blob: bd61b20bfe53671ca7cbd28e2629d81dbe23dab9 [file] [log] [blame] [edit]
/*
* Copyright 2024 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/row.h"
#include "libyuv/row_sve.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
#if !defined(LIBYUV_DISABLE_SME) && defined(CLANG_HAS_SME) && \
defined(__aarch64__)
#define RGBTOARGB8_SVE_2X \
/* Inputs: B: z16.h, G: z17.h, R: z18.h, A: z19.b */ \
"uqshrnb z16.b, z16.h, #6 \n" /* B0 */ \
"uqshrnb z17.b, z17.h, #6 \n" /* G0 */ \
"uqshrnb z18.b, z18.h, #6 \n" /* R0 */ \
"uqshrnt z16.b, z20.h, #6 \n" /* B1 */ \
"uqshrnt z17.b, z21.h, #6 \n" /* G1 */ \
"uqshrnt z18.b, z22.h, #6 \n" /* R1 */
__arm_locally_streaming void I444ToARGBRow_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
// Streaming-SVE only, no use of ZA tile.
uint64_t vl;
asm volatile(
"cntb %[vl] \n"
"ptrue p0.b \n" //
YUVTORGB_SVE_SETUP
"dup z19.b, #255 \n" // A
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p1.b \n"
"1: \n" //
READYUV444_SVE_2X I444TORGB_SVE_2X RGBTOARGB8_SVE_2X
"subs %w[width], %w[width], %w[vl] \n"
"st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n"
"incb %[dst_argb], all, mul #4 \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p1.b, wzr, %w[width] \n" //
READYUV444_SVE_2X I444TORGB_SVE_2X RGBTOARGB8_SVE_2X
"st4b {z16.b, z17.b, z18.b, z19.b}, p1, [%[dst_argb]] \n"
"99: \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_SVE_REGS);
}
__arm_locally_streaming void I444ToRGB24Row_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
I444ToRGB24Row_SVE_SC(src_y, src_u, src_v, dst_rgb24, yuvconstants, width);
}
__arm_locally_streaming void I400ToARGBRow_SME(
const uint8_t* src_y,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
// Streaming-SVE only, no use of ZA tile.
I400ToARGBRow_SVE_SC(src_y, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I422ToARGBRow_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
// Streaming-SVE only, no use of ZA tile.
I422ToARGBRow_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I422ToRGB24Row_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I422ToRGB24Row_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I422ToRGB565Row_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
I422ToRGB565Row_SVE_SC(src_y, src_u, src_v, dst_rgb565, yuvconstants, width);
}
__arm_locally_streaming void I422ToARGB1555Row_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
I422ToARGB1555Row_SVE_SC(src_y, src_u, src_v, dst_argb1555, yuvconstants,
width);
}
__arm_locally_streaming void I422ToARGB4444Row_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
I422ToARGB4444Row_SVE_SC(src_y, src_u, src_v, dst_argb4444, yuvconstants,
width);
}
__arm_locally_streaming void I422ToRGBARow_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I422ToRGBARow_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I422ToAR30Row_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I422ToAR30Row_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I422AlphaToARGBRow_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I422AlphaToARGBRow_SVE_SC(src_y, src_u, src_v, src_a, dst_argb, yuvconstants,
width);
}
__arm_locally_streaming void I444AlphaToARGBRow_SME(
const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I444AlphaToARGBRow_SVE_SC(src_y, src_u, src_v, src_a, dst_argb, yuvconstants,
width);
}
__arm_locally_streaming void NV12ToARGBRow_SME(
const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
NV12ToARGBRow_SVE_SC(src_y, src_uv, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void NV21ToARGBRow_SME(
const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
NV21ToARGBRow_SVE_SC(src_y, src_vu, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void NV12ToRGB24Row_SME(
const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
NV12ToRGB24Row_SVE_SC(src_y, src_uv, dst_rgb24, yuvconstants, width);
}
__arm_locally_streaming void NV21ToRGB24Row_SME(
const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
NV21ToRGB24Row_SVE_SC(src_y, src_vu, dst_rgb24, yuvconstants, width);
}
__arm_locally_streaming void YUY2ToARGBRow_SME(
const uint8_t* src_yuy2,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
YUY2ToARGBRow_SVE_SC(src_yuy2, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void UYVYToARGBRow_SME(
const uint8_t* src_uyvy,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
UYVYToARGBRow_SVE_SC(src_uyvy, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I210ToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I210ToARGBRow_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I210AlphaToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
const uint16_t* src_a,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I210AlphaToARGBRow_SVE_SC(src_y, src_u, src_v, src_a, dst_argb, yuvconstants,
width);
}
__arm_locally_streaming void I210ToAR30Row_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
I210ToAR30Row_SVE_SC(src_y, src_u, src_v, dst_ar30, yuvconstants, width);
}
__arm_locally_streaming void P210ToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
P210ToARGBRow_SVE_SC(src_y, src_uv, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void P210ToAR30Row_SME(
const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
P210ToAR30Row_SVE_SC(src_y, src_uv, dst_ar30, yuvconstants, width);
}
__arm_locally_streaming void I410ToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I410ToARGBRow_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void I410AlphaToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
const uint16_t* src_a,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I410AlphaToARGBRow_SVE_SC(src_y, src_u, src_v, src_a, dst_argb, yuvconstants,
width);
}
__arm_locally_streaming void I410ToAR30Row_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
I410ToAR30Row_SVE_SC(src_y, src_u, src_v, dst_ar30, yuvconstants, width);
}
__arm_locally_streaming void P410ToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
P410ToARGBRow_SVE_SC(src_y, src_uv, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void P410ToAR30Row_SME(
const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
P410ToAR30Row_SVE_SC(src_y, src_uv, dst_ar30, yuvconstants, width);
}
__arm_locally_streaming void I212ToAR30Row_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
I212ToAR30Row_SVE_SC(src_y, src_u, src_v, dst_ar30, yuvconstants, width);
}
__arm_locally_streaming void I212ToARGBRow_SME(
const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
I212ToARGBRow_SVE_SC(src_y, src_u, src_v, dst_argb, yuvconstants, width);
}
__arm_locally_streaming void MultiplyRow_16_SME(const uint16_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
// Streaming-SVE only, no use of ZA tile.
int vl;
asm volatile(
"cnth %x[vl] \n"
"mov z0.h, %w[scale] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"1: \n"
"ld1h {z1.h}, p0/z, [%[src_y]] \n"
"incb %[src_y] \n"
"mul z1.h, z0.h, z1.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"st1h {z1.h}, p0, [%[dst_y]] \n"
"incb %[dst_y] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"ld1h {z1.h}, p0/z, [%[src_y]] \n"
"mul z1.h, z0.h, z1.h \n"
"st1h {z1.h}, p0, [%[dst_y]] \n"
"99: \n"
: [src_y] "+r"(src_y), // %[src_y]
[dst_y] "+r"(dst_y), // %[dst_y]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [scale] "r"(scale) // %[scale]
: "memory", "cc", "z0", "z1", "p0");
}
__arm_locally_streaming void ARGBMultiplyRow_SME(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
// Streaming-SVE only, no use of ZA tile.
width *= 4;
int vl;
asm volatile(
"cntb %x[vl] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.b \n"
"1: \n"
"ld1b {z0.b}, p0/z, [%[src_argb]] \n"
"ld1b {z1.b}, p0/z, [%[src_argb1]] \n"
"incb %[src_argb] \n"
"incb %[src_argb1] \n"
"umullb z2.h, z0.b, z1.b \n"
"umullt z1.h, z0.b, z1.b \n"
"rshrnb z0.b, z2.h, #8 \n"
"rshrnt z0.b, z1.h, #8 \n"
"subs %w[width], %w[width], %w[vl] \n"
"st1b {z0.b}, p0, [%[dst_argb]] \n"
"incb %[dst_argb] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.b, wzr, %w[width] \n"
"ld1b {z0.b}, p0/z, [%[src_argb]] \n"
"ld1b {z1.b}, p0/z, [%[src_argb1]] \n"
"umullb z2.h, z0.b, z1.b \n"
"umullt z1.h, z0.b, z1.b \n"
"rshrnb z0.b, z2.h, #8 \n"
"rshrnt z0.b, z1.h, #8 \n"
"st1b {z0.b}, p0, [%[dst_argb]] \n"
"99: \n"
: [src_argb] "+r"(src_argb), // %[src_argb]
[src_argb1] "+r"(src_argb1), // %[src_argb1]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
:
: "memory", "cc", "z0", "z1", "z2", "p0", "p1");
}
__arm_locally_streaming void MergeUVRow_SME(const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_uv,
int width) {
// Streaming-SVE only, no use of ZA tile.
int vl;
asm volatile(
"cntb %x[vl] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.b \n"
"1: \n"
"ld1b {z1.b}, p0/z, [%[src_u]] \n"
"ld1b {z2.b}, p0/z, [%[src_v]] \n"
"incb %[src_u] \n"
"incb %[src_v] \n"
"subs %w[width], %w[width], %w[vl] \n"
"st2b {z1.b, z2.b}, p0, [%[dst_uv]] \n"
"incb %[dst_uv], all, mul #2 \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.b, wzr, %w[width] \n"
"ld1b {z1.b}, p0/z, [%[src_u]] \n"
"ld1b {z2.b}, p0/z, [%[src_v]] \n"
"subs %w[width], %w[width], %w[vl] \n"
"st2b {z1.b, z2.b}, p0, [%[dst_uv]] \n"
"99: \n"
: [src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_uv] "+r"(dst_uv), // %[dst_uv]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
:
: "memory", "cc", "z0", "z1", "z2", "p0");
}
__arm_locally_streaming void MergeUVRow_16_SME(const uint16_t* src_u,
const uint16_t* src_v,
uint16_t* dst_uv,
int depth,
int width) {
int shift = 16 - depth;
// Streaming-SVE only, no use of ZA tile.
int vl;
asm volatile(
"cnth %x[vl] \n"
"mov z0.h, %w[shift] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"1: \n"
"ld1h {z1.h}, p0/z, [%[src_u]] \n"
"ld1h {z2.h}, p0/z, [%[src_v]] \n"
"incb %[src_u] \n"
"incb %[src_v] \n"
"lsl z1.h, p0/m, z1.h, z0.h \n"
"lsl z2.h, p0/m, z2.h, z0.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"st2h {z1.h, z2.h}, p0, [%[dst_uv]] \n"
"incb %[dst_uv], all, mul #2 \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"ld1h {z1.h}, p0/z, [%[src_u]] \n"
"ld1h {z2.h}, p0/z, [%[src_v]] \n"
"lsl z1.h, p0/m, z1.h, z0.h \n"
"lsl z2.h, p0/m, z2.h, z0.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"st2h {z1.h, z2.h}, p0, [%[dst_uv]] \n"
"99: \n"
: [src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_uv] "+r"(dst_uv), // %[dst_uv]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [shift] "r"(shift) // %[shift]
: "memory", "cc", "z0", "z1", "z2", "p0");
}
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits = shr 1
// 16384 = 10 bits = shr 2
// 4096 = 12 bits = shr 4
// 256 = 16 bits = shr 8
__arm_locally_streaming void Convert16To8Row_SME(const uint16_t* src_y,
uint8_t* dst_y,
int scale,
int width) {
// 15 - clz(scale), + 8 to shift result into the high half of the lane to
// saturate, then we can just use UZP2 to narrow rather than a pair of
// saturating narrow instructions.
const int shift = 23 - __builtin_clz((int32_t)scale);
int vl;
asm volatile(
"cntb %x[vl] \n"
"dup z0.h, %w[shift] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.b \n"
"1: \n"
"ld1h {z1.h}, p0/z, [%[src_y]] \n"
"ld1h {z2.h}, p0/z, [%[src_y], #1, mul vl] \n"
"incb %[src_y], all, mul #2 \n"
"uqshl z1.h, p0/m, z1.h, z0.h \n"
"uqshl z2.h, p0/m, z2.h, z0.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"uzp2 z1.b, z1.b, z2.b \n"
"st1b {z1.b}, p0, [%[dst_y]] \n"
"incb %[dst_y] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
// We need separate predicates for the load and store instructions since
// they are operating on different element sizes (.b vs .h).
"cnth %x[vl] \n"
"whilelt p0.h, wzr, %w[width] \n"
"whilelt p1.h, %w[vl], %w[width] \n"
"whilelt p2.b, wzr, %w[width] \n"
"ld1h {z1.h}, p0/z, [%[src_y]] \n"
"ld1h {z2.h}, p1/z, [%[src_y], #1, mul vl] \n"
"uqshl z1.h, p0/m, z1.h, z0.h \n"
"uqshl z2.h, p1/m, z2.h, z0.h \n"
"uzp2 z1.b, z1.b, z2.b \n"
"st1b {z1.b}, p2, [%[dst_y]] \n"
"99: \n"
: [src_y] "+r"(src_y), // %[src_y]
[dst_y] "+r"(dst_y), // %[dst_y]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [shift] "r"(shift) // %[shift]
: "cc", "memory", "z0", "z1", "z2", "p0", "p1", "p2");
}
__arm_locally_streaming void CopyRow_SME(const uint8_t* src,
uint8_t* dst,
int width) {
// Streaming-SVE only, no use of ZA tile.
int vl;
asm volatile(
"cntb %x[vl] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.b \n"
"1: \n"
"ld1b {z0.b}, p0/z, [%[src]] \n"
"incb %[src] \n"
"subs %w[width], %w[width], %w[vl] \n"
"st1b {z0.b}, p0, [%[dst]] \n"
"incb %[dst] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.b, wzr, %w[width] \n"
"ld1b {z0.b}, p0/z, [%[src]] \n"
"st1b {z0.b}, p0, [%[dst]] \n"
"99: \n"
: [src] "+r"(src), // %[src]
[dst] "+r"(dst), // %[dst]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
:
: "memory", "cc", "z0", "p0");
}
__arm_locally_streaming static void HalfRow_SME(uint8_t* dst_ptr,
const uint8_t* src_ptr,
ptrdiff_t src_stride,
int width) {
const uint8_t* src_ptr1 = src_ptr + src_stride;
int vl;
asm volatile(
"cntb %x[vl] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.b \n"
"1: \n"
"ld1b {z2.b}, p0/z, [%[src_ptr]] \n"
"ld1b {z3.b}, p0/z, [%[src_ptr1]] \n"
"incb %[src_ptr] \n"
"incb %[src_ptr1] \n"
"urhadd z2.b, p0/m, z2.b, z3.b \n"
"subs %w[width], %w[width], %w[vl] \n"
"st1b {z2.b}, p0, [%[dst_ptr]] \n"
"incb %[dst_ptr] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.b, wzr, %w[width] \n"
"ld1b {z2.b}, p0/z, [%[src_ptr]] \n"
"ld1b {z3.b}, p0/z, [%[src_ptr1]] \n"
"urhadd z2.b, p0/m, z2.b, z3.b \n"
"subs %w[width], %w[width], %w[vl] \n"
"st1b {z2.b}, p0, [%[dst_ptr]] \n"
"99: \n"
: [src_ptr] "+r"(src_ptr), // %[src_ptr]
[src_ptr1] "+r"(src_ptr1), // %[src_ptr1]
[dst_ptr] "+r"(dst_ptr), // %[dst_ptr]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
:
: "cc", "memory", "z0", "z1", "z2", "z3", "p0");
}
__arm_locally_streaming void InterpolateRow_SME(uint8_t* dst_ptr,
const uint8_t* src_ptr,
ptrdiff_t src_stride,
int width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint8_t* src_ptr1 = src_ptr + src_stride;
if (y0_fraction == 0) {
CopyRow_SME(src_ptr1, dst_ptr, width);
return;
}
if (y0_fraction == 128) {
HalfRow_SME(dst_ptr, src_ptr, src_stride, width);
return;
}
if (y0_fraction == 256) {
CopyRow_SME(src_ptr, dst_ptr, width);
return;
}
int vl;
asm volatile(
"cntb %x[vl] \n"
"dup z0.b, %w[y0_fraction] \n"
"dup z1.b, %w[y1_fraction] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.b \n"
"1: \n"
"ld1b {z2.b}, p0/z, [%[src_ptr]] \n"
"ld1b {z3.b}, p0/z, [%[src_ptr1]] \n"
"incb %[src_ptr] \n"
"incb %[src_ptr1] \n"
"umullb z4.h, z2.b, z0.b \n"
"umullt z2.h, z2.b, z0.b \n"
"subs %w[width], %w[width], %w[vl] \n"
"umlalb z4.h, z3.b, z1.b \n"
"umlalt z2.h, z3.b, z1.b \n"
"rshrnb z3.b, z4.h, #8 \n"
"rshrnt z3.b, z2.h, #8 \n"
"st1b {z3.b}, p0, [%[dst_ptr]] \n"
"incb %[dst_ptr] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.b, wzr, %w[width] \n"
"ld1b {z2.b}, p0/z, [%[src_ptr]] \n"
"ld1b {z3.b}, p0/z, [%[src_ptr1]] \n"
"umullb z4.h, z2.b, z0.b \n"
"umullt z2.h, z2.b, z0.b \n"
"umlalb z4.h, z3.b, z1.b \n"
"umlalt z2.h, z3.b, z1.b \n"
"rshrnb z3.b, z4.h, #8 \n"
"rshrnt z3.b, z2.h, #8 \n"
"st1b {z3.b}, p0, [%[dst_ptr]] \n"
"99: \n"
: [src_ptr] "+r"(src_ptr), // %[src_ptr]
[src_ptr1] "+r"(src_ptr1), // %[src_ptr1]
[dst_ptr] "+r"(dst_ptr), // %[dst_ptr]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [y0_fraction] "r"(y0_fraction), // %[y0_fraction]
[y1_fraction] "r"(y1_fraction) // %[y1_fraction]
: "cc", "memory", "z0", "z1", "z2", "z3", "z4", "p0");
}
__arm_locally_streaming static void HalfRow_16_SME(uint16_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int width) {
const uint16_t* src_ptr1 = src_ptr + src_stride;
int vl;
asm volatile(
"cnth %x[vl] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"1: \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"incb %[src_ptr] \n"
"incb %[src_ptr1] \n"
"urhadd z2.h, p0/m, z2.h, z3.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"st1h {z2.h}, p0, [%[dst_ptr]] \n"
"incb %[dst_ptr] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"urhadd z2.h, p0/m, z2.h, z3.h \n"
"st1h {z2.h}, p0, [%[dst_ptr]] \n"
"99: \n"
: [src_ptr] "+r"(src_ptr), // %[src_ptr]
[src_ptr1] "+r"(src_ptr1), // %[src_ptr1]
[dst_ptr] "+r"(dst_ptr), // %[dst_ptr]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
:
: "cc", "memory", "z0", "z1", "z2", "z3", "p0");
}
__arm_locally_streaming void InterpolateRow_16_SME(uint16_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
if (y0_fraction == 0) {
CopyRow_SME((const uint8_t*)src_ptr1, (uint8_t*)dst_ptr,
width * sizeof(uint16_t));
return;
}
if (y0_fraction == 128) {
HalfRow_16_SME(dst_ptr, src_ptr, src_stride, width);
return;
}
if (y0_fraction == 256) {
CopyRow_SME((const uint8_t*)src_ptr, (uint8_t*)dst_ptr,
width * sizeof(uint16_t));
return;
}
int vl;
asm volatile(
"cnth %x[vl] \n"
"subs %w[width], %w[width], %w[vl] \n"
"dup z0.h, %w[y0_fraction] \n"
"dup z1.h, %w[y1_fraction] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"1: \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"incb %[src_ptr] \n"
"incb %[src_ptr1] \n"
"umullb z4.s, z2.h, z0.h \n"
"umullt z2.s, z2.h, z0.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"umlalb z4.s, z3.h, z1.h \n"
"umlalt z2.s, z3.h, z1.h \n"
"rshrnb z3.h, z4.s, #8 \n"
"rshrnt z3.h, z2.s, #8 \n"
"st1h {z3.h}, p0, [%[dst_ptr]] \n"
"incb %[dst_ptr] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"umullb z4.s, z2.h, z0.h \n"
"umullt z2.s, z2.h, z0.h \n"
"umlalb z4.s, z3.h, z1.h \n"
"umlalt z2.s, z3.h, z1.h \n"
"rshrnb z3.h, z4.s, #8 \n"
"rshrnt z3.h, z2.s, #8 \n"
"st1h {z3.h}, p0, [%[dst_ptr]] \n"
"99: \n"
: [src_ptr] "+r"(src_ptr), // %[src_ptr]
[src_ptr1] "+r"(src_ptr1), // %[src_ptr1]
[dst_ptr] "+r"(dst_ptr), // %[dst_ptr]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [y0_fraction] "r"(y0_fraction), // %[y0_fraction]
[y1_fraction] "r"(y1_fraction) // %[y1_fraction]
: "cc", "memory", "z0", "z1", "z2", "z3", "z4", "p0");
}
__arm_locally_streaming static void HalfRow_16To8_SME(uint8_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int scale,
int width) {
const uint16_t* src_ptr1 = src_ptr + src_stride;
// 15 - clz(scale), + 8 to shift result into the high half of the lane to
// saturate, then we can just use UZP2 to narrow rather than a pair of
// saturating narrow instructions.
const int shift = 23 - __builtin_clz((int32_t)scale);
int vl;
asm volatile(
"cnth %x[vl] \n"
"dup z31.h, %w[shift] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"1: \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"incb %[src_ptr] \n"
"incb %[src_ptr1] \n"
"urhadd z2.h, p0/m, z2.h, z3.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"uqshl z2.h, p0/m, z2.h, z31.h \n"
"shrnb z2.b, z2.h, #8 \n"
"st1b {z2.h}, p0, [%[dst_ptr]] \n"
"inch %[dst_ptr] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"urhadd z2.h, p0/m, z2.h, z3.h \n"
"uqshl z2.h, p0/m, z2.h, z31.h \n"
"shrnb z2.b, z2.h, #8 \n"
"st1b {z2.h}, p0, [%[dst_ptr]] \n"
"99: \n"
: [src_ptr] "+r"(src_ptr), // %[src_ptr]
[src_ptr1] "+r"(src_ptr1), // %[src_ptr1]
[dst_ptr] "+r"(dst_ptr), // %[dst_ptr]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [shift] "r"(shift) // %[shift]
: "cc", "memory", "z0", "z1", "z2", "z3", "z31", "p0");
}
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits
// 16384 = 10 bits
// 4096 = 12 bits
// 256 = 16 bits
// TODO(fbarchard): change scale to bits
__arm_locally_streaming void InterpolateRow_16To8_SME(uint8_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int scale,
int width,
int source_y_fraction) {
const int y1_fraction = source_y_fraction;
const int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
// y0_fraction == 0 is never called here.
if (y0_fraction == 128) {
HalfRow_16To8_SME(dst_ptr, src_ptr, src_stride, scale, width);
return;
}
if (y0_fraction == 256) {
Convert16To8Row_SME(src_ptr, dst_ptr, scale, width);
return;
}
// 15 - clz(scale), + 8 to shift result into the high half of the lane to
// saturate, then we can just use UZP2 to narrow rather than a pair of
// saturating narrow instructions.
const int shift = 23 - __builtin_clz((int32_t)scale);
int vl;
asm volatile(
"cnth %x[vl] \n"
"dup z31.h, %w[shift] \n"
"dup z0.h, %w[y0_fraction] \n"
"dup z1.h, %w[y1_fraction] \n"
"subs %w[width], %w[width], %w[vl] \n"
"b.lt 2f \n"
// Run bulk of computation with an all-true predicate to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"1: \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"incb %[src_ptr] \n"
"incb %[src_ptr1] \n"
"umullb z4.s, z2.h, z0.h \n"
"umullt z2.s, z2.h, z0.h \n"
"subs %w[width], %w[width], %w[vl] \n"
"umlalb z4.s, z3.h, z1.h \n"
"umlalt z2.s, z3.h, z1.h \n"
"rshrnb z3.h, z4.s, #8 \n"
"rshrnt z3.h, z2.s, #8 \n"
"uqshl z3.h, p0/m, z3.h, z31.h \n"
"shrnb z3.b, z3.h, #8 \n"
"st1b {z3.h}, p0, [%[dst_ptr]] \n"
"inch %[dst_ptr] \n"
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl] \n"
"b.eq 99f \n"
// Calculate a predicate for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"ld1h {z2.h}, p0/z, [%[src_ptr]] \n"
"ld1h {z3.h}, p0/z, [%[src_ptr1]] \n"
"umullb z4.s, z2.h, z0.h \n"
"umullt z2.s, z2.h, z0.h \n"
"umlalb z4.s, z3.h, z1.h \n"
"umlalt z2.s, z3.h, z1.h \n"
"rshrnb z3.h, z4.s, #8 \n"
"rshrnt z3.h, z2.s, #8 \n"
"uqshl z3.h, p0/m, z3.h, z31.h \n"
"shrnb z3.b, z3.h, #8 \n"
"st1b {z3.h}, p0, [%[dst_ptr]] \n"
"99: \n"
: [src_ptr] "+r"(src_ptr), // %[src_ptr]
[src_ptr1] "+r"(src_ptr1), // %[src_ptr1]
[dst_ptr] "+r"(dst_ptr), // %[dst_ptr]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [y0_fraction] "r"(y0_fraction), // %[y0_fraction]
[y1_fraction] "r"(y1_fraction), // %[y1_fraction]
[shift] "r"(shift) // %[shift]
: "cc", "memory", "z0", "z1", "z2", "z3", "z4", "z31", "p0");
}
__arm_locally_streaming void Convert8To8Row_SME(const uint8_t* src_y,
uint8_t* dst_y,
int scale,
int bias,
int width) {
Convert8To8Row_SVE_SC(src_y, dst_y, scale, bias, width);
}
#define CONVERT8TO16_SVE \
"ld1b {z0.h}, p0/z, [%[src]] \n" \
"ld1b {z1.h}, p1/z, [%[src], #1, mul vl] \n" \
"incb %[src] \n" \
"subs %w[width], %w[width], %w[vl], lsl #1 \n" \
"trn1 z0.b, z0.b, z0.b \n" \
"trn1 z1.b, z1.b, z1.b \n" \
"lsr z0.h, p0/m, z0.h, z2.h \n" \
"lsr z1.h, p1/m, z1.h, z2.h \n" \
"prfm pldl1keep, [%[src], 448] \n" \
"st1h {z0.h}, p0, [%[dst]] \n" \
"st1h {z1.h}, p1, [%[dst], #1, mul vl] \n" \
"incb %[dst], all, mul #2 \n"
__arm_locally_streaming void Convert8To16Row_SME(const uint8_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
// (src * 0x0101 * scale) >> 16.
// Since scale is a power of two, compute the shift to use to avoid needing
// to widen to int32.
const int shift = __builtin_clz(scale) - 15;
uint64_t vl;
asm volatile(
"dup z2.h, %w[shift] \n"
"cnth %[vl] \n"
"subs %w[width], %w[width], %w[vl], lsl #1 \n"
"b.lt 2f \n"
// Run bulk of computation with all-true predicates to avoid predicate
// generation overhead.
"ptrue p0.h \n"
"ptrue p1.h \n"
"1: \n" //
CONVERT8TO16_SVE
"b.ge 1b \n"
"2: \n"
"adds %w[width], %w[width], %w[vl], lsl #1 \n"
"b.eq 99f \n"
// Calculate predicates for the final iteration to deal with the tail.
"whilelt p0.h, wzr, %w[width] \n"
"whilelt p1.h, %w[vl], %w[width] \n" //
CONVERT8TO16_SVE
"99: \n"
: [src] "+r"(src_y), // %[src]
[dst] "+r"(dst_y), // %[dst]
[width] "+r"(width), // %[width]
[vl] "=&r"(vl) // %[vl]
: [shift] "r"(shift) // %[shift]
: "cc", "memory", "z0", "z1", "z2", "p0", "p1");
}
__arm_locally_streaming void ARGBToUVRow_SME(const uint8_t* src_argb,
int src_stride_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
ARGBToUVMatrixRow_SVE_SC(src_argb, src_stride_argb, dst_u, dst_v, width,
kARGBToUVCoefficients);
}
__arm_locally_streaming void ARGBToUVJRow_SME(const uint8_t* src_argb,
int src_stride_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
ARGBToUVMatrixRow_SVE_SC(src_argb, src_stride_argb, dst_u, dst_v, width,
kARGBToUVJCoefficients);
}
__arm_locally_streaming void ABGRToUVJRow_SME(const uint8_t* src_abgr,
int src_stride_abgr,
uint8_t* dst_uj,
uint8_t* dst_vj,
int width) {
ARGBToUVMatrixRow_SVE_SC(src_abgr, src_stride_abgr, dst_uj, dst_vj, width,
kABGRToUVJCoefficients);
}
__arm_locally_streaming void BGRAToUVRow_SME(const uint8_t* src_bgra,
int src_stride_bgra,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
ARGBToUVMatrixRow_SVE_SC(src_bgra, src_stride_bgra, dst_u, dst_v, width,
kBGRAToUVCoefficients);
}
__arm_locally_streaming void ABGRToUVRow_SME(const uint8_t* src_abgr,
int src_stride_abgr,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
ARGBToUVMatrixRow_SVE_SC(src_abgr, src_stride_abgr, dst_u, dst_v, width,
kABGRToUVCoefficients);
}
__arm_locally_streaming void RGBAToUVRow_SME(const uint8_t* src_rgba,
int src_stride_rgba,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
ARGBToUVMatrixRow_SVE_SC(src_rgba, src_stride_rgba, dst_u, dst_v, width,
kRGBAToUVCoefficients);
}
#endif // !defined(LIBYUV_DISABLE_SME) && defined(CLANG_HAS_SME) &&
// defined(__aarch64__)
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif