| ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/GuardUtils.h" |
| #include "llvm/Analysis/LoopAnalysisManager.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GenericDomTree.h" |
| #include "llvm/Support/InstructionCost.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <numeric> |
| #include <optional> |
| #include <utility> |
| |
| #define DEBUG_TYPE "simple-loop-unswitch" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| STATISTIC(NumBranches, "Number of branches unswitched"); |
| STATISTIC(NumSwitches, "Number of switches unswitched"); |
| STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); |
| STATISTIC(NumTrivial, "Number of unswitches that are trivial"); |
| STATISTIC( |
| NumCostMultiplierSkipped, |
| "Number of unswitch candidates that had their cost multiplier skipped"); |
| |
| static cl::opt<bool> EnableNonTrivialUnswitch( |
| "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, |
| cl::desc("Forcibly enables non-trivial loop unswitching rather than " |
| "following the configuration passed into the pass.")); |
| |
| static cl::opt<int> |
| UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, |
| cl::desc("The cost threshold for unswitching a loop.")); |
| |
| static cl::opt<bool> EnableUnswitchCostMultiplier( |
| "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, |
| cl::desc("Enable unswitch cost multiplier that prohibits exponential " |
| "explosion in nontrivial unswitch.")); |
| static cl::opt<int> UnswitchSiblingsToplevelDiv( |
| "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, |
| cl::desc("Toplevel siblings divisor for cost multiplier.")); |
| static cl::opt<int> UnswitchNumInitialUnscaledCandidates( |
| "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, |
| cl::desc("Number of unswitch candidates that are ignored when calculating " |
| "cost multiplier.")); |
| static cl::opt<bool> UnswitchGuards( |
| "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, |
| cl::desc("If enabled, simple loop unswitching will also consider " |
| "llvm.experimental.guard intrinsics as unswitch candidates.")); |
| static cl::opt<bool> DropNonTrivialImplicitNullChecks( |
| "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", |
| cl::init(false), cl::Hidden, |
| cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " |
| "null checks to save time analyzing if we can keep it.")); |
| static cl::opt<unsigned> |
| MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", |
| cl::desc("Max number of memory uses to explore during " |
| "partial unswitching analysis"), |
| cl::init(100), cl::Hidden); |
| static cl::opt<bool> FreezeLoopUnswitchCond( |
| "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, |
| cl::desc("If enabled, the freeze instruction will be added to condition " |
| "of loop unswitch to prevent miscompilation.")); |
| |
| namespace { |
| struct NonTrivialUnswitchCandidate { |
| Instruction *TI = nullptr; |
| TinyPtrVector<Value *> Invariants; |
| std::optional<InstructionCost> Cost; |
| NonTrivialUnswitchCandidate( |
| Instruction *TI, ArrayRef<Value *> Invariants, |
| std::optional<InstructionCost> Cost = std::nullopt) |
| : TI(TI), Invariants(Invariants), Cost(Cost){}; |
| }; |
| } // end anonymous namespace. |
| |
| // Helper to skip (select x, true, false), which matches both a logical AND and |
| // OR and can confuse code that tries to determine if \p Cond is either a |
| // logical AND or OR but not both. |
| static Value *skipTrivialSelect(Value *Cond) { |
| Value *CondNext; |
| while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) |
| Cond = CondNext; |
| return Cond; |
| } |
| |
| /// Collect all of the loop invariant input values transitively used by the |
| /// homogeneous instruction graph from a given root. |
| /// |
| /// This essentially walks from a root recursively through loop variant operands |
| /// which have perform the same logical operation (AND or OR) and finds all |
| /// inputs which are loop invariant. For some operations these can be |
| /// re-associated and unswitched out of the loop entirely. |
| static TinyPtrVector<Value *> |
| collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, |
| const LoopInfo &LI) { |
| assert(!L.isLoopInvariant(&Root) && |
| "Only need to walk the graph if root itself is not invariant."); |
| TinyPtrVector<Value *> Invariants; |
| |
| bool IsRootAnd = match(&Root, m_LogicalAnd()); |
| bool IsRootOr = match(&Root, m_LogicalOr()); |
| |
| // Build a worklist and recurse through operators collecting invariants. |
| SmallVector<Instruction *, 4> Worklist; |
| SmallPtrSet<Instruction *, 8> Visited; |
| Worklist.push_back(&Root); |
| Visited.insert(&Root); |
| do { |
| Instruction &I = *Worklist.pop_back_val(); |
| for (Value *OpV : I.operand_values()) { |
| // Skip constants as unswitching isn't interesting for them. |
| if (isa<Constant>(OpV)) |
| continue; |
| |
| // Add it to our result if loop invariant. |
| if (L.isLoopInvariant(OpV)) { |
| Invariants.push_back(OpV); |
| continue; |
| } |
| |
| // If not an instruction with the same opcode, nothing we can do. |
| Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); |
| |
| if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || |
| (IsRootOr && match(OpI, m_LogicalOr())))) { |
| // Visit this operand. |
| if (Visited.insert(OpI).second) |
| Worklist.push_back(OpI); |
| } |
| } |
| } while (!Worklist.empty()); |
| |
| return Invariants; |
| } |
| |
| static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, |
| Constant &Replacement) { |
| assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); |
| |
| // Replace uses of LIC in the loop with the given constant. |
| // We use make_early_inc_range as set invalidates the iterator. |
| for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { |
| Instruction *UserI = dyn_cast<Instruction>(U.getUser()); |
| |
| // Replace this use within the loop body. |
| if (UserI && L.contains(UserI)) |
| U.set(&Replacement); |
| } |
| } |
| |
| /// Check that all the LCSSA PHI nodes in the loop exit block have trivial |
| /// incoming values along this edge. |
| static bool areLoopExitPHIsLoopInvariant(const Loop &L, |
| const BasicBlock &ExitingBB, |
| const BasicBlock &ExitBB) { |
| for (const Instruction &I : ExitBB) { |
| auto *PN = dyn_cast<PHINode>(&I); |
| if (!PN) |
| // No more PHIs to check. |
| return true; |
| |
| // If the incoming value for this edge isn't loop invariant the unswitch |
| // won't be trivial. |
| if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) |
| return false; |
| } |
| llvm_unreachable("Basic blocks should never be empty!"); |
| } |
| |
| /// Copy a set of loop invariant values \p ToDuplicate and insert them at the |
| /// end of \p BB and conditionally branch on the copied condition. We only |
| /// branch on a single value. |
| static void buildPartialUnswitchConditionalBranch( |
| BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, |
| BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, |
| const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) { |
| IRBuilder<> IRB(&BB); |
| |
| SmallVector<Value *> FrozenInvariants; |
| for (Value *Inv : Invariants) { |
| if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) |
| Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); |
| FrozenInvariants.push_back(Inv); |
| } |
| |
| Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) |
| : IRB.CreateAnd(FrozenInvariants); |
| IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, |
| Direction ? &NormalSucc : &UnswitchedSucc); |
| } |
| |
| /// Copy a set of loop invariant values, and conditionally branch on them. |
| static void buildPartialInvariantUnswitchConditionalBranch( |
| BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, |
| BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, |
| MemorySSAUpdater *MSSAU) { |
| ValueToValueMapTy VMap; |
| for (auto *Val : reverse(ToDuplicate)) { |
| Instruction *Inst = cast<Instruction>(Val); |
| Instruction *NewInst = Inst->clone(); |
| NewInst->insertInto(&BB, BB.end()); |
| RemapInstruction(NewInst, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| VMap[Val] = NewInst; |
| |
| if (!MSSAU) |
| continue; |
| |
| MemorySSA *MSSA = MSSAU->getMemorySSA(); |
| if (auto *MemUse = |
| dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { |
| auto *DefiningAccess = MemUse->getDefiningAccess(); |
| // Get the first defining access before the loop. |
| while (L.contains(DefiningAccess->getBlock())) { |
| // If the defining access is a MemoryPhi, get the incoming |
| // value for the pre-header as defining access. |
| if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) |
| DefiningAccess = |
| MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); |
| else |
| DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); |
| } |
| MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, |
| NewInst->getParent(), |
| MemorySSA::BeforeTerminator); |
| } |
| } |
| |
| IRBuilder<> IRB(&BB); |
| Value *Cond = VMap[ToDuplicate[0]]; |
| IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, |
| Direction ? &NormalSucc : &UnswitchedSucc); |
| } |
| |
| /// Rewrite the PHI nodes in an unswitched loop exit basic block. |
| /// |
| /// Requires that the loop exit and unswitched basic block are the same, and |
| /// that the exiting block was a unique predecessor of that block. Rewrites the |
| /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial |
| /// PHI nodes from the old preheader that now contains the unswitched |
| /// terminator. |
| static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, |
| BasicBlock &OldExitingBB, |
| BasicBlock &OldPH) { |
| for (PHINode &PN : UnswitchedBB.phis()) { |
| // When the loop exit is directly unswitched we just need to update the |
| // incoming basic block. We loop to handle weird cases with repeated |
| // incoming blocks, but expect to typically only have one operand here. |
| for (auto i : seq<int>(0, PN.getNumOperands())) { |
| assert(PN.getIncomingBlock(i) == &OldExitingBB && |
| "Found incoming block different from unique predecessor!"); |
| PN.setIncomingBlock(i, &OldPH); |
| } |
| } |
| } |
| |
| /// Rewrite the PHI nodes in the loop exit basic block and the split off |
| /// unswitched block. |
| /// |
| /// Because the exit block remains an exit from the loop, this rewrites the |
| /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI |
| /// nodes into the unswitched basic block to select between the value in the |
| /// old preheader and the loop exit. |
| static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, |
| BasicBlock &UnswitchedBB, |
| BasicBlock &OldExitingBB, |
| BasicBlock &OldPH, |
| bool FullUnswitch) { |
| assert(&ExitBB != &UnswitchedBB && |
| "Must have different loop exit and unswitched blocks!"); |
| Instruction *InsertPt = &*UnswitchedBB.begin(); |
| for (PHINode &PN : ExitBB.phis()) { |
| auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, |
| PN.getName() + ".split", InsertPt); |
| |
| // Walk backwards over the old PHI node's inputs to minimize the cost of |
| // removing each one. We have to do this weird loop manually so that we |
| // create the same number of new incoming edges in the new PHI as we expect |
| // each case-based edge to be included in the unswitched switch in some |
| // cases. |
| // FIXME: This is really, really gross. It would be much cleaner if LLVM |
| // allowed us to create a single entry for a predecessor block without |
| // having separate entries for each "edge" even though these edges are |
| // required to produce identical results. |
| for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { |
| if (PN.getIncomingBlock(i) != &OldExitingBB) |
| continue; |
| |
| Value *Incoming = PN.getIncomingValue(i); |
| if (FullUnswitch) |
| // No more edge from the old exiting block to the exit block. |
| PN.removeIncomingValue(i); |
| |
| NewPN->addIncoming(Incoming, &OldPH); |
| } |
| |
| // Now replace the old PHI with the new one and wire the old one in as an |
| // input to the new one. |
| PN.replaceAllUsesWith(NewPN); |
| NewPN->addIncoming(&PN, &ExitBB); |
| } |
| } |
| |
| /// Hoist the current loop up to the innermost loop containing a remaining exit. |
| /// |
| /// Because we've removed an exit from the loop, we may have changed the set of |
| /// loops reachable and need to move the current loop up the loop nest or even |
| /// to an entirely separate nest. |
| static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, |
| DominatorTree &DT, LoopInfo &LI, |
| MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { |
| // If the loop is already at the top level, we can't hoist it anywhere. |
| Loop *OldParentL = L.getParentLoop(); |
| if (!OldParentL) |
| return; |
| |
| SmallVector<BasicBlock *, 4> Exits; |
| L.getExitBlocks(Exits); |
| Loop *NewParentL = nullptr; |
| for (auto *ExitBB : Exits) |
| if (Loop *ExitL = LI.getLoopFor(ExitBB)) |
| if (!NewParentL || NewParentL->contains(ExitL)) |
| NewParentL = ExitL; |
| |
| if (NewParentL == OldParentL) |
| return; |
| |
| // The new parent loop (if different) should always contain the old one. |
| if (NewParentL) |
| assert(NewParentL->contains(OldParentL) && |
| "Can only hoist this loop up the nest!"); |
| |
| // The preheader will need to move with the body of this loop. However, |
| // because it isn't in this loop we also need to update the primary loop map. |
| assert(OldParentL == LI.getLoopFor(&Preheader) && |
| "Parent loop of this loop should contain this loop's preheader!"); |
| LI.changeLoopFor(&Preheader, NewParentL); |
| |
| // Remove this loop from its old parent. |
| OldParentL->removeChildLoop(&L); |
| |
| // Add the loop either to the new parent or as a top-level loop. |
| if (NewParentL) |
| NewParentL->addChildLoop(&L); |
| else |
| LI.addTopLevelLoop(&L); |
| |
| // Remove this loops blocks from the old parent and every other loop up the |
| // nest until reaching the new parent. Also update all of these |
| // no-longer-containing loops to reflect the nesting change. |
| for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; |
| OldContainingL = OldContainingL->getParentLoop()) { |
| llvm::erase_if(OldContainingL->getBlocksVector(), |
| [&](const BasicBlock *BB) { |
| return BB == &Preheader || L.contains(BB); |
| }); |
| |
| OldContainingL->getBlocksSet().erase(&Preheader); |
| for (BasicBlock *BB : L.blocks()) |
| OldContainingL->getBlocksSet().erase(BB); |
| |
| // Because we just hoisted a loop out of this one, we have essentially |
| // created new exit paths from it. That means we need to form LCSSA PHI |
| // nodes for values used in the no-longer-nested loop. |
| formLCSSA(*OldContainingL, DT, &LI, SE); |
| |
| // We shouldn't need to form dedicated exits because the exit introduced |
| // here is the (just split by unswitching) preheader. However, after trivial |
| // unswitching it is possible to get new non-dedicated exits out of parent |
| // loop so let's conservatively form dedicated exit blocks and figure out |
| // if we can optimize later. |
| formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, |
| /*PreserveLCSSA*/ true); |
| } |
| } |
| |
| // Return the top-most loop containing ExitBB and having ExitBB as exiting block |
| // or the loop containing ExitBB, if there is no parent loop containing ExitBB |
| // as exiting block. |
| static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB, |
| const LoopInfo &LI) { |
| const Loop *TopMost = LI.getLoopFor(ExitBB); |
| const Loop *Current = TopMost; |
| while (Current) { |
| if (Current->isLoopExiting(ExitBB)) |
| TopMost = Current; |
| Current = Current->getParentLoop(); |
| } |
| return TopMost; |
| } |
| |
| /// Unswitch a trivial branch if the condition is loop invariant. |
| /// |
| /// This routine should only be called when loop code leading to the branch has |
| /// been validated as trivial (no side effects). This routine checks if the |
| /// condition is invariant and one of the successors is a loop exit. This |
| /// allows us to unswitch without duplicating the loop, making it trivial. |
| /// |
| /// If this routine fails to unswitch the branch it returns false. |
| /// |
| /// If the branch can be unswitched, this routine splits the preheader and |
| /// hoists the branch above that split. Preserves loop simplified form |
| /// (splitting the exit block as necessary). It simplifies the branch within |
| /// the loop to an unconditional branch but doesn't remove it entirely. Further |
| /// cleanup can be done with some simplifycfg like pass. |
| /// |
| /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| /// invalidated by this. |
| static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, |
| LoopInfo &LI, ScalarEvolution *SE, |
| MemorySSAUpdater *MSSAU) { |
| assert(BI.isConditional() && "Can only unswitch a conditional branch!"); |
| LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); |
| |
| // The loop invariant values that we want to unswitch. |
| TinyPtrVector<Value *> Invariants; |
| |
| // When true, we're fully unswitching the branch rather than just unswitching |
| // some input conditions to the branch. |
| bool FullUnswitch = false; |
| |
| Value *Cond = skipTrivialSelect(BI.getCondition()); |
| if (L.isLoopInvariant(Cond)) { |
| Invariants.push_back(Cond); |
| FullUnswitch = true; |
| } else { |
| if (auto *CondInst = dyn_cast<Instruction>(Cond)) |
| Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); |
| if (Invariants.empty()) { |
| LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); |
| return false; |
| } |
| } |
| |
| // Check that one of the branch's successors exits, and which one. |
| bool ExitDirection = true; |
| int LoopExitSuccIdx = 0; |
| auto *LoopExitBB = BI.getSuccessor(0); |
| if (L.contains(LoopExitBB)) { |
| ExitDirection = false; |
| LoopExitSuccIdx = 1; |
| LoopExitBB = BI.getSuccessor(1); |
| if (L.contains(LoopExitBB)) { |
| LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); |
| return false; |
| } |
| } |
| auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); |
| auto *ParentBB = BI.getParent(); |
| if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { |
| LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); |
| return false; |
| } |
| |
| // When unswitching only part of the branch's condition, we need the exit |
| // block to be reached directly from the partially unswitched input. This can |
| // be done when the exit block is along the true edge and the branch condition |
| // is a graph of `or` operations, or the exit block is along the false edge |
| // and the condition is a graph of `and` operations. |
| if (!FullUnswitch) { |
| if (ExitDirection ? !match(Cond, m_LogicalOr()) |
| : !match(Cond, m_LogicalAnd())) { |
| LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " |
| "non-full unswitch!\n"); |
| return false; |
| } |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << " unswitching trivial invariant conditions for: " << BI |
| << "\n"; |
| for (Value *Invariant : Invariants) { |
| dbgs() << " " << *Invariant << " == true"; |
| if (Invariant != Invariants.back()) |
| dbgs() << " ||"; |
| dbgs() << "\n"; |
| } |
| }); |
| |
| // If we have scalar evolutions, we need to invalidate them including this |
| // loop, the loop containing the exit block and the topmost parent loop |
| // exiting via LoopExitBB. |
| if (SE) { |
| if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) |
| SE->forgetLoop(ExitL); |
| else |
| // Forget the entire nest as this exits the entire nest. |
| SE->forgetTopmostLoop(&L); |
| SE->forgetBlockAndLoopDispositions(); |
| } |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // Split the preheader, so that we know that there is a safe place to insert |
| // the conditional branch. We will change the preheader to have a conditional |
| // branch on LoopCond. |
| BasicBlock *OldPH = L.getLoopPreheader(); |
| BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); |
| |
| // Now that we have a place to insert the conditional branch, create a place |
| // to branch to: this is the exit block out of the loop that we are |
| // unswitching. We need to split this if there are other loop predecessors. |
| // Because the loop is in simplified form, *any* other predecessor is enough. |
| BasicBlock *UnswitchedBB; |
| if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { |
| assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && |
| "A branch's parent isn't a predecessor!"); |
| UnswitchedBB = LoopExitBB; |
| } else { |
| UnswitchedBB = |
| SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); |
| } |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // Actually move the invariant uses into the unswitched position. If possible, |
| // we do this by moving the instructions, but when doing partial unswitching |
| // we do it by building a new merge of the values in the unswitched position. |
| OldPH->getTerminator()->eraseFromParent(); |
| if (FullUnswitch) { |
| // If fully unswitching, we can use the existing branch instruction. |
| // Splice it into the old PH to gate reaching the new preheader and re-point |
| // its successors. |
| OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator()); |
| BI.setCondition(Cond); |
| if (MSSAU) { |
| // Temporarily clone the terminator, to make MSSA update cheaper by |
| // separating "insert edge" updates from "remove edge" ones. |
| BI.clone()->insertInto(ParentBB, ParentBB->end()); |
| } else { |
| // Create a new unconditional branch that will continue the loop as a new |
| // terminator. |
| BranchInst::Create(ContinueBB, ParentBB); |
| } |
| BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); |
| BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); |
| } else { |
| // Only unswitching a subset of inputs to the condition, so we will need to |
| // build a new branch that merges the invariant inputs. |
| if (ExitDirection) |
| assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && |
| "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " |
| "condition!"); |
| else |
| assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && |
| "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" |
| " condition!"); |
| buildPartialUnswitchConditionalBranch( |
| *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, |
| FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); |
| } |
| |
| // Update the dominator tree with the added edge. |
| DT.insertEdge(OldPH, UnswitchedBB); |
| |
| // After the dominator tree was updated with the added edge, update MemorySSA |
| // if available. |
| if (MSSAU) { |
| SmallVector<CFGUpdate, 1> Updates; |
| Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); |
| MSSAU->applyInsertUpdates(Updates, DT); |
| } |
| |
| // Finish updating dominator tree and memory ssa for full unswitch. |
| if (FullUnswitch) { |
| if (MSSAU) { |
| // Remove the cloned branch instruction. |
| ParentBB->getTerminator()->eraseFromParent(); |
| // Create unconditional branch now. |
| BranchInst::Create(ContinueBB, ParentBB); |
| MSSAU->removeEdge(ParentBB, LoopExitBB); |
| } |
| DT.deleteEdge(ParentBB, LoopExitBB); |
| } |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // Rewrite the relevant PHI nodes. |
| if (UnswitchedBB == LoopExitBB) |
| rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); |
| else |
| rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, |
| *ParentBB, *OldPH, FullUnswitch); |
| |
| // The constant we can replace all of our invariants with inside the loop |
| // body. If any of the invariants have a value other than this the loop won't |
| // be entered. |
| ConstantInt *Replacement = ExitDirection |
| ? ConstantInt::getFalse(BI.getContext()) |
| : ConstantInt::getTrue(BI.getContext()); |
| |
| // Since this is an i1 condition we can also trivially replace uses of it |
| // within the loop with a constant. |
| for (Value *Invariant : Invariants) |
| replaceLoopInvariantUses(L, Invariant, *Replacement); |
| |
| // If this was full unswitching, we may have changed the nesting relationship |
| // for this loop so hoist it to its correct parent if needed. |
| if (FullUnswitch) |
| hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); |
| ++NumTrivial; |
| ++NumBranches; |
| return true; |
| } |
| |
| /// Unswitch a trivial switch if the condition is loop invariant. |
| /// |
| /// This routine should only be called when loop code leading to the switch has |
| /// been validated as trivial (no side effects). This routine checks if the |
| /// condition is invariant and that at least one of the successors is a loop |
| /// exit. This allows us to unswitch without duplicating the loop, making it |
| /// trivial. |
| /// |
| /// If this routine fails to unswitch the switch it returns false. |
| /// |
| /// If the switch can be unswitched, this routine splits the preheader and |
| /// copies the switch above that split. If the default case is one of the |
| /// exiting cases, it copies the non-exiting cases and points them at the new |
| /// preheader. If the default case is not exiting, it copies the exiting cases |
| /// and points the default at the preheader. It preserves loop simplified form |
| /// (splitting the exit blocks as necessary). It simplifies the switch within |
| /// the loop by removing now-dead cases. If the default case is one of those |
| /// unswitched, it replaces its destination with a new basic block containing |
| /// only unreachable. Such basic blocks, while technically loop exits, are not |
| /// considered for unswitching so this is a stable transform and the same |
| /// switch will not be revisited. If after unswitching there is only a single |
| /// in-loop successor, the switch is further simplified to an unconditional |
| /// branch. Still more cleanup can be done with some simplifycfg like pass. |
| /// |
| /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| /// invalidated by this. |
| static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, |
| LoopInfo &LI, ScalarEvolution *SE, |
| MemorySSAUpdater *MSSAU) { |
| LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); |
| Value *LoopCond = SI.getCondition(); |
| |
| // If this isn't switching on an invariant condition, we can't unswitch it. |
| if (!L.isLoopInvariant(LoopCond)) |
| return false; |
| |
| auto *ParentBB = SI.getParent(); |
| |
| // The same check must be used both for the default and the exit cases. We |
| // should never leave edges from the switch instruction to a basic block that |
| // we are unswitching, hence the condition used to determine the default case |
| // needs to also be used to populate ExitCaseIndices, which is then used to |
| // remove cases from the switch. |
| auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { |
| // BBToCheck is not an exit block if it is inside loop L. |
| if (L.contains(&BBToCheck)) |
| return false; |
| // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. |
| if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) |
| return false; |
| // We do not unswitch a block that only has an unreachable statement, as |
| // it's possible this is a previously unswitched block. Only unswitch if |
| // either the terminator is not unreachable, or, if it is, it's not the only |
| // instruction in the block. |
| auto *TI = BBToCheck.getTerminator(); |
| bool isUnreachable = isa<UnreachableInst>(TI); |
| return !isUnreachable || |
| (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); |
| }; |
| |
| SmallVector<int, 4> ExitCaseIndices; |
| for (auto Case : SI.cases()) |
| if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) |
| ExitCaseIndices.push_back(Case.getCaseIndex()); |
| BasicBlock *DefaultExitBB = nullptr; |
| SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = |
| SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); |
| if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { |
| DefaultExitBB = SI.getDefaultDest(); |
| } else if (ExitCaseIndices.empty()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // We may need to invalidate SCEVs for the outermost loop reached by any of |
| // the exits. |
| Loop *OuterL = &L; |
| |
| if (DefaultExitBB) { |
| // Clear out the default destination temporarily to allow accurate |
| // predecessor lists to be examined below. |
| SI.setDefaultDest(nullptr); |
| // Check the loop containing this exit. |
| Loop *ExitL = LI.getLoopFor(DefaultExitBB); |
| if (!ExitL || ExitL->contains(OuterL)) |
| OuterL = ExitL; |
| } |
| |
| // Store the exit cases into a separate data structure and remove them from |
| // the switch. |
| SmallVector<std::tuple<ConstantInt *, BasicBlock *, |
| SwitchInstProfUpdateWrapper::CaseWeightOpt>, |
| 4> ExitCases; |
| ExitCases.reserve(ExitCaseIndices.size()); |
| SwitchInstProfUpdateWrapper SIW(SI); |
| // We walk the case indices backwards so that we remove the last case first |
| // and don't disrupt the earlier indices. |
| for (unsigned Index : reverse(ExitCaseIndices)) { |
| auto CaseI = SI.case_begin() + Index; |
| // Compute the outer loop from this exit. |
| Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); |
| if (!ExitL || ExitL->contains(OuterL)) |
| OuterL = ExitL; |
| // Save the value of this case. |
| auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); |
| ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); |
| // Delete the unswitched cases. |
| SIW.removeCase(CaseI); |
| } |
| |
| if (SE) { |
| if (OuterL) |
| SE->forgetLoop(OuterL); |
| else |
| SE->forgetTopmostLoop(&L); |
| } |
| |
| // Check if after this all of the remaining cases point at the same |
| // successor. |
| BasicBlock *CommonSuccBB = nullptr; |
| if (SI.getNumCases() > 0 && |
| all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { |
| return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); |
| })) |
| CommonSuccBB = SI.case_begin()->getCaseSuccessor(); |
| if (!DefaultExitBB) { |
| // If we're not unswitching the default, we need it to match any cases to |
| // have a common successor or if we have no cases it is the common |
| // successor. |
| if (SI.getNumCases() == 0) |
| CommonSuccBB = SI.getDefaultDest(); |
| else if (SI.getDefaultDest() != CommonSuccBB) |
| CommonSuccBB = nullptr; |
| } |
| |
| // Split the preheader, so that we know that there is a safe place to insert |
| // the switch. |
| BasicBlock *OldPH = L.getLoopPreheader(); |
| BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); |
| OldPH->getTerminator()->eraseFromParent(); |
| |
| // Now add the unswitched switch. |
| auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); |
| SwitchInstProfUpdateWrapper NewSIW(*NewSI); |
| |
| // Rewrite the IR for the unswitched basic blocks. This requires two steps. |
| // First, we split any exit blocks with remaining in-loop predecessors. Then |
| // we update the PHIs in one of two ways depending on if there was a split. |
| // We walk in reverse so that we split in the same order as the cases |
| // appeared. This is purely for convenience of reading the resulting IR, but |
| // it doesn't cost anything really. |
| SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; |
| SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; |
| // Handle the default exit if necessary. |
| // FIXME: It'd be great if we could merge this with the loop below but LLVM's |
| // ranges aren't quite powerful enough yet. |
| if (DefaultExitBB) { |
| if (pred_empty(DefaultExitBB)) { |
| UnswitchedExitBBs.insert(DefaultExitBB); |
| rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); |
| } else { |
| auto *SplitBB = |
| SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); |
| rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, |
| *ParentBB, *OldPH, |
| /*FullUnswitch*/ true); |
| DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; |
| } |
| } |
| // Note that we must use a reference in the for loop so that we update the |
| // container. |
| for (auto &ExitCase : reverse(ExitCases)) { |
| // Grab a reference to the exit block in the pair so that we can update it. |
| BasicBlock *ExitBB = std::get<1>(ExitCase); |
| |
| // If this case is the last edge into the exit block, we can simply reuse it |
| // as it will no longer be a loop exit. No mapping necessary. |
| if (pred_empty(ExitBB)) { |
| // Only rewrite once. |
| if (UnswitchedExitBBs.insert(ExitBB).second) |
| rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); |
| continue; |
| } |
| |
| // Otherwise we need to split the exit block so that we retain an exit |
| // block from the loop and a target for the unswitched condition. |
| BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; |
| if (!SplitExitBB) { |
| // If this is the first time we see this, do the split and remember it. |
| SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); |
| rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, |
| *ParentBB, *OldPH, |
| /*FullUnswitch*/ true); |
| } |
| // Update the case pair to point to the split block. |
| std::get<1>(ExitCase) = SplitExitBB; |
| } |
| |
| // Now add the unswitched cases. We do this in reverse order as we built them |
| // in reverse order. |
| for (auto &ExitCase : reverse(ExitCases)) { |
| ConstantInt *CaseVal = std::get<0>(ExitCase); |
| BasicBlock *UnswitchedBB = std::get<1>(ExitCase); |
| |
| NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); |
| } |
| |
| // If the default was unswitched, re-point it and add explicit cases for |
| // entering the loop. |
| if (DefaultExitBB) { |
| NewSIW->setDefaultDest(DefaultExitBB); |
| NewSIW.setSuccessorWeight(0, DefaultCaseWeight); |
| |
| // We removed all the exit cases, so we just copy the cases to the |
| // unswitched switch. |
| for (const auto &Case : SI.cases()) |
| NewSIW.addCase(Case.getCaseValue(), NewPH, |
| SIW.getSuccessorWeight(Case.getSuccessorIndex())); |
| } else if (DefaultCaseWeight) { |
| // We have to set branch weight of the default case. |
| uint64_t SW = *DefaultCaseWeight; |
| for (const auto &Case : SI.cases()) { |
| auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); |
| assert(W && |
| "case weight must be defined as default case weight is defined"); |
| SW += *W; |
| } |
| NewSIW.setSuccessorWeight(0, SW); |
| } |
| |
| // If we ended up with a common successor for every path through the switch |
| // after unswitching, rewrite it to an unconditional branch to make it easy |
| // to recognize. Otherwise we potentially have to recognize the default case |
| // pointing at unreachable and other complexity. |
| if (CommonSuccBB) { |
| BasicBlock *BB = SI.getParent(); |
| // We may have had multiple edges to this common successor block, so remove |
| // them as predecessors. We skip the first one, either the default or the |
| // actual first case. |
| bool SkippedFirst = DefaultExitBB == nullptr; |
| for (auto Case : SI.cases()) { |
| assert(Case.getCaseSuccessor() == CommonSuccBB && |
| "Non-common successor!"); |
| (void)Case; |
| if (!SkippedFirst) { |
| SkippedFirst = true; |
| continue; |
| } |
| CommonSuccBB->removePredecessor(BB, |
| /*KeepOneInputPHIs*/ true); |
| } |
| // Now nuke the switch and replace it with a direct branch. |
| SIW.eraseFromParent(); |
| BranchInst::Create(CommonSuccBB, BB); |
| } else if (DefaultExitBB) { |
| assert(SI.getNumCases() > 0 && |
| "If we had no cases we'd have a common successor!"); |
| // Move the last case to the default successor. This is valid as if the |
| // default got unswitched it cannot be reached. This has the advantage of |
| // being simple and keeping the number of edges from this switch to |
| // successors the same, and avoiding any PHI update complexity. |
| auto LastCaseI = std::prev(SI.case_end()); |
| |
| SI.setDefaultDest(LastCaseI->getCaseSuccessor()); |
| SIW.setSuccessorWeight( |
| 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); |
| SIW.removeCase(LastCaseI); |
| } |
| |
| // Walk the unswitched exit blocks and the unswitched split blocks and update |
| // the dominator tree based on the CFG edits. While we are walking unordered |
| // containers here, the API for applyUpdates takes an unordered list of |
| // updates and requires them to not contain duplicates. |
| SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| for (auto *UnswitchedExitBB : UnswitchedExitBBs) { |
| DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); |
| DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); |
| } |
| for (auto SplitUnswitchedPair : SplitExitBBMap) { |
| DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); |
| DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); |
| } |
| |
| if (MSSAU) { |
| MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); |
| if (VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| } else { |
| DT.applyUpdates(DTUpdates); |
| } |
| |
| assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| |
| // We may have changed the nesting relationship for this loop so hoist it to |
| // its correct parent if needed. |
| hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| ++NumTrivial; |
| ++NumSwitches; |
| LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); |
| return true; |
| } |
| |
| /// This routine scans the loop to find a branch or switch which occurs before |
| /// any side effects occur. These can potentially be unswitched without |
| /// duplicating the loop. If a branch or switch is successfully unswitched the |
| /// scanning continues to see if subsequent branches or switches have become |
| /// trivial. Once all trivial candidates have been unswitched, this routine |
| /// returns. |
| /// |
| /// The return value indicates whether anything was unswitched (and therefore |
| /// changed). |
| /// |
| /// If `SE` is not null, it will be updated based on the potential loop SCEVs |
| /// invalidated by this. |
| static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, |
| LoopInfo &LI, ScalarEvolution *SE, |
| MemorySSAUpdater *MSSAU) { |
| bool Changed = false; |
| |
| // If loop header has only one reachable successor we should keep looking for |
| // trivial condition candidates in the successor as well. An alternative is |
| // to constant fold conditions and merge successors into loop header (then we |
| // only need to check header's terminator). The reason for not doing this in |
| // LoopUnswitch pass is that it could potentially break LoopPassManager's |
| // invariants. Folding dead branches could either eliminate the current loop |
| // or make other loops unreachable. LCSSA form might also not be preserved |
| // after deleting branches. The following code keeps traversing loop header's |
| // successors until it finds the trivial condition candidate (condition that |
| // is not a constant). Since unswitching generates branches with constant |
| // conditions, this scenario could be very common in practice. |
| BasicBlock *CurrentBB = L.getHeader(); |
| SmallPtrSet<BasicBlock *, 8> Visited; |
| Visited.insert(CurrentBB); |
| do { |
| // Check if there are any side-effecting instructions (e.g. stores, calls, |
| // volatile loads) in the part of the loop that the code *would* execute |
| // without unswitching. |
| if (MSSAU) // Possible early exit with MSSA |
| if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) |
| if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) |
| return Changed; |
| if (llvm::any_of(*CurrentBB, |
| [](Instruction &I) { return I.mayHaveSideEffects(); })) |
| return Changed; |
| |
| Instruction *CurrentTerm = CurrentBB->getTerminator(); |
| |
| if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { |
| // Don't bother trying to unswitch past a switch with a constant |
| // condition. This should be removed prior to running this pass by |
| // simplifycfg. |
| if (isa<Constant>(SI->getCondition())) |
| return Changed; |
| |
| if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) |
| // Couldn't unswitch this one so we're done. |
| return Changed; |
| |
| // Mark that we managed to unswitch something. |
| Changed = true; |
| |
| // If unswitching turned the terminator into an unconditional branch then |
| // we can continue. The unswitching logic specifically works to fold any |
| // cases it can into an unconditional branch to make it easier to |
| // recognize here. |
| auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); |
| if (!BI || BI->isConditional()) |
| return Changed; |
| |
| CurrentBB = BI->getSuccessor(0); |
| continue; |
| } |
| |
| auto *BI = dyn_cast<BranchInst>(CurrentTerm); |
| if (!BI) |
| // We do not understand other terminator instructions. |
| return Changed; |
| |
| // Don't bother trying to unswitch past an unconditional branch or a branch |
| // with a constant value. These should be removed by simplifycfg prior to |
| // running this pass. |
| if (!BI->isConditional() || |
| isa<Constant>(skipTrivialSelect(BI->getCondition()))) |
| return Changed; |
| |
| // Found a trivial condition candidate: non-foldable conditional branch. If |
| // we fail to unswitch this, we can't do anything else that is trivial. |
| if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) |
| return Changed; |
| |
| // Mark that we managed to unswitch something. |
| Changed = true; |
| |
| // If we only unswitched some of the conditions feeding the branch, we won't |
| // have collapsed it to a single successor. |
| BI = cast<BranchInst>(CurrentBB->getTerminator()); |
| if (BI->isConditional()) |
| return Changed; |
| |
| // Follow the newly unconditional branch into its successor. |
| CurrentBB = BI->getSuccessor(0); |
| |
| // When continuing, if we exit the loop or reach a previous visited block, |
| // then we can not reach any trivial condition candidates (unfoldable |
| // branch instructions or switch instructions) and no unswitch can happen. |
| } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); |
| |
| return Changed; |
| } |
| |
| /// Build the cloned blocks for an unswitched copy of the given loop. |
| /// |
| /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and |
| /// after the split block (`SplitBB`) that will be used to select between the |
| /// cloned and original loop. |
| /// |
| /// This routine handles cloning all of the necessary loop blocks and exit |
| /// blocks including rewriting their instructions and the relevant PHI nodes. |
| /// Any loop blocks or exit blocks which are dominated by a different successor |
| /// than the one for this clone of the loop blocks can be trivially skipped. We |
| /// use the `DominatingSucc` map to determine whether a block satisfies that |
| /// property with a simple map lookup. |
| /// |
| /// It also correctly creates the unconditional branch in the cloned |
| /// unswitched parent block to only point at the unswitched successor. |
| /// |
| /// This does not handle most of the necessary updates to `LoopInfo`. Only exit |
| /// block splitting is correctly reflected in `LoopInfo`, essentially all of |
| /// the cloned blocks (and their loops) are left without full `LoopInfo` |
| /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned |
| /// blocks to them but doesn't create the cloned `DominatorTree` structure and |
| /// instead the caller must recompute an accurate DT. It *does* correctly |
| /// update the `AssumptionCache` provided in `AC`. |
| static BasicBlock *buildClonedLoopBlocks( |
| Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, |
| ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, |
| BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, |
| const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, |
| ValueToValueMapTy &VMap, |
| SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, |
| DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, |
| ScalarEvolution *SE) { |
| SmallVector<BasicBlock *, 4> NewBlocks; |
| NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); |
| |
| // We will need to clone a bunch of blocks, wrap up the clone operation in |
| // a helper. |
| auto CloneBlock = [&](BasicBlock *OldBB) { |
| // Clone the basic block and insert it before the new preheader. |
| BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); |
| NewBB->moveBefore(LoopPH); |
| |
| // Record this block and the mapping. |
| NewBlocks.push_back(NewBB); |
| VMap[OldBB] = NewBB; |
| |
| return NewBB; |
| }; |
| |
| // We skip cloning blocks when they have a dominating succ that is not the |
| // succ we are cloning for. |
| auto SkipBlock = [&](BasicBlock *BB) { |
| auto It = DominatingSucc.find(BB); |
| return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; |
| }; |
| |
| // First, clone the preheader. |
| auto *ClonedPH = CloneBlock(LoopPH); |
| |
| // Then clone all the loop blocks, skipping the ones that aren't necessary. |
| for (auto *LoopBB : L.blocks()) |
| if (!SkipBlock(LoopBB)) |
| CloneBlock(LoopBB); |
| |
| // Split all the loop exit edges so that when we clone the exit blocks, if |
| // any of the exit blocks are *also* a preheader for some other loop, we |
| // don't create multiple predecessors entering the loop header. |
| for (auto *ExitBB : ExitBlocks) { |
| if (SkipBlock(ExitBB)) |
| continue; |
| |
| // When we are going to clone an exit, we don't need to clone all the |
| // instructions in the exit block and we want to ensure we have an easy |
| // place to merge the CFG, so split the exit first. This is always safe to |
| // do because there cannot be any non-loop predecessors of a loop exit in |
| // loop simplified form. |
| auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); |
| |
| // Rearrange the names to make it easier to write test cases by having the |
| // exit block carry the suffix rather than the merge block carrying the |
| // suffix. |
| MergeBB->takeName(ExitBB); |
| ExitBB->setName(Twine(MergeBB->getName()) + ".split"); |
| |
| // Now clone the original exit block. |
| auto *ClonedExitBB = CloneBlock(ExitBB); |
| assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && |
| "Exit block should have been split to have one successor!"); |
| assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && |
| "Cloned exit block has the wrong successor!"); |
| |
| // Remap any cloned instructions and create a merge phi node for them. |
| for (auto ZippedInsts : llvm::zip_first( |
| llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), |
| llvm::make_range(ClonedExitBB->begin(), |
| std::prev(ClonedExitBB->end())))) { |
| Instruction &I = std::get<0>(ZippedInsts); |
| Instruction &ClonedI = std::get<1>(ZippedInsts); |
| |
| // The only instructions in the exit block should be PHI nodes and |
| // potentially a landing pad. |
| assert( |
| (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && |
| "Bad instruction in exit block!"); |
| // We should have a value map between the instruction and its clone. |
| assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); |
| |
| // Forget SCEVs based on exit phis in case SCEV looked through the phi. |
| if (SE && isa<PHINode>(I)) |
| SE->forgetValue(&I); |
| |
| auto *MergePN = |
| PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", |
| &*MergeBB->getFirstInsertionPt()); |
| I.replaceAllUsesWith(MergePN); |
| MergePN->addIncoming(&I, ExitBB); |
| MergePN->addIncoming(&ClonedI, ClonedExitBB); |
| } |
| } |
| |
| // Rewrite the instructions in the cloned blocks to refer to the instructions |
| // in the cloned blocks. We have to do this as a second pass so that we have |
| // everything available. Also, we have inserted new instructions which may |
| // include assume intrinsics, so we update the assumption cache while |
| // processing this. |
| for (auto *ClonedBB : NewBlocks) |
| for (Instruction &I : *ClonedBB) { |
| RemapInstruction(&I, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| if (auto *II = dyn_cast<AssumeInst>(&I)) |
| AC.registerAssumption(II); |
| } |
| |
| // Update any PHI nodes in the cloned successors of the skipped blocks to not |
| // have spurious incoming values. |
| for (auto *LoopBB : L.blocks()) |
| if (SkipBlock(LoopBB)) |
| for (auto *SuccBB : successors(LoopBB)) |
| if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) |
| for (PHINode &PN : ClonedSuccBB->phis()) |
| PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); |
| |
| // Remove the cloned parent as a predecessor of any successor we ended up |
| // cloning other than the unswitched one. |
| auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); |
| for (auto *SuccBB : successors(ParentBB)) { |
| if (SuccBB == UnswitchedSuccBB) |
| continue; |
| |
| auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); |
| if (!ClonedSuccBB) |
| continue; |
| |
| ClonedSuccBB->removePredecessor(ClonedParentBB, |
| /*KeepOneInputPHIs*/ true); |
| } |
| |
| // Replace the cloned branch with an unconditional branch to the cloned |
| // unswitched successor. |
| auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); |
| Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); |
| // Trivial Simplification. If Terminator is a conditional branch and |
| // condition becomes dead - erase it. |
| Value *ClonedConditionToErase = nullptr; |
| if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) |
| ClonedConditionToErase = BI->getCondition(); |
| else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) |
| ClonedConditionToErase = SI->getCondition(); |
| |
| ClonedTerminator->eraseFromParent(); |
| BranchInst::Create(ClonedSuccBB, ClonedParentBB); |
| |
| if (ClonedConditionToErase) |
| RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, |
| MSSAU); |
| |
| // If there are duplicate entries in the PHI nodes because of multiple edges |
| // to the unswitched successor, we need to nuke all but one as we replaced it |
| // with a direct branch. |
| for (PHINode &PN : ClonedSuccBB->phis()) { |
| bool Found = false; |
| // Loop over the incoming operands backwards so we can easily delete as we |
| // go without invalidating the index. |
| for (int i = PN.getNumOperands() - 1; i >= 0; --i) { |
| if (PN.getIncomingBlock(i) != ClonedParentBB) |
| continue; |
| if (!Found) { |
| Found = true; |
| continue; |
| } |
| PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); |
| } |
| } |
| |
| // Record the domtree updates for the new blocks. |
| SmallPtrSet<BasicBlock *, 4> SuccSet; |
| for (auto *ClonedBB : NewBlocks) { |
| for (auto *SuccBB : successors(ClonedBB)) |
| if (SuccSet.insert(SuccBB).second) |
| DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); |
| SuccSet.clear(); |
| } |
| |
| return ClonedPH; |
| } |
| |
| /// Recursively clone the specified loop and all of its children. |
| /// |
| /// The target parent loop for the clone should be provided, or can be null if |
| /// the clone is a top-level loop. While cloning, all the blocks are mapped |
| /// with the provided value map. The entire original loop must be present in |
| /// the value map. The cloned loop is returned. |
| static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, |
| const ValueToValueMapTy &VMap, LoopInfo &LI) { |
| auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { |
| assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); |
| ClonedL.reserveBlocks(OrigL.getNumBlocks()); |
| for (auto *BB : OrigL.blocks()) { |
| auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); |
| ClonedL.addBlockEntry(ClonedBB); |
| if (LI.getLoopFor(BB) == &OrigL) |
| LI.changeLoopFor(ClonedBB, &ClonedL); |
| } |
| }; |
| |
| // We specially handle the first loop because it may get cloned into |
| // a different parent and because we most commonly are cloning leaf loops. |
| Loop *ClonedRootL = LI.AllocateLoop(); |
| if (RootParentL) |
| RootParentL->addChildLoop(ClonedRootL); |
| else |
| LI.addTopLevelLoop(ClonedRootL); |
| AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); |
| |
| if (OrigRootL.isInnermost()) |
| return ClonedRootL; |
| |
| // If we have a nest, we can quickly clone the entire loop nest using an |
| // iterative approach because it is a tree. We keep the cloned parent in the |
| // data structure to avoid repeatedly querying through a map to find it. |
| SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; |
| // Build up the loops to clone in reverse order as we'll clone them from the |
| // back. |
| for (Loop *ChildL : llvm::reverse(OrigRootL)) |
| LoopsToClone.push_back({ClonedRootL, ChildL}); |
| do { |
| Loop *ClonedParentL, *L; |
| std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); |
| Loop *ClonedL = LI.AllocateLoop(); |
| ClonedParentL->addChildLoop(ClonedL); |
| AddClonedBlocksToLoop(*L, *ClonedL); |
| for (Loop *ChildL : llvm::reverse(*L)) |
| LoopsToClone.push_back({ClonedL, ChildL}); |
| } while (!LoopsToClone.empty()); |
| |
| return ClonedRootL; |
| } |
| |
| /// Build the cloned loops of an original loop from unswitching. |
| /// |
| /// Because unswitching simplifies the CFG of the loop, this isn't a trivial |
| /// operation. We need to re-verify that there even is a loop (as the backedge |
| /// may not have been cloned), and even if there are remaining backedges the |
| /// backedge set may be different. However, we know that each child loop is |
| /// undisturbed, we only need to find where to place each child loop within |
| /// either any parent loop or within a cloned version of the original loop. |
| /// |
| /// Because child loops may end up cloned outside of any cloned version of the |
| /// original loop, multiple cloned sibling loops may be created. All of them |
| /// are returned so that the newly introduced loop nest roots can be |
| /// identified. |
| static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, |
| const ValueToValueMapTy &VMap, LoopInfo &LI, |
| SmallVectorImpl<Loop *> &NonChildClonedLoops) { |
| Loop *ClonedL = nullptr; |
| |
| auto *OrigPH = OrigL.getLoopPreheader(); |
| auto *OrigHeader = OrigL.getHeader(); |
| |
| auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); |
| auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); |
| |
| // We need to know the loops of the cloned exit blocks to even compute the |
| // accurate parent loop. If we only clone exits to some parent of the |
| // original parent, we want to clone into that outer loop. We also keep track |
| // of the loops that our cloned exit blocks participate in. |
| Loop *ParentL = nullptr; |
| SmallVector<BasicBlock *, 4> ClonedExitsInLoops; |
| SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; |
| ClonedExitsInLoops.reserve(ExitBlocks.size()); |
| for (auto *ExitBB : ExitBlocks) |
| if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) |
| if (Loop *ExitL = LI.getLoopFor(ExitBB)) { |
| ExitLoopMap[ClonedExitBB] = ExitL; |
| ClonedExitsInLoops.push_back(ClonedExitBB); |
| if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) |
| ParentL = ExitL; |
| } |
| assert((!ParentL || ParentL == OrigL.getParentLoop() || |
| ParentL->contains(OrigL.getParentLoop())) && |
| "The computed parent loop should always contain (or be) the parent of " |
| "the original loop."); |
| |
| // We build the set of blocks dominated by the cloned header from the set of |
| // cloned blocks out of the original loop. While not all of these will |
| // necessarily be in the cloned loop, it is enough to establish that they |
| // aren't in unreachable cycles, etc. |
| SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; |
| for (auto *BB : OrigL.blocks()) |
| if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) |
| ClonedLoopBlocks.insert(ClonedBB); |
| |
| // Rebuild the set of blocks that will end up in the cloned loop. We may have |
| // skipped cloning some region of this loop which can in turn skip some of |
| // the backedges so we have to rebuild the blocks in the loop based on the |
| // backedges that remain after cloning. |
| SmallVector<BasicBlock *, 16> Worklist; |
| SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; |
| for (auto *Pred : predecessors(ClonedHeader)) { |
| // The only possible non-loop header predecessor is the preheader because |
| // we know we cloned the loop in simplified form. |
| if (Pred == ClonedPH) |
| continue; |
| |
| // Because the loop was in simplified form, the only non-loop predecessor |
| // should be the preheader. |
| assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " |
| "header other than the preheader " |
| "that is not part of the loop!"); |
| |
| // Insert this block into the loop set and on the first visit (and if it |
| // isn't the header we're currently walking) put it into the worklist to |
| // recurse through. |
| if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) |
| Worklist.push_back(Pred); |
| } |
| |
| // If we had any backedges then there *is* a cloned loop. Put the header into |
| // the loop set and then walk the worklist backwards to find all the blocks |
| // that remain within the loop after cloning. |
| if (!BlocksInClonedLoop.empty()) { |
| BlocksInClonedLoop.insert(ClonedHeader); |
| |
| while (!Worklist.empty()) { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| assert(BlocksInClonedLoop.count(BB) && |
| "Didn't put block into the loop set!"); |
| |
| // Insert any predecessors that are in the possible set into the cloned |
| // set, and if the insert is successful, add them to the worklist. Note |
| // that we filter on the blocks that are definitely reachable via the |
| // backedge to the loop header so we may prune out dead code within the |
| // cloned loop. |
| for (auto *Pred : predecessors(BB)) |
| if (ClonedLoopBlocks.count(Pred) && |
| BlocksInClonedLoop.insert(Pred).second) |
| Worklist.push_back(Pred); |
| } |
| |
| ClonedL = LI.AllocateLoop(); |
| if (ParentL) { |
| ParentL->addBasicBlockToLoop(ClonedPH, LI); |
| ParentL->addChildLoop(ClonedL); |
| } else { |
| LI.addTopLevelLoop(ClonedL); |
| } |
| NonChildClonedLoops.push_back(ClonedL); |
| |
| ClonedL->reserveBlocks(BlocksInClonedLoop.size()); |
| // We don't want to just add the cloned loop blocks based on how we |
| // discovered them. The original order of blocks was carefully built in |
| // a way that doesn't rely on predecessor ordering. Rather than re-invent |
| // that logic, we just re-walk the original blocks (and those of the child |
| // loops) and filter them as we add them into the cloned loop. |
| for (auto *BB : OrigL.blocks()) { |
| auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); |
| if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) |
| continue; |
| |
| // Directly add the blocks that are only in this loop. |
| if (LI.getLoopFor(BB) == &OrigL) { |
| ClonedL->addBasicBlockToLoop(ClonedBB, LI); |
| continue; |
| } |
| |
| // We want to manually add it to this loop and parents. |
| // Registering it with LoopInfo will happen when we clone the top |
| // loop for this block. |
| for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) |
| PL->addBlockEntry(ClonedBB); |
| } |
| |
| // Now add each child loop whose header remains within the cloned loop. All |
| // of the blocks within the loop must satisfy the same constraints as the |
| // header so once we pass the header checks we can just clone the entire |
| // child loop nest. |
| for (Loop *ChildL : OrigL) { |
| auto *ClonedChildHeader = |
| cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); |
| if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) |
| continue; |
| |
| #ifndef NDEBUG |
| // We should never have a cloned child loop header but fail to have |
| // all of the blocks for that child loop. |
| for (auto *ChildLoopBB : ChildL->blocks()) |
| assert(BlocksInClonedLoop.count( |
| cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && |
| "Child cloned loop has a header within the cloned outer " |
| "loop but not all of its blocks!"); |
| #endif |
| |
| cloneLoopNest(*ChildL, ClonedL, VMap, LI); |
| } |
| } |
| |
| // Now that we've handled all the components of the original loop that were |
| // cloned into a new loop, we still need to handle anything from the original |
| // loop that wasn't in a cloned loop. |
| |
| // Figure out what blocks are left to place within any loop nest containing |
| // the unswitched loop. If we never formed a loop, the cloned PH is one of |
| // them. |
| SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; |
| if (BlocksInClonedLoop.empty()) |
| UnloopedBlockSet.insert(ClonedPH); |
| for (auto *ClonedBB : ClonedLoopBlocks) |
| if (!BlocksInClonedLoop.count(ClonedBB)) |
| UnloopedBlockSet.insert(ClonedBB); |
| |
| // Copy the cloned exits and sort them in ascending loop depth, we'll work |
| // backwards across these to process them inside out. The order shouldn't |
| // matter as we're just trying to build up the map from inside-out; we use |
| // the map in a more stably ordered way below. |
| auto OrderedClonedExitsInLoops = ClonedExitsInLoops; |
| llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { |
| return ExitLoopMap.lookup(LHS)->getLoopDepth() < |
| ExitLoopMap.lookup(RHS)->getLoopDepth(); |
| }); |
| |
| // Populate the existing ExitLoopMap with everything reachable from each |
| // exit, starting from the inner most exit. |
| while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { |
| assert(Worklist.empty() && "Didn't clear worklist!"); |
| |
| BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); |
| Loop *ExitL = ExitLoopMap.lookup(ExitBB); |
| |
| // Walk the CFG back until we hit the cloned PH adding everything reachable |
| // and in the unlooped set to this exit block's loop. |
| Worklist.push_back(ExitBB); |
| do { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| // We can stop recursing at the cloned preheader (if we get there). |
| if (BB == ClonedPH) |
| continue; |
| |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| // If this pred has already been moved to our set or is part of some |
| // (inner) loop, no update needed. |
| if (!UnloopedBlockSet.erase(PredBB)) { |
| assert( |
| (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && |
| "Predecessor not mapped to a loop!"); |
| continue; |
| } |
| |
| // We just insert into the loop set here. We'll add these blocks to the |
| // exit loop after we build up the set in an order that doesn't rely on |
| // predecessor order (which in turn relies on use list order). |
| bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; |
| (void)Inserted; |
| assert(Inserted && "Should only visit an unlooped block once!"); |
| |
| // And recurse through to its predecessors. |
| Worklist.push_back(PredBB); |
| } |
| } while (!Worklist.empty()); |
| } |
| |
| // Now that the ExitLoopMap gives as mapping for all the non-looping cloned |
| // blocks to their outer loops, walk the cloned blocks and the cloned exits |
| // in their original order adding them to the correct loop. |
| |
| // We need a stable insertion order. We use the order of the original loop |
| // order and map into the correct parent loop. |
| for (auto *BB : llvm::concat<BasicBlock *const>( |
| ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) |
| if (Loop *OuterL = ExitLoopMap.lookup(BB)) |
| OuterL->addBasicBlockToLoop(BB, LI); |
| |
| #ifndef NDEBUG |
| for (auto &BBAndL : ExitLoopMap) { |
| auto *BB = BBAndL.first; |
| auto *OuterL = BBAndL.second; |
| assert(LI.getLoopFor(BB) == OuterL && |
| "Failed to put all blocks into outer loops!"); |
| } |
| #endif |
| |
| // Now that all the blocks are placed into the correct containing loop in the |
| // absence of child loops, find all the potentially cloned child loops and |
| // clone them into whatever outer loop we placed their header into. |
| for (Loop *ChildL : OrigL) { |
| auto *ClonedChildHeader = |
| cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); |
| if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) |
| continue; |
| |
| #ifndef NDEBUG |
| for (auto *ChildLoopBB : ChildL->blocks()) |
| assert(VMap.count(ChildLoopBB) && |
| "Cloned a child loop header but not all of that loops blocks!"); |
| #endif |
| |
| NonChildClonedLoops.push_back(cloneLoopNest( |
| *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); |
| } |
| } |
| |
| static void |
| deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, |
| ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, |
| DominatorTree &DT, MemorySSAUpdater *MSSAU) { |
| // Find all the dead clones, and remove them from their successors. |
| SmallVector<BasicBlock *, 16> DeadBlocks; |
| for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) |
| for (const auto &VMap : VMaps) |
| if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) |
| if (!DT.isReachableFromEntry(ClonedBB)) { |
| for (BasicBlock *SuccBB : successors(ClonedBB)) |
| SuccBB->removePredecessor(ClonedBB); |
| DeadBlocks.push_back(ClonedBB); |
| } |
| |
| // Remove all MemorySSA in the dead blocks |
| if (MSSAU) { |
| SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), |
| DeadBlocks.end()); |
| MSSAU->removeBlocks(DeadBlockSet); |
| } |
| |
| // Drop any remaining references to break cycles. |
| for (BasicBlock *BB : DeadBlocks) |
| BB->dropAllReferences(); |
| // Erase them from the IR. |
| for (BasicBlock *BB : DeadBlocks) |
| BB->eraseFromParent(); |
| } |
| |
| static void |
| deleteDeadBlocksFromLoop(Loop &L, |
| SmallVectorImpl<BasicBlock *> &ExitBlocks, |
| DominatorTree &DT, LoopInfo &LI, |
| MemorySSAUpdater *MSSAU, |
| ScalarEvolution *SE, |
| function_ref<void(Loop &, StringRef)> DestroyLoopCB) { |
| // Find all the dead blocks tied to this loop, and remove them from their |
| // successors. |
| SmallSetVector<BasicBlock *, 8> DeadBlockSet; |
| |
| // Start with loop/exit blocks and get a transitive closure of reachable dead |
| // blocks. |
| SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), |
| ExitBlocks.end()); |
| DeathCandidates.append(L.blocks().begin(), L.blocks().end()); |
| while (!DeathCandidates.empty()) { |
| auto *BB = DeathCandidates.pop_back_val(); |
| if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { |
| for (BasicBlock *SuccBB : successors(BB)) { |
| SuccBB->removePredecessor(BB); |
| DeathCandidates.push_back(SuccBB); |
| } |
| DeadBlockSet.insert(BB); |
| } |
| } |
| |
| // Remove all MemorySSA in the dead blocks |
| if (MSSAU) |
| MSSAU->removeBlocks(DeadBlockSet); |
| |
| // Filter out the dead blocks from the exit blocks list so that it can be |
| // used in the caller. |
| llvm::erase_if(ExitBlocks, |
| [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); |
| |
| // Walk from this loop up through its parents removing all of the dead blocks. |
| for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { |
| for (auto *BB : DeadBlockSet) |
| ParentL->getBlocksSet().erase(BB); |
| llvm::erase_if(ParentL->getBlocksVector(), |
| [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); |
| } |
| |
| // Now delete the dead child loops. This raw delete will clear them |
| // recursively. |
| llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { |
| if (!DeadBlockSet.count(ChildL->getHeader())) |
| return false; |
| |
| assert(llvm::all_of(ChildL->blocks(), |
| [&](BasicBlock *ChildBB) { |
| return DeadBlockSet.count(ChildBB); |
| }) && |
| "If the child loop header is dead all blocks in the child loop must " |
| "be dead as well!"); |
| DestroyLoopCB(*ChildL, ChildL->getName()); |
| if (SE) |
| SE->forgetBlockAndLoopDispositions(); |
| LI.destroy(ChildL); |
| return true; |
| }); |
| |
| // Remove the loop mappings for the dead blocks and drop all the references |
| // from these blocks to others to handle cyclic references as we start |
| // deleting the blocks themselves. |
| for (auto *BB : DeadBlockSet) { |
| // Check that the dominator tree has already been updated. |
| assert(!DT.getNode(BB) && "Should already have cleared domtree!"); |
| LI.changeLoopFor(BB, nullptr); |
| // Drop all uses of the instructions to make sure we won't have dangling |
| // uses in other blocks. |
| for (auto &I : *BB) |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(PoisonValue::get(I.getType())); |
| BB->dropAllReferences(); |
| } |
| |
| // Actually delete the blocks now that they've been fully unhooked from the |
| // IR. |
| for (auto *BB : DeadBlockSet) |
| BB->eraseFromParent(); |
| } |
| |
| /// Recompute the set of blocks in a loop after unswitching. |
| /// |
| /// This walks from the original headers predecessors to rebuild the loop. We |
| /// take advantage of the fact that new blocks can't have been added, and so we |
| /// filter by the original loop's blocks. This also handles potentially |
| /// unreachable code that we don't want to explore but might be found examining |
| /// the predecessors of the header. |
| /// |
| /// If the original loop is no longer a loop, this will return an empty set. If |
| /// it remains a loop, all the blocks within it will be added to the set |
| /// (including those blocks in inner loops). |
| static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, |
| LoopInfo &LI) { |
| SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; |
| |
| auto *PH = L.getLoopPreheader(); |
| auto *Header = L.getHeader(); |
| |
| // A worklist to use while walking backwards from the header. |
| SmallVector<BasicBlock *, 16> Worklist; |
| |
| // First walk the predecessors of the header to find the backedges. This will |
| // form the basis of our walk. |
| for (auto *Pred : predecessors(Header)) { |
| // Skip the preheader. |
| if (Pred == PH) |
| continue; |
| |
| // Because the loop was in simplified form, the only non-loop predecessor |
| // is the preheader. |
| assert(L.contains(Pred) && "Found a predecessor of the loop header other " |
| "than the preheader that is not part of the " |
| "loop!"); |
| |
| // Insert this block into the loop set and on the first visit and, if it |
| // isn't the header we're currently walking, put it into the worklist to |
| // recurse through. |
| if (LoopBlockSet.insert(Pred).second && Pred != Header) |
| Worklist.push_back(Pred); |
| } |
| |
| // If no backedges were found, we're done. |
| if (LoopBlockSet.empty()) |
| return LoopBlockSet; |
| |
| // We found backedges, recurse through them to identify the loop blocks. |
| while (!Worklist.empty()) { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); |
| |
| // No need to walk past the header. |
| if (BB == Header) |
| continue; |
| |
| // Because we know the inner loop structure remains valid we can use the |
| // loop structure to jump immediately across the entire nested loop. |
| // Further, because it is in loop simplified form, we can directly jump |
| // to its preheader afterward. |
| if (Loop *InnerL = LI.getLoopFor(BB)) |
| if (InnerL != &L) { |
| assert(L.contains(InnerL) && |
| "Should not reach a loop *outside* this loop!"); |
| // The preheader is the only possible predecessor of the loop so |
| // insert it into the set and check whether it was already handled. |
| auto *InnerPH = InnerL->getLoopPreheader(); |
| assert(L.contains(InnerPH) && "Cannot contain an inner loop block " |
| "but not contain the inner loop " |
| "preheader!"); |
| if (!LoopBlockSet.insert(InnerPH).second) |
| // The only way to reach the preheader is through the loop body |
| // itself so if it has been visited the loop is already handled. |
| continue; |
| |
| // Insert all of the blocks (other than those already present) into |
| // the loop set. We expect at least the block that led us to find the |
| // inner loop to be in the block set, but we may also have other loop |
| // blocks if they were already enqueued as predecessors of some other |
| // outer loop block. |
| for (auto *InnerBB : InnerL->blocks()) { |
| if (InnerBB == BB) { |
| assert(LoopBlockSet.count(InnerBB) && |
| "Block should already be in the set!"); |
| continue; |
| } |
| |
| LoopBlockSet.insert(InnerBB); |
| } |
| |
| // Add the preheader to the worklist so we will continue past the |
| // loop body. |
| Worklist.push_back(InnerPH); |
| continue; |
| } |
| |
| // Insert any predecessors that were in the original loop into the new |
| // set, and if the insert is successful, add them to the worklist. |
| for (auto *Pred : predecessors(BB)) |
| if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) |
| Worklist.push_back(Pred); |
| } |
| |
| assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); |
| |
| // We've found all the blocks participating in the loop, return our completed |
| // set. |
| return LoopBlockSet; |
| } |
| |
| /// Rebuild a loop after unswitching removes some subset of blocks and edges. |
| /// |
| /// The removal may have removed some child loops entirely but cannot have |
| /// disturbed any remaining child loops. However, they may need to be hoisted |
| /// to the parent loop (or to be top-level loops). The original loop may be |
| /// completely removed. |
| /// |
| /// The sibling loops resulting from this update are returned. If the original |
| /// loop remains a valid loop, it will be the first entry in this list with all |
| /// of the newly sibling loops following it. |
| /// |
| /// Returns true if the loop remains a loop after unswitching, and false if it |
| /// is no longer a loop after unswitching (and should not continue to be |
| /// referenced). |
| static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, |
| LoopInfo &LI, |
| SmallVectorImpl<Loop *> &HoistedLoops, |
| ScalarEvolution *SE) { |
| auto *PH = L.getLoopPreheader(); |
| |
| // Compute the actual parent loop from the exit blocks. Because we may have |
| // pruned some exits the loop may be different from the original parent. |
| Loop *ParentL = nullptr; |
| SmallVector<Loop *, 4> ExitLoops; |
| SmallVector<BasicBlock *, 4> ExitsInLoops; |
| ExitsInLoops.reserve(ExitBlocks.size()); |
| for (auto *ExitBB : ExitBlocks) |
| if (Loop *ExitL = LI.getLoopFor(ExitBB)) { |
| ExitLoops.push_back(ExitL); |
| ExitsInLoops.push_back(ExitBB); |
| if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) |
| ParentL = ExitL; |
| } |
| |
| // Recompute the blocks participating in this loop. This may be empty if it |
| // is no longer a loop. |
| auto LoopBlockSet = recomputeLoopBlockSet(L, LI); |
| |
| // If we still have a loop, we need to re-set the loop's parent as the exit |
| // block set changing may have moved it within the loop nest. Note that this |
| // can only happen when this loop has a parent as it can only hoist the loop |
| // *up* the nest. |
| if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { |
| // Remove this loop's (original) blocks from all of the intervening loops. |
| for (Loop *IL = L.getParentLoop(); IL != ParentL; |
| IL = IL->getParentLoop()) { |
| IL->getBlocksSet().erase(PH); |
| for (auto *BB : L.blocks()) |
| IL->getBlocksSet().erase(BB); |
| llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { |
| return BB == PH || L.contains(BB); |
| }); |
| } |
| |
| LI.changeLoopFor(PH, ParentL); |
| L.getParentLoop()->removeChildLoop(&L); |
| if (ParentL) |
| ParentL->addChildLoop(&L); |
| else |
| LI.addTopLevelLoop(&L); |
| } |
| |
| // Now we update all the blocks which are no longer within the loop. |
| auto &Blocks = L.getBlocksVector(); |
| auto BlocksSplitI = |
| LoopBlockSet.empty() |
| ? Blocks.begin() |
| : std::stable_partition( |
| Blocks.begin(), Blocks.end(), |
| [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); |
| |
| // Before we erase the list of unlooped blocks, build a set of them. |
| SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); |
| if (LoopBlockSet.empty()) |
| UnloopedBlocks.insert(PH); |
| |
| // Now erase these blocks from the loop. |
| for (auto *BB : make_range(BlocksSplitI, Blocks.end())) |
| L.getBlocksSet().erase(BB); |
| Blocks.erase(BlocksSplitI, Blocks.end()); |
| |
| // Sort the exits in ascending loop depth, we'll work backwards across these |
| // to process them inside out. |
| llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { |
| return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); |
| }); |
| |
| // We'll build up a set for each exit loop. |
| SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; |
| Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. |
| |
| auto RemoveUnloopedBlocksFromLoop = |
| [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { |
| for (auto *BB : UnloopedBlocks) |
| L.getBlocksSet().erase(BB); |
| llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { |
| return UnloopedBlocks.count(BB); |
| }); |
| }; |
| |
| SmallVector<BasicBlock *, 16> Worklist; |
| while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { |
| assert(Worklist.empty() && "Didn't clear worklist!"); |
| assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); |
| |
| // Grab the next exit block, in decreasing loop depth order. |
| BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); |
| Loop &ExitL = *LI.getLoopFor(ExitBB); |
| assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); |
| |
| // Erase all of the unlooped blocks from the loops between the previous |
| // exit loop and this exit loop. This works because the ExitInLoops list is |
| // sorted in increasing order of loop depth and thus we visit loops in |
| // decreasing order of loop depth. |
| for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) |
| RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); |
| |
| // Walk the CFG back until we hit the cloned PH adding everything reachable |
| // and in the unlooped set to this exit block's loop. |
| Worklist.push_back(ExitBB); |
| do { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| // We can stop recursing at the cloned preheader (if we get there). |
| if (BB == PH) |
| continue; |
| |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| // If this pred has already been moved to our set or is part of some |
| // (inner) loop, no update needed. |
| if (!UnloopedBlocks.erase(PredBB)) { |
| assert((NewExitLoopBlocks.count(PredBB) || |
| ExitL.contains(LI.getLoopFor(PredBB))) && |
| "Predecessor not in a nested loop (or already visited)!"); |
| continue; |
| } |
| |
| // We just insert into the loop set here. We'll add these blocks to the |
| // exit loop after we build up the set in a deterministic order rather |
| // than the predecessor-influenced visit order. |
| bool Inserted = NewExitLoopBlocks.insert(PredBB).second; |
| (void)Inserted; |
| assert(Inserted && "Should only visit an unlooped block once!"); |
| |
| // And recurse through to its predecessors. |
| Worklist.push_back(PredBB); |
| } |
| } while (!Worklist.empty()); |
| |
| // If blocks in this exit loop were directly part of the original loop (as |
| // opposed to a child loop) update the map to point to this exit loop. This |
| // just updates a map and so the fact that the order is unstable is fine. |
| for (auto *BB : NewExitLoopBlocks) |
| if (Loop *BBL = LI.getLoopFor(BB)) |
| if (BBL == &L || !L.contains(BBL)) |
| LI.changeLoopFor(BB, &ExitL); |
| |
| // We will remove the remaining unlooped blocks from this loop in the next |
| // iteration or below. |
| NewExitLoopBlocks.clear(); |
| } |
| |
| // Any remaining unlooped blocks are no longer part of any loop unless they |
| // are part of some child loop. |
| for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) |
| RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); |
| for (auto *BB : UnloopedBlocks) |
| if (Loop *BBL = LI.getLoopFor(BB)) |
| if (BBL == &L || !L.contains(BBL)) |
| LI.changeLoopFor(BB, nullptr); |
| |
| // Sink all the child loops whose headers are no longer in the loop set to |
| // the parent (or to be top level loops). We reach into the loop and directly |
| // update its subloop vector to make this batch update efficient. |
| auto &SubLoops = L.getSubLoopsVector(); |
| auto SubLoopsSplitI = |
| LoopBlockSet.empty() |
| ? SubLoops.begin() |
| : std::stable_partition( |
| SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { |
| return LoopBlockSet.count(SubL->getHeader()); |
| }); |
| for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { |
| HoistedLoops.push_back(HoistedL); |
| HoistedL->setParentLoop(nullptr); |
| |
| // To compute the new parent of this hoisted loop we look at where we |
| // placed the preheader above. We can't lookup the header itself because we |
| // retained the mapping from the header to the hoisted loop. But the |
| // preheader and header should have the exact same new parent computed |
| // based on the set of exit blocks from the original loop as the preheader |
| // is a predecessor of the header and so reached in the reverse walk. And |
| // because the loops were all in simplified form the preheader of the |
| // hoisted loop can't be part of some *other* loop. |
| if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) |
| NewParentL->addChildLoop(HoistedL); |
| else |
| LI.addTopLevelLoop(HoistedL); |
| } |
| SubLoops.erase(SubLoopsSplitI, SubLoops.end()); |
| |
| // Actually delete the loop if nothing remained within it. |
| if (Blocks.empty()) { |
| assert(SubLoops.empty() && |
| "Failed to remove all subloops from the original loop!"); |
| if (Loop *ParentL = L.getParentLoop()) |
| ParentL->removeChildLoop(llvm::find(*ParentL, &L)); |
| else |
| LI.removeLoop(llvm::find(LI, &L)); |
| // markLoopAsDeleted for L should be triggered by the caller (it is typically |
| // done by using the UnswitchCB callback). |
| if (SE) |
| SE->forgetBlockAndLoopDispositions(); |
| LI.destroy(&L); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Helper to visit a dominator subtree, invoking a callable on each node. |
| /// |
| /// Returning false at any point will stop walking past that node of the tree. |
| template <typename CallableT> |
| void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { |
| SmallVector<DomTreeNode *, 4> DomWorklist; |
| DomWorklist.push_back(DT[BB]); |
| #ifndef NDEBUG |
| SmallPtrSet<DomTreeNode *, 4> Visited; |
| Visited.insert(DT[BB]); |
| #endif |
| do { |
| DomTreeNode *N = DomWorklist.pop_back_val(); |
| |
| // Visit this node. |
| if (!Callable(N->getBlock())) |
| continue; |
| |
| // Accumulate the child nodes. |
| for (DomTreeNode *ChildN : *N) { |
| assert(Visited.insert(ChildN).second && |
| "Cannot visit a node twice when walking a tree!"); |
| DomWorklist.push_back(ChildN); |
| } |
| } while (!DomWorklist.empty()); |
| } |
| |
| static void unswitchNontrivialInvariants( |
| Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, |
| IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, |
| AssumptionCache &AC, |
| function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, |
| ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
| function_ref<void(Loop &, StringRef)> DestroyLoopCB) { |
| auto *ParentBB = TI.getParent(); |
| BranchInst *BI = dyn_cast<BranchInst>(&TI); |
| SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); |
| |
| // We can only unswitch switches, conditional branches with an invariant |
| // condition, or combining invariant conditions with an instruction or |
| // partially invariant instructions. |
| assert((SI || (BI && BI->isConditional())) && |
| "Can only unswitch switches and conditional branch!"); |
| bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); |
| bool FullUnswitch = |
| SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && |
| !PartiallyInvariant); |
| if (FullUnswitch) |
| assert(Invariants.size() == 1 && |
| "Cannot have other invariants with full unswitching!"); |
| else |
| assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && |
| "Partial unswitching requires an instruction as the condition!"); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // Constant and BBs tracking the cloned and continuing successor. When we are |
| // unswitching the entire condition, this can just be trivially chosen to |
| // unswitch towards `true`. However, when we are unswitching a set of |
| // invariants combined with `and` or `or` or partially invariant instructions, |
| // the combining operation determines the best direction to unswitch: we want |
| // to unswitch the direction that will collapse the branch. |
| bool Direction = true; |
| int ClonedSucc = 0; |
| if (!FullUnswitch) { |
| Value *Cond = skipTrivialSelect(BI->getCondition()); |
| (void)Cond; |
| assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || |
| PartiallyInvariant) && |
| "Only `or`, `and`, an `select`, partially invariant instructions " |
| "can combine invariants being unswitched."); |
| if (!match(Cond, m_LogicalOr())) { |
| if (match(Cond, m_LogicalAnd()) || |
| (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { |
| Direction = false; |
| ClonedSucc = 1; |
| } |
| } |
| } |
| |
| BasicBlock *RetainedSuccBB = |
| BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); |
| SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; |
| if (BI) |
| UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); |
| else |
| for (auto Case : SI->cases()) |
| if (Case.getCaseSuccessor() != RetainedSuccBB) |
| UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); |
| |
| assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && |
| "Should not unswitch the same successor we are retaining!"); |
| |
| // The branch should be in this exact loop. Any inner loop's invariant branch |
| // should be handled by unswitching that inner loop. The caller of this |
| // routine should filter out any candidates that remain (but were skipped for |
| // whatever reason). |
| assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); |
| |
| // Compute the parent loop now before we start hacking on things. |
| Loop *ParentL = L.getParentLoop(); |
| // Get blocks in RPO order for MSSA update, before changing the CFG. |
| LoopBlocksRPO LBRPO(&L); |
| if (MSSAU) |
| LBRPO.perform(&LI); |
| |
| // Compute the outer-most loop containing one of our exit blocks. This is the |
| // furthest up our loopnest which can be mutated, which we will use below to |
| // update things. |
| Loop *OuterExitL = &L; |
| SmallVector<BasicBlock *, 4> ExitBlocks; |
| L.getUniqueExitBlocks(ExitBlocks); |
| for (auto *ExitBB : ExitBlocks) { |
| Loop *NewOuterExitL = LI.getLoopFor(ExitBB); |
| if (!NewOuterExitL) { |
| // We exited the entire nest with this block, so we're done. |
| OuterExitL = nullptr; |
| break; |
| } |
| if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) |
| OuterExitL = NewOuterExitL; |
| } |
| |
| // At this point, we're definitely going to unswitch something so invalidate |
| // any cached information in ScalarEvolution for the outer most loop |
| // containing an exit block and all nested loops. |
| if (SE) { |
| if (OuterExitL) |
| SE->forgetLoop(OuterExitL); |
| else |
| SE->forgetTopmostLoop(&L); |
| SE->forgetBlockAndLoopDispositions(); |
| } |
| |
| bool InsertFreeze = false; |
| if (FreezeLoopUnswitchCond) { |
| ICFLoopSafetyInfo SafetyInfo; |
| SafetyInfo.computeLoopSafetyInfo(&L); |
| InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); |
| } |
| |
| // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform, |
| // otherwise the branch instruction will have been moved outside the loop |
| // already, and may imply that a poison condition is always UB. |
| Value *FullUnswitchCond = nullptr; |
| if (FullUnswitch) { |
| FullUnswitchCond = |
| BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition(); |
| if (InsertFreeze) |
| InsertFreeze = !isGuaranteedNotToBeUndefOrPoison( |
| FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT); |
| } |
| |
| // If the edge from this terminator to a successor dominates that successor, |
| // store a map from each block in its dominator subtree to it. This lets us |
| // tell when cloning for a particular successor if a block is dominated by |
| // some *other* successor with a single data structure. We use this to |
| // significantly reduce cloning. |
| SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; |
| for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB), |
| UnswitchedSuccBBs)) |
| if (SuccBB->getUniquePredecessor() || |
| llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { |
| return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); |
| })) |
| visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { |
| DominatingSucc[BB] = SuccBB; |
| return true; |
| }); |
| |
| // Split the preheader, so that we know that there is a safe place to insert |
| // the conditional branch. We will change the preheader to have a conditional |
| // branch on LoopCond. The original preheader will become the split point |
| // between the unswitched versions, and we will have a new preheader for the |
| // original loop. |
| BasicBlock *SplitBB = L.getLoopPreheader(); |
| BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); |
| |
| // Keep track of the dominator tree updates needed. |
| SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| |
| // Clone the loop for each unswitched successor. |
| SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; |
| VMaps.reserve(UnswitchedSuccBBs.size()); |
| SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; |
| for (auto *SuccBB : UnswitchedSuccBBs) { |
| VMaps.emplace_back(new ValueToValueMapTy()); |
| ClonedPHs[SuccBB] = buildClonedLoopBlocks( |
| L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, |
| DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE); |
| } |
| |
| // Drop metadata if we may break its semantics by moving this instr into the |
| // split block. |
| if (TI.getMetadata(LLVMContext::MD_make_implicit)) { |
| if (DropNonTrivialImplicitNullChecks) |
| // Do not spend time trying to understand if we can keep it, just drop it |
| // to save compile time. |
| TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); |
| else { |
| // It is only legal to preserve make.implicit metadata if we are |
| // guaranteed no reach implicit null check after following this branch. |
| ICFLoopSafetyInfo SafetyInfo; |
| SafetyInfo.computeLoopSafetyInfo(&L); |
| if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) |
| TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); |
| } |
| } |
| |
| // The stitching of the branched code back together depends on whether we're |
| // doing full unswitching or not with the exception that we always want to |
| // nuke the initial terminator placed in the split block. |
| SplitBB->getTerminator()->eraseFromParent(); |
| if (FullUnswitch) { |
| // Splice the terminator from the original loop and rewrite its |
| // successors. |
| SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator()); |
| |
| // Keep a clone of the terminator for MSSA updates. |
| Instruction *NewTI = TI.clone(); |
| NewTI->insertInto(ParentBB, ParentBB->end()); |
| |
| // First wire up the moved terminator to the preheaders. |
| if (BI) { |
| BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| BI->setSuccessor(ClonedSucc, ClonedPH); |
| BI->setSuccessor(1 - ClonedSucc, LoopPH); |
| if (InsertFreeze) |
| FullUnswitchCond = new FreezeInst( |
| FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI); |
| BI->setCondition(FullUnswitchCond); |
| DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); |
| } else { |
| assert(SI && "Must either be a branch or switch!"); |
| |
| // Walk the cases and directly update their successors. |
| assert(SI->getDefaultDest() == RetainedSuccBB && |
| "Not retaining default successor!"); |
| SI->setDefaultDest(LoopPH); |
| for (const auto &Case : SI->cases()) |
| if (Case.getCaseSuccessor() == RetainedSuccBB) |
| Case.setSuccessor(LoopPH); |
| else |
| Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); |
| |
| if (InsertFreeze) |
| SI->setCondition(new FreezeInst( |
| FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI)); |
| |
| // We need to use the set to populate domtree updates as even when there |
| // are multiple cases pointing at the same successor we only want to |
| // remove and insert one edge in the domtree. |
| for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| DTUpdates.push_back( |
| {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); |
| } |
| |
| if (MSSAU) { |
| DT.applyUpdates(DTUpdates); |
| DTUpdates.clear(); |
| |
| // Remove all but one edge to the retained block and all unswitched |
| // blocks. This is to avoid having duplicate entries in the cloned Phis, |
| // when we know we only keep a single edge for each case. |
| MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); |
| for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); |
| |
| for (auto &VMap : VMaps) |
| MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, |
| /*IgnoreIncomingWithNoClones=*/true); |
| MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); |
| |
| // Remove all edges to unswitched blocks. |
| for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| MSSAU->removeEdge(ParentBB, SuccBB); |
| } |
| |
| // Now unhook the successor relationship as we'll be replacing |
| // the terminator with a direct branch. This is much simpler for branches |
| // than switches so we handle those first. |
| if (BI) { |
| // Remove the parent as a predecessor of the unswitched successor. |
| assert(UnswitchedSuccBBs.size() == 1 && |
| "Only one possible unswitched block for a branch!"); |
| BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); |
| UnswitchedSuccBB->removePredecessor(ParentBB, |
| /*KeepOneInputPHIs*/ true); |
| DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); |
| } else { |
| // Note that we actually want to remove the parent block as a predecessor |
| // of *every* case successor. The case successor is either unswitched, |
| // completely eliminating an edge from the parent to that successor, or it |
| // is a duplicate edge to the retained successor as the retained successor |
| // is always the default successor and as we'll replace this with a direct |
| // branch we no longer need the duplicate entries in the PHI nodes. |
| SwitchInst *NewSI = cast<SwitchInst>(NewTI); |
| assert(NewSI->getDefaultDest() == RetainedSuccBB && |
| "Not retaining default successor!"); |
| for (const auto &Case : NewSI->cases()) |
| Case.getCaseSuccessor()->removePredecessor( |
| ParentBB, |
| /*KeepOneInputPHIs*/ true); |
| |
| // We need to use the set to populate domtree updates as even when there |
| // are multiple cases pointing at the same successor we only want to |
| // remove and insert one edge in the domtree. |
| for (BasicBlock *SuccBB : UnswitchedSuccBBs) |
| DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); |
| } |
| |
| // After MSSAU update, remove the cloned terminator instruction NewTI. |
| ParentBB->getTerminator()->eraseFromParent(); |
| |
| // Create a new unconditional branch to the continuing block (as opposed to |
| // the one cloned). |
| BranchInst::Create(RetainedSuccBB, ParentBB); |
| } else { |
| assert(BI && "Only branches have partial unswitching."); |
| assert(UnswitchedSuccBBs.size() == 1 && |
| "Only one possible unswitched block for a branch!"); |
| BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| // When doing a partial unswitch, we have to do a bit more work to build up |
| // the branch in the split block. |
| if (PartiallyInvariant) |
| buildPartialInvariantUnswitchConditionalBranch( |
| *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); |
| else { |
| buildPartialUnswitchConditionalBranch( |
| *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, |
| FreezeLoopUnswitchCond, BI, &AC, DT); |
| } |
| DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); |
| |
| if (MSSAU) { |
| DT.applyUpdates(DTUpdates); |
| DTUpdates.clear(); |
| |
| // Perform MSSA cloning updates. |
| for (auto &VMap : VMaps) |
| MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, |
| /*IgnoreIncomingWithNoClones=*/true); |
| MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); |
| } |
| } |
| |
| // Apply the updates accumulated above to get an up-to-date dominator tree. |
| DT.applyUpdates(DTUpdates); |
| |
| // Now that we have an accurate dominator tree, first delete the dead cloned |
| // blocks so that we can accurately build any cloned loops. It is important to |
| // not delete the blocks from the original loop yet because we still want to |
| // reference the original loop to understand the cloned loop's structure. |
| deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); |
| |
| // Build the cloned loop structure itself. This may be substantially |
| // different from the original structure due to the simplified CFG. This also |
| // handles inserting all the cloned blocks into the correct loops. |
| SmallVector<Loop *, 4> NonChildClonedLoops; |
| for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) |
| buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); |
| |
| // Now that our cloned loops have been built, we can update the original loop. |
| // First we delete the dead blocks from it and then we rebuild the loop |
| // structure taking these deletions into account. |
| deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| SmallVector<Loop *, 4> HoistedLoops; |
| bool IsStillLoop = |
| rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // This transformation has a high risk of corrupting the dominator tree, and |
| // the below steps to rebuild loop structures will result in hard to debug |
| // errors in that case so verify that the dominator tree is sane first. |
| // FIXME: Remove this when the bugs stop showing up and rely on existing |
| // verification steps. |
| assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| |
| if (BI && !PartiallyInvariant) { |
| // If we unswitched a branch which collapses the condition to a known |
| // constant we want to replace all the uses of the invariants within both |
| // the original and cloned blocks. We do this here so that we can use the |
| // now updated dominator tree to identify which side the users are on. |
| assert(UnswitchedSuccBBs.size() == 1 && |
| "Only one possible unswitched block for a branch!"); |
| BasicBlock *ClonedPH = ClonedPHs.begin()->second; |
| |
| // When considering multiple partially-unswitched invariants |
| // we cant just go replace them with constants in both branches. |
| // |
| // For 'AND' we infer that true branch ("continue") means true |
| // for each invariant operand. |
| // For 'OR' we can infer that false branch ("continue") means false |
| // for each invariant operand. |
| // So it happens that for multiple-partial case we dont replace |
| // in the unswitched branch. |
| bool ReplaceUnswitched = |
| FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; |
| |
| ConstantInt *UnswitchedReplacement = |
| Direction ? ConstantInt::getTrue(BI->getContext()) |
| : ConstantInt::getFalse(BI->getContext()); |
| ConstantInt *ContinueReplacement = |
| Direction ? ConstantInt::getFalse(BI->getContext()) |
| : ConstantInt::getTrue(BI->getContext()); |
| for (Value *Invariant : Invariants) { |
| assert(!isa<Constant>(Invariant) && |
| "Should not be replacing constant values!"); |
| // Use make_early_inc_range here as set invalidates the iterator. |
| for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { |
| Instruction *UserI = dyn_cast<Instruction>(U.getUser()); |
| if (!UserI) |
| continue; |
| |
| // Replace it with the 'continue' side if in the main loop body, and the |
| // unswitched if in the cloned blocks. |
| if (DT.dominates(LoopPH, UserI->getParent())) |
| U.set(ContinueReplacement); |
| else if (ReplaceUnswitched && |
| DT.dominates(ClonedPH, UserI->getParent())) |
| U.set(UnswitchedReplacement); |
| } |
| } |
| } |
| |
| // We can change which blocks are exit blocks of all the cloned sibling |
| // loops, the current loop, and any parent loops which shared exit blocks |
| // with the current loop. As a consequence, we need to re-form LCSSA for |
| // them. But we shouldn't need to re-form LCSSA for any child loops. |
| // FIXME: This could be made more efficient by tracking which exit blocks are |
| // new, and focusing on them, but that isn't likely to be necessary. |
| // |
| // In order to reasonably rebuild LCSSA we need to walk inside-out across the |
| // loop nest and update every loop that could have had its exits changed. We |
| // also need to cover any intervening loops. We add all of these loops to |
| // a list and sort them by loop depth to achieve this without updating |
| // unnecessary loops. |
| auto UpdateLoop = [&](Loop &UpdateL) { |
| #ifndef NDEBUG |
| UpdateL.verifyLoop(); |
| for (Loop *ChildL : UpdateL) { |
| ChildL->verifyLoop(); |
| assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && |
| "Perturbed a child loop's LCSSA form!"); |
| } |
| #endif |
| // First build LCSSA for this loop so that we can preserve it when |
| // forming dedicated exits. We don't want to perturb some other loop's |
| // LCSSA while doing that CFG edit. |
| formLCSSA(UpdateL, DT, &LI, SE); |
| |
| // For loops reached by this loop's original exit blocks we may |
| // introduced new, non-dedicated exits. At least try to re-form dedicated |
| // exits for these loops. This may fail if they couldn't have dedicated |
| // exits to start with. |
| formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); |
| }; |
| |
| // For non-child cloned loops and hoisted loops, we just need to update LCSSA |
| // and we can do it in any order as they don't nest relative to each other. |
| // |
| // Also check if any of the loops we have updated have become top-level loops |
| // as that will necessitate widening the outer loop scope. |
| for (Loop *UpdatedL : |
| llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { |
| UpdateLoop(*UpdatedL); |
| if (UpdatedL->isOutermost()) |
| OuterExitL = nullptr; |
| } |
| if (IsStillLoop) { |
| UpdateLoop(L); |
| if (L.isOutermost()) |
| OuterExitL = nullptr; |
| } |
| |
| // If the original loop had exit blocks, walk up through the outer most loop |
| // of those exit blocks to update LCSSA and form updated dedicated exits. |
| if (OuterExitL != &L) |
| for (Loop *OuterL = ParentL; OuterL != OuterExitL; |
| OuterL = OuterL->getParentLoop()) |
| UpdateLoop(*OuterL); |
| |
| #ifndef NDEBUG |
| // Verify the entire loop structure to catch any incorrect updates before we |
| // progress in the pass pipeline. |
| LI.verify(DT); |
| #endif |
| |
| // Now that we've unswitched something, make callbacks to report the changes. |
| // For that we need to merge together the updated loops and the cloned loops |
| // and check whether the original loop survived. |
| SmallVector<Loop *, 4> SibLoops; |
| for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) |
| if (UpdatedL->getParentLoop() == ParentL) |
| SibLoops.push_back(UpdatedL); |
| UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| if (BI) |
| ++NumBranches; |
| else |
| ++NumSwitches; |
| } |
| |
| /// Recursively compute the cost of a dominator subtree based on the per-block |
| /// cost map provided. |
| /// |
| /// The recursive computation is memozied into the provided DT-indexed cost map |
| /// to allow querying it for most nodes in the domtree without it becoming |
| /// quadratic. |
| static InstructionCost computeDomSubtreeCost( |
| DomTreeNode &N, |
| const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, |
| SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { |
| // Don't accumulate cost (or recurse through) blocks not in our block cost |
| // map and thus not part of the duplication cost being considered. |
| auto BBCostIt = BBCostMap.find(N.getBlock()); |
| if (BBCostIt == BBCostMap.end()) |
| return 0; |
| |
| // Lookup this node to see if we already computed its cost. |
| auto DTCostIt = DTCostMap.find(&N); |
| if (DTCostIt != DTCostMap.end()) |
| return DTCostIt->second; |
| |
| // If not, we have to compute it. We can't use insert above and update |
| // because computing the cost may insert more things into the map. |
| InstructionCost Cost = std::accumulate( |
| N.begin(), N.end(), BBCostIt->second, |
| [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { |
| return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); |
| }); |
| bool Inserted = DTCostMap.insert({&N, Cost}).second; |
| (void)Inserted; |
| assert(Inserted && "Should not insert a node while visiting children!"); |
| return Cost; |
| } |
| |
| /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, |
| /// making the following replacement: |
| /// |
| /// --code before guard-- |
| /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] |
| /// --code after guard-- |
| /// |
| /// into |
| /// |
| /// --code before guard-- |
| /// br i1 %cond, label %guarded, label %deopt |
| /// |
| /// guarded: |
| /// --code after guard-- |
| /// |
| /// deopt: |
| /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] |
| /// unreachable |
| /// |
| /// It also makes all relevant DT and LI updates, so that all structures are in |
| /// valid state after this transform. |
| static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, |
| DominatorTree &DT, LoopInfo &LI, |
| MemorySSAUpdater *MSSAU) { |
| SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
| LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); |
| BasicBlock *CheckBB = GI->getParent(); |
| |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| |
| // Remove all CheckBB's successors from DomTree. A block can be seen among |
| // successors more than once, but for DomTree it should be added only once. |
| SmallPtrSet<BasicBlock *, 4> Successors; |
| for (auto *Succ : successors(CheckBB)) |
| if (Successors.insert(Succ).second) |
| DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); |
| |
| Instruction *DeoptBlockTerm = |
| SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); |
| BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); |
| // SplitBlockAndInsertIfThen inserts control flow that branches to |
| // DeoptBlockTerm if the condition is true. We want the opposite. |
| CheckBI->swapSuccessors(); |
| |
| BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); |
| GuardedBlock->setName("guarded"); |
| CheckBI->getSuccessor(1)->setName("deopt"); |
| BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); |
| |
| if (MSSAU) |
| MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); |
| |
| GI->moveBefore(DeoptBlockTerm); |
| GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); |
| |
| // Add new successors of CheckBB into DomTree. |
| for (auto *Succ : successors(CheckBB)) |
| DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); |
| |
| // Now the blocks that used to be CheckBB's successors are GuardedBlock's |
| // successors. |
| for (auto *Succ : Successors) |
| DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); |
| |
| // Make proper changes to DT. |
| DT.applyUpdates(DTUpdates); |
| // Inform LI of a new loop block. |
| L.addBasicBlockToLoop(GuardedBlock, LI); |
| |
| if (MSSAU) { |
| MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); |
| MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); |
| if (VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| } |
| |
| ++NumGuards; |
| return CheckBI; |
| } |
| |
| /// Cost multiplier is a way to limit potentially exponential behavior |
| /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch |
| /// candidates available. Also accounting for the number of "sibling" loops with |
| /// the idea to account for previous unswitches that already happened on this |
| /// cluster of loops. There was an attempt to keep this formula simple, |
| /// just enough to limit the worst case behavior. Even if it is not that simple |
| /// now it is still not an attempt to provide a detailed heuristic size |
| /// prediction. |
| /// |
| /// TODO: Make a proper accounting of "explosion" effect for all kinds of |
| /// unswitch candidates, making adequate predictions instead of wild guesses. |
| /// That requires knowing not just the number of "remaining" candidates but |
| /// also costs of unswitching for each of these candidates. |
| static int CalculateUnswitchCostMultiplier( |
| const Instruction &TI, const Loop &L, const LoopInfo &LI, |
| const DominatorTree &DT, |
| ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) { |
| |
| // Guards and other exiting conditions do not contribute to exponential |
| // explosion as soon as they dominate the latch (otherwise there might be |
| // another path to the latch remaining that does not allow to eliminate the |
| // loop copy on unswitch). |
| const BasicBlock *Latch = L.getLoopLatch(); |
| const BasicBlock *CondBlock = TI.getParent(); |
| if (DT.dominates(CondBlock, Latch) && |
| (isGuard(&TI) || |
| llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) { |
| return L.contains(SuccBB); |
| }) <= 1)) { |
| NumCostMultiplierSkipped++; |
| return 1; |
| } |
| |
| auto *ParentL = L.getParentLoop(); |
| int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() |
| : std::distance(LI.begin(), LI.end())); |
| // Count amount of clones that all the candidates might cause during |
| // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. |
| int UnswitchedClones = 0; |
| for (auto Candidate : UnswitchCandidates) { |
| const Instruction *CI = Candidate.TI; |
| const BasicBlock *CondBlock = CI->getParent(); |
| bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); |
| if (isGuard(CI)) { |
| if (!SkipExitingSuccessors) |
| UnswitchedClones++; |
| continue; |
| } |
| int NonExitingSuccessors = |
| llvm::count_if(successors(CondBlock), |
| [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) { |
| return !SkipExitingSuccessors || L.contains(SuccBB); |
| }); |
| UnswitchedClones += Log2_32(NonExitingSuccessors); |
| } |
| |
| // Ignore up to the "unscaled candidates" number of unswitch candidates |
| // when calculating the power-of-two scaling of the cost. The main idea |
| // with this control is to allow a small number of unswitches to happen |
| // and rely more on siblings multiplier (see below) when the number |
| // of candidates is small. |
| unsigned ClonesPower = |
| std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); |
| |
| // Allowing top-level loops to spread a bit more than nested ones. |
| int SiblingsMultiplier = |
| std::max((ParentL ? SiblingsCount |
| : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), |
| 1); |
| // Compute the cost multiplier in a way that won't overflow by saturating |
| // at an upper bound. |
| int CostMultiplier; |
| if (ClonesPower > Log2_32(UnswitchThreshold) || |
| SiblingsMultiplier > UnswitchThreshold) |
| CostMultiplier = UnswitchThreshold; |
| else |
| CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), |
| (int)UnswitchThreshold); |
| |
| LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier |
| << " (siblings " << SiblingsMultiplier << " * clones " |
| << (1 << ClonesPower) << ")" |
| << " for unswitch candidate: " << TI << "\n"); |
| return CostMultiplier; |
| } |
| |
| static bool collectUnswitchCandidates( |
| SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, |
| IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, |
| const Loop &L, const LoopInfo &LI, AAResults &AA, |
| const MemorySSAUpdater *MSSAU) { |
| assert(UnswitchCandidates.empty() && "Should be!"); |
| // Whether or not we should also collect guards in the loop. |
| bool CollectGuards = false; |
| if (UnswitchGuards) { |
| auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( |
| Intrinsic::getName(Intrinsic::experimental_guard)); |
| if (GuardDecl && !GuardDecl->use_empty()) |
| CollectGuards = true; |
| } |
| |
| for (auto *BB : L.blocks()) { |
| if (LI.getLoopFor(BB) != &L) |
| continue; |
| |
| if (CollectGuards) |
| for (auto &I : *BB) |
| if (isGuard(&I)) { |
| auto *Cond = |
| skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0)); |
| // TODO: Support AND, OR conditions and partial unswitching. |
| if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) |
| UnswitchCandidates.push_back({&I, {Cond}}); |
| } |
| |
| if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { |
| // We can only consider fully loop-invariant switch conditions as we need |
| // to completely eliminate the switch after unswitching. |
| if (!isa<Constant>(SI->getCondition()) && |
| L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) |
| UnswitchCandidates.push_back({SI, {SI->getCondition()}}); |
| continue; |
| } |
| |
| auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || |
| BI->getSuccessor(0) == BI->getSuccessor(1)) |
| continue; |
| |
| Value *Cond = skipTrivialSelect(BI->getCondition()); |
| if (isa<Constant>(Cond)) |
| continue; |
| |
| if (L.isLoopInvariant(Cond)) { |
| UnswitchCandidates.push_back({BI, {Cond}}); |
| continue; |
| } |
| |
| Instruction &CondI = *cast<Instruction>(Cond); |
| if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { |
| TinyPtrVector<Value *> Invariants = |
| collectHomogenousInstGraphLoopInvariants(L, CondI, LI); |
| if (Invariants.empty()) |
| continue; |
| |
| UnswitchCandidates.push_back({BI, std::move(Invariants)}); |
| continue; |
| } |
| } |
| |
| if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && |
| !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { |
| return TerminatorAndInvariants.TI == L.getHeader()->getTerminator(); |
| })) { |
| MemorySSA *MSSA = MSSAU->getMemorySSA(); |
| if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { |
| LLVM_DEBUG( |
| dbgs() << "simple-loop-unswitch: Found partially invariant condition " |
| << *Info->InstToDuplicate[0] << "\n"); |
| PartialIVInfo = *Info; |
| PartialIVCondBranch = L.getHeader()->getTerminator(); |
| TinyPtrVector<Value *> ValsToDuplicate; |
| llvm::append_range(ValsToDuplicate, Info->InstToDuplicate); |
| UnswitchCandidates.push_back( |
| {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); |
| } |
| } |
| return !UnswitchCandidates.empty(); |
| } |
| |
| static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) { |
| if (!L.isSafeToClone()) |
| return false; |
| for (auto *BB : L.blocks()) |
| for (auto &I : *BB) { |
| if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) |
| return false; |
| if (auto *CB = dyn_cast<CallBase>(&I)) { |
| assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone()."); |
| if (CB->isConvergent()) |
| return false; |
| } |
| } |
| |
| // Check if there are irreducible CFG cycles in this loop. If so, we cannot |
| // easily unswitch non-trivial edges out of the loop. Doing so might turn the |
| // irreducible control flow into reducible control flow and introduce new |
| // loops "out of thin air". If we ever discover important use cases for doing |
| // this, we can add support to loop unswitch, but it is a lot of complexity |
| // for what seems little or no real world benefit. |
| LoopBlocksRPO RPOT(&L); |
| RPOT.perform(&LI); |
| if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) |
| return false; |
| |
| SmallVector<BasicBlock *, 4> ExitBlocks; |
| L.getUniqueExitBlocks(ExitBlocks); |
| // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch |
| // instruction as we don't know how to split those exit blocks. |
| // FIXME: We should teach SplitBlock to handle this and remove this |
| // restriction. |
| for (auto *ExitBB : ExitBlocks) { |
| auto *I = ExitBB->getFirstNonPHI(); |
| if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { |
| LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " |
| "in exit block\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate( |
| ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L, |
| const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, |
| const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) { |
| // Given that unswitching these terminators will require duplicating parts of |
| // the loop, so we need to be able to model that cost. Compute the ephemeral |
| // values and set up a data structure to hold per-BB costs. We cache each |
| // block's cost so that we don't recompute this when considering different |
| // subsets of the loop for duplication during unswitching. |
| SmallPtrSet<const Value *, 4> EphValues; |
| CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); |
| SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; |
| |
| // Compute the cost of each block, as well as the total loop cost. Also, bail |
| // out if we see instructions which are incompatible with loop unswitching |
| // (convergent, noduplicate, or cross-basic-block tokens). |
| // FIXME: We might be able to safely handle some of these in non-duplicated |
| // regions. |
| TargetTransformInfo::TargetCostKind CostKind = |
| L.getHeader()->getParent()->hasMinSize() |
| ? TargetTransformInfo::TCK_CodeSize |
| : TargetTransformInfo::TCK_SizeAndLatency; |
| InstructionCost LoopCost = 0; |
| for (auto *BB : L.blocks()) { |
| InstructionCost Cost = 0; |
| for (auto &I : *BB) { |
| if (EphValues.count(&I)) |
| continue; |
| Cost += TTI.getInstructionCost(&I, CostKind); |
| } |
| assert(Cost >= 0 && "Must not have negative costs!"); |
| LoopCost += Cost; |
| assert(LoopCost >= 0 && "Must not have negative loop costs!"); |
| BBCostMap[BB] = Cost; |
| } |
| LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); |
| |
| // Now we find the best candidate by searching for the one with the following |
| // properties in order: |
| // |
| // 1) An unswitching cost below the threshold |
| // 2) The smallest number of duplicated unswitch candidates (to avoid |
| // creating redundant subsequent unswitching) |
| // 3) The smallest cost after unswitching. |
| // |
| // We prioritize reducing fanout of unswitch candidates provided the cost |
| // remains below the threshold because this has a multiplicative effect. |
| // |
| // This requires memoizing each dominator subtree to avoid redundant work. |
| // |
| // FIXME: Need to actually do the number of candidates part above. |
| SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; |
| // Given a terminator which might be unswitched, computes the non-duplicated |
| // cost for that terminator. |
| auto ComputeUnswitchedCost = [&](Instruction &TI, |
| bool FullUnswitch) -> InstructionCost { |
| BasicBlock &BB = *TI.getParent(); |
| SmallPtrSet<BasicBlock *, 4> Visited; |
| |
| InstructionCost Cost = 0; |
| for (BasicBlock *SuccBB : successors(&BB)) { |
| // Don't count successors more than once. |
| if (!Visited.insert(SuccBB).second) |
| continue; |
| |
| // If this is a partial unswitch candidate, then it must be a conditional |
| // branch with a condition of either `or`, `and`, their corresponding |
| // select forms or partially invariant instructions. In that case, one of |
| // the successors is necessarily duplicated, so don't even try to remove |
| // its cost. |
| if (!FullUnswitch) { |
| auto &BI = cast<BranchInst>(TI); |
| Value *Cond = skipTrivialSelect(BI.getCondition()); |
| if (match(Cond, m_LogicalAnd())) { |
| if (SuccBB == BI.getSuccessor(1)) |
| continue; |
| } else if (match(Cond, m_LogicalOr())) { |
| if (SuccBB == BI.getSuccessor(0)) |
| continue; |
| } else if ((PartialIVInfo.KnownValue->isOneValue() && |
| SuccBB == BI.getSuccessor(0)) || |
| (!PartialIVInfo.KnownValue->isOneValue() && |
| SuccBB == BI.getSuccessor(1))) |
| continue; |
| } |
| |
| // This successor's domtree will not need to be duplicated after |
| // unswitching if the edge to the successor dominates it (and thus the |
| // entire tree). This essentially means there is no other path into this |
| // subtree and so it will end up live in only one clone of the loop. |
| if (SuccBB->getUniquePredecessor() || |
| llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { |
| return PredBB == &BB || DT.dominates(SuccBB, PredBB); |
| })) { |
| Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); |
| assert(Cost <= LoopCost && |
| "Non-duplicated cost should never exceed total loop cost!"); |
| } |
| } |
| |
| // Now scale the cost by the number of unique successors minus one. We |
| // subtract one because there is already at least one copy of the entire |
| // loop. This is computing the new cost of unswitching a condition. |
| // Note that guards always have 2 unique successors that are implicit and |
| // will be materialized if we decide to unswitch it. |
| int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); |
| assert(SuccessorsCount > 1 && |
| "Cannot unswitch a condition without multiple distinct successors!"); |
| return (LoopCost - Cost) * (SuccessorsCount - 1); |
| }; |
| |
| std::optional<NonTrivialUnswitchCandidate> Best; |
| for (auto &Candidate : UnswitchCandidates) { |
| Instruction &TI = *Candidate.TI; |
| ArrayRef<Value *> Invariants = Candidate.Invariants; |
| BranchInst *BI = dyn_cast<BranchInst>(&TI); |
| InstructionCost CandidateCost = ComputeUnswitchedCost( |
| TI, /*FullUnswitch*/ !BI || |
| (Invariants.size() == 1 && |
| Invariants[0] == skipTrivialSelect(BI->getCondition()))); |
| // Calculate cost multiplier which is a tool to limit potentially |
| // exponential behavior of loop-unswitch. |
| if (EnableUnswitchCostMultiplier) { |
| int CostMultiplier = |
| CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); |
| assert( |
| (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && |
| "cost multiplier needs to be in the range of 1..UnswitchThreshold"); |
| CandidateCost *= CostMultiplier; |
| LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost |
| << " (multiplier: " << CostMultiplier << ")" |
| << " for unswitch candidate: " << TI << "\n"); |
| } else { |
| LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost |
| << " for unswitch candidate: " << TI << "\n"); |
| } |
| |
| if (!Best || CandidateCost < Best->Cost) { |
| Best = Candidate; |
| Best->Cost = CandidateCost; |
| } |
| } |
| assert(Best && "Must be!"); |
| return *Best; |
| } |
| |
| static bool unswitchBestCondition( |
| Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, |
| AAResults &AA, TargetTransformInfo &TTI, |
| function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, |
| ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
| function_ref<void(Loop &, StringRef)> DestroyLoopCB) { |
| // Collect all invariant conditions within this loop (as opposed to an inner |
| // loop which would be handled when visiting that inner loop). |
| SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates; |
| IVConditionInfo PartialIVInfo; |
| Instruction *PartialIVCondBranch = nullptr; |
| // If we didn't find any candidates, we're done. |
| if (!collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo, |
| PartialIVCondBranch, L, LI, AA, MSSAU)) |
| return false; |
| |
| LLVM_DEBUG( |
| dbgs() << "Considering " << UnswitchCandidates.size() |
| << " non-trivial loop invariant conditions for unswitching.\n"); |
| |
| NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate( |
| UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo); |
| |
| assert(Best.TI && "Failed to find loop unswitch candidate"); |
| assert(Best.Cost && "Failed to compute cost"); |
| |
| if (*Best.Cost >= UnswitchThreshold) { |
| LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost |
| << "\n"); |
| return false; |
| } |
| |
| if (Best.TI != PartialIVCondBranch) |
| PartialIVInfo.InstToDuplicate.clear(); |
| |
| // If the best candidate is a guard, turn it into a branch. |
| if (isGuard(Best.TI)) |
| Best.TI = |
| turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU); |
| |
| LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost |
| << ") terminator: " << *Best.TI << "\n"); |
| unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT, |
| LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB); |
| return true; |
| } |
| |
| /// Unswitch control flow predicated on loop invariant conditions. |
| /// |
| /// This first hoists all branches or switches which are trivial (IE, do not |
| /// require duplicating any part of the loop) out of the loop body. It then |
| /// looks at other loop invariant control flows and tries to unswitch those as |
| /// well by cloning the loop if the result is small enough. |
| /// |
| /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are |
| /// also updated based on the unswitch. The `MSSA` analysis is also updated if |
| /// valid (i.e. its use is enabled). |
| /// |
| /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is |
| /// true, we will attempt to do non-trivial unswitching as well as trivial |
| /// unswitching. |
| /// |
| /// The `UnswitchCB` callback provided will be run after unswitching is |
| /// complete, with the first parameter set to `true` if the provided loop |
| /// remains a loop, and a list of new sibling loops created. |
| /// |
| /// If `SE` is non-null, we will update that analysis based on the unswitching |
| /// done. |
| static bool |
| unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, |
| AAResults &AA, TargetTransformInfo &TTI, bool Trivial, |
| bool NonTrivial, |
| function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, |
| ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
| ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, |
| function_ref<void(Loop &, StringRef)> DestroyLoopCB) { |
| assert(L.isRecursivelyLCSSAForm(DT, LI) && |
| "Loops must be in LCSSA form before unswitching."); |
| |
| // Must be in loop simplified form: we need a preheader and dedicated exits. |
| if (!L.isLoopSimplifyForm()) |
| return false; |
| |
| // Try trivial unswitch first before loop over other basic blocks in the loop. |
| if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { |
| // If we unswitched successfully we will want to clean up the loop before |
| // processing it further so just mark it as unswitched and return. |
| UnswitchCB(/*CurrentLoopValid*/ true, false, {}); |
| return true; |
| } |
| |
| // Check whether we should continue with non-trivial conditions. |
| // EnableNonTrivialUnswitch: Global variable that forces non-trivial |
| // unswitching for testing and debugging. |
| // NonTrivial: Parameter that enables non-trivial unswitching for this |
| // invocation of the transform. But this should be allowed only |
| // for targets without branch divergence. |
| // |
| // FIXME: If divergence analysis becomes available to a loop |
| // transform, we should allow unswitching for non-trivial uniform |
| // branches even on targets that have divergence. |
| // https://bugs.llvm.org/show_bug.cgi?id=48819 |
| bool ContinueWithNonTrivial = |
| EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); |
| if (!ContinueWithNonTrivial) |
| return false; |
| |
| // Skip non-trivial unswitching for optsize functions. |
| if (L.getHeader()->getParent()->hasOptSize()) |
| return false; |
| |
| // Skip cold loops, as unswitching them brings little benefit |
| // but increases the code size |
| if (PSI && PSI->hasProfileSummary() && BFI && |
| PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) { |
| LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n"); |
| return false; |
| } |
| |
| // Perform legality checks. |
| if (!isSafeForNoNTrivialUnswitching(L, LI)) |
| return false; |
| |
| // For non-trivial unswitching, because it often creates new loops, we rely on |
| // the pass manager to iterate on the loops rather than trying to immediately |
| // reach a fixed point. There is no substantial advantage to iterating |
| // internally, and if any of the new loops are simplified enough to contain |
| // trivial unswitching we want to prefer those. |
| |
| // Try to unswitch the best invariant condition. We prefer this full unswitch to |
| // a partial unswitch when possible below the threshold. |
| if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, |
| DestroyLoopCB)) |
| return true; |
| |
| // No other opportunities to unswitch. |
| return false; |
| } |
| |
| PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &U) { |
| Function &F = *L.getHeader()->getParent(); |
| (void)F; |
| ProfileSummaryInfo *PSI = nullptr; |
| if (auto OuterProxy = |
| AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR) |
| .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F)) |
| PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); |
| LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L |
| << "\n"); |
| |
| // Save the current loop name in a variable so that we can report it even |
| // after it has been deleted. |
| std::string LoopName = std::string(L.getName()); |
| |
| auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, |
| bool PartiallyInvariant, |
| ArrayRef<Loop *> NewLoops) { |
| // If we did a non-trivial unswitch, we have added new (cloned) loops. |
| if (!NewLoops.empty()) |
| U.addSiblingLoops(NewLoops); |
| |
| // If the current loop remains valid, we should revisit it to catch any |
| // other unswitch opportunities. Otherwise, we need to mark it as deleted. |
| if (CurrentLoopValid) { |
| if (PartiallyInvariant) { |
| // Mark the new loop as partially unswitched, to avoid unswitching on |
| // the same condition again. |
| auto &Context = L.getHeader()->getContext(); |
| MDNode *DisableUnswitchMD = MDNode::get( |
| Context, |
| MDString::get(Context, "llvm.loop.unswitch.partial.disable")); |
| MDNode *NewLoopID = makePostTransformationMetadata( |
| Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, |
| {DisableUnswitchMD}); |
| L.setLoopID(NewLoopID); |
| } else |
| U.revisitCurrentLoop(); |
| } else |
| U.markLoopAsDeleted(L, LoopName); |
| }; |
| |
| auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { |
| U.markLoopAsDeleted(L, Name); |
| }; |
| |
| std::optional<MemorySSAUpdater> MSSAU; |
| if (AR.MSSA) { |
| MSSAU = MemorySSAUpdater(AR.MSSA); |
| if (VerifyMemorySSA) |
| AR.MSSA->verifyMemorySSA(); |
| } |
| if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, |
| UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, |
| DestroyLoopCB)) |
| return PreservedAnalyses::all(); |
| |
| if (AR.MSSA && VerifyMemorySSA) |
| AR.MSSA->verifyMemorySSA(); |
| |
| // Historically this pass has had issues with the dominator tree so verify it |
| // in asserts builds. |
| assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); |
| |
| auto PA = getLoopPassPreservedAnalyses(); |
| if (AR.MSSA) |
| PA.preserve<MemorySSAAnalysis>(); |
| return PA; |
| } |
| |
| void SimpleLoopUnswitchPass::printPipeline( |
| raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( |
| OS, MapClassName2PassName); |
| |
| OS << "<"; |
| OS << (NonTrivial ? "" : "no-") << "nontrivial;"; |
| OS << (Trivial ? "" : "no-") << "trivial"; |
| OS << ">"; |
| } |
| |
| namespace { |
| |
| class SimpleLoopUnswitchLegacyPass : public LoopPass { |
| bool NonTrivial; |
| |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| |
| explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) |
| : LoopPass(ID), NonTrivial(NonTrivial) { |
| initializeSimpleLoopUnswitchLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<MemorySSAWrapperPass>(); |
| AU.addPreserved<MemorySSAWrapperPass>(); |
| getLoopAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { |
| if (skipLoop(L)) |
| return false; |
| |
| Function &F = *L->getHeader()->getParent(); |
| |
| LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L |
| << "\n"); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); |
| MemorySSAUpdater MSSAU(MSSA); |
| |
| auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); |
| auto *SE = SEWP ? &SEWP->getSE() : nullptr; |
| |
| auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, |
| ArrayRef<Loop *> NewLoops) { |
| // If we did a non-trivial unswitch, we have added new (cloned) loops. |
| for (auto *NewL : NewLoops) |
| LPM.addLoop(*NewL); |
| |
| // If the current loop remains valid, re-add it to the queue. This is |
| // a little wasteful as we'll finish processing the current loop as well, |
| // but it is the best we can do in the old PM. |
| if (CurrentLoopValid) { |
| // If the current loop has been unswitched using a partially invariant |
| // condition, we should not re-add the current loop to avoid unswitching |
| // on the same condition again. |
| if (!PartiallyInvariant) |
| LPM.addLoop(*L); |
| } else |
| LPM.markLoopAsDeleted(*L); |
| }; |
| |
| auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { |
| LPM.markLoopAsDeleted(L); |
| }; |
| |
| if (VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| bool Changed = |
| unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE, |
| &MSSAU, nullptr, nullptr, DestroyLoopCB); |
| |
| if (VerifyMemorySSA) |
| MSSA->verifyMemorySSA(); |
| |
| // Historically this pass has had issues with the dominator tree so verify it |
| // in asserts builds. |
| assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| |
| return Changed; |
| } |
| |
| char SimpleLoopUnswitchLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", |
| "Simple unswitch loops", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", |
| "Simple unswitch loops", false, false) |
| |
| Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { |
| return new SimpleLoopUnswitchLegacyPass(NonTrivial); |
| } |