blob: 42daf193b9cba0861bdaf3eff348c10f79e83698 [file] [log] [blame]
//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
// Pull in all enum type definitions and utility function declarations.
#include "mlir/Dialect/StandardOps/IR/OpsEnums.cpp.inc"
using namespace mlir;
//===----------------------------------------------------------------------===//
// StandardOpsDialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for handling inlining with standard
/// operations.
struct StdInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// All operations within standard ops can be inlined.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
//===--------------------------------------------------------------------===//
// Transformation Hooks
//===--------------------------------------------------------------------===//
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op, Block *newDest) const final {
// Only "std.return" needs to be handled here.
auto returnOp = dyn_cast<ReturnOp>(op);
if (!returnOp)
return;
// Replace the return with a branch to the dest.
OpBuilder builder(op);
builder.create<BranchOp>(op->getLoc(), newDest, returnOp.getOperands());
op->erase();
}
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Only "std.return" needs to be handled here.
auto returnOp = cast<ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &it : llvm::enumerate(returnOp.getOperands()))
valuesToRepl[it.index()].replaceAllUsesWith(it.value());
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// StandardOpsDialect
//===----------------------------------------------------------------------===//
/// A custom unary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardUnaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 1 && "unary op should have one operand");
assert(op->getNumResults() == 1 && "unary op should have one result");
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getOperand(0).getType();
}
/// A custom binary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardBinaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (op->getOperand(0).getType() != resultType ||
op->getOperand(1).getType() != resultType) {
p.printGenericOp(op);
return;
}
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << ", " << op->getOperand(1);
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << op->getResult(0).getType();
}
/// A custom cast operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardCastOp(Operation *op, OpAsmPrinter &p) {
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << " : " << op->getOperand(0).getType() << " to "
<< op->getResult(0).getType();
}
/// A custom cast operation verifier.
template <typename T> static LogicalResult verifyCastOp(T op) {
auto opType = op.getOperand().getType();
auto resType = op.getType();
if (!T::areCastCompatible(opType, resType))
return op.emitError("operand type ") << opType << " and result type "
<< resType << " are cast incompatible";
return success();
}
StandardOpsDialect::StandardOpsDialect(MLIRContext *context)
: Dialect(getDialectNamespace(), context) {
addOperations<DmaStartOp, DmaWaitOp,
#define GET_OP_LIST
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"
>();
addInterfaces<StdInlinerInterface>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *StandardOpsDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<ConstantOp>(loc, type, value);
}
void mlir::printDimAndSymbolList(Operation::operand_iterator begin,
Operation::operand_iterator end,
unsigned numDims, OpAsmPrinter &p) {
Operation::operand_range operands(begin, end);
p << '(' << operands.take_front(numDims) << ')';
if (operands.size() != numDims)
p << '[' << operands.drop_front(numDims) << ']';
}
// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
ParseResult mlir::parseDimAndSymbolList(OpAsmParser &parser,
SmallVectorImpl<Value> &operands,
unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser.parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
return failure();
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto indexTy = parser.getBuilder().getIndexType();
if (parser.parseOperandList(opInfos,
OpAsmParser::Delimiter::OptionalSquare) ||
parser.resolveOperands(opInfos, indexTy, operands))
return failure();
return success();
}
/// Matches a ConstantIndexOp.
/// TODO: This should probably just be a general matcher that uses m_Constant
/// and checks the operation for an index type.
static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() {
return detail::op_matcher<ConstantIndexOp>();
}
//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref_cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto cast = dyn_cast_or_null<MemRefCastOp>(operand.get().getDefiningOp());
if (cast && !cast.getOperand().getType().isa<UnrankedMemRefType>()) {
operand.set(cast.getOperand());
folded = true;
}
}
return success(folded);
}
//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//
OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AddIOp
//===----------------------------------------------------------------------===//
OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
/// addi(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, AllocOp op) {
p << "alloc";
// Print dynamic dimension operands.
MemRefType type = op.getType();
printDimAndSymbolList(op.operand_begin(), op.operand_end(),
type.getNumDynamicDims(), p);
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"});
p << " : " << type;
}
static ParseResult parseAllocOp(OpAsmParser &parser, OperationState &result) {
MemRefType type;
// Parse the dimension operands and optional symbol operands, followed by a
// memref type.
unsigned numDimOperands;
if (parseDimAndSymbolList(parser, result.operands, numDimOperands) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type))
return failure();
// Check numDynamicDims against number of question marks in memref type.
// Note: this check remains here (instead of in verify()), because the
// partition between dim operands and symbol operands is lost after parsing.
// Verification still checks that the total number of operands matches
// the number of symbols in the affine map, plus the number of dynamic
// dimensions in the memref.
if (numDimOperands != type.getNumDynamicDims())
return parser.emitError(parser.getNameLoc())
<< "dimension operand count does not equal memref dynamic dimension "
"count";
result.types.push_back(type);
return success();
}
static LogicalResult verify(AllocOp op) {
auto memRefType = op.getResult().getType().dyn_cast<MemRefType>();
if (!memRefType)
return op.emitOpError("result must be a memref");
unsigned numSymbols = 0;
if (!memRefType.getAffineMaps().empty()) {
// Store number of symbols used in affine map (used in subsequent check).
AffineMap affineMap = memRefType.getAffineMaps()[0];
numSymbols = affineMap.getNumSymbols();
}
// Check that the total number of operands matches the number of symbols in
// the affine map, plus the number of dynamic dimensions specified in the
// memref type.
unsigned numDynamicDims = memRefType.getNumDynamicDims();
if (op.getNumOperands() != numDynamicDims + numSymbols)
return op.emitOpError(
"operand count does not equal dimension plus symbol operand count");
// Verify that all operands are of type Index.
for (auto operandType : op.getOperandTypes())
if (!operandType.isIndex())
return op.emitOpError("requires operands to be of type Index");
return success();
}
namespace {
/// Fold constant dimensions into an alloc operation.
struct SimplifyAllocConst : public OpRewritePattern<AllocOp> {
using OpRewritePattern<AllocOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(AllocOp alloc,
PatternRewriter &rewriter) const override {
// Check to see if any dimensions operands are constants. If so, we can
// substitute and drop them.
if (llvm::none_of(alloc.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return matchFailure();
auto memrefType = alloc.getType();
// Ok, we have one or more constant operands. Collect the non-constant ones
// and keep track of the resultant memref type to build.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
SmallVector<Value, 4> newOperands;
unsigned dynamicDimPos = 0;
for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (dimSize != -1) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = alloc.getOperand(dynamicDimPos).getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(-1);
newOperands.push_back(alloc.getOperand(dynamicDimPos));
}
dynamicDimPos++;
}
// Create new memref type (which will have fewer dynamic dimensions).
MemRefType newMemRefType =
MemRefType::Builder(memrefType).setShape(newShapeConstants);
assert(static_cast<int64_t>(newOperands.size()) ==
newMemRefType.getNumDynamicDims());
// Create and insert the alloc op for the new memref.
auto newAlloc = rewriter.create<AllocOp>(alloc.getLoc(), newMemRefType,
newOperands, IntegerAttr());
// Insert a cast so we have the same type as the old alloc.
auto resultCast = rewriter.create<MemRefCastOp>(alloc.getLoc(), newAlloc,
alloc.getType());
rewriter.replaceOp(alloc, {resultCast});
return matchSuccess();
}
};
/// Fold alloc operations with no uses. Alloc has side effects on the heap,
/// but can still be deleted if it has zero uses.
struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> {
using OpRewritePattern<AllocOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(AllocOp alloc,
PatternRewriter &rewriter) const override {
if (alloc.use_empty()) {
rewriter.eraseOp(alloc);
return matchSuccess();
}
return matchFailure();
}
};
} // end anonymous namespace.
void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyAllocConst, SimplifyDeadAlloc>(context);
}
//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//
namespace {
/// Simplify a branch to a block that has a single predecessor. This effectively
/// merges the two blocks.
struct SimplifyBrToBlockWithSinglePred : public OpRewritePattern<BranchOp> {
using OpRewritePattern<BranchOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(BranchOp op,
PatternRewriter &rewriter) const override {
// Check that the successor block has a single predecessor.
Block *succ = op.getDest();
Block *opParent = op.getOperation()->getBlock();
if (succ == opParent || !has_single_element(succ->getPredecessors()))
return matchFailure();
// Merge the successor into the current block and erase the branch.
rewriter.mergeBlocks(succ, opParent, op.getOperands());
rewriter.eraseOp(op);
return matchSuccess();
}
};
} // end anonymous namespace.
static ParseResult parseBranchOp(OpAsmParser &parser, OperationState &result) {
Block *dest;
SmallVector<Value, 4> destOperands;
if (parser.parseSuccessorAndUseList(dest, destOperands))
return failure();
result.addSuccessor(dest, destOperands);
return success();
}
static void print(OpAsmPrinter &p, BranchOp op) {
p << "br ";
p.printSuccessorAndUseList(op.getOperation(), 0);
}
Block *BranchOp::getDest() { return getSuccessor(0); }
void BranchOp::setDest(Block *block) { return setSuccessor(block, 0); }
void BranchOp::eraseOperand(unsigned index) {
getOperation()->eraseSuccessorOperand(0, index);
}
void BranchOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyBrToBlockWithSinglePred>(context);
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CallOp op) {
// Check that the callee attribute was specified.
auto fnAttr = op.getAttrOfType<FlatSymbolRefAttr>("callee");
if (!fnAttr)
return op.emitOpError("requires a 'callee' symbol reference attribute");
auto fn =
op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError() << "'" << fnAttr.getValue()
<< "' does not reference a valid function";
// Verify that the operand and result types match the callee.
auto fnType = fn.getType();
if (fnType.getNumInputs() != op.getNumOperands())
return op.emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
if (op.getOperand(i).getType() != fnType.getInput(i))
return op.emitOpError("operand type mismatch");
if (fnType.getNumResults() != op.getNumResults())
return op.emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
if (op.getResult(i).getType() != fnType.getResult(i))
return op.emitOpError("result type mismatch");
return success();
}
FunctionType CallOp::getCalleeType() {
SmallVector<Type, 8> argTypes(getOperandTypes());
return FunctionType::get(argTypes, getResultTypes(), getContext());
}
//===----------------------------------------------------------------------===//
// CallIndirectOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold indirect calls that have a constant function as the callee operand.
struct SimplifyIndirectCallWithKnownCallee
: public OpRewritePattern<CallIndirectOp> {
using OpRewritePattern<CallIndirectOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CallIndirectOp indirectCall,
PatternRewriter &rewriter) const override {
// Check that the callee is a constant callee.
SymbolRefAttr calledFn;
if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn)))
return matchFailure();
// Replace with a direct call.
rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn,
indirectCall.getResultTypes(),
indirectCall.getArgOperands());
return matchSuccess();
}
};
} // end anonymous namespace.
static ParseResult parseCallIndirectOp(OpAsmParser &parser,
OperationState &result) {
FunctionType calleeType;
OpAsmParser::OperandType callee;
llvm::SMLoc operandsLoc;
SmallVector<OpAsmParser::OperandType, 4> operands;
return failure(
parser.parseOperand(callee) || parser.getCurrentLocation(&operandsLoc) ||
parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(calleeType) ||
parser.resolveOperand(callee, calleeType, result.operands) ||
parser.resolveOperands(operands, calleeType.getInputs(), operandsLoc,
result.operands) ||
parser.addTypesToList(calleeType.getResults(), result.types));
}
static void print(OpAsmPrinter &p, CallIndirectOp op) {
p << "call_indirect " << op.getCallee() << '(' << op.getArgOperands() << ')';
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"});
p << " : " << op.getCallee().getType();
}
void CallIndirectOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SimplifyIndirectCallWithKnownCallee>(context);
}
//===----------------------------------------------------------------------===//
// General helpers for comparison ops
//===----------------------------------------------------------------------===//
// Return the type of the same shape (scalar, vector or tensor) containing i1.
static Type getCheckedI1SameShape(Type type) {
auto i1Type = IntegerType::get(1, type.getContext());
if (type.isSignlessIntOrIndexOrFloat())
return i1Type;
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return RankedTensorType::get(tensorType.getShape(), i1Type);
if (type.isa<UnrankedTensorType>())
return UnrankedTensorType::get(i1Type);
if (auto vectorType = type.dyn_cast<VectorType>())
return VectorType::get(vectorType.getShape(), i1Type);
return Type();
}
static Type getI1SameShape(Type type) {
Type res = getCheckedI1SameShape(type);
assert(res && "expected type with valid i1 shape");
return res;
}
//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//
static void buildCmpIOp(Builder *build, OperationState &result,
CmpIPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(
CmpIOp::getPredicateAttrName(),
build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
static ParseResult parseCmpIOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
SmallVector<NamedAttribute, 4> attrs;
Attribute predicateNameAttr;
Type type;
if (parser.parseAttribute(predicateNameAttr, CmpIOp::getPredicateAttrName(),
attrs) ||
parser.parseComma() || parser.parseOperandList(ops, 2) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands))
return failure();
if (!predicateNameAttr.isa<StringAttr>())
return parser.emitError(parser.getNameLoc(),
"expected string comparison predicate attribute");
// Rewrite string attribute to an enum value.
StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
Optional<CmpIPredicate> predicate = symbolizeCmpIPredicate(predicateName);
if (!predicate.hasValue())
return parser.emitError(parser.getNameLoc())
<< "unknown comparison predicate \"" << predicateName << "\"";
auto builder = parser.getBuilder();
Type i1Type = getCheckedI1SameShape(type);
if (!i1Type)
return parser.emitError(parser.getNameLoc(),
"expected type with valid i1 shape");
attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(*predicate));
result.attributes = attrs;
result.addTypes({i1Type});
return success();
}
static void print(OpAsmPrinter &p, CmpIOp op) {
p << "cmpi ";
Builder b(op.getContext());
auto predicateValue =
op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName()).getInt();
p << '"' << stringifyCmpIPredicate(static_cast<CmpIPredicate>(predicateValue))
<< '"' << ", " << op.lhs() << ", " << op.rhs();
p.printOptionalAttrDict(op.getAttrs(),
/*elidedAttrs=*/{CmpIOp::getPredicateAttrName()});
p << " : " << op.lhs().getType();
}
// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
// comparison predicates.
static bool applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
const APInt &rhs) {
switch (predicate) {
case CmpIPredicate::eq:
return lhs.eq(rhs);
case CmpIPredicate::ne:
return lhs.ne(rhs);
case CmpIPredicate::slt:
return lhs.slt(rhs);
case CmpIPredicate::sle:
return lhs.sle(rhs);
case CmpIPredicate::sgt:
return lhs.sgt(rhs);
case CmpIPredicate::sge:
return lhs.sge(rhs);
case CmpIPredicate::ult:
return lhs.ult(rhs);
case CmpIPredicate::ule:
return lhs.ule(rhs);
case CmpIPredicate::ugt:
return lhs.ugt(rhs);
case CmpIPredicate::uge:
return lhs.uge(rhs);
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpi takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CmpFOp
//===----------------------------------------------------------------------===//
// Returns an array of mnemonics for CmpFPredicates indexed by values thereof.
static inline const char *const *getCmpFPredicateNames() {
static const char *predicateNames[] = {
/*AlwaysFalse*/ "false",
/*OEQ*/ "oeq",
/*OGT*/ "ogt",
/*OGE*/ "oge",
/*OLT*/ "olt",
/*OLE*/ "ole",
/*ONE*/ "one",
/*ORD*/ "ord",
/*UEQ*/ "ueq",
/*UGT*/ "ugt",
/*UGE*/ "uge",
/*ULT*/ "ult",
/*ULE*/ "ule",
/*UNE*/ "une",
/*UNO*/ "uno",
/*AlwaysTrue*/ "true",
};
static_assert(std::extent<decltype(predicateNames)>::value ==
(size_t)CmpFPredicate::NumPredicates,
"wrong number of predicate names");
return predicateNames;
}
// Returns a value of the predicate corresponding to the given mnemonic.
// Returns NumPredicates (one-past-end) if there is no such mnemonic.
CmpFPredicate CmpFOp::getPredicateByName(StringRef name) {
return llvm::StringSwitch<CmpFPredicate>(name)
.Case("false", CmpFPredicate::AlwaysFalse)
.Case("oeq", CmpFPredicate::OEQ)
.Case("ogt", CmpFPredicate::OGT)
.Case("oge", CmpFPredicate::OGE)
.Case("olt", CmpFPredicate::OLT)
.Case("ole", CmpFPredicate::OLE)
.Case("one", CmpFPredicate::ONE)
.Case("ord", CmpFPredicate::ORD)
.Case("ueq", CmpFPredicate::UEQ)
.Case("ugt", CmpFPredicate::UGT)
.Case("uge", CmpFPredicate::UGE)
.Case("ult", CmpFPredicate::ULT)
.Case("ule", CmpFPredicate::ULE)
.Case("une", CmpFPredicate::UNE)
.Case("uno", CmpFPredicate::UNO)
.Case("true", CmpFPredicate::AlwaysTrue)
.Default(CmpFPredicate::NumPredicates);
}
static void buildCmpFOp(Builder *build, OperationState &result,
CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(
CmpFOp::getPredicateAttrName(),
build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
static ParseResult parseCmpFOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
SmallVector<NamedAttribute, 4> attrs;
Attribute predicateNameAttr;
Type type;
if (parser.parseAttribute(predicateNameAttr, CmpFOp::getPredicateAttrName(),
attrs) ||
parser.parseComma() || parser.parseOperandList(ops, 2) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands))
return failure();
if (!predicateNameAttr.isa<StringAttr>())
return parser.emitError(parser.getNameLoc(),
"expected string comparison predicate attribute");
// Rewrite string attribute to an enum value.
StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
auto predicate = CmpFOp::getPredicateByName(predicateName);
if (predicate == CmpFPredicate::NumPredicates)
return parser.emitError(parser.getNameLoc(),
"unknown comparison predicate \"" + predicateName +
"\"");
auto builder = parser.getBuilder();
Type i1Type = getCheckedI1SameShape(type);
if (!i1Type)
return parser.emitError(parser.getNameLoc(),
"expected type with valid i1 shape");
attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate));
result.attributes = attrs;
result.addTypes({i1Type});
return success();
}
static void print(OpAsmPrinter &p, CmpFOp op) {
p << "cmpf ";
auto predicateValue =
op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName()).getInt();
assert(predicateValue >= static_cast<int>(CmpFPredicate::FirstValidValue) &&
predicateValue < static_cast<int>(CmpFPredicate::NumPredicates) &&
"unknown predicate index");
p << '"' << getCmpFPredicateNames()[predicateValue] << '"' << ", " << op.lhs()
<< ", " << op.rhs();
p.printOptionalAttrDict(op.getAttrs(),
/*elidedAttrs=*/{CmpFOp::getPredicateAttrName()});
p << " : " << op.lhs().getType();
}
static LogicalResult verify(CmpFOp op) {
auto predicateAttr =
op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName());
if (!predicateAttr)
return op.emitOpError("requires an integer attribute named 'predicate'");
auto predicate = predicateAttr.getInt();
if (predicate < (int64_t)CmpFPredicate::FirstValidValue ||
predicate >= (int64_t)CmpFPredicate::NumPredicates)
return op.emitOpError("'predicate' attribute value out of range");
return success();
}
// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
// comparison predicates.
static bool applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs,
const APFloat &rhs) {
auto cmpResult = lhs.compare(rhs);
switch (predicate) {
case CmpFPredicate::AlwaysFalse:
return false;
case CmpFPredicate::OEQ:
return cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OGT:
return cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::OGE:
return cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OLT:
return cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::OLE:
return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ONE:
return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
case CmpFPredicate::ORD:
return cmpResult != APFloat::cmpUnordered;
case CmpFPredicate::UEQ:
return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UGT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::UGE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ULT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::ULE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UNE:
return cmpResult != APFloat::cmpEqual;
case CmpFPredicate::UNO:
return cmpResult == APFloat::cmpUnordered;
case CmpFPredicate::AlwaysTrue:
return true;
default:
llvm_unreachable("unknown comparison predicate");
}
}
// Constant folding hook for comparisons.
OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpf takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
// TODO(gcmn) We could actually do some intelligent things if we know only one
// of the operands, but it's inf or nan.
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//
namespace {
/// cond_br true, ^bb1, ^bb2 -> br ^bb1
/// cond_br false, ^bb1, ^bb2 -> br ^bb2
///
struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
if (matchPattern(condbr.getCondition(), m_NonZero())) {
// True branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getTrueDest(),
condbr.getTrueOperands());
return matchSuccess();
} else if (matchPattern(condbr.getCondition(), m_Zero())) {
// False branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getFalseDest(),
condbr.getFalseOperands());
return matchSuccess();
}
return matchFailure();
}
};
} // end anonymous namespace.
static ParseResult parseCondBranchOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<Value, 4> destOperands;
Block *dest;
OpAsmParser::OperandType condInfo;
// Parse the condition.
Type int1Ty = parser.getBuilder().getI1Type();
if (parser.parseOperand(condInfo) || parser.parseComma() ||
parser.resolveOperand(condInfo, int1Ty, result.operands)) {
return parser.emitError(parser.getNameLoc(),
"expected condition type was boolean (i1)");
}
// Parse the true successor.
if (parser.parseSuccessorAndUseList(dest, destOperands))
return failure();
result.addSuccessor(dest, destOperands);
// Parse the false successor.
destOperands.clear();
if (parser.parseComma() ||
parser.parseSuccessorAndUseList(dest, destOperands))
return failure();
result.addSuccessor(dest, destOperands);
return success();
}
static void print(OpAsmPrinter &p, CondBranchOp op) {
p << "cond_br " << op.getCondition() << ", ";
p.printSuccessorAndUseList(op.getOperation(), CondBranchOp::trueIndex);
p << ", ";
p.printSuccessorAndUseList(op.getOperation(), CondBranchOp::falseIndex);
}
void CondBranchOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SimplifyConstCondBranchPred>(context);
}
//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ConstantOp &op) {
p << "constant ";
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});
if (op.getAttrs().size() > 1)
p << ' ';
p << op.getValue();
// If the value is a symbol reference, print a trailing type.
if (op.getValue().isa<SymbolRefAttr>())
p << " : " << op.getType();
}
static ParseResult parseConstantOp(OpAsmParser &parser,
OperationState &result) {
Attribute valueAttr;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseAttribute(valueAttr, "value", result.attributes))
return failure();
// If the attribute is a symbol reference, then we expect a trailing type.
Type type;
if (!valueAttr.isa<SymbolRefAttr>())
type = valueAttr.getType();
else if (parser.parseColonType(type))
return failure();
// Add the attribute type to the list.
return parser.addTypeToList(type, result.types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
static LogicalResult verify(ConstantOp &op) {
auto value = op.getValue();
if (!value)
return op.emitOpError("requires a 'value' attribute");
auto type = op.getType();
if (!value.getType().isa<NoneType>() && type != value.getType())
return op.emitOpError() << "requires attribute's type (" << value.getType()
<< ") to match op's return type (" << type << ")";
if (type.isa<IndexType>() || value.isa<BoolAttr>())
return success();
if (auto intAttr = value.dyn_cast<IntegerAttr>()) {
// If the type has a known bitwidth we verify that the value can be
// represented with the given bitwidth.
auto bitwidth = type.cast<IntegerType>().getWidth();
auto intVal = intAttr.getValue();
if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
return op.emitOpError("requires 'value' to be an integer within the "
"range of the integer result type");
return success();
}
if (type.isa<FloatType>()) {
if (!value.isa<FloatAttr>())
return op.emitOpError("requires 'value' to be a floating point constant");
return success();
}
if (type.isa<ShapedType>()) {
if (!value.isa<ElementsAttr>())
return op.emitOpError("requires 'value' to be a shaped constant");
return success();
}
if (type.isa<FunctionType>()) {
auto fnAttr = value.dyn_cast<FlatSymbolRefAttr>();
if (!fnAttr)
return op.emitOpError("requires 'value' to be a function reference");
// Try to find the referenced function.
auto fn =
op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError("reference to undefined function 'bar'");
// Check that the referenced function has the correct type.
if (fn.getType() != type)
return op.emitOpError("reference to function with mismatched type");
return success();
}
if (type.isa<NoneType>() && value.isa<UnitAttr>())
return success();
return op.emitOpError("unsupported 'value' attribute: ") << value;
}
OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) {
assert(operands.empty() && "constant has no operands");
return getValue();
}
void ConstantOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
Type type = getType();
if (auto intCst = getValue().dyn_cast<IntegerAttr>()) {
IntegerType intTy = type.dyn_cast<IntegerType>();
// Sugar i1 constants with 'true' and 'false'.
if (intTy && intTy.getWidth() == 1)
return setNameFn(getResult(), (intCst.getInt() ? "true" : "false"));
// Otherwise, build a complex name with the value and type.
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
specialName << 'c' << intCst.getInt();
if (intTy)
specialName << '_' << type;
setNameFn(getResult(), specialName.str());
} else if (type.isa<FunctionType>()) {
setNameFn(getResult(), "f");
} else {
setNameFn(getResult(), "cst");
}
}
/// Returns true if a constant operation can be built with the given value and
/// result type.
bool ConstantOp::isBuildableWith(Attribute value, Type type) {
// SymbolRefAttr can only be used with a function type.
if (value.isa<SymbolRefAttr>())
return type.isa<FunctionType>();
// Otherwise, the attribute must have the same type as 'type'.
if (value.getType() != type)
return false;
// Finally, check that the attribute kind is handled.
return value.isa<BoolAttr>() || value.isa<IntegerAttr>() ||
value.isa<FloatAttr>() || value.isa<ElementsAttr>() ||
value.isa<UnitAttr>();
}
void ConstantFloatOp::build(Builder *builder, OperationState &result,
const APFloat &value, FloatType type) {
ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value));
}
bool ConstantFloatOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isa<FloatType>();
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::classof(Operation *op) {
return ConstantOp::classof(op) &&
op->getResult(0).getType().isSignlessInteger();
}
void ConstantIntOp::build(Builder *builder, OperationState &result,
int64_t value, unsigned width) {
Type type = builder->getIntegerType(width);
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(Builder *builder, OperationState &result,
int64_t value, Type type) {
assert(type.isSignlessInteger() &&
"ConstantIntOp can only have signless integer type");
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isIndex();
}
void ConstantIndexOp::build(Builder *builder, OperationState &result,
int64_t value) {
Type type = builder->getIndexType();
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold Dealloc operations that are deallocating an AllocOp that is only used
/// by other Dealloc operations.
struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> {
using OpRewritePattern<DeallocOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(DeallocOp dealloc,
PatternRewriter &rewriter) const override {
// Check that the memref operand's defining operation is an AllocOp.
Value memref = dealloc.memref();
if (!isa_and_nonnull<AllocOp>(memref.getDefiningOp()))
return matchFailure();
// Check that all of the uses of the AllocOp are other DeallocOps.
for (auto *user : memref.getUsers())
if (!isa<DeallocOp>(user))
return matchFailure();
// Erase the dealloc operation.
rewriter.eraseOp(dealloc);
return matchSuccess();
}
};
} // end anonymous namespace.
static LogicalResult verify(DeallocOp op) {
if (!op.memref().getType().isa<MemRefType>())
return op.emitOpError("operand must be a memref");
return success();
}
void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyDeadDealloc>(context);
}
LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dealloc(memrefcast) -> dealloc
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, DimOp op) {
p << "dim " << op.getOperand() << ", " << op.getIndex();
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"index"});
p << " : " << op.getOperand().getType();
}
static ParseResult parseDimOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType operandInfo;
IntegerAttr indexAttr;
Type type;
Type indexType = parser.getBuilder().getIndexType();
return failure(
parser.parseOperand(operandInfo) || parser.parseComma() ||
parser.parseAttribute(indexAttr, indexType, "index", result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(operandInfo, type, result.operands) ||
parser.addTypeToList(indexType, result.types));
}
static LogicalResult verify(DimOp op) {
// Check that we have an integer index operand.
auto indexAttr = op.getAttrOfType<IntegerAttr>("index");
if (!indexAttr)
return op.emitOpError("requires an integer attribute named 'index'");
int64_t index = indexAttr.getValue().getSExtValue();
auto type = op.getOperand().getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
if (index >= tensorType.getRank())
return op.emitOpError("index is out of range");
} else if (auto memrefType = type.dyn_cast<MemRefType>()) {
if (index >= memrefType.getRank())
return op.emitOpError("index is out of range");
} else if (type.isa<UnrankedTensorType>()) {
// ok, assumed to be in-range.
} else {
return op.emitOpError("requires an operand with tensor or memref type");
}
return success();
}
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
// Constant fold dim when the size along the index referred to is a constant.
auto opType = memrefOrTensor().getType();
int64_t indexSize = -1;
if (auto tensorType = opType.dyn_cast<RankedTensorType>())
indexSize = tensorType.getShape()[getIndex()];
else if (auto memrefType = opType.dyn_cast<MemRefType>())
indexSize = memrefType.getShape()[getIndex()];
if (!ShapedType::isDynamic(indexSize))
return IntegerAttr::get(IndexType::get(getContext()), indexSize);
// Fold dim to the size argument for an AllocOp/ViewOp/SubViewOp.
auto memrefType = opType.dyn_cast<MemRefType>();
if (!memrefType)
return {};
// The size at getIndex() is now a dynamic size of a memref.
auto memref = memrefOrTensor().getDefiningOp();
if (auto alloc = dyn_cast_or_null<AllocOp>(memref))
return *(alloc.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(getIndex()));
if (auto view = dyn_cast_or_null<ViewOp>(memref))
return *(view.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(getIndex()));
// The subview op here is expected to have rank dynamic sizes now.
if (auto subview = dyn_cast_or_null<SubViewOp>(memref)) {
auto sizes = subview.sizes();
if (!sizes.empty())
return *(sizes.begin() + getIndex());
}
/// dim(memrefcast) -> dim
if (succeeded(foldMemRefCast(*this)))
return getResult();
return {};
}
//===----------------------------------------------------------------------===//
// SignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would overflow or if it requires a division by zero.
bool overflowOrDiv0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (overflowOrDiv0 || !b) {
overflowOrDiv0 = true;
return a;
}
return a.sdiv_ov(b, overflowOrDiv0);
});
return overflowOrDiv0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// UnsignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would require a division by zero.
bool div0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (div0 || !b) {
div0 = true;
return a;
}
return a.udiv(b);
});
return div0 ? Attribute() : result;
}
// ---------------------------------------------------------------------------
// DmaStartOp
// ---------------------------------------------------------------------------
void DmaStartOp::build(Builder *builder, OperationState &result,
Value srcMemRef, ValueRange srcIndices, Value destMemRef,
ValueRange destIndices, Value numElements,
Value tagMemRef, ValueRange tagIndices, Value stride,
Value elementsPerStride) {
result.addOperands(srcMemRef);
result.addOperands(srcIndices);
result.addOperands(destMemRef);
result.addOperands(destIndices);
result.addOperands({numElements, tagMemRef});
result.addOperands(tagIndices);
if (stride)
result.addOperands({stride, elementsPerStride});
}
void DmaStartOp::print(OpAsmPrinter &p) {
p << "dma_start " << getSrcMemRef() << '[' << getSrcIndices() << "], "
<< getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements()
<< ", " << getTagMemRef() << '[' << getTagIndices() << ']';
if (isStrided())
p << ", " << getStride() << ", " << getNumElementsPerStride();
p.printOptionalAttrDict(getAttrs());
p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType()
<< ", " << getTagMemRef().getType();
}
// Parse DmaStartOp.
// Ex:
// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
// %tag[%index], %stride, %num_elt_per_stride :
// : memref<3076 x f32, 0>,
// memref<1024 x f32, 2>,
// memref<1 x i32>
//
ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
OpAsmParser::OperandType dstMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
OpAsmParser::OperandType numElementsInfo;
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
SmallVector<Type, 3> types;
auto indexType = parser.getBuilder().getIndexType();
// Parse and resolve the following list of operands:
// *) source memref followed by its indices (in square brackets).
// *) destination memref followed by its indices (in square brackets).
// *) dma size in KiB.
if (parser.parseOperand(srcMemRefInfo) ||
parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseComma() || parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
return failure();
// Parse optional stride and elements per stride.
if (parser.parseTrailingOperandList(strideInfo))
return failure();
bool isStrided = strideInfo.size() == 2;
if (!strideInfo.empty() && !isStrided) {
return parser.emitError(parser.getNameLoc(),
"expected two stride related operands");
}
if (parser.parseColonTypeList(types))
return failure();
if (types.size() != 3)
return parser.emitError(parser.getNameLoc(), "fewer/more types expected");
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
parser.resolveOperands(srcIndexInfos, indexType, result.operands) ||
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
parser.resolveOperands(dstIndexInfos, indexType, result.operands) ||
// size should be an index.
parser.resolveOperand(numElementsInfo, indexType, result.operands) ||
parser.resolveOperand(tagMemrefInfo, types[2], result.operands) ||
// tag indices should be index.
parser.resolveOperands(tagIndexInfos, indexType, result.operands))
return failure();
auto memrefType0 = types[0].dyn_cast<MemRefType>();
if (!memrefType0)
return parser.emitError(parser.getNameLoc(),
"expected source to be of memref type");
auto memrefType1 = types[1].dyn_cast<MemRefType>();
if (!memrefType1)
return parser.emitError(parser.getNameLoc(),
"expected destination to be of memref type");
auto memrefType2 = types[2].dyn_cast<MemRefType>();
if (!memrefType2)
return parser.emitError(parser.getNameLoc(),
"expected tag to be of memref type");
if (isStrided) {
if (parser.resolveOperands(strideInfo, indexType, result.operands))
return failure();
}
// Check that source/destination index list size matches associated rank.
if (static_cast<int64_t>(srcIndexInfos.size()) != memrefType0.getRank() ||
static_cast<int64_t>(dstIndexInfos.size()) != memrefType1.getRank())
return parser.emitError(parser.getNameLoc(),
"memref rank not equal to indices count");
if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType2.getRank())
return parser.emitError(parser.getNameLoc(),
"tag memref rank not equal to indices count");
return success();
}
LogicalResult DmaStartOp::verify() {
// DMAs from different memory spaces supported.
if (getSrcMemorySpace() == getDstMemorySpace())
return emitOpError("DMA should be between different memory spaces");
if (getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
getDstMemRefRank() + 3 + 1 &&
getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
getDstMemRefRank() + 3 + 1 + 2) {
return emitOpError("incorrect number of operands");
}
return success();
}
LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_start(memrefcast) -> dma_start
return foldMemRefCast(*this);
}
// ---------------------------------------------------------------------------
// DmaWaitOp
// ---------------------------------------------------------------------------
void DmaWaitOp::build(Builder *builder, OperationState &result, Value tagMemRef,
ValueRange tagIndices, Value numElements) {
result.addOperands(tagMemRef);
result.addOperands(tagIndices);
result.addOperands(numElements);
}
void DmaWaitOp::print(OpAsmPrinter &p) {
p << "dma_wait " << getTagMemRef() << '[' << getTagIndices() << "], "
<< getNumElements();
p.printOptionalAttrDict(getAttrs());
p << " : " << getTagMemRef().getType();
}
// Parse DmaWaitOp.
// Eg:
// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
Type type;
auto indexType = parser.getBuilder().getIndexType();
OpAsmParser::OperandType numElementsInfo;
// Parse tag memref, its indices, and dma size.
if (parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseColonType(type) ||
parser.resolveOperand(tagMemrefInfo, type, result.operands) ||
parser.resolveOperands(tagIndexInfos, indexType, result.operands) ||
parser.resolveOperand(numElementsInfo, indexType, result.operands))
return failure();
auto memrefType = type.dyn_cast<MemRefType>();
if (!memrefType)
return parser.emitError(parser.getNameLoc(),
"expected tag to be of memref type");
if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType.getRank())
return parser.emitError(parser.getNameLoc(),
"tag memref rank not equal to indices count");
return success();
}
LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_wait(memrefcast) -> dma_wait
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ExtractElementOp op) {
p << "extract_element " << op.getAggregate() << '[' << op.getIndices();
p << ']';
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getAggregate().getType();
}
static ParseResult parseExtractElementOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType aggregateInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
ShapedType type;
auto indexTy = parser.getBuilder().getIndexType();
return failure(
parser.parseOperand(aggregateInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(aggregateInfo, type, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands) ||
parser.addTypeToList(type.getElementType(), result.types));
}
static LogicalResult verify(ExtractElementOp op) {
// Verify the # indices match if we have a ranked type.
auto aggregateType = op.getAggregate().getType().cast<ShapedType>();
if (aggregateType.hasRank() &&
aggregateType.getRank() != op.getNumOperands() - 1)
return op.emitOpError("incorrect number of indices for extract_element");
return success();
}
OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) {
assert(!operands.empty() && "extract_element takes at least one operand");
// The aggregate operand must be a known constant.
Attribute aggregate = operands.front();
if (!aggregate)
return {};
// If this is a splat elements attribute, simply return the value. All of the
// elements of a splat attribute are the same.
if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
return splatAggregate.getSplatValue();
// Otherwise, collect the constant indices into the aggregate.
SmallVector<uint64_t, 8> indices;
for (Attribute indice : llvm::drop_begin(operands, 1)) {
if (!indice || !indice.isa<IntegerAttr>())
return {};
indices.push_back(indice.cast<IntegerAttr>().getInt());
}
// If this is an elements attribute, query the value at the given indices.
auto elementsAttr = aggregate.dyn_cast<ElementsAttr>();
if (elementsAttr && elementsAttr.isValidIndex(indices))
return elementsAttr.getValue(indices);
return {};
}
//===----------------------------------------------------------------------===//
// IndexCastOp
//===----------------------------------------------------------------------===//
// Index cast is applicable from index to integer and backwards.
bool IndexCastOp::areCastCompatible(Type a, Type b) {
return (a.isIndex() && b.isSignlessInteger()) ||
(a.isSignlessInteger() && b.isIndex());
}
OpFoldResult IndexCastOp::fold(ArrayRef<Attribute> cstOperands) {
// Fold IndexCast(IndexCast(x)) -> x
auto cast = dyn_cast_or_null<IndexCastOp>(getOperand().getDefiningOp());
if (cast && cast.getOperand().getType() == getType())
return cast.getOperand();
// Fold IndexCast(constant) -> constant
// A little hack because we go through int. Otherwise, the size
// of the constant might need to change.
if (auto value = cstOperands[0].dyn_cast_or_null<IntegerAttr>())
return IntegerAttr::get(getType(), value.getInt());
return {};
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, LoadOp op) {
p << "load " << op.getMemRef() << '[' << op.getIndices() << ']';
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getMemRefType();
}
static ParseResult parseLoadOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
MemRefType type;
auto indexTy = parser.getBuilder().getIndexType();
return failure(
parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands) ||
parser.addTypeToList(type.getElementType(), result.types));
}
static LogicalResult verify(LoadOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("incorrect number of indices for load");
return success();
}
OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) {
/// load(memrefcast) -> load
if (succeeded(foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// MemRefCastOp
//===----------------------------------------------------------------------===//
bool MemRefCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<MemRefType>();
auto bT = b.dyn_cast<MemRefType>();
auto uaT = a.dyn_cast<UnrankedMemRefType>();
auto ubT = b.dyn_cast<UnrankedMemRefType>();
if (aT && bT) {
if (aT.getElementType() != bT.getElementType())
return false;
if (aT.getAffineMaps() != bT.getAffineMaps()) {
int64_t aOffset, bOffset;
SmallVector<int64_t, 4> aStrides, bStrides;
if (failed(getStridesAndOffset(aT, aStrides, aOffset)) ||
failed(getStridesAndOffset(bT, bStrides, bOffset)) ||
aStrides.size() != bStrides.size())
return false;
// Strides along a dimension/offset are compatible if the value in the
// source memref is static and the value in the target memref is the
// same. They are also compatible if either one is dynamic (see
// description of MemRefCastOp for details).
auto checkCompatible = [](int64_t a, int64_t b) {
return (a == MemRefType::getDynamicStrideOrOffset() ||
b == MemRefType::getDynamicStrideOrOffset() || a == b);
};
if (!checkCompatible(aOffset, bOffset))
return false;
for (auto aStride : enumerate(aStrides))
if (!checkCompatible(aStride.value(), bStrides[aStride.index()]))
return false;
}
if (aT.getMemorySpace() != bT.getMemorySpace())
return false;
// They must have the same rank, and any specified dimensions must match.
if (aT.getRank() != bT.getRank())
return false;
for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
if (aDim != -1 && bDim != -1 && aDim != bDim)
return false;
}
return true;
} else {
if (!aT && !uaT)
return false;
if (!bT && !ubT)
return false;
// Unranked to unranked casting is unsupported
if (uaT && ubT)
return false;
auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType();
auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType();
if (aEltType != bEltType)
return false;
auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace();
auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace();
if (aMemSpace != bMemSpace)
return false;
return true;
}
return false;
}
OpFoldResult MemRefCastOp::fold(ArrayRef<Attribute> operands) {
return impl::foldCastOp(*this);
}
//===----------------------------------------------------------------------===//
// MulFOp
//===----------------------------------------------------------------------===//
OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// MulIOp
//===----------------------------------------------------------------------===//
OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) {
/// muli(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// muli(x, 1) -> x
if (matchPattern(rhs(), m_One()))
return getOperand(0);
// TODO: Handle the overflow case.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// PrefetchOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, PrefetchOp op) {
p << PrefetchOp::getOperationName() << " " << op.memref() << '[';
p.printOperands(op.indices());
p << ']' << ", " << (op.isWrite() ? "write" : "read");
p << ", locality<" << op.localityHint();
p << ">, " << (op.isDataCache() ? "data" : "instr");
p.printOptionalAttrDict(
op.getAttrs(),
/*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"});
p << " : " << op.getMemRefType();
}
static ParseResult parsePrefetchOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
IntegerAttr localityHint;
MemRefType type;
StringRef readOrWrite, cacheType;
auto indexTy = parser.getBuilder().getIndexType();
auto i32Type = parser.getBuilder().getIntegerType(32);
if (parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
parser.parseComma() || parser.parseKeyword("locality") ||
parser.parseLess() ||
parser.parseAttribute(localityHint, i32Type, "localityHint",
result.attributes) ||
parser.parseGreater() || parser.parseComma() ||
parser.parseKeyword(&cacheType) || parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands))
return failure();
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
return parser.emitError(parser.getNameLoc(),
"rw specifier has to be 'read' or 'write'");
result.addAttribute(
PrefetchOp::getIsWriteAttrName(),
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
if (!cacheType.equals("data") && !cacheType.equals("instr"))
return parser.emitError(parser.getNameLoc(),
"cache type has to be 'data' or 'instr'");
result.addAttribute(
PrefetchOp::getIsDataCacheAttrName(),
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
return success();
}
static LogicalResult verify(PrefetchOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("too few indices");
return success();
}
LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
// prefetch(memrefcast) -> prefetch
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
// Constant fold rank when the rank of the tensor is known.
auto type = getOperand().getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return IntegerAttr::get(IndexType::get(getContext()), tensorType.getRank());
return IntegerAttr();
}
//===----------------------------------------------------------------------===//
// SignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_signed takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue));
}
//===----------------------------------------------------------------------===//
// UnsignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_unsigned takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue));
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> opInfo;
SmallVector<Type, 2> types;
llvm::SMLoc loc = parser.getCurrentLocation();
return failure(parser.parseOperandList(opInfo) ||
(!opInfo.empty() && parser.parseColonTypeList(types)) ||
parser.resolveOperands(opInfo, types, loc, result.operands));
}
static void print(OpAsmPrinter &p, ReturnOp op) {
p << "return";
if (op.getNumOperands() != 0)
p << ' ' << op.getOperands() << " : " << op.getOperandTypes();
}
static LogicalResult verify(ReturnOp op) {
auto function = cast<FuncOp>(op.getParentOp());
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError("has ")
<< op.getNumOperands()
<< " operands, but enclosing function returns " << results.size();
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (op.getOperand(i).getType() != results[i])
return op.emitError()
<< "type of return operand " << i << " ("
<< op.getOperand(i).getType()
<< ") doesn't match function result type (" << results[i] << ")";
return success();
}
//===----------------------------------------------------------------------===//
// SIToFPOp
//===----------------------------------------------------------------------===//
// sitofp is applicable from integer types to float types.
bool SIToFPOp::areCastCompatible(Type a, Type b) {
return a.isSignlessInteger() && b.isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
static ParseResult parseSelectOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 3> ops;
SmallVector<NamedAttribute, 4> attrs;
Type type;
if (parser.parseOperandList(ops, 3) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type))
return failure();
auto i1Type = getCheckedI1SameShape(type);
if (!i1Type)
return parser.emitError(parser.getNameLoc(),
"expected type with valid i1 shape");
std::array<Type, 3> types = {i1Type, type, type};
return failure(parser.resolveOperands(ops, types, parser.getNameLoc(),
result.operands) ||
parser.addTypeToList(type, result.types));
}
static void print(OpAsmPrinter &p, SelectOp op) {
p << "select " << op.getOperands() << " : " << op.getTrueValue().getType();
p.printOptionalAttrDict(op.getAttrs());
}
OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) {
auto condition = getCondition();
// select true, %0, %1 => %0
if (matchPattern(condition, m_One()))
return getTrueValue();
// select false, %0, %1 => %1
if (matchPattern(condition, m_Zero()))
return getFalseValue();
return nullptr;
}
//===----------------------------------------------------------------------===//
// SignExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SignExtendIOp op) {
// Get the scalar type (which is either directly the type of the operand
// or the vector's/tensor's element type.
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
// For now, index is forbidden for the source and the destination type.
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, SplatOp op) {
p << "splat " << op.getOperand();
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getType();
}
static ParseResult parseSplatOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType splatValueInfo;
ShapedType shapedType;
return failure(parser.parseOperand(splatValueInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(shapedType) ||
parser.resolveOperand(splatValueInfo,
shapedType.getElementType(),
result.operands) ||
parser.addTypeToList(shapedType, result.types));
}
static LogicalResult verify(SplatOp op) {
// TODO: we could replace this by a trait.
if (op.getOperand().getType() !=
op.getType().cast<ShapedType>().getElementType())
return op.emitError("operand should be of elemental type of result type");
return success();
}
// Constant folding hook for SplatOp.
OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 1 && "splat takes one operand");
auto constOperand = operands.front();
if (!constOperand ||
(!constOperand.isa<IntegerAttr>() && !constOperand.isa<FloatAttr>()))
return {};
auto shapedType = getType().cast<ShapedType>();
assert(shapedType.getElementType() == constOperand.getType() &&
"incorrect input attribute type for folding");
// SplatElementsAttr::get treats single value for second arg as being a splat.
return SplatElementsAttr::get(shapedType, {constOperand});
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, StoreOp op) {
p << "store " << op.getValueToStore();
p << ", " << op.getMemRef() << '[' << op.getIndices() << ']';
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getMemRefType();
}
static ParseResult parseStoreOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType storeValueInfo;
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
MemRefType memrefType;
auto indexTy = parser.getBuilder().getIndexType();
return failure(
parser.parseOperand(storeValueInfo) || parser.parseComma() ||
parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(memrefType) ||
parser.resolveOperand(storeValueInfo, memrefType.getElementType(),
result.operands) ||
parser.resolveOperand(memrefInfo, memrefType, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands));
}
static LogicalResult verify(StoreOp op) {
if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
return op.emitOpError("store index operand count not equal to memref rank");
return success();
}
LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// store(memrefcast) -> store
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// SubFOp
//===----------------------------------------------------------------------===//
OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// SubIOp
//===----------------------------------------------------------------------===//
OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) {
// subi(x,x) -> 0
if (getOperand(0) == getOperand(1))
return Builder(getContext()).getZeroAttr(getType());
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//
OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) {
/// and(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// and(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a & b; });
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) {
/// or(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// or(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a | b; });
}
//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//
OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) {
/// xor(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// xor(x,x) -> 0
if (lhs() == rhs())
return Builder(getContext()).getZeroAttr(getType());
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a ^ b; });
}
//===----------------------------------------------------------------------===//
// TensorCastOp
//===----------------------------------------------------------------------===//
bool TensorCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<TensorType>();
auto bT = b.dyn_cast<TensorType>();
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
return succeeded(verifyCompatibleShape(aT, bT));
}
OpFoldResult TensorCastOp::fold(ArrayRef<Attribute> operands) {
return impl::foldCastOp(*this);
}
//===----------------------------------------------------------------------===//
// Helpers for Tensor[Load|Store]Op
//===----------------------------------------------------------------------===//
static Type getTensorTypeFromMemRefType(Type type) {
if (auto memref = type.dyn_cast<MemRefType>())
return RankedTensorType::get(memref.getShape(), memref.getElementType());
return NoneType::get(type.getContext());
}
//===----------------------------------------------------------------------===//
// TensorLoadOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, TensorLoadOp op) {
p << "tensor_load " << op.getOperand();
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getOperand().getType();
}
static ParseResult parseTensorLoadOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType op;
Type type;
return failure(
parser.parseOperand(op) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(op, type, result.operands) ||
parser.addTypeToList(getTensorTypeFromMemRefType(type), result.types));
}
//===----------------------------------------------------------------------===//
// TensorStoreOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, TensorStoreOp op) {
p << "tensor_store " << op.tensor() << ", " << op.memref();
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.memref().getType();
}
static ParseResult parseTensorStoreOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type type;
llvm::SMLoc loc = parser.getCurrentLocation();
return failure(
parser.parseOperandList(ops, /*requiredOperandCount=*/2) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperands(ops, {getTensorTypeFromMemRefType(type), type},
loc, result.operands));
}
//===----------------------------------------------------------------------===//
// TruncateIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(TruncateIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() <=
dstType.cast<IntegerType>().getWidth())
return op.emitError("operand type ")
<< srcType << " must be wider than result type " << dstType;
return success();
}
//===----------------------------------------------------------------------===//
// ViewOp
//===----------------------------------------------------------------------===//
static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
SmallVector<OpAsmParser::OperandType, 1> offsetInfo;
SmallVector<OpAsmParser::OperandType, 4> sizesInfo;
auto indexType = parser.getBuilder().getIndexType();
Type srcType, dstType;
llvm::SMLoc offsetLoc;
if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) ||
parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square))
return failure();
if (offsetInfo.size() > 1)
return parser.emitError(offsetLoc) << "expects 0 or 1 offset operand";
return failure(
parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.resolveOperands(offsetInfo, indexType, result.operands) ||
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
static void print(OpAsmPrinter &p, ViewOp op) {
p << op.getOperationName() << ' ' << op.getOperand(0) << '[';
auto dynamicOffset = op.getDynamicOffset();
if (dynamicOffset != nullptr)
p.printOperand(dynamicOffset);
p << "][" << op.getDynamicSizes() << ']';
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getOperand(0).getType() << " to " << op.getType();
}
Value ViewOp::getDynamicOffset() {
int64_t offset;
SmallVector<int64_t, 4> strides;
auto result =
succeeded(mlir::getStridesAndOffset(getType(), strides, offset));
assert(result);
if (result && offset == MemRefType::getDynamicStrideOrOffset())
return getOperand(1);
return nullptr;
}
static LogicalResult verifyDynamicStrides(MemRefType memrefType,
ArrayRef<int64_t> strides) {
ArrayRef<int64_t> shape = memrefType.getShape();
unsigned rank = memrefType.getRank();
assert(rank == strides.size());
bool dynamicStrides = false;
for (int i = rank - 2; i >= 0; --i) {
// If size at dim 'i + 1' is dynamic, set the 'dynamicStrides' flag.
if (ShapedType::isDynamic(shape[i + 1]))
dynamicStrides = true;
// If stride at dim 'i' is not dynamic, return error.
if (dynamicStrides && strides[i] != MemRefType::getDynamicStrideOrOffset())
return failure();
}
return success();
}
static LogicalResult verify(ViewOp op) {
auto baseType = op.getOperand(0).getType().cast<MemRefType>();
auto viewType = op.getResult().getType().cast<MemRefType>();
// The base memref should have identity layout map (or none).
if (baseType.getAffineMaps().size() > 1 ||
(baseType.getAffineMaps().size() == 1 &&
!baseType.getAffineMaps()[0].isIdentity()))
return op.emitError("unsupported map for base memref type ") << baseType;
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != viewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and view memref type " << viewType;
// Verify that the result memref type has a strided layout map.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(viewType, strides, offset)))
return op.emitError("result type ") << viewType << " is not strided";
// Verify that we have the correct number of operands for the result type.
unsigned memrefOperandCount = 1;
unsigned numDynamicDims = viewType.getNumDynamicDims();
unsigned dynamicOffsetCount =
offset == MemRefType::getDynamicStrideOrOffset() ? 1 : 0;
if (op.getNumOperands() !=
memrefOperandCount + numDynamicDims + dynamicOffsetCount)
return op.emitError("incorrect number of operands for type ") << viewType;
// Verify dynamic strides symbols were added to correct dimensions based
// on dynamic sizes.
if (failed(verifyDynamicStrides(viewType, strides)))
return op.emitError("incorrect dynamic strides in view memref type ")
<< viewType;
return success();
}
namespace {
struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
// Return if none of the operands are constants.
if (llvm::none_of(viewOp.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return matchFailure();
// Get result memref type.
auto memrefType = viewOp.getType();
if (memrefType.getAffineMaps().size() > 1)
return matchFailure();
auto map = memrefType.getAffineMaps().empty()
? AffineMap::getMultiDimIdentityMap(memrefType.getRank(),
rewriter.getContext())
: memrefType.getAffineMaps()[0];
// Get offset from old memref view type 'memRefType'.
int64_t oldOffset;
SmallVector<int64_t, 4> oldStrides;
if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset)))
return matchFailure();
SmallVector<Value, 4> newOperands;
// Fold dynamic offset operand if it is produced by a constant.
auto dynamicOffset = viewOp.getDynamicOffset();
int64_t newOffset = oldOffset;
unsigned dynamicOffsetOperandCount = 0;
if (dynamicOffset != nullptr) {
auto *defOp = dynamicOffset.getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic offset will be folded into the map.
newOffset = constantIndexOp.getValue();
} else {
// Unable to fold dynamic offset. Add it to 'newOperands' list.
newOperands.push_back(dynamicOffset);
dynamicOffsetOperandCount = 1;
}
}
// Fold any dynamic dim operands which are produced by a constant.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
unsigned dynamicDimPos = viewOp.getDynamicSizesOperandStart();
unsigned rank = memrefType.getRank();
for (unsigned dim = 0, e = rank; dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (!ShapedType::isDynamic(dimSize)) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = viewOp.getOperand(dynamicDimPos).getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(dimSize);
newOperands.push_back(viewOp.getOperand(dynamicDimPos));
}
dynamicDimPos++;
}
// Compute new strides based on 'newShapeConstants'.
SmallVector<int64_t, 4> newStrides(rank);
newStrides[rank - 1] = 1;
bool dynamicStrides = false;
for (int i = rank - 2; i >= 0; --i) {
if (ShapedType::isDynamic(newShapeConstants[i + 1]))
dynamicStrides = true;
if (dynamicStrides)
newStrides[i] = MemRefType::getDynamicStrideOrOffset();
else
newStrides[i] = newShapeConstants[i + 1] * newStrides[i + 1];
}
// Regenerate strided layout map with 'newStrides' and 'newOffset'.
map = makeStridedLinearLayoutMap(newStrides, newOffset,
rewriter.getContext());
// Create new memref type with constant folded dims and/or offset/strides.
MemRefType newMemRefType = MemRefType::Builder(memrefType)
.setShape(newShapeConstants)
.setAffineMaps({map});
(void)dynamicOffsetOperandCount; // unused in opt mode
assert(static_cast<int64_t>(newOperands.size()) ==
dynamicOffsetOperandCount + newMemRefType.getNumDynamicDims());
// Create new ViewOp.
auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType,
viewOp.getOperand(0), newOperands);
// Insert a cast so we have the same type as the old memref type.
rewriter.replaceOpWithNewOp<MemRefCastOp>(viewOp, newViewOp,
viewOp.getType());
return matchSuccess();
}
};
struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
Value memrefOperand = viewOp.getOperand(0);
MemRefCastOp memrefCastOp =
dyn_cast_or_null<MemRefCastOp>(memrefOperand.getDefiningOp());
if (!memrefCastOp)
return matchFailure();
Value allocOperand = memrefCastOp.getOperand();
AllocOp allocOp = dyn_cast_or_null<AllocOp>(allocOperand.getDefiningOp());
if (!allocOp)
return matchFailure();
rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand,
viewOp.operands());
return matchSuccess();
}
};
} // end anonymous namespace
void ViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// SubViewOp
//===----------------------------------------------------------------------===//
// Returns a MemRefType with dynamic sizes and offset and the same stride as the
// `memRefType` passed as argument.
// TODO(andydavis,ntv) Evolve to a more powerful inference that can also keep
// sizes and offset static.
static Type inferSubViewResultType(MemRefType memRefType) {
auto rank = memRefType.getRank();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto res = getStridesAndOffset(memRefType, strides, offset);
assert(succeeded(res) && "SubViewOp expected strided memref type");
(void)res;
// Assume sizes and offset are fully dynamic for now until canonicalization
// occurs on the ranges. Typed strides don't change though.
offset = MemRefType::getDynamicStrideOrOffset();
// Overwrite strides because verifier will not pass.
// TODO(b/144419106): don't force degrade the strides to fully dynamic.
for (auto &stride : strides)
stride = MemRefType::getDynamicStrideOrOffset();
auto stridedLayout =
makeStridedLinearLayoutMap(strides, offset, memRefType.getContext());
SmallVector<int64_t, 4> sizes(rank, ShapedType::kDynamicSize);
return MemRefType::Builder(memRefType)
.setShape(sizes)
.setAffineMaps(stridedLayout);
}
void mlir::SubViewOp::build(Builder *b, OperationState &result, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides, Type resultType,
ArrayRef<NamedAttribute> attrs) {
if (!resultType)
resultType = inferSubViewResultType(source.getType().cast<MemRefType>());
auto segmentAttr = b->getI32VectorAttr(
{1, static_cast<int>(offsets.size()), static_cast<int32_t>(sizes.size()),
static_cast<int32_t>(strides.size())});
build(b, result, resultType, source, offsets, sizes, strides, segmentAttr);
result.addAttributes(attrs);
}
void mlir::SubViewOp::build(Builder *b, OperationState &result, Type resultType,
Value source) {
build(b, result, source, /*offsets=*/{}, /*sizes=*/{}, /*strides=*/{},
resultType);
}
static ParseResult parseSubViewOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
SmallVector<OpAsmParser::OperandType, 4> offsetsInfo;
SmallVector<OpAsmParser::OperandType, 4> sizesInfo;
SmallVector<OpAsmParser::OperandType, 4> stridesInfo;
auto indexType = parser.getBuilder().getIndexType();
Type srcType, dstType;
if (parser.parseOperand(srcInfo) ||
parser.parseOperandList(offsetsInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOperandList(stridesInfo, OpAsmParser::Delimiter::Square)) {
return failure();
}
auto builder = parser.getBuilder();
result.addAttribute(
SubViewOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({1, static_cast<int>(offsetsInfo.size()),
static_cast<int32_t>(sizesInfo.size()),
static_cast<int32_t>(stridesInfo.size())}));
return failure(
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.resolveOperands(offsetsInfo, indexType, result.operands) ||
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
parser.resolveOperands(stridesInfo, indexType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
static void print(OpAsmPrinter &p, SubViewOp op) {
p << op.getOperationName() << ' ' << op.getOperand(0) << '[' << op.offsets()
<< "][" << op.sizes() << "][" << op.strides() << ']';
std::array<StringRef, 1> elidedAttrs = {
SubViewOp::getOperandSegmentSizeAttr()};
p.printOptionalAttrDict(op.getAttrs(), elidedAttrs);
p << " : " << op.getOperand(0).getType() << " to " << op.getType();
}
static LogicalResult verify(SubViewOp op) {
auto baseType = op.getBaseMemRefType().cast<MemRefType>();
auto subViewType = op.getType();
// The rank of the base and result subview must match.
if (baseType.getRank() != subViewType.getRank()) {
return op.emitError(
"expected rank of result type to match rank of base type ");
}
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != subViewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and subview memref type " << subViewType;
// Verify that the base memref type has a strided layout map.
int64_t baseOffset;
SmallVector<int64_t, 4> baseStrides;
if (failed(getStridesAndOffset(baseType, baseStrides, baseOffset)))
return op.emitError("base type ") << subViewType << " is not strided";
// Verify that the result memref type has a strided layout map.
int64_t subViewOffset;
SmallVector<int64_t, 4> subViewStrides;
if (failed(getStridesAndOffset(subViewType, subViewStrides, subViewOffset)))
return op.emitError("result type ") << subViewType << " is not strided";
// Num offsets should either be zero or rank of memref.
if (op.getNumOffsets() != 0 && op.getNumOffsets() != subViewType.getRank()) {
return op.emitError("expected number of dynamic offsets specified to match "
"the rank of the result type ")
<< subViewType;
}
// Num sizes should either be zero or rank of memref.
if (op.getNumSizes() != 0 && op.getNumSizes() != subViewType.getRank()) {
return op.emitError("expected number of dynamic sizes specified to match "
"the rank of the result type ")
<< subViewType;
}
// Num strides should either be zero or rank of memref.
if (op.getNumStrides() != 0 && op.getNumStrides() != subViewType.getRank()) {
return op.emitError("expected number of dynamic strides specified to match "
"the rank of the result type ")
<< subViewType;
}
// Verify that if the shape of the subview type is static, then sizes are not
// dynamic values, and vice versa.
if ((subViewType.hasStaticShape() && op.getNumSizes() != 0) ||
(op.getNumSizes() == 0 && !subViewType.hasStaticShape())) {
return op.emitError("invalid to specify dynamic sizes when subview result "
"type is statically shaped and viceversa");
}
// Verify that if dynamic sizes are specified, then the result memref type
// have full dynamic dimensions.
if (op.getNumSizes() > 0) {
if (llvm::any_of(subViewType.getShape(), [](int64_t dim) {
return dim != ShapedType::kDynamicSize;
})) {
// TODO: This is based on the assumption that number of size arguments are
// either 0, or the rank of the result type. It is possible to have more
// fine-grained verification where only particular dimensions are
// dynamic. That probably needs further changes to the shape op
// specification.
return op.emitError("expected shape of result type to be fully dynamic "
"when sizes are specified");
}
}
// Verify that if dynamic offsets are specified or base memref has dynamic
// offset or base memref has dynamic strides, then the subview offset is
// dynamic.
if ((op.getNumOffsets() > 0 ||
baseOffset == MemRefType::getDynamicStrideOrOffset() ||
llvm::is_contained(baseStrides,
MemRefType::getDynamicStrideOrOffset())) &&
subViewOffset != MemRefType::getDynamicStrideOrOffset()) {
return op.emitError(
"expected result memref layout map to have dynamic offset");
}
// For now, verify that if dynamic strides are specified, then all the result
// memref type have dynamic strides.
if (op.getNumStrides() > 0) {
if (llvm::any_of(subViewStrides, [](int64_t stride) {
return stride != MemRefType::getDynamicStrideOrOffset();
})) {
return op.emitError("expected result type to have dynamic strides");
}
}
// If any of the base memref has dynamic stride, then the corresponding
// stride of the subview must also have dynamic stride.
assert(baseStrides.size() == subViewStrides.size());
for (auto stride : enumerate(baseStrides)) {
if (stride.value() == MemRefType::getDynamicStrideOrOffset() &&
subViewStrides[stride.index()] !=
MemRefType::getDynamicStrideOrOffset()) {
return op.emitError(
"expected result type to have dynamic stride along a dimension if "
"the base memref type has dynamic stride along that dimension");
}
}
return success();
}
raw_ostream &mlir::operator<<(raw_ostream &os, SubViewOp::Range &range) {
return os << "range " << range.offset << ":" << range.size << ":"
<< range.stride;
}
SmallVector<SubViewOp::Range, 8> SubViewOp::getRanges() {
SmallVector<Range, 8> res;
unsigned rank = getType().getRank();
res.reserve(rank);
for (unsigned i = 0; i < rank; ++i)
res.emplace_back(Range{*(offsets().begin() + i), *(sizes().begin() + i),
*(strides().begin() + i)});
return res;
}
LogicalResult
SubViewOp::getStaticStrides(SmallVectorImpl<int64_t> &staticStrides) {
// If the strides are dynamic return failure.
if (getNumStrides())
return failure();
// When static, the stride operands can be retrieved by taking the strides of
// the result of the subview op, and dividing the strides of the base memref.
int64_t resultOffset, baseOffset;
SmallVector<int64_t, 2> resultStrides, baseStrides;
if (failed(
getStridesAndOffset(getBaseMemRefType(), baseStrides, baseOffset)) ||
llvm::is_contained(baseStrides, MemRefType::getDynamicStrideOrOffset()) ||
failed(getStridesAndOffset(getType(), resultStrides, resultOffset)))
return failure();
assert(static_cast<int64_t>(resultStrides.size()) == getType().getRank() &&
baseStrides.size() == resultStrides.size() &&
"base and result memrefs must have the same rank");
assert(!llvm::is_contained(resultStrides,
MemRefType::getDynamicStrideOrOffset()) &&
"strides of subview op must be static, when there are no dynamic "
"strides specified");
staticStrides.resize(getType().getRank());
for (auto resultStride : enumerate(resultStrides)) {
auto baseStride = baseStrides[resultStride.index()];
// The result stride is expected to be a multiple of the base stride. Abort
// if that is not the case.
if (resultStride.value() < baseStride ||
resultStride.value() % baseStride != 0)
return failure();
staticStrides[resultStride.index()] = resultStride.value() / baseStride;
}
return success();
}
//===----------------------------------------------------------------------===//
// AssumeAlignmentOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AssumeAlignmentOp op) {
unsigned alignment = op.alignment().getZExtValue();
if (!llvm::isPowerOf2_32(alignment))
return op.emitOpError("alignment must be power of 2");
return success();
}
namespace {
/// Pattern to rewrite a subview op with constant size arguments.
class SubViewOpShapeFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
MemRefType subViewType = subViewOp.getType();
// Follow all or nothing approach for shapes for now. If all the operands
// for sizes are constants then fold it into the type of the result memref.
if (subViewType.hasStaticShape() ||
llvm::any_of(subViewOp.sizes(), [](Value operand) {
return !matchPattern(operand, m_ConstantIndex());
})) {
return matchFailure();
}
SmallVector<int64_t, 4> staticShape(subViewOp.getNumSizes());
for (auto size : llvm::enumerate(subViewOp.sizes())) {
auto defOp = size.value().getDefiningOp();
assert(defOp);
staticShape[size.index()] = cast<ConstantIndexOp>(defOp).getValue();
}
MemRefType newMemRefType =
MemRefType::Builder(subViewType).setShape(staticShape);
auto newSubViewOp = rewriter.create<SubViewOp>(
subViewOp.getLoc(), subViewOp.source(), subViewOp.offsets(),
ArrayRef<Value>(), subViewOp.strides(), newMemRefType);
// Insert a memref_cast for compatibility of the uses of the op.
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, newSubViewOp,
subViewOp.getType());
return matchSuccess();
}
};
// Pattern to rewrite a subview op with constant stride arguments.
class SubViewOpStrideFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
if (subViewOp.getNumStrides() == 0) {
return matchFailure();
}
// Follow all or nothing approach for strides for now. If all the operands
// for strides are constants then fold it into the strides of the result
// memref.
int64_t baseOffset, resultOffset;
SmallVector<int64_t, 4> baseStrides, resultStrides;
MemRefType subViewType = subViewOp.getType();
if (failed(getStridesAndOffset(subViewOp.getBaseMemRefType(), baseStrides,
baseOffset)) ||
failed(getStridesAndOffset(subViewType, resultStrides, resultOffset)) ||
llvm::is_contained(baseStrides,
MemRefType::getDynamicStrideOrOffset()) ||
llvm::any_of(subViewOp.strides(), [](Value stride) {
return !matchPattern(stride, m_ConstantIndex());
})) {
return matchFailure();
}
SmallVector<int64_t, 4> staticStrides(subViewOp.getNumStrides());
for (auto stride : llvm::enumerate(subViewOp.strides())) {
auto defOp = stride.value().getDefiningOp();
assert(defOp);
assert(baseStrides[stride.index()] > 0);
staticStrides[stride.index()] =
cast<ConstantIndexOp>(defOp).getValue() * baseStrides[stride.index()];
}
AffineMap layoutMap = makeStridedLinearLayoutMap(
staticStrides, resultOffset, rewriter.getContext());
MemRefType newMemRefType =
MemRefType::Builder(subViewType).setAffineMaps(layoutMap);
auto newSubViewOp = rewriter.create<SubViewOp>(
subViewOp.getLoc(), subViewOp.source(), subViewOp.offsets(),
subViewOp.sizes(), ArrayRef<Value>(), newMemRefType);
// Insert a memref_cast for compatibility of the uses of the op.
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, newSubViewOp,
subViewOp.getType());
return matchSuccess();
}
};
// Pattern to rewrite a subview op with constant offset arguments.
class SubViewOpOffsetFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
if (subViewOp.getNumOffsets() == 0) {
return matchFailure();
}
// Follow all or nothing approach for offsets for now. If all the operands
// for offsets are constants then fold it into the offset of the result
// memref.
int64_t baseOffset, resultOffset;
SmallVector<int64_t, 4> baseStrides, resultStrides;
MemRefType subViewType = subViewOp.getType();
if (failed(getStridesAndOffset(subViewOp.getBaseMemRefType(), baseStrides,
baseOffset)) ||
failed(getStridesAndOffset(subViewType, resultStrides, resultOffset)) ||
llvm::is_contained(baseStrides,
MemRefType::getDynamicStrideOrOffset()) ||
baseOffset == MemRefType::getDynamicStrideOrOffset() ||
llvm::any_of(subViewOp.offsets(), [](Value stride) {
return !matchPattern(stride, m_ConstantIndex());
})) {
return matchFailure();
}
auto staticOffset = baseOffset;
for (auto offset : llvm::enumerate(subViewOp.offsets())) {
auto defOp = offset.value().getDefiningOp();
assert(defOp);
assert(baseStrides[offset.index()] > 0);
staticOffset +=
cast<ConstantIndexOp>(defOp).getValue() * baseStrides[offset.index()];
}
AffineMap layoutMap = makeStridedLinearLayoutMap(
resultStrides, staticOffset, rewriter.getContext());
MemRefType newMemRefType =
MemRefType::Builder(subViewType).setAffineMaps(layoutMap);
auto newSubViewOp = rewriter.create<SubViewOp>(
subViewOp.getLoc(), subViewOp.source(), ArrayRef<Value>(),
subViewOp.sizes(), subViewOp.strides(), newMemRefType);
// Insert a memref_cast for compatibility of the uses of the op.
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, newSubViewOp,
subViewOp.getType());
return matchSuccess();
}
};
} // end anonymous namespace
void SubViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SubViewOpShapeFolder, SubViewOpStrideFolder,
SubViewOpOffsetFolder>(context);
}
//===----------------------------------------------------------------------===//
// ZeroExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ZeroExtendIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// FPExtOp
//===----------------------------------------------------------------------===//
bool FPExtOp::areCastCompatible(Type a, Type b) {
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() < fb.getWidth();
return false;
}
//===----------------------------------------------------------------------===//
// FPTruncOp
//===----------------------------------------------------------------------===//
bool FPTruncOp::areCastCompatible(Type a, Type b) {
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() > fb.getWidth();
return false;
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"