blob: 73faaa183581a84e033be908d003e6bd8e4e2207 [file] [log] [blame]
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code. When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUAsmPrinter.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).
// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
const AMDGPUSubtarget& ST = F.getTarget().getSubtarget<AMDGPUSubtarget>();
// TODO: Is there any real use for the flush in only / flush out only modes?
uint32_t FP32Denormals =
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
uint32_t FP64Denormals =
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
FP_DENORM_MODE_SP(FP32Denormals) |
FP_DENORM_MODE_DP(FP64Denormals);
}
static AsmPrinter *createAMDGPUAsmPrinterPass(TargetMachine &tm,
MCStreamer &Streamer) {
return new AMDGPUAsmPrinter(tm, Streamer);
}
extern "C" void LLVMInitializeR600AsmPrinter() {
TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer) {
DisasmEnabled = TM.getSubtarget<AMDGPUSubtarget>().dumpCode();
}
void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
// This label is used to mark the end of the .text section.
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
OutStreamer.SwitchSection(TLOF.getTextSection());
MCSymbol *EndOfTextLabel =
OutContext.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME));
OutStreamer.EmitLabel(EndOfTextLabel);
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
SetupMachineFunction(MF);
OutStreamer.emitRawComment(Twine('@') + MF.getName() + Twine(':'));
MCContext &Context = getObjFileLowering().getContext();
const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config",
ELF::SHT_PROGBITS, 0,
SectionKind::getReadOnly());
OutStreamer.SwitchSection(ConfigSection);
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
if (STM.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
getSIProgramInfo(KernelInfo, MF);
EmitProgramInfoSI(MF, KernelInfo);
} else {
EmitProgramInfoR600(MF);
}
DisasmLines.clear();
HexLines.clear();
DisasmLineMaxLen = 0;
OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
EmitFunctionBody();
if (isVerbose()) {
const MCSectionELF *CommentSection
= Context.getELFSection(".AMDGPU.csdata",
ELF::SHT_PROGBITS, 0,
SectionKind::getReadOnly());
OutStreamer.SwitchSection(CommentSection);
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
OutStreamer.emitRawComment(" Kernel info:", false);
OutStreamer.emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
false);
OutStreamer.emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
false);
OutStreamer.emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
false);
OutStreamer.emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
false);
OutStreamer.emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
false);
OutStreamer.emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
false);
} else {
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
OutStreamer.emitRawComment(
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize)));
}
}
if (STM.dumpCode()) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
MF.dump();
#endif
if (DisasmEnabled) {
OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm",
ELF::SHT_NOTE, 0,
SectionKind::getReadOnly()));
for (size_t i = 0; i < DisasmLines.size(); ++i) {
std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
Comment += " ; " + HexLines[i] + "\n";
OutStreamer.EmitBytes(StringRef(DisasmLines[i]));
OutStreamer.EmitBytes(StringRef(Comment));
}
}
}
return false;
}
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
unsigned MaxGPR = 0;
bool killPixel = false;
const R600RegisterInfo *RI
= static_cast<const R600RegisterInfo*>(TM.getRegisterInfo());
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::KILLGT)
killPixel = true;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
if (!MO.isReg())
continue;
unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;
// Register with value > 127 aren't GPR
if (HWReg > 127)
continue;
MaxGPR = std::max(MaxGPR, HWReg);
}
}
}
unsigned RsrcReg;
if (STM.getGeneration() >= AMDGPUSubtarget::EVERGREEN) {
// Evergreen / Northern Islands
switch (MFI->getShaderType()) {
default: // Fall through
case ShaderType::COMPUTE: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
case ShaderType::GEOMETRY: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
case ShaderType::PIXEL: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
case ShaderType::VERTEX: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
}
} else {
// R600 / R700
switch (MFI->getShaderType()) {
default: // Fall through
case ShaderType::GEOMETRY: // Fall through
case ShaderType::COMPUTE: // Fall through
case ShaderType::VERTEX: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
case ShaderType::PIXEL: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
}
}
OutStreamer.EmitIntValue(RsrcReg, 4);
OutStreamer.EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
S_STACK_SIZE(MFI->StackSize), 4);
OutStreamer.EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
OutStreamer.EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
if (MFI->getShaderType() == ShaderType::COMPUTE) {
OutStreamer.EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
OutStreamer.EmitIntValue(RoundUpToAlignment(MFI->LDSSize, 4) >> 2, 4);
}
}
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) const {
uint64_t CodeSize = 0;
unsigned MaxSGPR = 0;
unsigned MaxVGPR = 0;
bool VCCUsed = false;
const SIRegisterInfo *RI
= static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
CodeSize += MI.getDesc().Size;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
unsigned width = 0;
bool isSGPR = false;
if (!MO.isReg()) {
continue;
}
unsigned reg = MO.getReg();
if (reg == AMDGPU::VCC || reg == AMDGPU::VCC_LO ||
reg == AMDGPU::VCC_HI) {
VCCUsed = true;
continue;
}
switch (reg) {
default: break;
case AMDGPU::SCC:
case AMDGPU::EXEC:
case AMDGPU::M0:
continue;
}
if (AMDGPU::SReg_32RegClass.contains(reg)) {
isSGPR = true;
width = 1;
} else if (AMDGPU::VReg_32RegClass.contains(reg)) {
isSGPR = false;
width = 1;
} else if (AMDGPU::SReg_64RegClass.contains(reg)) {
isSGPR = true;
width = 2;
} else if (AMDGPU::VReg_64RegClass.contains(reg)) {
isSGPR = false;
width = 2;
} else if (AMDGPU::VReg_96RegClass.contains(reg)) {
isSGPR = false;
width = 3;
} else if (AMDGPU::SReg_128RegClass.contains(reg)) {
isSGPR = true;
width = 4;
} else if (AMDGPU::VReg_128RegClass.contains(reg)) {
isSGPR = false;
width = 4;
} else if (AMDGPU::SReg_256RegClass.contains(reg)) {
isSGPR = true;
width = 8;
} else if (AMDGPU::VReg_256RegClass.contains(reg)) {
isSGPR = false;
width = 8;
} else if (AMDGPU::SReg_512RegClass.contains(reg)) {
isSGPR = true;
width = 16;
} else if (AMDGPU::VReg_512RegClass.contains(reg)) {
isSGPR = false;
width = 16;
} else {
llvm_unreachable("Unknown register class");
}
unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
unsigned maxUsed = hwReg + width - 1;
if (isSGPR) {
MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
} else {
MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
}
}
}
}
if (VCCUsed)
MaxSGPR += 2;
ProgInfo.NumVGPR = MaxVGPR;
ProgInfo.NumSGPR = MaxSGPR;
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(MF);
// XXX: Not quite sure what this does, but sc seems to unset this.
ProgInfo.IEEEMode = 0;
// Do not clamp NAN to 0.
ProgInfo.DX10Clamp = 0;
const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF);
ProgInfo.CodeLen = CodeSize;
}
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) {
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned RsrcReg;
switch (MFI->getShaderType()) {
default: // Fall through
case ShaderType::COMPUTE: RsrcReg = R_00B848_COMPUTE_PGM_RSRC1; break;
case ShaderType::GEOMETRY: RsrcReg = R_00B228_SPI_SHADER_PGM_RSRC1_GS; break;
case ShaderType::PIXEL: RsrcReg = R_00B028_SPI_SHADER_PGM_RSRC1_PS; break;
case ShaderType::VERTEX: RsrcReg = R_00B128_SPI_SHADER_PGM_RSRC1_VS; break;
}
unsigned LDSAlignShift;
if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
// LDS is allocated in 64 dword blocks.
LDSAlignShift = 8;
} else {
// LDS is allocated in 128 dword blocks.
LDSAlignShift = 9;
}
unsigned LDSBlocks =
RoundUpToAlignment(MFI->LDSSize, 1 << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
// is used by the entire wave. KernelInfo.ScratchSize is the amount of
// scratch memory used per thread.
unsigned ScratchBlocks =
RoundUpToAlignment(KernelInfo.ScratchSize * STM.getWavefrontSize(),
1 << ScratchAlignShift) >> ScratchAlignShift;
if (MFI->getShaderType() == ShaderType::COMPUTE) {
OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
const uint32_t ComputePGMRSrc1 =
S_00B848_VGPRS(KernelInfo.NumVGPR / 4) |
S_00B848_SGPRS(KernelInfo.NumSGPR / 8) |
S_00B848_PRIORITY(KernelInfo.Priority) |
S_00B848_FLOAT_MODE(KernelInfo.FloatMode) |
S_00B848_PRIV(KernelInfo.Priv) |
S_00B848_DX10_CLAMP(KernelInfo.DX10Clamp) |
S_00B848_IEEE_MODE(KernelInfo.DebugMode) |
S_00B848_IEEE_MODE(KernelInfo.IEEEMode);
OutStreamer.EmitIntValue(ComputePGMRSrc1, 4);
OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
const uint32_t ComputePGMRSrc2 =
S_00B84C_LDS_SIZE(LDSBlocks) |
S_00B02C_SCRATCH_EN(ScratchBlocks > 0);
OutStreamer.EmitIntValue(ComputePGMRSrc2, 4);
OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
OutStreamer.EmitIntValue(S_00B860_WAVESIZE(ScratchBlocks), 4);
} else {
OutStreamer.EmitIntValue(RsrcReg, 4);
OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.NumVGPR / 4) |
S_00B028_SGPRS(KernelInfo.NumSGPR / 8), 4);
}
if (MFI->getShaderType() == ShaderType::PIXEL) {
OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(LDSBlocks), 4);
OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
OutStreamer.EmitIntValue(MFI->PSInputAddr, 4);
}
}