|  | //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // \file | 
|  | // | 
|  | // This file defines the interleaved-load-combine pass. The pass searches for | 
|  | // ShuffleVectorInstruction that execute interleaving loads. If a matching | 
|  | // pattern is found, it adds a combined load and further instructions in a | 
|  | // pattern that is detectable by InterleavedAccesPass. The old instructions are | 
|  | // left dead to be removed later. The pass is specifically designed to be | 
|  | // executed just before InterleavedAccesPass to find any left-over instances | 
|  | // that are not detected within former passes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <list> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "interleaved-load-combine" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Statistic counter | 
|  | STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); | 
|  |  | 
|  | /// Option to disable the pass | 
|  | static cl::opt<bool> DisableInterleavedLoadCombine( | 
|  | "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, | 
|  | cl::desc("Disable combining of interleaved loads")); | 
|  |  | 
|  | struct VectorInfo; | 
|  |  | 
|  | struct InterleavedLoadCombineImpl { | 
|  | public: | 
|  | InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, | 
|  | TargetMachine &TM) | 
|  | : F(F), DT(DT), MSSA(MSSA), | 
|  | TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), | 
|  | TTI(TM.getTargetTransformInfo(F)) {} | 
|  |  | 
|  | /// Scan the function for interleaved load candidates and execute the | 
|  | /// replacement if applicable. | 
|  | bool run(); | 
|  |  | 
|  | private: | 
|  | /// Function this pass is working on | 
|  | Function &F; | 
|  |  | 
|  | /// Dominator Tree Analysis | 
|  | DominatorTree &DT; | 
|  |  | 
|  | /// Memory Alias Analyses | 
|  | MemorySSA &MSSA; | 
|  |  | 
|  | /// Target Lowering Information | 
|  | const TargetLowering &TLI; | 
|  |  | 
|  | /// Target Transform Information | 
|  | const TargetTransformInfo TTI; | 
|  |  | 
|  | /// Find the instruction in sets LIs that dominates all others, return nullptr | 
|  | /// if there is none. | 
|  | LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); | 
|  |  | 
|  | /// Replace interleaved load candidates. It does additional | 
|  | /// analyses if this makes sense. Returns true on success and false | 
|  | /// of nothing has been changed. | 
|  | bool combine(std::list<VectorInfo> &InterleavedLoad, | 
|  | OptimizationRemarkEmitter &ORE); | 
|  |  | 
|  | /// Given a set of VectorInfo containing candidates for a given interleave | 
|  | /// factor, find a set that represents a 'factor' interleaved load. | 
|  | bool findPattern(std::list<VectorInfo> &Candidates, | 
|  | std::list<VectorInfo> &InterleavedLoad, unsigned Factor, | 
|  | const DataLayout &DL); | 
|  | }; // InterleavedLoadCombine | 
|  |  | 
|  | /// First Order Polynomial on an n-Bit Integer Value | 
|  | /// | 
|  | /// Polynomial(Value) = Value * B + A + E*2^(n-e) | 
|  | /// | 
|  | /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most | 
|  | /// significant bits. It is introduced if an exact computation cannot be proven | 
|  | /// (e.q. division by 2). | 
|  | /// | 
|  | /// As part of this optimization multiple loads will be combined. It necessary | 
|  | /// to prove that loads are within some relative offset to each other. This | 
|  | /// class is used to prove relative offsets of values loaded from memory. | 
|  | /// | 
|  | /// Representing an integer in this form is sound since addition in two's | 
|  | /// complement is associative (trivial) and multiplication distributes over the | 
|  | /// addition (see Proof(1) in Polynomial::mul). Further, both operations | 
|  | /// commute. | 
|  | // | 
|  | // Example: | 
|  | // declare @fn(i64 %IDX, <4 x float>* %PTR) { | 
|  | //   %Pa1 = add i64 %IDX, 2 | 
|  | //   %Pa2 = lshr i64 %Pa1, 1 | 
|  | //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 | 
|  | //   %Va = load <4 x float>, <4 x float>* %Pa3 | 
|  | // | 
|  | //   %Pb1 = add i64 %IDX, 4 | 
|  | //   %Pb2 = lshr i64 %Pb1, 1 | 
|  | //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 | 
|  | //   %Vb = load <4 x float>, <4 x float>* %Pb3 | 
|  | // ... } | 
|  | // | 
|  | // The goal is to prove that two loads load consecutive addresses. | 
|  | // | 
|  | // In this case the polynomials are constructed by the following | 
|  | // steps. | 
|  | // | 
|  | // The number tag #e specifies the error bits. | 
|  | // | 
|  | // Pa_0 = %IDX              #0 | 
|  | // Pa_1 = %IDX + 2          #0 | add 2 | 
|  | // Pa_2 = %IDX/2 + 1        #1 | lshr 1 | 
|  | // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64 | 
|  | // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats | 
|  | // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components | 
|  | // | 
|  | // Pb_0 = %IDX              #0 | 
|  | // Pb_1 = %IDX + 4          #0 | add 2 | 
|  | // Pb_2 = %IDX/2 + 2        #1 | lshr 1 | 
|  | // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64 | 
|  | // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats | 
|  | // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components | 
|  | // | 
|  | // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset | 
|  | // | 
|  | // Remark: %PTR is not maintained within this class. So in this instance the | 
|  | // offset of 16 can only be assumed if the pointers are equal. | 
|  | // | 
|  | class Polynomial { | 
|  | /// Operations on B | 
|  | enum BOps { | 
|  | LShr, | 
|  | Mul, | 
|  | SExt, | 
|  | Trunc, | 
|  | }; | 
|  |  | 
|  | /// Number of Error Bits e | 
|  | unsigned ErrorMSBs = (unsigned)-1; | 
|  |  | 
|  | /// Value | 
|  | Value *V = nullptr; | 
|  |  | 
|  | /// Coefficient B | 
|  | SmallVector<std::pair<BOps, APInt>, 4> B; | 
|  |  | 
|  | /// Coefficient A | 
|  | APInt A; | 
|  |  | 
|  | public: | 
|  | Polynomial(Value *V) : V(V) { | 
|  | IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); | 
|  | if (Ty) { | 
|  | ErrorMSBs = 0; | 
|  | this->V = V; | 
|  | A = APInt(Ty->getBitWidth(), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | Polynomial(const APInt &A, unsigned ErrorMSBs = 0) | 
|  | : ErrorMSBs(ErrorMSBs), A(A) {} | 
|  |  | 
|  | Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) | 
|  | : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {} | 
|  |  | 
|  | Polynomial() = default; | 
|  |  | 
|  | /// Increment and clamp the number of undefined bits. | 
|  | void incErrorMSBs(unsigned amt) { | 
|  | if (ErrorMSBs == (unsigned)-1) | 
|  | return; | 
|  |  | 
|  | ErrorMSBs += amt; | 
|  | if (ErrorMSBs > A.getBitWidth()) | 
|  | ErrorMSBs = A.getBitWidth(); | 
|  | } | 
|  |  | 
|  | /// Decrement and clamp the number of undefined bits. | 
|  | void decErrorMSBs(unsigned amt) { | 
|  | if (ErrorMSBs == (unsigned)-1) | 
|  | return; | 
|  |  | 
|  | if (ErrorMSBs > amt) | 
|  | ErrorMSBs -= amt; | 
|  | else | 
|  | ErrorMSBs = 0; | 
|  | } | 
|  |  | 
|  | /// Apply an add on the polynomial | 
|  | Polynomial &add(const APInt &C) { | 
|  | // Note: Addition is associative in two's complement even when in case of | 
|  | // signed overflow. | 
|  | // | 
|  | // Error bits can only propagate into higher significant bits. As these are | 
|  | // already regarded as undefined, there is no change. | 
|  | // | 
|  | // Theorem: Adding a constant to a polynomial does not change the error | 
|  | // term. | 
|  | // | 
|  | // Proof: | 
|  | // | 
|  | //   Since the addition is associative and commutes: | 
|  | // | 
|  | //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) | 
|  | // [qed] | 
|  |  | 
|  | if (C.getBitWidth() != A.getBitWidth()) { | 
|  | ErrorMSBs = (unsigned)-1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | A += C; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Apply a multiplication onto the polynomial. | 
|  | Polynomial &mul(const APInt &C) { | 
|  | // Note: Multiplication distributes over the addition | 
|  | // | 
|  | // Theorem: Multiplication distributes over the addition | 
|  | // | 
|  | // Proof(1): | 
|  | // | 
|  | //   (B+A)*C =- | 
|  | //        = (B + A) + (B + A) + .. {C Times} | 
|  | //         addition is associative and commutes, hence | 
|  | //        = B + B + .. {C Times} .. + A + A + .. {C times} | 
|  | //        = B*C + A*C | 
|  | //   (see (function add) for signed values and overflows) | 
|  | // [qed] | 
|  | // | 
|  | // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out | 
|  | // to the left. | 
|  | // | 
|  | // Proof(2): | 
|  | // | 
|  | //   Let B' and A' be the n-Bit inputs with some unknown errors EA, | 
|  | //   EB at e leading bits. B' and A' can be written down as: | 
|  | // | 
|  | //     B' = B + 2^(n-e)*EB | 
|  | //     A' = A + 2^(n-e)*EA | 
|  | // | 
|  | //   Let C' be an input with c trailing zero bits. C' can be written as | 
|  | // | 
|  | //     C' = C*2^c | 
|  | // | 
|  | //   Therefore we can compute the result by using distributivity and | 
|  | //   commutativity. | 
|  | // | 
|  | //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = | 
|  | //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = | 
|  | //                     = (B'+A') * C' = | 
|  | //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = | 
|  | //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = | 
|  | //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = | 
|  | //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = | 
|  | //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = | 
|  | // | 
|  | //   Let EC be the final error with EC = C*(EB + EA) | 
|  | // | 
|  | //                     = (B + A)*C' + EC*2^(n-e)*2^c = | 
|  | //                     = (B + A)*C' + EC*2^(n-(e-c)) | 
|  | // | 
|  | //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c | 
|  | //   less error bits than the input. c bits are shifted out to the left. | 
|  | // [qed] | 
|  |  | 
|  | if (C.getBitWidth() != A.getBitWidth()) { | 
|  | ErrorMSBs = (unsigned)-1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Multiplying by one is a no-op. | 
|  | if (C.isOne()) { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Multiplying by zero removes the coefficient B and defines all bits. | 
|  | if (C.isZero()) { | 
|  | ErrorMSBs = 0; | 
|  | deleteB(); | 
|  | } | 
|  |  | 
|  | // See Proof(2): Trailing zero bits indicate a left shift. This removes | 
|  | // leading bits from the result even if they are undefined. | 
|  | decErrorMSBs(C.countr_zero()); | 
|  |  | 
|  | A *= C; | 
|  | pushBOperation(Mul, C); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Apply a logical shift right on the polynomial | 
|  | Polynomial &lshr(const APInt &C) { | 
|  | // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') | 
|  | //          where | 
|  | //             e' = e + 1, | 
|  | //             E is a e-bit number, | 
|  | //             E' is a e'-bit number, | 
|  | //   holds under the following precondition: | 
|  | //          pre(1): A % 2 = 0 | 
|  | //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n) | 
|  | //   where >> expresses a logical shift to the right, with adding zeros. | 
|  | // | 
|  | //  We need to show that for every, E there is a E' | 
|  | // | 
|  | //  B = b_h * 2^(n-1) + b_m * 2 + b_l | 
|  | //  A = a_h * 2^(n-1) + a_m * 2         (pre(1)) | 
|  | // | 
|  | //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers | 
|  | // | 
|  | //  Let X = (B + A + E*2^(n-e)) >> 1 | 
|  | //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 | 
|  | // | 
|  | //    X = [B + A + E*2^(n-e)] >> 1 = | 
|  | //      = [  b_h * 2^(n-1) + b_m * 2 + b_l + | 
|  | //         + a_h * 2^(n-1) + a_m * 2 + | 
|  | //         + E * 2^(n-e) ] >> 1 = | 
|  | // | 
|  | //    The sum is built by putting the overflow of [a_m + b+n] into the term | 
|  | //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within | 
|  | //    this bit is discarded. This is expressed by % 2. | 
|  | // | 
|  | //    The bit in position 0 cannot overflow into the term (b_m + a_m). | 
|  | // | 
|  | //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) * 2 + | 
|  | //         + b_l + E * 2^(n-e) ] >> 1 = | 
|  | // | 
|  | //    The shift is computed by dividing the terms by 2 and by cutting off | 
|  | //    b_l. | 
|  | // | 
|  | //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + E * 2^(n-(e+1)) = | 
|  | // | 
|  | //    by the definition in the Theorem e+1 = e' | 
|  | // | 
|  | //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + E * 2^(n-e') = | 
|  | // | 
|  | //    Compute Y by applying distributivity first | 
|  | // | 
|  | //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') = | 
|  | //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + | 
|  | //         + (a_h * 2^(n-1) + a_m * 2) >> 1 + | 
|  | //         + E * 2^(n-e) >> 1 = | 
|  | // | 
|  | //    Again, the shift is computed by dividing the terms by 2 and by cutting | 
|  | //    off b_l. | 
|  | // | 
|  | //      =     b_h * 2^(n-2) + b_m + | 
|  | //         +  a_h * 2^(n-2) + a_m + | 
|  | //         +  E * 2^(n-(e+1)) = | 
|  | // | 
|  | //    Again, the sum is built by putting the overflow of [a_m + b+n] into | 
|  | //    the term 2^(n-1). But this time there is room for a second bit in the | 
|  | //    term 2^(n-2) we add this bit to a new term and denote it o_h in a | 
|  | //    second step. | 
|  | // | 
|  | //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + | 
|  | //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + E * 2^(n-(e+1)) = | 
|  | // | 
|  | //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 | 
|  | //    Further replace e+1 by e'. | 
|  | // | 
|  | //      =    o_h * 2^(n-1) + | 
|  | //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + E * 2^(n-e') = | 
|  | // | 
|  | //    Move o_h into the error term and construct E'. To ensure that there is | 
|  | //    no 2^x with negative x, this step requires pre(2) (e < n). | 
|  | // | 
|  | //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1) | 
|  | //                                                     | out of the old exponent | 
|  | //         + E * 2^(n-e') = | 
|  | //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of | 
|  | //                                                     | the old exponent | 
|  | // | 
|  | //    Let E' = o_h * 2^(e'-1) + E | 
|  | // | 
|  | //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
|  | //         + ((b_m + a_m) % 2^(n-2)) + | 
|  | //         + E' * 2^(n-e') | 
|  | // | 
|  | //    Because X and Y are distinct only in there error terms and E' can be | 
|  | //    constructed as shown the theorem holds. | 
|  | // [qed] | 
|  | // | 
|  | // For completeness in case of the case e=n it is also required to show that | 
|  | // distributivity can be applied. | 
|  | // | 
|  | // In this case Theorem(1) transforms to (the pre-condition on A can also be | 
|  | // dropped) | 
|  | // | 
|  | // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' | 
|  | //          where | 
|  | //             A, B, E, E' are two's complement numbers with the same bit | 
|  | //             width | 
|  | // | 
|  | //   Let A + B + E = X | 
|  | //   Let (B >> 1) + (A >> 1) = Y | 
|  | // | 
|  | //   Therefore we need to show that for every X and Y there is an E' which | 
|  | //   makes the equation | 
|  | // | 
|  | //     X = Y + E' | 
|  | // | 
|  | //   hold. This is trivially the case for E' = X - Y. | 
|  | // | 
|  | // [qed] | 
|  | // | 
|  | // Remark: Distributing lshr with and arbitrary number n can be expressed as | 
|  | //   ((((B + A) lshr 1) lshr 1) ... ) {n times}. | 
|  | // This construction induces n additional error bits at the left. | 
|  |  | 
|  | if (C.getBitWidth() != A.getBitWidth()) { | 
|  | ErrorMSBs = (unsigned)-1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | if (C.isZero()) | 
|  | return *this; | 
|  |  | 
|  | // Test if the result will be zero | 
|  | unsigned shiftAmt = C.getZExtValue(); | 
|  | if (shiftAmt >= C.getBitWidth()) | 
|  | return mul(APInt(C.getBitWidth(), 0)); | 
|  |  | 
|  | // The proof that shiftAmt LSBs are zero for at least one summand is only | 
|  | // possible for the constant number. | 
|  | // | 
|  | // If this can be proven add shiftAmt to the error counter | 
|  | // `ErrorMSBs`. Otherwise set all bits as undefined. | 
|  | if (A.countr_zero() < shiftAmt) | 
|  | ErrorMSBs = A.getBitWidth(); | 
|  | else | 
|  | incErrorMSBs(shiftAmt); | 
|  |  | 
|  | // Apply the operation. | 
|  | pushBOperation(LShr, C); | 
|  | A = A.lshr(shiftAmt); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Apply a sign-extend or truncate operation on the polynomial. | 
|  | Polynomial &sextOrTrunc(unsigned n) { | 
|  | if (n < A.getBitWidth()) { | 
|  | // Truncate: Clearly undefined Bits on the MSB side are removed | 
|  | // if there are any. | 
|  | decErrorMSBs(A.getBitWidth() - n); | 
|  | A = A.trunc(n); | 
|  | pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); | 
|  | } | 
|  | if (n > A.getBitWidth()) { | 
|  | // Extend: Clearly extending first and adding later is different | 
|  | // to adding first and extending later in all extended bits. | 
|  | incErrorMSBs(n - A.getBitWidth()); | 
|  | A = A.sext(n); | 
|  | pushBOperation(SExt, APInt(sizeof(n) * 8, n)); | 
|  | } | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Test if there is a coefficient B. | 
|  | bool isFirstOrder() const { return V != nullptr; } | 
|  |  | 
|  | /// Test coefficient B of two Polynomials are equal. | 
|  | bool isCompatibleTo(const Polynomial &o) const { | 
|  | // The polynomial use different bit width. | 
|  | if (A.getBitWidth() != o.A.getBitWidth()) | 
|  | return false; | 
|  |  | 
|  | // If neither Polynomial has the Coefficient B. | 
|  | if (!isFirstOrder() && !o.isFirstOrder()) | 
|  | return true; | 
|  |  | 
|  | // The index variable is different. | 
|  | if (V != o.V) | 
|  | return false; | 
|  |  | 
|  | // Check the operations. | 
|  | if (B.size() != o.B.size()) | 
|  | return false; | 
|  |  | 
|  | auto *ob = o.B.begin(); | 
|  | for (const auto &b : B) { | 
|  | if (b != *ob) | 
|  | return false; | 
|  | ob++; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Subtract two polynomials, return an undefined polynomial if | 
|  | /// subtraction is not possible. | 
|  | Polynomial operator-(const Polynomial &o) const { | 
|  | // Return an undefined polynomial if incompatible. | 
|  | if (!isCompatibleTo(o)) | 
|  | return Polynomial(); | 
|  |  | 
|  | // If the polynomials are compatible (meaning they have the same | 
|  | // coefficient on B), B is eliminated. Thus a polynomial solely | 
|  | // containing A is returned | 
|  | return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); | 
|  | } | 
|  |  | 
|  | /// Subtract a constant from a polynomial, | 
|  | Polynomial operator-(uint64_t C) const { | 
|  | Polynomial Result(*this); | 
|  | Result.A -= C; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Add a constant to a polynomial, | 
|  | Polynomial operator+(uint64_t C) const { | 
|  | Polynomial Result(*this); | 
|  | Result.A += C; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Returns true if it can be proven that two Polynomials are equal. | 
|  | bool isProvenEqualTo(const Polynomial &o) { | 
|  | // Subtract both polynomials and test if it is fully defined and zero. | 
|  | Polynomial r = *this - o; | 
|  | return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero()); | 
|  | } | 
|  |  | 
|  | /// Print the polynomial into a stream. | 
|  | void print(raw_ostream &OS) const { | 
|  | OS << "[{#ErrBits:" << ErrorMSBs << "} "; | 
|  |  | 
|  | if (V) { | 
|  | for (auto b : B) | 
|  | OS << "("; | 
|  | OS << "(" << *V << ") "; | 
|  |  | 
|  | for (auto b : B) { | 
|  | switch (b.first) { | 
|  | case LShr: | 
|  | OS << "LShr "; | 
|  | break; | 
|  | case Mul: | 
|  | OS << "Mul "; | 
|  | break; | 
|  | case SExt: | 
|  | OS << "SExt "; | 
|  | break; | 
|  | case Trunc: | 
|  | OS << "Trunc "; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OS << b.second << ") "; | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << "+ " << A << "]"; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void deleteB() { | 
|  | V = nullptr; | 
|  | B.clear(); | 
|  | } | 
|  |  | 
|  | void pushBOperation(const BOps Op, const APInt &C) { | 
|  | if (isFirstOrder()) { | 
|  | B.push_back(std::make_pair(Op, C)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { | 
|  | S.print(OS); | 
|  | return OS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// VectorInfo stores abstract the following information for each vector | 
|  | /// element: | 
|  | /// | 
|  | /// 1) The memory address loaded into the element as Polynomial | 
|  | /// 2) a set of load instruction necessary to construct the vector, | 
|  | /// 3) a set of all other instructions that are necessary to create the vector and | 
|  | /// 4) a pointer value that can be used as relative base for all elements. | 
|  | struct VectorInfo { | 
|  | private: | 
|  | VectorInfo(const VectorInfo &c) : VTy(c.VTy) { | 
|  | llvm_unreachable( | 
|  | "Copying VectorInfo is neither implemented nor necessary,"); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// Information of a Vector Element | 
|  | struct ElementInfo { | 
|  | /// Offset Polynomial. | 
|  | Polynomial Ofs; | 
|  |  | 
|  | /// The Load Instruction used to Load the entry. LI is null if the pointer | 
|  | /// of the load instruction does not point on to the entry | 
|  | LoadInst *LI; | 
|  |  | 
|  | ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) | 
|  | : Ofs(Offset), LI(LI) {} | 
|  | }; | 
|  |  | 
|  | /// Basic-block the load instructions are within | 
|  | BasicBlock *BB = nullptr; | 
|  |  | 
|  | /// Pointer value of all participation load instructions | 
|  | Value *PV = nullptr; | 
|  |  | 
|  | /// Participating load instructions | 
|  | std::set<LoadInst *> LIs; | 
|  |  | 
|  | /// Participating instructions | 
|  | std::set<Instruction *> Is; | 
|  |  | 
|  | /// Final shuffle-vector instruction | 
|  | ShuffleVectorInst *SVI = nullptr; | 
|  |  | 
|  | /// Information of the offset for each vector element | 
|  | ElementInfo *EI; | 
|  |  | 
|  | /// Vector Type | 
|  | FixedVectorType *const VTy; | 
|  |  | 
|  | VectorInfo(FixedVectorType *VTy) : VTy(VTy) { | 
|  | EI = new ElementInfo[VTy->getNumElements()]; | 
|  | } | 
|  |  | 
|  | VectorInfo &operator=(const VectorInfo &other) = delete; | 
|  |  | 
|  | virtual ~VectorInfo() { delete[] EI; } | 
|  |  | 
|  | unsigned getDimension() const { return VTy->getNumElements(); } | 
|  |  | 
|  | /// Test if the VectorInfo can be part of an interleaved load with the | 
|  | /// specified factor. | 
|  | /// | 
|  | /// \param Factor of the interleave | 
|  | /// \param DL Targets Datalayout | 
|  | /// | 
|  | /// \returns true if this is possible and false if not | 
|  | bool isInterleaved(unsigned Factor, const DataLayout &DL) const { | 
|  | unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); | 
|  | for (unsigned i = 1; i < getDimension(); i++) { | 
|  | if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recursively computes the vector information stored in V. | 
|  | /// | 
|  | /// This function delegates the work to specialized implementations | 
|  | /// | 
|  | /// \param V Value to operate on | 
|  | /// \param Result Result of the computation | 
|  | /// | 
|  | /// \returns false if no sensible information can be gathered. | 
|  | static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { | 
|  | ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); | 
|  | if (SVI) | 
|  | return computeFromSVI(SVI, Result, DL); | 
|  | LoadInst *LI = dyn_cast<LoadInst>(V); | 
|  | if (LI) | 
|  | return computeFromLI(LI, Result, DL); | 
|  | BitCastInst *BCI = dyn_cast<BitCastInst>(V); | 
|  | if (BCI) | 
|  | return computeFromBCI(BCI, Result, DL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// BitCastInst specialization to compute the vector information. | 
|  | /// | 
|  | /// \param BCI BitCastInst to operate on | 
|  | /// \param Result Result of the computation | 
|  | /// | 
|  | /// \returns false if no sensible information can be gathered. | 
|  | static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, | 
|  | const DataLayout &DL) { | 
|  | Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); | 
|  |  | 
|  | if (!Op) | 
|  | return false; | 
|  |  | 
|  | FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); | 
|  | if (!VTy) | 
|  | return false; | 
|  |  | 
|  | // We can only cast from large to smaller vectors | 
|  | if (Result.VTy->getNumElements() % VTy->getNumElements()) | 
|  | return false; | 
|  |  | 
|  | unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); | 
|  | unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); | 
|  | unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); | 
|  |  | 
|  | if (NewSize * Factor != OldSize) | 
|  | return false; | 
|  |  | 
|  | VectorInfo Old(VTy); | 
|  | if (!compute(Op, Old, DL)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { | 
|  | for (unsigned j = 0; j < Factor; j++) { | 
|  | Result.EI[i + j] = | 
|  | ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, | 
|  | j == 0 ? Old.EI[i / Factor].LI : nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | Result.BB = Old.BB; | 
|  | Result.PV = Old.PV; | 
|  | Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); | 
|  | Result.Is.insert(Old.Is.begin(), Old.Is.end()); | 
|  | Result.Is.insert(BCI); | 
|  | Result.SVI = nullptr; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ShuffleVectorInst specialization to compute vector information. | 
|  | /// | 
|  | /// \param SVI ShuffleVectorInst to operate on | 
|  | /// \param Result Result of the computation | 
|  | /// | 
|  | /// Compute the left and the right side vector information and merge them by | 
|  | /// applying the shuffle operation. This function also ensures that the left | 
|  | /// and right side have compatible loads. This means that all loads are with | 
|  | /// in the same basic block and are based on the same pointer. | 
|  | /// | 
|  | /// \returns false if no sensible information can be gathered. | 
|  | static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, | 
|  | const DataLayout &DL) { | 
|  | FixedVectorType *ArgTy = | 
|  | cast<FixedVectorType>(SVI->getOperand(0)->getType()); | 
|  |  | 
|  | // Compute the left hand vector information. | 
|  | VectorInfo LHS(ArgTy); | 
|  | if (!compute(SVI->getOperand(0), LHS, DL)) | 
|  | LHS.BB = nullptr; | 
|  |  | 
|  | // Compute the right hand vector information. | 
|  | VectorInfo RHS(ArgTy); | 
|  | if (!compute(SVI->getOperand(1), RHS, DL)) | 
|  | RHS.BB = nullptr; | 
|  |  | 
|  | // Neither operand produced sensible results? | 
|  | if (!LHS.BB && !RHS.BB) | 
|  | return false; | 
|  | // Only RHS produced sensible results? | 
|  | else if (!LHS.BB) { | 
|  | Result.BB = RHS.BB; | 
|  | Result.PV = RHS.PV; | 
|  | } | 
|  | // Only LHS produced sensible results? | 
|  | else if (!RHS.BB) { | 
|  | Result.BB = LHS.BB; | 
|  | Result.PV = LHS.PV; | 
|  | } | 
|  | // Both operands produced sensible results? | 
|  | else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { | 
|  | Result.BB = LHS.BB; | 
|  | Result.PV = LHS.PV; | 
|  | } | 
|  | // Both operands produced sensible results but they are incompatible. | 
|  | else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Merge and apply the operation on the offset information. | 
|  | if (LHS.BB) { | 
|  | Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); | 
|  | Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); | 
|  | } | 
|  | if (RHS.BB) { | 
|  | Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); | 
|  | Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); | 
|  | } | 
|  | Result.Is.insert(SVI); | 
|  | Result.SVI = SVI; | 
|  |  | 
|  | int j = 0; | 
|  | for (int i : SVI->getShuffleMask()) { | 
|  | assert((i < 2 * (signed)ArgTy->getNumElements()) && | 
|  | "Invalid ShuffleVectorInst (index out of bounds)"); | 
|  |  | 
|  | if (i < 0) | 
|  | Result.EI[j] = ElementInfo(); | 
|  | else if (i < (signed)ArgTy->getNumElements()) { | 
|  | if (LHS.BB) | 
|  | Result.EI[j] = LHS.EI[i]; | 
|  | else | 
|  | Result.EI[j] = ElementInfo(); | 
|  | } else { | 
|  | if (RHS.BB) | 
|  | Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; | 
|  | else | 
|  | Result.EI[j] = ElementInfo(); | 
|  | } | 
|  | j++; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// LoadInst specialization to compute vector information. | 
|  | /// | 
|  | /// This function also acts as abort condition to the recursion. | 
|  | /// | 
|  | /// \param LI LoadInst to operate on | 
|  | /// \param Result Result of the computation | 
|  | /// | 
|  | /// \returns false if no sensible information can be gathered. | 
|  | static bool computeFromLI(LoadInst *LI, VectorInfo &Result, | 
|  | const DataLayout &DL) { | 
|  | Value *BasePtr; | 
|  | Polynomial Offset; | 
|  |  | 
|  | if (LI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | if (LI->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | // Get the base polynomial | 
|  | computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); | 
|  |  | 
|  | Result.BB = LI->getParent(); | 
|  | Result.PV = BasePtr; | 
|  | Result.LIs.insert(LI); | 
|  | Result.Is.insert(LI); | 
|  |  | 
|  | for (unsigned i = 0; i < Result.getDimension(); i++) { | 
|  | Value *Idx[2] = { | 
|  | ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), | 
|  | ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), | 
|  | }; | 
|  | int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, ArrayRef(Idx, 2)); | 
|  | Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Recursively compute polynomial of a value. | 
|  | /// | 
|  | /// \param BO Input binary operation | 
|  | /// \param Result Result polynomial | 
|  | static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { | 
|  | Value *LHS = BO.getOperand(0); | 
|  | Value *RHS = BO.getOperand(1); | 
|  |  | 
|  | // Find the RHS Constant if any | 
|  | ConstantInt *C = dyn_cast<ConstantInt>(RHS); | 
|  | if ((!C) && BO.isCommutative()) { | 
|  | C = dyn_cast<ConstantInt>(LHS); | 
|  | if (C) | 
|  | std::swap(LHS, RHS); | 
|  | } | 
|  |  | 
|  | switch (BO.getOpcode()) { | 
|  | case Instruction::Add: | 
|  | if (!C) | 
|  | break; | 
|  |  | 
|  | computePolynomial(*LHS, Result); | 
|  | Result.add(C->getValue()); | 
|  | return; | 
|  |  | 
|  | case Instruction::LShr: | 
|  | if (!C) | 
|  | break; | 
|  |  | 
|  | computePolynomial(*LHS, Result); | 
|  | Result.lshr(C->getValue()); | 
|  | return; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | Result = Polynomial(&BO); | 
|  | } | 
|  |  | 
|  | /// Recursively compute polynomial of a value | 
|  | /// | 
|  | /// \param V input value | 
|  | /// \param Result result polynomial | 
|  | static void computePolynomial(Value &V, Polynomial &Result) { | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(&V)) | 
|  | computePolynomialBinOp(*BO, Result); | 
|  | else | 
|  | Result = Polynomial(&V); | 
|  | } | 
|  |  | 
|  | /// Compute the Polynomial representation of a Pointer type. | 
|  | /// | 
|  | /// \param Ptr input pointer value | 
|  | /// \param Result result polynomial | 
|  | /// \param BasePtr pointer the polynomial is based on | 
|  | /// \param DL Datalayout of the target machine | 
|  | static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, | 
|  | Value *&BasePtr, | 
|  | const DataLayout &DL) { | 
|  | // Not a pointer type? Return an undefined polynomial | 
|  | PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); | 
|  | if (!PtrTy) { | 
|  | Result = Polynomial(); | 
|  | BasePtr = nullptr; | 
|  | return; | 
|  | } | 
|  | unsigned PointerBits = | 
|  | DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); | 
|  |  | 
|  | /// Skip pointer casts. Return Zero polynomial otherwise | 
|  | if (isa<CastInst>(&Ptr)) { | 
|  | CastInst &CI = *cast<CastInst>(&Ptr); | 
|  | switch (CI.getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); | 
|  | break; | 
|  | default: | 
|  | BasePtr = &Ptr; | 
|  | Polynomial(PointerBits, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /// Resolve GetElementPtrInst. | 
|  | else if (isa<GetElementPtrInst>(&Ptr)) { | 
|  | GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); | 
|  |  | 
|  | APInt BaseOffset(PointerBits, 0); | 
|  |  | 
|  | // Check if we can compute the Offset with accumulateConstantOffset | 
|  | if (GEP.accumulateConstantOffset(DL, BaseOffset)) { | 
|  | Result = Polynomial(BaseOffset); | 
|  | BasePtr = GEP.getPointerOperand(); | 
|  | return; | 
|  | } else { | 
|  | // Otherwise we allow that the last index operand of the GEP is | 
|  | // non-constant. | 
|  | unsigned idxOperand, e; | 
|  | SmallVector<Value *, 4> Indices; | 
|  | for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; | 
|  | idxOperand++) { | 
|  | ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); | 
|  | if (!IDX) | 
|  | break; | 
|  | Indices.push_back(IDX); | 
|  | } | 
|  |  | 
|  | // It must also be the last operand. | 
|  | if (idxOperand + 1 != e) { | 
|  | Result = Polynomial(); | 
|  | BasePtr = nullptr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute the polynomial of the index operand. | 
|  | computePolynomial(*GEP.getOperand(idxOperand), Result); | 
|  |  | 
|  | // Compute base offset from zero based index, excluding the last | 
|  | // variable operand. | 
|  | BaseOffset = | 
|  | DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); | 
|  |  | 
|  | // Apply the operations of GEP to the polynomial. | 
|  | unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); | 
|  | Result.sextOrTrunc(PointerBits); | 
|  | Result.mul(APInt(PointerBits, ResultSize)); | 
|  | Result.add(BaseOffset); | 
|  | BasePtr = GEP.getPointerOperand(); | 
|  | } | 
|  | } | 
|  | // All other instructions are handled by using the value as base pointer and | 
|  | // a zero polynomial. | 
|  | else { | 
|  | BasePtr = &Ptr; | 
|  | Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | void print(raw_ostream &OS) const { | 
|  | if (PV) | 
|  | OS << *PV; | 
|  | else | 
|  | OS << "(none)"; | 
|  | OS << " + "; | 
|  | for (unsigned i = 0; i < getDimension(); i++) | 
|  | OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; | 
|  | OS << "]"; | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | } // anonymous namespace | 
|  |  | 
|  | bool InterleavedLoadCombineImpl::findPattern( | 
|  | std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, | 
|  | unsigned Factor, const DataLayout &DL) { | 
|  | for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { | 
|  | unsigned i; | 
|  | // Try to find an interleaved load using the front of Worklist as first line | 
|  | unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); | 
|  |  | 
|  | // List containing iterators pointing to the VectorInfos of the candidates | 
|  | std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); | 
|  |  | 
|  | for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { | 
|  | if (C->VTy != C0->VTy) | 
|  | continue; | 
|  | if (C->BB != C0->BB) | 
|  | continue; | 
|  | if (C->PV != C0->PV) | 
|  | continue; | 
|  |  | 
|  | // Check the current value matches any of factor - 1 remaining lines | 
|  | for (i = 1; i < Factor; i++) { | 
|  | if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { | 
|  | Res[i] = C; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 1; i < Factor; i++) { | 
|  | if (Res[i] == Candidates.end()) | 
|  | break; | 
|  | } | 
|  | if (i == Factor) { | 
|  | Res[0] = C0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Res[0] != Candidates.end()) { | 
|  | // Move the result into the output | 
|  | for (unsigned i = 0; i < Factor; i++) { | 
|  | InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LoadInst * | 
|  | InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { | 
|  | assert(!LIs.empty() && "No load instructions given."); | 
|  |  | 
|  | // All LIs are within the same BB. Select the first for a reference. | 
|  | BasicBlock *BB = (*LIs.begin())->getParent(); | 
|  | BasicBlock::iterator FLI = llvm::find_if( | 
|  | *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); | 
|  | assert(FLI != BB->end()); | 
|  |  | 
|  | return cast<LoadInst>(FLI); | 
|  | } | 
|  |  | 
|  | bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, | 
|  | OptimizationRemarkEmitter &ORE) { | 
|  | LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); | 
|  |  | 
|  | // The insertion point is the LoadInst which loads the first values. The | 
|  | // following tests are used to proof that the combined load can be inserted | 
|  | // just before InsertionPoint. | 
|  | LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; | 
|  |  | 
|  | // Test if the offset is computed | 
|  | if (!InsertionPoint) | 
|  | return false; | 
|  |  | 
|  | std::set<LoadInst *> LIs; | 
|  | std::set<Instruction *> Is; | 
|  | std::set<Instruction *> SVIs; | 
|  |  | 
|  | InstructionCost InterleavedCost; | 
|  | InstructionCost InstructionCost = 0; | 
|  | const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency; | 
|  |  | 
|  | // Get the interleave factor | 
|  | unsigned Factor = InterleavedLoad.size(); | 
|  |  | 
|  | // Merge all input sets used in analysis | 
|  | for (auto &VI : InterleavedLoad) { | 
|  | // Generate a set of all load instructions to be combined | 
|  | LIs.insert(VI.LIs.begin(), VI.LIs.end()); | 
|  |  | 
|  | // Generate a set of all instructions taking part in load | 
|  | // interleaved. This list excludes the instructions necessary for the | 
|  | // polynomial construction. | 
|  | Is.insert(VI.Is.begin(), VI.Is.end()); | 
|  |  | 
|  | // Generate the set of the final ShuffleVectorInst. | 
|  | SVIs.insert(VI.SVI); | 
|  | } | 
|  |  | 
|  | // There is nothing to combine. | 
|  | if (LIs.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // Test if all participating instruction will be dead after the | 
|  | // transformation. If intermediate results are used, no performance gain can | 
|  | // be expected. Also sum the cost of the Instructions beeing left dead. | 
|  | for (const auto &I : Is) { | 
|  | // Compute the old cost | 
|  | InstructionCost += TTI.getInstructionCost(I, CostKind); | 
|  |  | 
|  | // The final SVIs are allowed not to be dead, all uses will be replaced | 
|  | if (SVIs.find(I) != SVIs.end()) | 
|  | continue; | 
|  |  | 
|  | // If there are users outside the set to be eliminated, we abort the | 
|  | // transformation. No gain can be expected. | 
|  | for (auto *U : I->users()) { | 
|  | if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to have a valid cost in order to proceed. | 
|  | if (!InstructionCost.isValid()) | 
|  | return false; | 
|  |  | 
|  | // We know that all LoadInst are within the same BB. This guarantees that | 
|  | // either everything or nothing is loaded. | 
|  | LoadInst *First = findFirstLoad(LIs); | 
|  |  | 
|  | // To be safe that the loads can be combined, iterate over all loads and test | 
|  | // that the corresponding defining access dominates first LI. This guarantees | 
|  | // that there are no aliasing stores in between the loads. | 
|  | auto FMA = MSSA.getMemoryAccess(First); | 
|  | for (auto *LI : LIs) { | 
|  | auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); | 
|  | if (!MSSA.dominates(MADef, FMA)) | 
|  | return false; | 
|  | } | 
|  | assert(!LIs.empty() && "There are no LoadInst to combine"); | 
|  |  | 
|  | // It is necessary that insertion point dominates all final ShuffleVectorInst. | 
|  | for (auto &VI : InterleavedLoad) { | 
|  | if (!DT.dominates(InsertionPoint, VI.SVI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All checks are done. Add instructions detectable by InterleavedAccessPass | 
|  | // The old instruction will are left dead. | 
|  | IRBuilder<> Builder(InsertionPoint); | 
|  | Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); | 
|  | unsigned ElementsPerSVI = | 
|  | cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) | 
|  | ->getNumElements(); | 
|  | FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); | 
|  |  | 
|  | auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor)); | 
|  | InterleavedCost = TTI.getInterleavedMemoryOpCost( | 
|  | Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), | 
|  | InsertionPoint->getPointerAddressSpace(), CostKind); | 
|  |  | 
|  | if (InterleavedCost >= InstructionCost) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create the wide load and update the MemorySSA. | 
|  | auto Ptr = InsertionPoint->getPointerOperand(); | 
|  | auto LI = Builder.CreateAlignedLoad(ILTy, Ptr, InsertionPoint->getAlign(), | 
|  | "interleaved.wide.load"); | 
|  | auto MSSAU = MemorySSAUpdater(&MSSA); | 
|  | MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( | 
|  | LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); | 
|  | MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true); | 
|  |  | 
|  | // Create the final SVIs and replace all uses. | 
|  | int i = 0; | 
|  | for (auto &VI : InterleavedLoad) { | 
|  | SmallVector<int, 4> Mask; | 
|  | for (unsigned j = 0; j < ElementsPerSVI; j++) | 
|  | Mask.push_back(i + j * Factor); | 
|  |  | 
|  | Builder.SetInsertPoint(VI.SVI); | 
|  | auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); | 
|  | VI.SVI->replaceAllUsesWith(SVI); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | NumInterleavedLoadCombine++; | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) | 
|  | << "Load interleaved combined with factor " | 
|  | << ore::NV("Factor", Factor); | 
|  | }); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InterleavedLoadCombineImpl::run() { | 
|  | OptimizationRemarkEmitter ORE(&F); | 
|  | bool changed = false; | 
|  | unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); | 
|  |  | 
|  | auto &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | // Start with the highest factor to avoid combining and recombining. | 
|  | for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { | 
|  | std::list<VectorInfo> Candidates; | 
|  |  | 
|  | for (BasicBlock &BB : F) { | 
|  | for (Instruction &I : BB) { | 
|  | if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { | 
|  | // We don't support scalable vectors in this pass. | 
|  | if (isa<ScalableVectorType>(SVI->getType())) | 
|  | continue; | 
|  |  | 
|  | Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); | 
|  |  | 
|  | if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { | 
|  | Candidates.pop_back(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!Candidates.back().isInterleaved(Factor, DL)) { | 
|  | Candidates.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::list<VectorInfo> InterleavedLoad; | 
|  | while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { | 
|  | if (combine(InterleavedLoad, ORE)) { | 
|  | changed = true; | 
|  | } else { | 
|  | // Remove the first element of the Interleaved Load but put the others | 
|  | // back on the list and continue searching | 
|  | Candidates.splice(Candidates.begin(), InterleavedLoad, | 
|  | std::next(InterleavedLoad.begin()), | 
|  | InterleavedLoad.end()); | 
|  | } | 
|  | InterleavedLoad.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// This pass combines interleaved loads into a pattern detectable by | 
|  | /// InterleavedAccessPass. | 
|  | struct InterleavedLoadCombine : public FunctionPass { | 
|  | static char ID; | 
|  |  | 
|  | InterleavedLoadCombine() : FunctionPass(ID) { | 
|  | initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Interleaved Load Combine Pass"; | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (DisableInterleavedLoadCombine) | 
|  | return false; | 
|  |  | 
|  | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
|  | if (!TPC) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() | 
|  | << "\n"); | 
|  |  | 
|  | return InterleavedLoadCombineImpl( | 
|  | F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | getAnalysis<MemorySSAWrapperPass>().getMSSA(), | 
|  | TPC->getTM<TargetMachine>()) | 
|  | .run(); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | FunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | char InterleavedLoadCombine::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN( | 
|  | InterleavedLoadCombine, DEBUG_TYPE, | 
|  | "Combine interleaved loads into wide loads and shufflevector instructions", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_END( | 
|  | InterleavedLoadCombine, DEBUG_TYPE, | 
|  | "Combine interleaved loads into wide loads and shufflevector instructions", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass * | 
|  | llvm::createInterleavedLoadCombinePass() { | 
|  | auto P = new InterleavedLoadCombine(); | 
|  | return P; | 
|  | } |