| //===- Symbols.h ------------------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines various types of Symbols. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLD_ELF_SYMBOLS_H |
| #define LLD_ELF_SYMBOLS_H |
| |
| #include "InputSection.h" |
| #include "lld/Common/LLVM.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/Object/Archive.h" |
| #include "llvm/Object/ELF.h" |
| |
| namespace lld { |
| namespace elf { |
| class Symbol; |
| class InputFile; |
| } // namespace elf |
| |
| std::string toString(const elf::Symbol &); |
| std::string toString(const elf::InputFile *); |
| |
| namespace elf { |
| |
| class ArchiveFile; |
| class BitcodeFile; |
| class BssSection; |
| class InputFile; |
| class LazyObjFile; |
| template <class ELFT> class ObjFile; |
| class OutputSection; |
| template <class ELFT> class SharedFile; |
| |
| // This is a StringRef-like container that doesn't run strlen(). |
| // |
| // ELF string tables contain a lot of null-terminated strings. Most of them |
| // are not necessary for the linker because they are names of local symbols, |
| // and the linker doesn't use local symbol names for name resolution. So, we |
| // use this class to represents strings read from string tables. |
| struct StringRefZ { |
| StringRefZ(const char *S) : Data(S), Size(-1) {} |
| StringRefZ(StringRef S) : Data(S.data()), Size(S.size()) {} |
| |
| const char *Data; |
| const uint32_t Size; |
| }; |
| |
| // The base class for real symbol classes. |
| class Symbol { |
| public: |
| enum Kind { |
| PlaceholderKind, |
| DefinedKind, |
| SharedKind, |
| UndefinedKind, |
| LazyArchiveKind, |
| LazyObjectKind, |
| }; |
| |
| Kind kind() const { return static_cast<Kind>(SymbolKind); } |
| |
| // The file from which this symbol was created. |
| InputFile *File; |
| |
| protected: |
| const char *NameData; |
| mutable uint32_t NameSize; |
| |
| public: |
| uint32_t DynsymIndex = 0; |
| uint32_t GotIndex = -1; |
| uint32_t PltIndex = -1; |
| |
| uint32_t GlobalDynIndex = -1; |
| |
| // This field is a index to the symbol's version definition. |
| uint32_t VerdefIndex = -1; |
| |
| // Version definition index. |
| uint16_t VersionId; |
| |
| // An index into the .branch_lt section on PPC64. |
| uint16_t PPC64BranchltIndex = -1; |
| |
| // Symbol binding. This is not overwritten by replaceSymbol to track |
| // changes during resolution. In particular: |
| // - An undefined weak is still weak when it resolves to a shared library. |
| // - An undefined weak will not fetch archive members, but we have to |
| // remember it is weak. |
| uint8_t Binding; |
| |
| // The following fields have the same meaning as the ELF symbol attributes. |
| uint8_t Type; // symbol type |
| uint8_t StOther; // st_other field value |
| |
| uint8_t SymbolKind; |
| |
| // Symbol visibility. This is the computed minimum visibility of all |
| // observed non-DSO symbols. |
| unsigned Visibility : 2; |
| |
| // True if the symbol was used for linking and thus need to be added to the |
| // output file's symbol table. This is true for all symbols except for |
| // unreferenced DSO symbols and bitcode symbols that are unreferenced except |
| // by other bitcode objects. |
| unsigned IsUsedInRegularObj : 1; |
| |
| // If this flag is true and the symbol has protected or default visibility, it |
| // will appear in .dynsym. This flag is set by interposable DSO symbols in |
| // executables, by most symbols in DSOs and executables built with |
| // --export-dynamic, and by dynamic lists. |
| unsigned ExportDynamic : 1; |
| |
| // False if LTO shouldn't inline whatever this symbol points to. If a symbol |
| // is overwritten after LTO, LTO shouldn't inline the symbol because it |
| // doesn't know the final contents of the symbol. |
| unsigned CanInline : 1; |
| |
| // True if this symbol is specified by --trace-symbol option. |
| unsigned Traced : 1; |
| |
| bool includeInDynsym() const; |
| uint8_t computeBinding() const; |
| bool isWeak() const { return Binding == llvm::ELF::STB_WEAK; } |
| |
| bool isUndefined() const { return SymbolKind == UndefinedKind; } |
| bool isDefined() const { return SymbolKind == DefinedKind; } |
| bool isShared() const { return SymbolKind == SharedKind; } |
| bool isLocal() const { return Binding == llvm::ELF::STB_LOCAL; } |
| |
| bool isLazy() const { |
| return SymbolKind == LazyArchiveKind || SymbolKind == LazyObjectKind; |
| } |
| |
| // True if this is an undefined weak symbol. This only works once |
| // all input files have been added. |
| bool isUndefWeak() const { |
| // See comment on lazy symbols for details. |
| return isWeak() && (isUndefined() || isLazy()); |
| } |
| |
| StringRef getName() const { |
| if (NameSize == (uint32_t)-1) |
| NameSize = strlen(NameData); |
| return {NameData, NameSize}; |
| } |
| |
| void setName(StringRef S) { |
| NameData = S.data(); |
| NameSize = S.size(); |
| } |
| |
| void parseSymbolVersion(); |
| |
| bool isInGot() const { return GotIndex != -1U; } |
| bool isInPlt() const { return PltIndex != -1U; } |
| bool isInPPC64Branchlt() const { return PPC64BranchltIndex != 0xffff; } |
| |
| uint64_t getVA(int64_t Addend = 0) const; |
| |
| uint64_t getGotOffset() const; |
| uint64_t getGotVA() const; |
| uint64_t getGotPltOffset() const; |
| uint64_t getGotPltVA() const; |
| uint64_t getPltVA() const; |
| uint64_t getPPC64LongBranchTableVA() const; |
| uint64_t getPPC64LongBranchOffset() const; |
| uint64_t getSize() const; |
| OutputSection *getOutputSection() const; |
| |
| protected: |
| Symbol(Kind K, InputFile *File, StringRefZ Name, uint8_t Binding, |
| uint8_t StOther, uint8_t Type) |
| : File(File), NameData(Name.Data), NameSize(Name.Size), Binding(Binding), |
| Type(Type), StOther(StOther), SymbolKind(K), NeedsPltAddr(false), |
| IsInIplt(false), GotInIgot(false), IsPreemptible(false), |
| Used(!Config->GcSections), NeedsTocRestore(false), |
| ScriptDefined(false) {} |
| |
| public: |
| // True the symbol should point to its PLT entry. |
| // For SharedSymbol only. |
| unsigned NeedsPltAddr : 1; |
| |
| // True if this symbol is in the Iplt sub-section of the Plt and the Igot |
| // sub-section of the .got.plt or .got. |
| unsigned IsInIplt : 1; |
| |
| // True if this symbol needs a GOT entry and its GOT entry is actually in |
| // Igot. This will be true only for certain non-preemptible ifuncs. |
| unsigned GotInIgot : 1; |
| |
| // True if this symbol is preemptible at load time. |
| unsigned IsPreemptible : 1; |
| |
| // True if an undefined or shared symbol is used from a live section. |
| unsigned Used : 1; |
| |
| // True if a call to this symbol needs to be followed by a restore of the |
| // PPC64 toc pointer. |
| unsigned NeedsTocRestore : 1; |
| |
| // True if this symbol is defined by a linker script. |
| unsigned ScriptDefined : 1; |
| |
| bool isSection() const { return Type == llvm::ELF::STT_SECTION; } |
| bool isTls() const { return Type == llvm::ELF::STT_TLS; } |
| bool isFunc() const { return Type == llvm::ELF::STT_FUNC; } |
| bool isGnuIFunc() const { return Type == llvm::ELF::STT_GNU_IFUNC; } |
| bool isObject() const { return Type == llvm::ELF::STT_OBJECT; } |
| bool isFile() const { return Type == llvm::ELF::STT_FILE; } |
| }; |
| |
| // Represents a symbol that is defined in the current output file. |
| class Defined : public Symbol { |
| public: |
| Defined(InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther, |
| uint8_t Type, uint64_t Value, uint64_t Size, SectionBase *Section) |
| : Symbol(DefinedKind, File, Name, Binding, StOther, Type), Value(Value), |
| Size(Size), Section(Section) {} |
| |
| static bool classof(const Symbol *S) { return S->isDefined(); } |
| |
| uint64_t Value; |
| uint64_t Size; |
| SectionBase *Section; |
| }; |
| |
| class Undefined : public Symbol { |
| public: |
| Undefined(InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther, |
| uint8_t Type) |
| : Symbol(UndefinedKind, File, Name, Binding, StOther, Type) {} |
| |
| static bool classof(const Symbol *S) { return S->kind() == UndefinedKind; } |
| }; |
| |
| class SharedSymbol : public Symbol { |
| public: |
| static bool classof(const Symbol *S) { return S->kind() == SharedKind; } |
| |
| SharedSymbol(InputFile &File, StringRef Name, uint8_t Binding, |
| uint8_t StOther, uint8_t Type, uint64_t Value, uint64_t Size, |
| uint32_t Alignment, uint32_t VerdefIndex) |
| : Symbol(SharedKind, &File, Name, Binding, StOther, Type), |
| Alignment(Alignment), Value(Value), Size(Size) { |
| this->VerdefIndex = VerdefIndex; |
| // GNU ifunc is a mechanism to allow user-supplied functions to |
| // resolve PLT slot values at load-time. This is contrary to the |
| // regular symbol resolution scheme in which symbols are resolved just |
| // by name. Using this hook, you can program how symbols are solved |
| // for you program. For example, you can make "memcpy" to be resolved |
| // to a SSE-enabled version of memcpy only when a machine running the |
| // program supports the SSE instruction set. |
| // |
| // Naturally, such symbols should always be called through their PLT |
| // slots. What GNU ifunc symbols point to are resolver functions, and |
| // calling them directly doesn't make sense (unless you are writing a |
| // loader). |
| // |
| // For DSO symbols, we always call them through PLT slots anyway. |
| // So there's no difference between GNU ifunc and regular function |
| // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. |
| if (this->Type == llvm::ELF::STT_GNU_IFUNC) |
| this->Type = llvm::ELF::STT_FUNC; |
| } |
| |
| template <class ELFT> SharedFile<ELFT> &getFile() const { |
| return *cast<SharedFile<ELFT>>(File); |
| } |
| |
| uint32_t Alignment; |
| |
| uint64_t Value; // st_value |
| uint64_t Size; // st_size |
| }; |
| |
| // LazyArchive and LazyObject represent a symbols that is not yet in the link, |
| // but we know where to find it if needed. If the resolver finds both Undefined |
| // and Lazy for the same name, it will ask the Lazy to load a file. |
| // |
| // A special complication is the handling of weak undefined symbols. They should |
| // not load a file, but we have to remember we have seen both the weak undefined |
| // and the lazy. We represent that with a lazy symbol with a weak binding. This |
| // means that code looking for undefined symbols normally also has to take lazy |
| // symbols into consideration. |
| |
| // This class represents a symbol defined in an archive file. It is |
| // created from an archive file header, and it knows how to load an |
| // object file from an archive to replace itself with a defined |
| // symbol. |
| class LazyArchive : public Symbol { |
| public: |
| LazyArchive(InputFile &File, uint8_t Type, |
| const llvm::object::Archive::Symbol S) |
| : Symbol(LazyArchiveKind, &File, S.getName(), llvm::ELF::STB_GLOBAL, |
| llvm::ELF::STV_DEFAULT, Type), |
| Sym(S) {} |
| |
| static bool classof(const Symbol *S) { return S->kind() == LazyArchiveKind; } |
| |
| InputFile *fetch(); |
| MemoryBufferRef getMemberBuffer(); |
| |
| private: |
| const llvm::object::Archive::Symbol Sym; |
| }; |
| |
| // LazyObject symbols represents symbols in object files between |
| // --start-lib and --end-lib options. |
| class LazyObject : public Symbol { |
| public: |
| LazyObject(InputFile &File, uint8_t Type, StringRef Name) |
| : Symbol(LazyObjectKind, &File, Name, llvm::ELF::STB_GLOBAL, |
| llvm::ELF::STV_DEFAULT, Type) {} |
| |
| static bool classof(const Symbol *S) { return S->kind() == LazyObjectKind; } |
| }; |
| |
| // Some linker-generated symbols need to be created as |
| // Defined symbols. |
| struct ElfSym { |
| // __bss_start |
| static Defined *Bss; |
| |
| // etext and _etext |
| static Defined *Etext1; |
| static Defined *Etext2; |
| |
| // edata and _edata |
| static Defined *Edata1; |
| static Defined *Edata2; |
| |
| // end and _end |
| static Defined *End1; |
| static Defined *End2; |
| |
| // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to |
| // be at some offset from the base of the .got section, usually 0 or |
| // the end of the .got. |
| static Defined *GlobalOffsetTable; |
| |
| // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. |
| static Defined *MipsGp; |
| static Defined *MipsGpDisp; |
| static Defined *MipsLocalGp; |
| |
| // __rel{,a}_iplt_{start,end} symbols. |
| static Defined *RelaIpltStart; |
| static Defined *RelaIpltEnd; |
| }; |
| |
| // A buffer class that is large enough to hold any Symbol-derived |
| // object. We allocate memory using this class and instantiate a symbol |
| // using the placement new. |
| union SymbolUnion { |
| alignas(Defined) char A[sizeof(Defined)]; |
| alignas(Undefined) char C[sizeof(Undefined)]; |
| alignas(SharedSymbol) char D[sizeof(SharedSymbol)]; |
| alignas(LazyArchive) char E[sizeof(LazyArchive)]; |
| alignas(LazyObject) char F[sizeof(LazyObject)]; |
| }; |
| |
| void printTraceSymbol(Symbol *Sym); |
| |
| template <typename T, typename... ArgT> |
| void replaceSymbol(Symbol *S, ArgT &&... Arg) { |
| using llvm::ELF::STT_TLS; |
| |
| static_assert(std::is_trivially_destructible<T>(), |
| "Symbol types must be trivially destructible"); |
| static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); |
| static_assert(alignof(T) <= alignof(SymbolUnion), |
| "SymbolUnion not aligned enough"); |
| assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr && |
| "Not a Symbol"); |
| |
| Symbol Sym = *S; |
| |
| new (S) T(std::forward<ArgT>(Arg)...); |
| |
| S->VersionId = Sym.VersionId; |
| S->Visibility = Sym.Visibility; |
| S->IsUsedInRegularObj = Sym.IsUsedInRegularObj; |
| S->ExportDynamic = Sym.ExportDynamic; |
| S->CanInline = Sym.CanInline; |
| S->Traced = Sym.Traced; |
| S->ScriptDefined = Sym.ScriptDefined; |
| |
| // Symbols representing thread-local variables must be referenced by |
| // TLS-aware relocations, and non-TLS symbols must be reference by |
| // non-TLS relocations, so there's a clear distinction between TLS |
| // and non-TLS symbols. It is an error if the same symbol is defined |
| // as a TLS symbol in one file and as a non-TLS symbol in other file. |
| bool TlsMismatch = (Sym.Type == STT_TLS && S->Type != STT_TLS) || |
| (Sym.Type != STT_TLS && S->Type == STT_TLS); |
| |
| if (Sym.SymbolKind != Symbol::PlaceholderKind && TlsMismatch && !Sym.isLazy()) |
| error("TLS attribute mismatch: " + toString(Sym) + "\n>>> defined in " + |
| toString(Sym.File) + "\n>>> defined in " + toString(S->File)); |
| |
| // Print out a log message if --trace-symbol was specified. |
| // This is for debugging. |
| if (S->Traced) |
| printTraceSymbol(S); |
| } |
| |
| void maybeWarnUnorderableSymbol(const Symbol *Sym); |
| } // namespace elf |
| } // namespace lld |
| |
| #endif |