blob: 5f06606ec132e946b1f60b39a09bfb0fcb71b1ae [file] [log] [blame]
//===- IntervalPartition.cpp - CFG Partitioning into Intervals --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines functionality for partitioning a CFG into intervals.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/IntervalPartition.h"
#include "clang/Analysis/CFG.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <optional>
#include <queue>
#include <vector>
namespace clang {
// Intermediate data used in constructing a CFGIntervalNode.
template <typename Node> struct BuildResult {
// Use a vector to maintain the insertion order. Given the expected small
// number of nodes, vector should be sufficiently efficient. Elements must not
// be null.
std::vector<const Node *> Nodes;
// Elements must not be null.
llvm::SmallDenseSet<const Node *> Successors;
};
namespace internal {
static unsigned getID(const CFGBlock &B) { return B.getBlockID(); }
static unsigned getID(const CFGIntervalNode &I) { return I.ID; }
// `Node` must be one of `CFGBlock` or `CFGIntervalNode`.
template <typename Node>
BuildResult<Node> buildInterval(llvm::BitVector &Partitioned,
const Node *Header) {
assert(Header != nullptr);
BuildResult<Node> Interval;
Interval.Nodes.push_back(Header);
Partitioned.set(getID(*Header));
// FIXME: Compare performance against using RPO to consider nodes, rather than
// following successors.
//
// Elements must not be null. Duplicates are prevented using `Workset`, below.
std::queue<const Node *> Worklist;
llvm::BitVector Workset(Partitioned.size(), false);
for (const Node *S : Header->succs())
if (S != nullptr)
if (auto SID = getID(*S); !Partitioned.test(SID)) {
// Successors are unique, so we don't test against `Workset` before
// adding to `Worklist`.
Worklist.push(S);
Workset.set(SID);
}
// Contains successors of blocks in the interval that couldn't be added to the
// interval on their first encounter. This occurs when they have a predecessor
// that is either definitively outside the interval or hasn't been considered
// yet. In the latter case, we'll revisit the block through some other path
// from the interval. At the end of processing the worklist, we filter out any
// that ended up in the interval to produce the output set of interval
// successors. Elements are never null.
std::vector<const Node *> MaybeSuccessors;
while (!Worklist.empty()) {
const auto *B = Worklist.front();
auto ID = getID(*B);
Worklist.pop();
Workset.reset(ID);
// Check whether all predecessors are in the interval, in which case `B`
// is included as well.
bool AllInInterval = llvm::all_of(B->preds(), [&](const Node *P) {
return llvm::is_contained(Interval.Nodes, P);
});
if (AllInInterval) {
Interval.Nodes.push_back(B);
Partitioned.set(ID);
for (const Node *S : B->succs())
if (S != nullptr)
if (auto SID = getID(*S);
!Partitioned.test(SID) && !Workset.test(SID)) {
Worklist.push(S);
Workset.set(SID);
}
} else {
MaybeSuccessors.push_back(B);
}
}
// Any block successors not in the current interval are interval successors.
for (const Node *B : MaybeSuccessors)
if (!llvm::is_contained(Interval.Nodes, B))
Interval.Successors.insert(B);
return Interval;
}
template <typename Node>
void fillIntervalNode(CFGIntervalGraph &Graph,
std::vector<CFGIntervalNode *> &Index,
std::queue<const Node *> &Successors,
llvm::BitVector &Partitioned, const Node *Header) {
BuildResult<Node> Result = buildInterval(Partitioned, Header);
for (const auto *S : Result.Successors)
Successors.push(S);
CFGIntervalNode &Interval = Graph.emplace_back(Graph.size());
// Index the nodes of the new interval. The index maps nodes from the input
// graph (specifically, `Result.Nodes`) to identifiers of nodes in the output
// graph. In this case, the new interval has identifier `ID` so all of its
// nodes (`Result.Nodes`) map to `ID`.
for (const auto *N : Result.Nodes) {
assert(N != nullptr);
assert(getID(*N) < Index.size());
Index[getID(*N)] = &Interval;
}
if constexpr (std::is_same_v<std::decay_t<Node>, CFGBlock>)
Interval.Nodes = std::move(Result.Nodes);
else {
std::vector<const CFGBlock *> Nodes;
// Flatten the sub vectors into a single list.
size_t Count = 0;
for (auto &N : Result.Nodes)
Count += N->Nodes.size();
Nodes.reserve(Count);
for (auto &N : Result.Nodes)
Nodes.insert(Nodes.end(), N->Nodes.begin(), N->Nodes.end());
Interval.Nodes = std::move(Nodes);
}
}
template <typename Node>
CFGIntervalGraph partitionIntoIntervalsImpl(unsigned NumBlockIDs,
const Node *EntryBlock) {
assert(EntryBlock != nullptr);
CFGIntervalGraph Graph;
// `Index` maps all of the nodes of the input graph to the interval to which
// they are assigned in the output graph. The values (interval pointers) are
// never null.
std::vector<CFGIntervalNode *> Index(NumBlockIDs, nullptr);
// Lists header nodes (from the input graph) and their associated
// interval. Since header nodes can vary in type and are only needed within
// this function, we record them separately from `CFGIntervalNode`. This
// choice enables to express `CFGIntervalNode` without using a variant.
std::vector<std::pair<const Node *, CFGIntervalNode *>> Intervals;
llvm::BitVector Partitioned(NumBlockIDs, false);
std::queue<const Node *> Successors;
fillIntervalNode(Graph, Index, Successors, Partitioned, EntryBlock);
Intervals.emplace_back(EntryBlock, &Graph.back());
while (!Successors.empty()) {
const auto *B = Successors.front();
Successors.pop();
assert(B != nullptr);
if (Partitioned.test(getID(*B)))
continue;
// B has not been partitioned, but it has a predecessor that has. Create a
// new interval from `B`.
fillIntervalNode(Graph, Index, Successors, Partitioned, B);
Intervals.emplace_back(B, &Graph.back());
}
// Go back and patch up all the Intervals -- the successors and predecessors.
for (auto [H, N] : Intervals) {
// Map input-graph predecessors to output-graph nodes and mark those as
// predecessors of `N`. Then, mark `N` as a successor of said predecessor.
for (const Node *P : H->preds()) {
if (P == nullptr)
continue;
assert(getID(*P) < NumBlockIDs);
CFGIntervalNode *Pred = Index[getID(*P)];
if (Pred == nullptr)
// Unreachable node.
continue;
if (Pred != N // Not a backedge.
&& N->Predecessors.insert(Pred).second)
// Note: given the guard above, which guarantees we only ever insert
// unique elements, we could use a simple list (like `vector`) for
// `Successors`, rather than a set.
Pred->Successors.insert(N);
}
}
return Graph;
}
std::vector<const CFGBlock *> buildInterval(const CFGBlock *Header) {
llvm::BitVector Partitioned(Header->getParent()->getNumBlockIDs(), false);
return buildInterval(Partitioned, Header).Nodes;
}
CFGIntervalGraph partitionIntoIntervals(const CFG &Cfg) {
return partitionIntoIntervalsImpl(Cfg.getNumBlockIDs(), &Cfg.getEntry());
}
CFGIntervalGraph partitionIntoIntervals(const CFGIntervalGraph &Graph) {
return partitionIntoIntervalsImpl(Graph.size(), &Graph[0]);
}
} // namespace internal
std::optional<std::vector<const CFGBlock *>> getIntervalWTO(const CFG &Cfg) {
// Backing storage for the allocated nodes in each graph.
unsigned PrevSize = Cfg.size();
if (PrevSize == 0)
return {};
internal::CFGIntervalGraph Graph = internal::partitionIntoIntervals(Cfg);
unsigned Size = Graph.size();
while (Size > 1 && Size < PrevSize) {
PrevSize = Graph.size();
Graph = internal::partitionIntoIntervals(Graph);
Size = Graph.size();
}
if (Size > 1)
// Not reducible.
return std::nullopt;
assert(Size != 0);
return std::move(Graph[0].Nodes);
}
WTOCompare::WTOCompare(const WeakTopologicalOrdering &WTO) {
if (WTO.empty())
return;
auto N = WTO[0]->getParent()->getNumBlockIDs();
BlockOrder.resize(N, 0);
for (unsigned I = 0, S = WTO.size(); I < S; ++I)
BlockOrder[WTO[I]->getBlockID()] = I + 1;
}
} // namespace clang