation_map with result dims of "
"the same rank as the vector type");
}
if (permutationMap.getNumSymbols() != 0)
return op->emitOpError("requires permutation_map without symbols");
if (permutationMap.getNumInputs() != memrefType.getRank())
return op->emitOpError("requires a permutation_map with input dims of the "
"same rank as the memref type");
return success();
}
static void print(OpAsmPrinter &p, TransferReadOp op) {
p << op.getOperationName() << " " << op.memref() << "[" << op.indices()
<< "], " << op.padding() << " ";
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getMemRefType() << ", " << op.getVectorType();
}
static ParseResult parseTransferReadOp(OpAsmParser &parser,
OperationState &result) {
llvm::SMLoc typesLoc;
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 8> indexInfo;
OpAsmParser::OperandType paddingInfo;
SmallVector<Type, 2> types;
// Parsing with support for optional paddingValue.
if (parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(paddingInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
return failure();
if (types.size() != 2)
return parser.emitError(typesLoc, "two types required");
auto indexType = parser.getBuilder().getIndexType();
MemRefType memRefType = types[0].dyn_cast<MemRefType>();
if (!memRefType)
return parser.emitError(typesLoc, "memref type required"), failure();
Type vectorType = types[1];
return failure(
parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
parser.resolveOperands(indexInfo, indexType, result.operands) ||
parser.resolveOperand(paddingInfo, memRefType.getElementType(),
result.operands) ||
parser.addTypeToList(vectorType, result.types));
}
static LogicalResult verify(TransferReadOp op) {
// Consistency of elemental types in memref and vector.
MemRefType memrefType = op.getMemRefType();
VectorType vectorType = op.getVectorType();
auto paddingType = op.padding().getType();
auto permutationMap = op.permutation_map();
auto memrefElementType = memrefType.getElementType();
if (static_cast<int64_t>(op.indices().size()) != memrefType.getRank())
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
if (failed(verifyTransferOp(op.getOperation(), memrefType, vectorType,
permutationMap)))
return failure();
if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
// Memref has vector element type.
// Check that 'memrefVectorElementType' and 'paddingType' types match.
if (memrefVectorElementType != paddingType)
return op.emitOpError(
"requires memref element type and padding type to match.");
} else {
// Check that 'paddingType' is valid to store in a vector type.
if (!VectorType::isValidElementType(paddingType))
return op.emitOpError("requires valid padding vector elemental type");
// Check that padding type and vector element types match.
if (paddingType != vectorType.getElementType())
return op.emitOpError(
"requires formal padding and vector of the same elemental type");
}
return verifyPermutationMap(permutationMap,
[&op](Twine t) { return op.emitOpError(t); });
}
//===----------------------------------------------------------------------===//
// TransferWriteOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(TransferWriteOp op) {
// Consistency of elemental types in memref and vector.
MemRefType memrefType = op.getMemRefType();
VectorType vectorType = op.getVectorType();
auto permutationMap = op.permutation_map();
if (llvm::size(op.indices()) != memrefType.getRank())
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
if (failed(verifyTransferOp(op.getOperation(), memrefType, vectorType,
permutationMap)))
return failure();
return verifyPermutationMap(permutationMap,
[&op](Twine t) { return op.emitOpError(t); });
}
//===----------------------------------------------------------------------===//
// ShapeCastOp
//===----------------------------------------------------------------------===//
/// Returns true if each element of 'a' is equal to the product of a contiguous
/// sequence of the elements of 'b'. Returns false otherwise.
static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
unsigned rankA = a.size();
unsigned rankB = b.size();
assert(rankA < rankB);
unsigned i = 0;
unsigned j = 0;
while (i < rankA && j < rankB) {
int64_t dimA = a[i];
int64_t dimB = 1;
while (dimB < dimA && j < rankB)
dimB *= b[j++];
if (dimA != dimB)
break;
++i;
}
return i == rankA && j == rankB;
}
static LogicalResult verifyVectorShapeCast(Operation *op,
VectorType sourceVectorType,
VectorType resultVectorType) {
// Check that element type is the same.
if (sourceVectorType.getElementType() != resultVectorType.getElementType())
return op->emitOpError("source/result vectors must have same element type");
auto sourceShape = sourceVectorType.getShape();
auto resultShape = resultVectorType.getShape();
// Check that product of source dim sizes matches product of result dim sizes.
int64_t sourceDimProduct = std::accumulate(
sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
int64_t resultDimProduct = std::accumulate(
resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
if (sourceDimProduct != resultDimProduct)
return op->emitOpError("source/result number of elements must match");
// Check that expanding/contracting rank cases.
unsigned sourceRank = sourceVectorType.getRank();
unsigned resultRank = resultVectorType.getRank();
if (sourceRank < resultRank) {
if (!isValidShapeCast(sourceShape, resultShape))
return op->emitOpError("invalid shape cast");
} else if (sourceRank > resultRank) {
if (!isValidShapeCast(resultShape, sourceShape))
return op->emitOpError("invalid shape cast");
}
return success();
}
static LogicalResult verify(ShapeCastOp op) {
auto sourceVectorType = op.source().getType().dyn_cast_or_null<VectorType>();
auto resultVectorType = op.result().getType().dyn_cast_or_null<VectorType>();
// Check if source/result are of vector type.
if (sourceVectorType && resultVectorType)
return verifyVectorShapeCast(op, sourceVectorType, resultVectorType);
// Check if source/result are "tuple of vectors" type.
auto sourceTupleType = op.source().getType().dyn_cast_or_null<TupleType>();
auto resultTupleType = op.result().getType().dyn_cast_or_null<TupleType>();
if (!sourceTupleType || !resultTupleType)
return op.emitOpError("source/result must be of same type");
// Check that source/result tuple sizes are the same.
if (sourceTupleType.size() != resultTupleType.size())
return op.emitOpError("source/result tuples must be the same size");
// Check each source/result tuple element pair.
for (unsigned i = 0, e = sourceTupleType.size(); i < e; ++i)
if (failed(verifyVectorShapeCast(
op, sourceTupleType.getType(i).cast<VectorType>(),
resultTupleType.getType(i).cast<VectorType>())))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// TypeCastOp
//===----------------------------------------------------------------------===//
static MemRefType inferVectorTypeCastResultType(MemRefType t) {
return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType()));
}
void TypeCastOp::build(Builder *builder, OperationState &result, Value source) {
result.addOperands(source);
result.addTypes(
inferVectorTypeCastResultType(source.getType().cast<MemRefType>()));
}
static void print(OpAsmPrinter &p, TypeCastOp op) {
auto type = op.getOperand().getType().cast<MemRefType>();
p << op.getOperationName() << ' ' << op.memref() << " : " << type << " to "
<< inferVectorTypeCastResultType(type);
}
static LogicalResult verify(TypeCastOp op) {
auto resultType = inferVectorTypeCastResultType(op.getMemRefType());
if (op.getResultMemRefType() != resultType)
return op.emitOpError("expects result type to be: ") << resultType;
return success();
}
//===----------------------------------------------------------------------===//
// TupleOp
//===----------------------------------------------------------------------===//
static ParseResult parseTupleOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 4> operandInfos;
SmallVector<Type, 4> types;
auto loc = parser.getCurrentLocation();
auto *ctx = parser.getBuilder().getContext();
return failure(
parser.parseOperandList(operandInfos) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonTypeList(types) ||
parser.resolveOperands(operandInfos, types, loc, result.operands) ||
parser.addTypeToList(TupleType::get(types, ctx), result.types));
}
static void print(OpAsmPrinter &p, TupleOp op) {
p << op.getOperationName() << ' ';
p.printOperands(op.getOperands());
p.printOptionalAttrDict(op.getAttrs());
p << " : ";
interleaveComma(op.getOperation()->getOperandTypes(), p);
}
static LogicalResult verify(TupleOp op) { return success(); }
//===----------------------------------------------------------------------===//
// TupleGetOp
//===----------------------------------------------------------------------===//
static ParseResult parseTupleGetOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType operandInfo;
IntegerAttr indexAttr;
StringRef indexAttrName = TupleGetOp::getIndexAttrName();
Type indexType = parser.getBuilder().getIndexType();
TupleType tupleType;
if (parser.parseOperand(operandInfo) || parser.parseComma() ||
parser.parseAttribute(indexAttr, indexType, indexAttrName,
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(tupleType) ||
parser.resolveOperand(operandInfo, tupleType, result.operands))
return failure();
if (indexAttr.getInt() < 0 ||
indexAttr.getInt() >= static_cast<int64_t>(tupleType.size()))
return failure();
parser.addTypeToList(tupleType.getType(indexAttr.getInt()), result.types);
return success();
}
static void print(OpAsmPrinter &p, TupleGetOp op) {
p << op.getOperationName() << ' ' << op.getOperand() << ", " << op.index();
p.printOptionalAttrDict(op.getAttrs(),
/*elidedAttrs=*/{TupleGetOp::getIndexAttrName()});
p << " : " << op.getOperand().getType();
}
static LogicalResult verify(TupleGetOp op) {
auto tupleType = op.getOperand().getType().cast<TupleType>();
if (op.getIndex() < 0 ||
op.getIndex() >= static_cast<int64_t>(tupleType.size()))
return op.emitOpError("tuple get index out of range");
return success();
}
OpFoldResult TupleGetOp::fold(ArrayRef<Attribute> operands) {
// Rewrite:
// %t = vector.tuple .., %e_i, ..
// %x = vector.tuple_get %t, i
// into:
// %t = vector.tuple .., %e_i, .. // one less use
// %x = %e_i
if (auto tupleOp = dyn_cast_or_null<TupleOp>(getOperand().getDefiningOp()))
return tupleOp.getOperand(getIndex());
return {};
}
//===----------------------------------------------------------------------===//
// ConstantMaskOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ConstantMaskOp &op) {
// Verify that array attr size matches the rank of the vector result.
auto resultType = op.getResult().getType().cast<VectorType>();
if (static_cast<int64_t>(op.mask_dim_sizes().size()) != resultType.getRank())
return op.emitOpError(
"must specify array attr of size equal vector result rank");
// Verify that each array attr element is in bounds of corresponding vector
// result dimension size.
auto resultShape = resultType.getShape();
SmallVector<int64_t, 4> maskDimSizes;
for (auto it : llvm::enumerate(op.mask_dim_sizes())) {
int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
if (attrValue < 0 || attrValue > resultShape[it.index()])
return op.emitOpError(
"array attr of size out of bounds of vector result dimension size");
maskDimSizes.push_back(attrValue);
}
// Verify that if one mask dim size is zero, they all should be zero (because
// the mask region is a conjunction of each mask dimension interval).
bool any_zeros = llvm::is_contained(maskDimSizes, 0);
bool all_zeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
if (any_zeros && !all_zeros)
return op.emitOpError("expected all mask dim sizes to be zeros, "
"as a result of conjunction with zero mask dim");
return success();
}
//===----------------------------------------------------------------------===//
// CreateMaskOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CreateMaskOp op) {
// Verify that an operand was specified for each result vector each dimension.
if (op.getNumOperands() !=
op.getResult().getType().cast<VectorType>().getRank())
return op.emitOpError(
"must specify an operand for each result vector dimension");
return success();
}
namespace {
// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
public:
using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CreateMaskOp createMaskOp,
PatternRewriter &rewriter) const override {
// Return if any of 'createMaskOp' operands are not defined by a constant.
auto is_not_def_by_constant = [](Value operand) {
return !isa_and_nonnull<ConstantIndexOp>(operand.getDefiningOp());
};
if (llvm::any_of(createMaskOp.operands(), is_not_def_by_constant))
return matchFailure();
// Gather constant mask dimension sizes.
SmallVector<int64_t, 4> maskDimSizes;
for (auto operand : createMaskOp.operands()) {
auto defOp = operand.getDefiningOp();
maskDimSizes.push_back(cast<ConstantIndexOp>(defOp).getValue());
}
// Replace 'createMaskOp' with ConstantMaskOp.
rewriter.replaceOpWithNewOp<ConstantMaskOp>(
createMaskOp, createMaskOp.getResult().getType(),
vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
return matchSuccess();
}
};
} // end anonymous namespace
void CreateMaskOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<CreateMaskFolder>(context);
}
void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<CreateMaskFolder, StridedSliceConstantMaskFolder>(context);
}
namespace mlir {
namespace vector {
#define GET_OP_CLASSES
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
} // namespace vector
} // namespace mlir