blob: 3062fd8f9eb9ca8f79db4c2257c7fad0ba1a150e [file] [log] [blame] [edit]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/row.h"
#include <assert.h>
#include <string.h> // For memcpy and memset.
#include "libyuv/basic_types.h"
#include "libyuv/convert_argb.h" // For kYuvI601Constants
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
#ifdef __cplusplus
#define STATIC_CAST(type, expr) static_cast<type>(expr)
#else
#define STATIC_CAST(type, expr) (type)(expr)
#endif
// This macro controls YUV to RGB using unsigned math to extend range of
// YUV to RGB coefficients to 0 to 4 instead of 0 to 2 for more accuracy on B:
// LIBYUV_UNLIMITED_DATA
// Macros to enable unlimited data for each colorspace
// LIBYUV_UNLIMITED_BT601
// LIBYUV_UNLIMITED_BT709
// LIBYUV_UNLIMITED_BT2020
#if defined(LIBYUV_BIT_EXACT)
#define LIBYUV_UNATTENUATE_DUP 1
#endif
// llvm x86 is poor at ternary operator, so use branchless min/max.
#define USE_BRANCHLESS 1
#if defined(USE_BRANCHLESS)
static __inline int32_t clamp0(int32_t v) {
return -(v >= 0) & v;
}
// TODO(fbarchard): make clamp255 preserve negative values.
static __inline int32_t clamp255(int32_t v) {
return (-(v >= 255) | v) & 255;
}
static __inline int32_t clamp1023(int32_t v) {
return (-(v >= 1023) | v) & 1023;
}
// clamp to max
static __inline int32_t ClampMax(int32_t v, int32_t max) {
return (-(v >= max) | v) & max;
}
static __inline uint32_t Abs(int32_t v) {
int m = -(v < 0);
return (v + m) ^ m;
}
#else // USE_BRANCHLESS
static __inline int32_t clamp0(int32_t v) {
return (v < 0) ? 0 : v;
}
static __inline int32_t clamp255(int32_t v) {
return (v > 255) ? 255 : v;
}
static __inline int32_t clamp1023(int32_t v) {
return (v > 1023) ? 1023 : v;
}
static __inline int32_t ClampMax(int32_t v, int32_t max) {
return (v > max) ? max : v;
}
static __inline uint32_t Abs(int32_t v) {
return (v < 0) ? -v : v;
}
#endif // USE_BRANCHLESS
static __inline uint32_t Clamp(int32_t val) {
int v = clamp0(val);
return (uint32_t)(clamp255(v));
}
static __inline uint32_t Clamp10(int32_t val) {
int v = clamp0(val);
return (uint32_t)(clamp1023(v));
}
// Little Endian
#if defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \
defined(_M_IX86) || defined(__arm__) || defined(_M_ARM) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define WRITEWORD(p, v) *(uint32_t*)(p) = v
#else
static inline void WRITEWORD(uint8_t* p, uint32_t v) {
p[0] = (uint8_t)(v & 255);
p[1] = (uint8_t)((v >> 8) & 255);
p[2] = (uint8_t)((v >> 16) & 255);
p[3] = (uint8_t)((v >> 24) & 255);
}
#endif
void RGB24ToARGBRow_C(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_rgb24[0];
uint8_t g = src_rgb24[1];
uint8_t r = src_rgb24[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_rgb24 += 3;
}
}
void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t r = src_raw[0];
uint8_t g = src_raw[1];
uint8_t b = src_raw[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_raw += 3;
}
}
void RAWToRGBARow_C(const uint8_t* src_raw, uint8_t* dst_rgba, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t r = src_raw[0];
uint8_t g = src_raw[1];
uint8_t b = src_raw[2];
dst_rgba[0] = 255u;
dst_rgba[1] = b;
dst_rgba[2] = g;
dst_rgba[3] = r;
dst_rgba += 4;
src_raw += 3;
}
}
void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t r = src_raw[0];
uint8_t g = src_raw[1];
uint8_t b = src_raw[2];
dst_rgb24[0] = b;
dst_rgb24[1] = g;
dst_rgb24[2] = r;
dst_rgb24 += 3;
src_raw += 3;
}
}
void RGB565ToARGBRow_C(const uint8_t* src_rgb565,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f);
uint8_t g = STATIC_CAST(
uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
uint8_t r = STATIC_CAST(uint8_t, src_rgb565[1] >> 3);
dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
dst_argb[1] = STATIC_CAST(uint8_t, (g << 2) | (g >> 4));
dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
dst_argb[3] = 255u;
dst_argb += 4;
src_rgb565 += 2;
}
}
void ARGB1555ToARGBRow_C(const uint8_t* src_argb1555,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f);
uint8_t g = STATIC_CAST(
uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
uint8_t r = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2);
uint8_t a = STATIC_CAST(uint8_t, src_argb1555[1] >> 7);
dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
dst_argb[1] = STATIC_CAST(uint8_t, (g << 3) | (g >> 2));
dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
dst_argb[3] = -a;
dst_argb += 4;
src_argb1555 += 2;
}
}
void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = STATIC_CAST(uint8_t, src_argb4444[0] & 0x0f);
uint8_t g = STATIC_CAST(uint8_t, src_argb4444[0] >> 4);
uint8_t r = STATIC_CAST(uint8_t, src_argb4444[1] & 0x0f);
uint8_t a = STATIC_CAST(uint8_t, src_argb4444[1] >> 4);
dst_argb[0] = STATIC_CAST(uint8_t, (b << 4) | b);
dst_argb[1] = STATIC_CAST(uint8_t, (g << 4) | g);
dst_argb[2] = STATIC_CAST(uint8_t, (r << 4) | r);
dst_argb[3] = STATIC_CAST(uint8_t, (a << 4) | a);
dst_argb += 4;
src_argb4444 += 2;
}
}
void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t ar30;
memcpy(&ar30, src_ar30, sizeof ar30);
uint32_t b = (ar30 >> 2) & 0xff;
uint32_t g = (ar30 >> 12) & 0xff;
uint32_t r = (ar30 >> 22) & 0xff;
uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits.
*(uint32_t*)(dst_argb) = b | (g << 8) | (r << 16) | (a << 24);
dst_argb += 4;
src_ar30 += 4;
}
}
void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t ar30;
memcpy(&ar30, src_ar30, sizeof ar30);
uint32_t b = (ar30 >> 2) & 0xff;
uint32_t g = (ar30 >> 12) & 0xff;
uint32_t r = (ar30 >> 22) & 0xff;
uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits.
*(uint32_t*)(dst_abgr) = r | (g << 8) | (b << 16) | (a << 24);
dst_abgr += 4;
src_ar30 += 4;
}
}
void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t ar30;
memcpy(&ar30, src_ar30, sizeof ar30);
uint32_t b = ar30 & 0x3ff;
uint32_t ga = ar30 & 0xc00ffc00;
uint32_t r = (ar30 >> 20) & 0x3ff;
*(uint32_t*)(dst_ab30) = r | ga | (b << 20);
dst_ab30 += 4;
src_ar30 += 4;
}
}
void ARGBToABGRRow_C(const uint8_t* src_argb, uint8_t* dst_abgr, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
uint8_t a = src_argb[3];
dst_abgr[0] = r;
dst_abgr[1] = g;
dst_abgr[2] = b;
dst_abgr[3] = a;
dst_abgr += 4;
src_argb += 4;
}
}
void ARGBToBGRARow_C(const uint8_t* src_argb, uint8_t* dst_bgra, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
uint8_t a = src_argb[3];
dst_bgra[0] = a;
dst_bgra[1] = r;
dst_bgra[2] = g;
dst_bgra[3] = b;
dst_bgra += 4;
src_argb += 4;
}
}
void ARGBToRGBARow_C(const uint8_t* src_argb, uint8_t* dst_rgba, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
uint8_t a = src_argb[3];
dst_rgba[0] = a;
dst_rgba[1] = b;
dst_rgba[2] = g;
dst_rgba[3] = r;
dst_rgba += 4;
src_argb += 4;
}
}
void ARGBToRGB24Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
dst_rgb[0] = b;
dst_rgb[1] = g;
dst_rgb[2] = r;
dst_rgb += 3;
src_argb += 4;
}
}
void ARGBToRAWRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
dst_rgb[0] = r;
dst_rgb[1] = g;
dst_rgb[2] = b;
dst_rgb += 3;
src_argb += 4;
}
}
void RGBAToARGBRow_C(const uint8_t* src_rgba, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t a = src_rgba[0];
uint8_t b = src_rgba[1];
uint8_t g = src_rgba[2];
uint8_t r = src_rgba[3];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
dst_argb += 4;
src_rgba += 4;
}
}
void ARGBToRGB565Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 2;
uint8_t r0 = src_argb[2] >> 3;
uint8_t b1 = src_argb[4] >> 3;
uint8_t g1 = src_argb[5] >> 2;
uint8_t r1 = src_argb[6] >> 3;
WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) |
(r1 << 27));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 2;
uint8_t r0 = src_argb[2] >> 3;
*(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
}
}
// dither4 is a row of 4 values from 4x4 dither matrix.
// The 4x4 matrix contains values to increase RGB. When converting to
// fewer bits (565) this provides an ordered dither.
// The order in the 4x4 matrix in first byte is upper left.
// The 4 values are passed as an int, then referenced as an array, so
// endian will not affect order of the original matrix. But the dither4
// will containing the first pixel in the lower byte for little endian
// or the upper byte for big endian.
void ARGBToRGB565DitherRow_C(const uint8_t* src_argb,
uint8_t* dst_rgb,
uint32_t dither4,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
int dither0 = ((const unsigned char*)(&dither4))[x & 3];
int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3];
uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3);
uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2);
uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3);
uint8_t b1 = STATIC_CAST(uint8_t, clamp255(src_argb[4] + dither1) >> 3);
uint8_t g1 = STATIC_CAST(uint8_t, clamp255(src_argb[5] + dither1) >> 2);
uint8_t r1 = STATIC_CAST(uint8_t, clamp255(src_argb[6] + dither1) >> 3);
*(uint16_t*)(dst_rgb + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
*(uint16_t*)(dst_rgb + 2) =
STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3];
uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3);
uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2);
uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3);
*(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
}
}
void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 3;
uint8_t r0 = src_argb[2] >> 3;
uint8_t a0 = src_argb[3] >> 7;
uint8_t b1 = src_argb[4] >> 3;
uint8_t g1 = src_argb[5] >> 3;
uint8_t r1 = src_argb[6] >> 3;
uint8_t a1 = src_argb[7] >> 7;
*(uint16_t*)(dst_rgb + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15));
*(uint16_t*)(dst_rgb + 2) =
STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | (a1 << 15));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 3;
uint8_t r0 = src_argb[2] >> 3;
uint8_t a0 = src_argb[3] >> 7;
*(uint16_t*)(dst_rgb) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15));
}
}
void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb[0] >> 4;
uint8_t g0 = src_argb[1] >> 4;
uint8_t r0 = src_argb[2] >> 4;
uint8_t a0 = src_argb[3] >> 4;
uint8_t b1 = src_argb[4] >> 4;
uint8_t g1 = src_argb[5] >> 4;
uint8_t r1 = src_argb[6] >> 4;
uint8_t a1 = src_argb[7] >> 4;
*(uint16_t*)(dst_rgb + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12));
*(uint16_t*)(dst_rgb + 2) =
STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | (a1 << 12));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8_t b0 = src_argb[0] >> 4;
uint8_t g0 = src_argb[1] >> 4;
uint8_t r0 = src_argb[2] >> 4;
uint8_t a0 = src_argb[3] >> 4;
*(uint16_t*)(dst_rgb) =
STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12));
}
}
void ABGRToAR30Row_C(const uint8_t* src_abgr, uint8_t* dst_ar30, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t r0 = (src_abgr[0] >> 6) | ((uint32_t)(src_abgr[0]) << 2);
uint32_t g0 = (src_abgr[1] >> 6) | ((uint32_t)(src_abgr[1]) << 2);
uint32_t b0 = (src_abgr[2] >> 6) | ((uint32_t)(src_abgr[2]) << 2);
uint32_t a0 = (src_abgr[3] >> 6);
*(uint32_t*)(dst_ar30) =
STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30));
dst_ar30 += 4;
src_abgr += 4;
}
}
void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t b0 = (src_argb[0] >> 6) | ((uint32_t)(src_argb[0]) << 2);
uint32_t g0 = (src_argb[1] >> 6) | ((uint32_t)(src_argb[1]) << 2);
uint32_t r0 = (src_argb[2] >> 6) | ((uint32_t)(src_argb[2]) << 2);
uint32_t a0 = (src_argb[3] >> 6);
*(uint32_t*)(dst_ar30) =
STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30));
dst_ar30 += 4;
src_argb += 4;
}
}
void ARGBToAR64Row_C(const uint8_t* src_argb, uint16_t* dst_ar64, int width) {
int x;
for (x = 0; x < width; ++x) {
uint16_t b = src_argb[0] * 0x0101;
uint16_t g = src_argb[1] * 0x0101;
uint16_t r = src_argb[2] * 0x0101;
uint16_t a = src_argb[3] * 0x0101;
dst_ar64[0] = b;
dst_ar64[1] = g;
dst_ar64[2] = r;
dst_ar64[3] = a;
dst_ar64 += 4;
src_argb += 4;
}
}
void ARGBToAB64Row_C(const uint8_t* src_argb, uint16_t* dst_ab64, int width) {
int x;
for (x = 0; x < width; ++x) {
uint16_t b = src_argb[0] * 0x0101;
uint16_t g = src_argb[1] * 0x0101;
uint16_t r = src_argb[2] * 0x0101;
uint16_t a = src_argb[3] * 0x0101;
dst_ab64[0] = r;
dst_ab64[1] = g;
dst_ab64[2] = b;
dst_ab64[3] = a;
dst_ab64 += 4;
src_argb += 4;
}
}
void AR64ToARGBRow_C(const uint16_t* src_ar64, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_ar64[0] >> 8;
uint8_t g = src_ar64[1] >> 8;
uint8_t r = src_ar64[2] >> 8;
uint8_t a = src_ar64[3] >> 8;
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
dst_argb += 4;
src_ar64 += 4;
}
}
void AB64ToARGBRow_C(const uint16_t* src_ab64, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t r = src_ab64[0] >> 8;
uint8_t g = src_ab64[1] >> 8;
uint8_t b = src_ab64[2] >> 8;
uint8_t a = src_ab64[3] >> 8;
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
dst_argb += 4;
src_ab64 += 4;
}
}
void AR64ToAB64Row_C(const uint16_t* src_ar64, uint16_t* dst_ab64, int width) {
int x;
for (x = 0; x < width; ++x) {
uint16_t b = src_ar64[0];
uint16_t g = src_ar64[1];
uint16_t r = src_ar64[2];
uint16_t a = src_ar64[3];
dst_ab64[0] = r;
dst_ab64[1] = g;
dst_ab64[2] = b;
dst_ab64[3] = a;
dst_ab64 += 4;
src_ar64 += 4;
}
}
// TODO(fbarchard): Make shuffle compatible with SIMD versions
void AR64ShuffleRow_C(const uint8_t* src_ar64,
uint8_t* dst_ar64,
const uint8_t* shuffler,
int width) {
const uint16_t* src_ar64_16 = (const uint16_t*)src_ar64;
uint16_t* dst_ar64_16 = (uint16_t*)dst_ar64;
int index0 = shuffler[0] / 2;
int index1 = shuffler[2] / 2;
int index2 = shuffler[4] / 2;
int index3 = shuffler[6] / 2;
// Shuffle a row of AR64.
int x;
for (x = 0; x < width / 2; ++x) {
// To support in-place conversion.
uint16_t b = src_ar64_16[index0];
uint16_t g = src_ar64_16[index1];
uint16_t r = src_ar64_16[index2];
uint16_t a = src_ar64_16[index3];
dst_ar64_16[0] = b;
dst_ar64_16[1] = g;
dst_ar64_16[2] = r;
dst_ar64_16[3] = a;
src_ar64_16 += 4;
dst_ar64_16 += 4;
}
}
// BT601 8 bit Y:
// b 0.114 * 219 = 24.966 = 25
// g 0.587 * 219 = 128.553 = 129
// r 0.299 * 219 = 65.481 = 66
// BT601 8 bit U:
// b 0.875 * 128 = 112.0 = 112
// g -0.5781 * 128 = −73.9968 = -74
// r -0.2969 * 128 = −38.0032 = -38
// BT601 8 bit V:
// b -0.1406 * 128 = −17.9968 = -18
// g -0.7344 * 128 = −94.0032 = -94
// r 0.875 * 128 = 112.0 = 112
static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) {
return STATIC_CAST(uint8_t, (66 * r + 129 * g + 25 * b + 0x1080) >> 8);
}
static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) {
return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8000) >> 8);
}
static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) {
return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8000) >> 8);
}
#define AVGB(a, b) (((a) + (b) + 1) >> 1)
#define MAKEROWY(NAME, R, G, B, BPP) \
void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
int x; \
for (x = 0; x < width; ++x) { \
dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \
src_rgb += BPP; \
dst_y += 1; \
} \
} \
void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
uint8_t* dst_u, uint8_t* dst_v, int width) { \
const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
int x; \
for (x = 0; x < width - 1; x += 2) { \
uint8_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \
src_rgb1[B + BPP] + 2) >> \
2; \
uint8_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \
src_rgb1[G + BPP] + 2) >> \
2; \
uint8_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \
src_rgb1[R + BPP] + 2) >> \
2; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
src_rgb += BPP * 2; \
src_rgb1 += BPP * 2; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint8_t ab = (src_rgb[B] + src_rgb1[B] + 1) >> 1; \
uint8_t ag = (src_rgb[G] + src_rgb1[G] + 1) >> 1; \
uint8_t ar = (src_rgb[R] + src_rgb1[R] + 1) >> 1; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
} \
}
MAKEROWY(ARGB, 2, 1, 0, 4)
MAKEROWY(BGRA, 1, 2, 3, 4)
MAKEROWY(ABGR, 0, 1, 2, 4)
MAKEROWY(RGBA, 3, 2, 1, 4)
MAKEROWY(RGB24, 2, 1, 0, 3)
MAKEROWY(RAW, 0, 1, 2, 3)
#undef MAKEROWY
// JPeg uses BT.601-1 full range
// y = 0.29900 * r + 0.58700 * g + 0.11400 * b
// u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center
// v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center
// JPeg 8 bit Y:
// b 0.11400 * 256 = 29.184 = 29
// g 0.58700 * 256 = 150.272 = 150
// r 0.29900 * 256 = 76.544 = 77
// JPeg 8 bit U:
// b 0.50000 * 256 = 128.0 = 128
// g -0.33126 * 256 = −84.80256 = -85
// r -0.16874 * 256 = −43.19744 = -43
// JPeg 8 bit V:
// b -0.08131 * 256 = −20.81536 = -21
// g -0.41869 * 256 = −107.18464 = -107
// r 0.50000 * 256 = 128.0 = 128
// 8 bit
static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) {
return (77 * r + 150 * g + 29 * b + 128) >> 8;
}
static __inline uint8_t RGBToUJ(uint8_t r, uint8_t g, uint8_t b) {
return (128 * b - 85 * g - 43 * r + 0x8000) >> 8;
}
static __inline uint8_t RGBToVJ(uint8_t r, uint8_t g, uint8_t b) {
return (128 * r - 107 * g - 21 * b + 0x8000) >> 8;
}
// ARGBToYJ_C and ARGBToUVJ_C
#define MAKEROWYJ(NAME, R, G, B, BPP) \
void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
int x; \
for (x = 0; x < width; ++x) { \
dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \
src_rgb += BPP; \
dst_y += 1; \
} \
} \
void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
uint8_t* dst_u, uint8_t* dst_v, int width) { \
const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
int x; \
for (x = 0; x < width - 1; x += 2) { \
uint8_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \
src_rgb1[B + BPP] + 2) >> \
2; \
uint8_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \
src_rgb1[G + BPP] + 2) >> \
2; \
uint8_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \
src_rgb1[R + BPP] + 2) >> \
2; \
dst_u[0] = RGBToUJ(ar, ag, ab); \
dst_v[0] = RGBToVJ(ar, ag, ab); \
src_rgb += BPP * 2; \
src_rgb1 += BPP * 2; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint16_t ab = (src_rgb[B] + src_rgb1[B] + 1) >> 1; \
uint16_t ag = (src_rgb[G] + src_rgb1[G] + 1) >> 1; \
uint16_t ar = (src_rgb[R] + src_rgb1[R] + 1) >> 1; \
dst_u[0] = RGBToUJ(ar, ag, ab); \
dst_v[0] = RGBToVJ(ar, ag, ab); \
} \
}
MAKEROWYJ(ARGB, 2, 1, 0, 4)
MAKEROWYJ(ABGR, 0, 1, 2, 4)
MAKEROWYJ(RGBA, 3, 2, 1, 4)
MAKEROWYJ(RGB24, 2, 1, 0, 3)
MAKEROWYJ(RAW, 0, 1, 2, 3)
#undef MAKEROWYJ
void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_rgb565[0] & 0x1f;
uint8_t g = STATIC_CAST(
uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
uint8_t r = src_rgb565[1] >> 3;
b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
g = STATIC_CAST(uint8_t, (g << 2) | (g >> 4));
r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
dst_y[0] = RGBToY(r, g, b);
src_rgb565 += 2;
dst_y += 1;
}
}
void ARGB1555ToYRow_C(const uint8_t* src_argb1555, uint8_t* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb1555[0] & 0x1f;
uint8_t g = STATIC_CAST(
uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
uint8_t r = (src_argb1555[1] & 0x7c) >> 2;
b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
g = STATIC_CAST(uint8_t, (g << 3) | (g >> 2));
r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
dst_y[0] = RGBToY(r, g, b);
src_argb1555 += 2;
dst_y += 1;
}
}
void ARGB4444ToYRow_C(const uint8_t* src_argb4444, uint8_t* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb4444[0] & 0x0f;
uint8_t g = src_argb4444[0] >> 4;
uint8_t r = src_argb4444[1] & 0x0f;
b = STATIC_CAST(uint8_t, (b << 4) | b);
g = STATIC_CAST(uint8_t, (g << 4) | g);
r = STATIC_CAST(uint8_t, (r << 4) | r);
dst_y[0] = RGBToY(r, g, b);
src_argb4444 += 2;
dst_y += 1;
}
}
void RGB565ToUVRow_C(const uint8_t* src_rgb565,
int src_stride_rgb565,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* next_rgb565 = src_rgb565 + src_stride_rgb565;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f);
uint8_t g0 = STATIC_CAST(
uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3);
uint8_t b1 = STATIC_CAST(uint8_t, src_rgb565[2] & 0x1f);
uint8_t g1 = STATIC_CAST(
uint8_t, (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3));
uint8_t r1 = STATIC_CAST(uint8_t, src_rgb565[3] >> 3);
uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f);
uint8_t g2 = STATIC_CAST(
uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3));
uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3);
uint8_t b3 = STATIC_CAST(uint8_t, next_rgb565[2] & 0x1f);
uint8_t g3 = STATIC_CAST(
uint8_t, (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3));
uint8_t r3 = STATIC_CAST(uint8_t, next_rgb565[3] >> 3);
b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4));
r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2));
g1 = STATIC_CAST(uint8_t, (g1 << 2) | (g1 >> 4));
r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2));
b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4));
r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2));
g3 = STATIC_CAST(uint8_t, (g3 << 2) | (g3 >> 4));
r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2));
uint8_t b = (b0 + b1 + b2 + b3 + 2) >> 2;
uint8_t g = (g0 + g1 + g2 + g3 + 2) >> 2;
uint8_t r = (r0 + r1 + r2 + r3 + 2) >> 2;
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_rgb565 += 4;
next_rgb565 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f);
uint8_t g0 = STATIC_CAST(
uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3);
uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f);
uint8_t g2 = STATIC_CAST(
uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3));
uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3);
b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4));
r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4));
r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
uint8_t ab = AVGB(b0, b2);
uint8_t ag = AVGB(g0, g2);
uint8_t ar = AVGB(r0, r2);
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
}
}
void ARGB1555ToUVRow_C(const uint8_t* src_argb1555,
int src_stride_argb1555,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* next_argb1555 = src_argb1555 + src_stride_argb1555;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f);
uint8_t g0 = STATIC_CAST(
uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2);
uint8_t b1 = STATIC_CAST(uint8_t, src_argb1555[2] & 0x1f);
uint8_t g1 = STATIC_CAST(
uint8_t, (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3));
uint8_t r1 = STATIC_CAST(uint8_t, (src_argb1555[3] & 0x7c) >> 2);
uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f);
uint8_t g2 = STATIC_CAST(
uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3));
uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2);
uint8_t b3 = STATIC_CAST(uint8_t, next_argb1555[2] & 0x1f);
uint8_t g3 = STATIC_CAST(
uint8_t, (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3));
uint8_t r3 = STATIC_CAST(uint8_t, (next_argb1555[3] & 0x7c) >> 2);
b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2));
r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2));
g1 = STATIC_CAST(uint8_t, (g1 << 3) | (g1 >> 2));
r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2));
b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2));
r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2));
g3 = STATIC_CAST(uint8_t, (g3 << 3) | (g3 >> 2));
r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2));
uint8_t b = (b0 + b1 + b2 + b3 + 2) >> 2;
uint8_t g = (g0 + g1 + g2 + g3 + 2) >> 2;
uint8_t r = (r0 + r1 + r2 + r3 + 2) >> 2;
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_argb1555 += 4;
next_argb1555 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f);
uint8_t g0 = STATIC_CAST(
uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2);
uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f);
uint8_t g2 = STATIC_CAST(
uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3));
uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2);
b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2));
r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2));
r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
uint8_t ab = AVGB(b0, b2);
uint8_t ag = AVGB(g0, g2);
uint8_t ar = AVGB(r0, r2);
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
}
}
void ARGB4444ToUVRow_C(const uint8_t* src_argb4444,
int src_stride_argb4444,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* next_argb4444 = src_argb4444 + src_stride_argb4444;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb4444[0] & 0x0f;
uint8_t g0 = src_argb4444[0] >> 4;
uint8_t r0 = src_argb4444[1] & 0x0f;
uint8_t b1 = src_argb4444[2] & 0x0f;
uint8_t g1 = src_argb4444[2] >> 4;
uint8_t r1 = src_argb4444[3] & 0x0f;
uint8_t b2 = next_argb4444[0] & 0x0f;
uint8_t g2 = next_argb4444[0] >> 4;
uint8_t r2 = next_argb4444[1] & 0x0f;
uint8_t b3 = next_argb4444[2] & 0x0f;
uint8_t g3 = next_argb4444[2] >> 4;
uint8_t r3 = next_argb4444[3] & 0x0f;
b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0);
g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0);
r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0);
b1 = STATIC_CAST(uint8_t, (b1 << 4) | b1);
g1 = STATIC_CAST(uint8_t, (g1 << 4) | g1);
r1 = STATIC_CAST(uint8_t, (r1 << 4) | r1);
b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2);
g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2);
r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2);
b3 = STATIC_CAST(uint8_t, (b3 << 4) | b3);
g3 = STATIC_CAST(uint8_t, (g3 << 4) | g3);
r3 = STATIC_CAST(uint8_t, (r3 << 4) | r3);
uint8_t b = (b0 + b1 + b2 + b3 + 2) >> 2;
uint8_t g = (g0 + g1 + g2 + g3 + 2) >> 2;
uint8_t r = (r0 + r1 + r2 + r3 + 2) >> 2;
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_argb4444 += 4;
next_argb4444 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8_t b0 = src_argb4444[0] & 0x0f;
uint8_t g0 = src_argb4444[0] >> 4;
uint8_t r0 = src_argb4444[1] & 0x0f;
uint8_t b2 = next_argb4444[0] & 0x0f;
uint8_t g2 = next_argb4444[0] >> 4;
uint8_t r2 = next_argb4444[1] & 0x0f;
b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0);
g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0);
r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0);
b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2);
g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2);
r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2);
uint8_t ab = AVGB(b0, b2);
uint8_t ag = AVGB(g0, g2);
uint8_t ar = AVGB(r0, r2);
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
}
}
void ARGBToUV444Row_C(const uint8_t* src_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t ab = src_argb[0];
uint8_t ag = src_argb[1];
uint8_t ar = src_argb[2];
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
src_argb += 4;
dst_u += 1;
dst_v += 1;
}
}
void ARGBToUVJ444Row_C(const uint8_t* src_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t ab = src_argb[0];
uint8_t ag = src_argb[1];
uint8_t ar = src_argb[2];
dst_u[0] = RGBToUJ(ar, ag, ab);
dst_v[0] = RGBToVJ(ar, ag, ab);
src_argb += 4;
dst_u += 1;
dst_v += 1;
}
}
void ARGBGrayRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]);
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = src_argb[3];
dst_argb += 4;
src_argb += 4;
}
}
// Convert a row of image to Sepia tone.
void ARGBSepiaRow_C(uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
int sb = (b * 17 + g * 68 + r * 35) >> 7;
int sg = (b * 22 + g * 88 + r * 45) >> 7;
int sr = (b * 24 + g * 98 + r * 50) >> 7;
// b does not over flow. a is preserved from original.
dst_argb[0] = STATIC_CAST(uint8_t, sb);
dst_argb[1] = STATIC_CAST(uint8_t, clamp255(sg));
dst_argb[2] = STATIC_CAST(uint8_t, clamp255(sr));
dst_argb += 4;
}
}
// Apply color matrix to a row of image. Matrix is signed.
// TODO(fbarchard): Consider adding rounding (+32).
void ARGBColorMatrixRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
const int8_t* matrix_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = src_argb[0];
int g = src_argb[1];
int r = src_argb[2];
int a = src_argb[3];
int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] +
a * matrix_argb[3]) >>
6;
int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] +
a * matrix_argb[7]) >>
6;
int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] +
a * matrix_argb[11]) >>
6;
int sa = (b * matrix_argb[12] + g * matrix_argb[13] + r * matrix_argb[14] +
a * matrix_argb[15]) >>
6;
dst_argb[0] = STATIC_CAST(uint8_t, Clamp(sb));
dst_argb[1] = STATIC_CAST(uint8_t, Clamp(sg));
dst_argb[2] = STATIC_CAST(uint8_t, Clamp(sr));
dst_argb[3] = STATIC_CAST(uint8_t, Clamp(sa));
src_argb += 4;
dst_argb += 4;
}
}
// Apply color table to a row of image.
void ARGBColorTableRow_C(uint8_t* dst_argb,
const uint8_t* table_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
int a = dst_argb[3];
dst_argb[0] = table_argb[b * 4 + 0];
dst_argb[1] = table_argb[g * 4 + 1];
dst_argb[2] = table_argb[r * 4 + 2];
dst_argb[3] = table_argb[a * 4 + 3];
dst_argb += 4;
}
}
// Apply color table to a row of image.
void RGBColorTableRow_C(uint8_t* dst_argb,
const uint8_t* table_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
dst_argb[0] = table_argb[b * 4 + 0];
dst_argb[1] = table_argb[g * 4 + 1];
dst_argb[2] = table_argb[r * 4 + 2];
dst_argb += 4;
}
}
void ARGBQuantizeRow_C(uint8_t* dst_argb,
int scale,
int interval_size,
int interval_offset,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
dst_argb[0] = STATIC_CAST(
uint8_t, (b * scale >> 16) * interval_size + interval_offset);
dst_argb[1] = STATIC_CAST(
uint8_t, (g * scale >> 16) * interval_size + interval_offset);
dst_argb[2] = STATIC_CAST(
uint8_t, (r * scale >> 16) * interval_size + interval_offset);
dst_argb += 4;
}
}
#define REPEAT8(v) (v) | ((v) << 8)
#define SHADE(f, v) v* f >> 24
void ARGBShadeRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
int width,
uint32_t value) {
const uint32_t b_scale = REPEAT8(value & 0xff);
const uint32_t g_scale = REPEAT8((value >> 8) & 0xff);
const uint32_t r_scale = REPEAT8((value >> 16) & 0xff);
const uint32_t a_scale = REPEAT8(value >> 24);
int i;
for (i = 0; i < width; ++i) {
const uint32_t b = REPEAT8(src_argb[0]);
const uint32_t g = REPEAT8(src_argb[1]);
const uint32_t r = REPEAT8(src_argb[2]);
const uint32_t a = REPEAT8(src_argb[3]);
dst_argb[0] = SHADE(b, b_scale);
dst_argb[1] = SHADE(g, g_scale);
dst_argb[2] = SHADE(r, r_scale);
dst_argb[3] = SHADE(a, a_scale);
src_argb += 4;
dst_argb += 4;
}
}
#undef REPEAT8
#undef SHADE
void ARGBMultiplyRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
const uint32_t b = src_argb[0];
const uint32_t g = src_argb[1];
const uint32_t r = src_argb[2];
const uint32_t a = src_argb[3];
const uint32_t b_scale = src_argb1[0];
const uint32_t g_scale = src_argb1[1];
const uint32_t r_scale = src_argb1[2];
const uint32_t a_scale = src_argb1[3];
dst_argb[0] = STATIC_CAST(uint8_t, (b * b_scale + 128) >> 8);
dst_argb[1] = STATIC_CAST(uint8_t, (g * g_scale + 128) >> 8);
dst_argb[2] = STATIC_CAST(uint8_t, (r * r_scale + 128) >> 8);
dst_argb[3] = STATIC_CAST(uint8_t, (a * a_scale + 128) >> 8);
src_argb += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#define SHADE(f, v) clamp255(v + f)
void ARGBAddRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
const int b = src_argb[0];
const int g = src_argb[1];
const int r = src_argb[2];
const int a = src_argb[3];
const int b_add = src_argb1[0];
const int g_add = src_argb1[1];
const int r_add = src_argb1[2];
const int a_add = src_argb1[3];
dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_add));
dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_add));
dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_add));
dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_add));
src_argb += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef SHADE
#define SHADE(f, v) clamp0(f - v)
void ARGBSubtractRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
const int b = src_argb[0];
const int g = src_argb[1];
const int r = src_argb[2];
const int a = src_argb[3];
const int b_sub = src_argb1[0];
const int g_sub = src_argb1[1];
const int r_sub = src_argb1[2];
const int a_sub = src_argb1[3];
dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_sub));
dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_sub));
dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_sub));
dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_sub));
src_argb += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef SHADE
// Sobel functions which mimics SSSE3.
void SobelXRow_C(const uint8_t* src_y0,
const uint8_t* src_y1,
const uint8_t* src_y2,
uint8_t* dst_sobelx,
int width) {
int i;
for (i = 0; i < width; ++i) {
int a = src_y0[i];
int b = src_y1[i];
int c = src_y2[i];
int a_sub = src_y0[i + 2];
int b_sub = src_y1[i + 2];
int c_sub = src_y2[i + 2];
int a_diff = a - a_sub;
int b_diff = b - b_sub;
int c_diff = c - c_sub;
int sobel = Abs(a_diff + b_diff * 2 + c_diff);
dst_sobelx[i] = (uint8_t)(clamp255(sobel));
}
}
void SobelYRow_C(const uint8_t* src_y0,
const uint8_t* src_y1,
uint8_t* dst_sobely,
int width) {
int i;
for (i = 0; i < width; ++i) {
int a = src_y0[i + 0];
int b = src_y0[i + 1];
int c = src_y0[i + 2];
int a_sub = src_y1[i + 0];
int b_sub = src_y1[i + 1];
int c_sub = src_y1[i + 2];
int a_diff = a - a_sub;
int b_diff = b - b_sub;
int c_diff = c - c_sub;
int sobel = Abs(a_diff + b_diff * 2 + c_diff);
dst_sobely[i] = (uint8_t)(clamp255(sobel));
}
}
void SobelRow_C(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int s = clamp255(r + b);
dst_argb[0] = (uint8_t)(s);
dst_argb[1] = (uint8_t)(s);
dst_argb[2] = (uint8_t)(s);
dst_argb[3] = (uint8_t)(255u);
dst_argb += 4;
}
}
void SobelToPlaneRow_C(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_y,
int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int s = clamp255(r + b);
dst_y[i] = (uint8_t)(s);
}
}
void SobelXYRow_C(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int g = clamp255(r + b);
dst_argb[0] = (uint8_t)(b);
dst_argb[1] = (uint8_t)(g);
dst_argb[2] = (uint8_t)(r);
dst_argb[3] = (uint8_t)(255u);
dst_argb += 4;
}
}
void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) {
// Copy a Y to RGB.
int x;
for (x = 0; x < width; ++x) {
uint8_t y = src_y[0];
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = 255u;
dst_argb += 4;
++src_y;
}
}
// Macros to create SIMD specific yuv to rgb conversion constants.
// clang-format off
#if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
// Bias values include subtract 128 from U and V, bias from Y and rounding.
// For B and R bias is negative. For G bias is positive.
#define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \
{{UB, VR, UG, VG, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, \
{YG, (UB * 128 - YB), (UG * 128 + VG * 128 + YB), (VR * 128 - YB), YB, 0, \
0, 0}}
#else
#define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \
{{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, \
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, \
{UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, \
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, \
{0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, \
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, \
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}, \
{YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB}}
#endif
// clang-format on
#define MAKEYUVCONSTANTS(name, YG, YB, UB, UG, VG, VR) \
const struct YuvConstants SIMD_ALIGNED(kYuv##name##Constants) = \
YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR); \
const struct YuvConstants SIMD_ALIGNED(kYvu##name##Constants) = \
YUVCONSTANTSBODY(YG, YB, VR, VG, UG, UB);
// TODO(fbarchard): Generate SIMD structures from float matrix.
// BT.601 limited range YUV to RGB reference
// R = (Y - 16) * 1.164 + V * 1.596
// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813
// B = (Y - 16) * 1.164 + U * 2.018
// KR = 0.299; KB = 0.114
// U and V contributions to R,G,B.
#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT601)
#define UB 129 /* round(2.018 * 64) */
#else
#define UB 128 /* max(128, round(2.018 * 64)) */
#endif
#define UG 25 /* round(0.391 * 64) */
#define VG 52 /* round(0.813 * 64) */
#define VR 102 /* round(1.596 * 64) */
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
MAKEYUVCONSTANTS(I601, YG, YB, UB, UG, VG, VR)
#undef YG
#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
// BT.601 full range YUV to RGB reference (aka JPEG)
// * R = Y + V * 1.40200
// * G = Y - U * 0.34414 - V * 0.71414
// * B = Y + U * 1.77200
// KR = 0.299; KB = 0.114
// U and V contributions to R,G,B.
#define UB 113 /* round(1.77200 * 64) */
#define UG 22 /* round(0.34414 * 64) */
#define VG 46 /* round(0.71414 * 64) */
#define VR 90 /* round(1.40200 * 64) */
// Y contribution to R,G,B. Scale and bias.
#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */
#define YB 32 /* 64 / 2 */
MAKEYUVCONSTANTS(JPEG, YG, YB, UB, UG, VG, VR)
#undef YG
#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
// BT.709 limited range YUV to RGB reference
// R = (Y - 16) * 1.164 + V * 1.793
// G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533
// B = (Y - 16) * 1.164 + U * 2.112
// KR = 0.2126, KB = 0.0722
// U and V contributions to R,G,B.
#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT709)
#define UB 135 /* round(2.112 * 64) */
#else
#define UB 128 /* max(128, round(2.112 * 64)) */
#endif
#define UG 14 /* round(0.213 * 64) */
#define VG 34 /* round(0.533 * 64) */
#define VR 115 /* round(1.793 * 64) */
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
MAKEYUVCONSTANTS(H709, YG, YB, UB, UG, VG, VR)
#undef YG
#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
// BT.709 full range YUV to RGB reference
// R = Y + V * 1.5748
// G = Y - U * 0.18732 - V * 0.46812
// B = Y + U * 1.8556
// KR = 0.2126, KB = 0.0722
// U and V contributions to R,G,B.
#define UB 119 /* round(1.8556 * 64) */
#define UG 12 /* round(0.18732 * 64) */
#define VG 30 /* round(0.46812 * 64) */
#define VR 101 /* round(1.5748 * 64) */
// Y contribution to R,G,B. Scale and bias. (same as jpeg)
#define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */
#define YB 32 /* 64 / 2 */
MAKEYUVCONSTANTS(F709, YG, YB, UB, UG, VG, VR)
#undef YG
#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
// BT.2020 limited range YUV to RGB reference
// R = (Y - 16) * 1.164384 + V * 1.67867
// G = (Y - 16) * 1.164384 - U * 0.187326 - V * 0.65042
// B = (Y - 16) * 1.164384 + U * 2.14177
// KR = 0.2627; KB = 0.0593
// U and V contributions to R,G,B.
#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT2020)
#define UB 137 /* round(2.142 * 64) */
#else
#define UB 128 /* max(128, round(2.142 * 64)) */
#endif
#define UG 12 /* round(0.187326 * 64) */
#define VG 42 /* round(0.65042 * 64) */
#define VR 107 /* round(1.67867 * 64) */
// Y contribution to R,G,B. Scale and bias.
#define YG 19003 /* round(1.164384 * 64 * 256 * 256 / 257) */
#define YB -1160 /* 1.164384 * 64 * -16 + 64 / 2 */
MAKEYUVCONSTANTS(2020, YG, YB, UB, UG, VG, VR)
#undef YG
#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
// BT.2020 full range YUV to RGB reference
// R = Y + V * 1.474600
// G = Y - U * 0.164553 - V * 0.571353
// B = Y + U * 1.881400
// KR = 0.2627; KB = 0.0593
#define UB 120 /* round(1.881400 * 64) */
#define UG 11 /* round(0.164553 * 64) */
#define VG 37 /* round(0.571353 * 64) */
#define VR 94 /* round(1.474600 * 64) */
// Y contribution to R,G,B. Scale and bias. (same as jpeg)
#define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */
#define YB 32 /* 64 / 2 */
MAKEYUVCONSTANTS(V2020, YG, YB, UB, UG, VG, VR)
#undef YG
#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
#undef BB
#undef BG
#undef BR
#undef MAKEYUVCONSTANTS
#if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
#define LOAD_YUV_CONSTANTS \
int ub = yuvconstants->kUVCoeff[0]; \
int vr = yuvconstants->kUVCoeff[1]; \
int ug = yuvconstants->kUVCoeff[2]; \
int vg = yuvconstants->kUVCoeff[3]; \
int yg = yuvconstants->kRGBCoeffBias[0]; \
int bb = yuvconstants->kRGBCoeffBias[1]; \
int bg = yuvconstants->kRGBCoeffBias[2]; \
int br = yuvconstants->kRGBCoeffBias[3]
#define CALC_RGB16 \
int32_t y1 = (uint32_t)(y32 * yg) >> 16; \
int b16 = y1 + (u * ub) - bb; \
int g16 = y1 + bg - (u * ug + v * vg); \
int r16 = y1 + (v * vr) - br
#else
#define LOAD_YUV_CONSTANTS \
int ub = yuvconstants->kUVToB[0]; \
int ug = yuvconstants->kUVToG[0]; \
int vg = yuvconstants->kUVToG[1]; \
int vr = yuvconstants->kUVToR[1]; \
int yg = yuvconstants->kYToRgb[0]; \
int yb = yuvconstants->kYBiasToRgb[0]
#define CALC_RGB16 \
int32_t y1 = ((uint32_t)(y32 * yg) >> 16) + yb; \
int8_t ui = (int8_t)u; \
int8_t vi = (int8_t)v; \
ui -= 0x80; \
vi -= 0x80; \
int b16 = y1 + (ui * ub); \
int g16 = y1 - (ui * ug + vi * vg); \
int r16 = y1 + (vi * vr)
#endif
// C reference code that mimics the YUV assembly.
// Reads 8 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel(uint8_t y,
uint8_t u,
uint8_t v,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
LOAD_YUV_CONSTANTS;
uint32_t y32 = y * 0x0101;
CALC_RGB16;
*b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6));
*g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6));
*r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6));
}
// Reads 8 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel8_16(uint8_t y,
uint8_t u,
uint8_t v,
int* b,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
LOAD_YUV_CONSTANTS;
uint32_t y32 = y * 0x0101;
CALC_RGB16;
*b = b16;
*g = g16;
*r = r16;
}
// C reference code that mimics the YUV 16 bit assembly.
// Reads 10 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel10_16(uint16_t y,
uint16_t u,
uint16_t v,
int* b,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
LOAD_YUV_CONSTANTS;
uint32_t y32 = (y << 6) | (y >> 4);
u = STATIC_CAST(uint8_t, clamp255(u >> 2));
v = STATIC_CAST(uint8_t, clamp255(v >> 2));
CALC_RGB16;
*b = b16;
*g = g16;
*r = r16;
}
// C reference code that mimics the YUV 16 bit assembly.
// Reads 12 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel12_16(int16_t y,
int16_t u,
int16_t v,
int* b,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
LOAD_YUV_CONSTANTS;
uint32_t y32 = (y << 4) | (y >> 8);
u = STATIC_CAST(uint8_t, clamp255(u >> 4));
v = STATIC_CAST(uint8_t, clamp255(v >> 4));
CALC_RGB16;
*b = b16;
*g = g16;
*r = r16;
}
// C reference code that mimics the YUV 10 bit assembly.
// Reads 10 bit YUV and clamps down to 8 bit RGB.
static __inline void YuvPixel10(uint16_t y,
uint16_t u,
uint16_t v,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
int b16;
int g16;
int r16;
YuvPixel10_16(y, u, v, &b16, &g16, &r16, yuvconstants);
*b = STATIC_CAST(uint8_t, Clamp(b16 >> 6));
*g = STATIC_CAST(uint8_t, Clamp(g16 >> 6));
*r = STATIC_CAST(uint8_t, Clamp(r16 >> 6));
}
// C reference code that mimics the YUV 12 bit assembly.
// Reads 12 bit YUV and clamps down to 8 bit RGB.
static __inline void YuvPixel12(uint16_t y,
uint16_t u,
uint16_t v,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
int b16;
int g16;
int r16;
YuvPixel12_16(y, u, v, &b16, &g16, &r16, yuvconstants);
*b = STATIC_CAST(uint8_t, Clamp(b16 >> 6));
*g = STATIC_CAST(uint8_t, Clamp(g16 >> 6));
*r = STATIC_CAST(uint8_t, Clamp(r16 >> 6));
}
// C reference code that mimics the YUV 16 bit assembly.
// Reads 16 bit YUV and leaves result as 8 bit.
static __inline void YuvPixel16_8(uint16_t y,
uint16_t u,
uint16_t v,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
LOAD_YUV_CONSTANTS;
uint32_t y32 = y;
u = STATIC_CAST(uint16_t, clamp255(u >> 8));
v = STATIC_CAST(uint16_t, clamp255(v >> 8));
CALC_RGB16;
*b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6));
*g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6));
*r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6));
}
// C reference code that mimics the YUV 16 bit assembly.
// Reads 16 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel16_16(uint16_t y,
uint16_t u,
uint16_t v,
int* b,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
LOAD_YUV_CONSTANTS;
uint32_t y32 = y;
u = STATIC_CAST(uint16_t, clamp255(u >> 8));
v = STATIC_CAST(uint16_t, clamp255(v >> 8));
CALC_RGB16;
*b = b16;
*g = g16;
*r = r16;
}
// C reference code that mimics the YUV assembly.
// Reads 8 bit YUV and leaves result as 8 bit.
static __inline void YPixel(uint8_t y,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
#if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
int yg = yuvconstants->kRGBCoeffBias[0];
int ygb = yuvconstants->kRGBCoeffBias[4];
#else
int ygb = yuvconstants->kYBiasToRgb[0];
int yg = yuvconstants->kYToRgb[0];
#endif
uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
uint8_t b8 = STATIC_CAST(uint8_t, Clamp(((int32_t)(y1) + ygb) >> 6));
*b = b8;
*g = b8;
*r = b8;
}
void I444ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
src_y += 1;
src_u += 1;
src_v += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
void I444ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
src_y += 1;
src_u += 1;
src_v += 1;
rgb_buf += 3; // Advance 1 pixel.
}
}
// Also used for 420
void I422ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
// 10 bit YUV to ARGB
void I210ToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void I410ToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
src_y += 1;
src_u += 1;
src_v += 1;
rgb_buf += 4; // Advance 1 pixels.
}
}
void I210AlphaToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
const uint16_t* src_a,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2));
YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = STATIC_CAST(uint8_t, clamp255(src_a[1] >> 2));
src_y += 2;
src_u += 1;
src_v += 1;
src_a += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2));
}
}
void I410AlphaToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
const uint16_t* src_a,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2));
src_y += 1;
src_u += 1;
src_v += 1;
src_a += 1;
rgb_buf += 4; // Advance 1 pixels.
}
}
// 12 bit YUV to ARGB
void I212ToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel12(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) {
uint32_t ar30;
b = b >> 4; // convert 8 bit 10.6 to 10 bit.
g = g >> 4;
r = r >> 4;
b = Clamp10(b);
g = Clamp10(g);
r = Clamp10(r);
ar30 = b | ((uint32_t)g << 10) | ((uint32_t)r << 20) | 0xc0000000;
(*(uint32_t*)rgb_buf) = ar30;
}
// 10 bit YUV to 10 bit AR30
void I210ToAR30Row_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
YuvPixel10_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf + 4, b, g, r);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
}
}
// 12 bit YUV to 10 bit AR30
void I212ToAR30Row_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
YuvPixel12_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf + 4, b, g, r);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
}
}
void I410ToAR30Row_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width; ++x) {
YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
src_y += 1;
src_u += 1;
src_v += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
// P210 has 10 bits in msb of 16 bit NV12 style layout.
void P210ToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
dst_argb + 2, yuvconstants);
dst_argb[3] = 255;
YuvPixel16_8(src_y[1], src_uv[0], src_uv[1], dst_argb + 4, dst_argb + 5,
dst_argb + 6, yuvconstants);
dst_argb[7] = 255;
src_y += 2;
src_uv += 2;
dst_argb += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
dst_argb + 2, yuvconstants);
dst_argb[3] = 255;
}
}
void P410ToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
dst_argb + 2, yuvconstants);
dst_argb[3] = 255;
src_y += 1;
src_uv += 2;
dst_argb += 4; // Advance 1 pixels.
}
}
void P210ToAR30Row_C(const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
StoreAR30(dst_ar30, b, g, r);
YuvPixel16_16(src_y[1], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
StoreAR30(dst_ar30 + 4, b, g, r);
src_y += 2;
src_uv += 2;
dst_ar30 += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
StoreAR30(dst_ar30, b, g, r);
}
}
void P410ToAR30Row_C(const uint16_t* src_y,
const uint16_t* src_uv,
uint8_t* dst_ar30,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width; ++x) {
YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
StoreAR30(dst_ar30, b, g, r);
src_y += 1;
src_uv += 2;
dst_ar30 += 4; // Advance 1 pixel.
}
}
// 8 bit YUV to 10 bit AR30
// Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits.
void I422ToAR30Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
YuvPixel8_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf + 4, b, g, r);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
}
}
void I444AlphaToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
src_y += 1;
src_u += 1;
src_v += 1;
src_a += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
void I422AlphaToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = src_a[1];
src_y += 2;
src_u += 1;
src_v += 1;
src_a += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
}
}
void I422ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 3, rgb_buf + 4,
rgb_buf + 5, yuvconstants);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
}
}
void I422ToARGB4444Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 4;
g0 = g0 >> 4;
r0 = r0 >> 4;
b1 = b1 >> 4;
g1 = g1 >> 4;
r1 = r1 >> 4;
*(uint16_t*)(dst_argb4444 + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | 0xf000);
*(uint16_t*)(dst_argb4444 + 2) =
STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | 0xf000);
src_y += 2;
src_u += 1;
src_v += 1;
dst_argb4444 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 4;
g0 = g0 >> 4;
r0 = r0 >> 4;
*(uint16_t*)(dst_argb4444) =
STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | 0xf000);
}
}
void I422ToARGB1555Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 3;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 3;
r1 = r1 >> 3;
*(uint16_t*)(dst_argb1555 + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | 0x8000);
*(uint16_t*)(dst_argb1555 + 2) =
STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | 0x8000);
src_y += 2;
src_u += 1;
src_v += 1;
dst_argb1555 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 3;
r0 = r0 >> 3;
*(uint16_t*)(dst_argb1555) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | 0x8000);
}
}
void I422ToRGB565Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
*(uint16_t*)(dst_rgb565 + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
*(uint16_t*)(dst_rgb565 + 2) =
STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11));
src_y += 2;
src_u += 1;
src_v += 1;
dst_rgb565 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
*(uint16_t*)(dst_rgb565 + 0) =
STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
}
}
void NV12ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_uv += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV21ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_vu += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV12ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 3, rgb_buf + 4,
rgb_buf + 5, yuvconstants);
src_y += 2;
src_uv += 2;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
}
}
void NV21ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 3, rgb_buf + 4,
rgb_buf + 5, yuvconstants);
src_y += 2;
src_vu += 2;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
}
}
void NV12ToRGB565Row_C(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
*(uint16_t*)(dst_rgb565 + 0) = STATIC_CAST(uint16_t, b0) |
STATIC_CAST(uint16_t, g0 << 5) |
STATIC_CAST(uint16_t, r0 << 11);
*(uint16_t*)(dst_rgb565 + 2) = STATIC_CAST(uint16_t, b1) |
STATIC_CAST(uint16_t, g1 << 5) |
STATIC_CAST(uint16_t, r1 << 11);
src_y += 2;
src_uv += 2;
dst_rgb565 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
*(uint16_t*)(dst_rgb565) = STATIC_CAST(uint16_t, b0) |
STATIC_CAST(uint16_t, g0 << 5) |
STATIC_CAST(uint16_t, r0 << 11);
}
}
void YUY2ToARGBRow_C(const uint8_t* src_yuy2,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_yuy2 += 4;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void UYVYToARGBRow_C(const uint8_t* src_uyvy,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_uyvy += 4;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void I422ToRGBARow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2,
rgb_buf + 3, yuvconstants);
rgb_buf[0] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 5, rgb_buf + 6,
rgb_buf + 7, yuvconstants);
rgb_buf[4] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2,
rgb_buf + 3, yuvconstants);
rgb_buf[0] = 255;
}
}
void I400ToARGBRow_C(const uint8_t* src_y,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void MirrorRow_C(const uint8_t* src, uint8_t* dst, int width) {
int x;
src += width - 1;
for (x = 0; x < width - 1; x += 2) {
dst[x] = src[0];
dst[x + 1] = src[-1];
src -= 2;
}
if (width & 1) {
dst[width - 1] = src[0];
}
}
void MirrorRow_16_C(const uint16_t* src, uint16_t* dst, int width) {
int x;
src += width - 1;
for (x = 0; x < width - 1; x += 2) {
dst[x] = src[0];
dst[x + 1] = src[-1];
src -= 2;
}
if (width & 1) {
dst[width - 1] = src[0];
}
}
void MirrorUVRow_C(const uint8_t* src_uv, uint8_t* dst_uv, int width) {
int x;
src_uv += (width - 1) << 1;
for (x = 0; x < width; ++x) {
dst_uv[0] = src_uv[0];
dst_uv[1] = src_uv[1];
src_uv -= 2;
dst_uv += 2;
}
}
void MirrorSplitUVRow_C(const uint8_t* src_uv,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
int x;
src_uv += (width - 1) << 1;
for (x = 0; x < width - 1; x += 2) {
dst_u[x] = src_uv[0];
dst_u[x + 1] = src_uv[-2];
dst_v[x] = src_uv[1];
dst_v[x + 1] = src_uv[-2 + 1];
src_uv -= 4;
}
if (width & 1) {
dst_u[width - 1] = src_uv[0];
dst_v[width - 1] = src_uv[1];
}
}
void ARGBMirrorRow_C(const uint8_t* src, uint8_t* dst, int width) {
int x;
const uint32_t* src32 = (const uint32_t*)(src);
uint32_t* dst32 = (uint32_t*)(dst);
src32 += width - 1;
for (x = 0; x < width - 1; x += 2) {
dst32[x] = src32[0];
dst32[x + 1] = src32[-1];
src32 -= 2;
}
if (width & 1) {
dst32[width - 1] = src32[0];
}
}
void RGB24MirrorRow_C(const uint8_t* src_rgb24, uint8_t* dst_rgb24, int width) {
int x;
src_rgb24 += width * 3 - 3;
for (x = 0; x < width; ++x) {
uint8_t b = src_rgb24[0];
uint8_t g = src_rgb24[1];
uint8_t r = src_rgb24[2];
dst_rgb24[0] = b;
dst_rgb24[1] = g;
dst_rgb24[2] = r;
src_rgb24 -= 3;
dst_rgb24 += 3;
}
}
void SplitUVRow_C(const uint8_t* src_uv,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_u[x] = src_uv[0];
dst_u[x + 1] = src_uv[2];
dst_v[x] = src_uv[1];
dst_v[x + 1] = src_uv[3];
src_uv += 4;
}
if (width & 1) {
dst_u[width - 1] = src_uv[0];
dst_v[width - 1] = src_uv[1];
}
}
void MergeUVRow_C(const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_uv,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_uv[0] = src_u[x];
dst_uv[1] = src_v[x];
dst_uv[2] = src_u[x + 1];
dst_uv[3] = src_v[x + 1];
dst_uv += 4;
}
if (width & 1) {
dst_uv[0] = src_u[width - 1];
dst_uv[1] = src_v[width - 1];
}
}
void DetileRow_C(const uint8_t* src,
ptrdiff_t src_tile_stride,
uint8_t* dst,
int width) {
int x;
for (x = 0; x < width - 15; x += 16) {
memcpy(dst, src, 16);
dst += 16;
src += src_tile_stride;
}
if (width & 15) {
memcpy(dst, src, width & 15);
}
}
void DetileRow_16_C(const uint16_t* src,
ptrdiff_t src_tile_stride,
uint16_t* dst,
int width) {
int x;
for (x = 0; x < width - 15; x += 16) {
memcpy(dst, src, 16 * sizeof(uint16_t));
dst += 16;
src += src_tile_stride;
}
if (width & 15) {
memcpy(dst, src, (width & 15) * sizeof(uint16_t));
}
}
void DetileSplitUVRow_C(const uint8_t* src_uv,
ptrdiff_t src_tile_stride,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
int x;
for (x = 0; x < width - 15; x += 16) {
SplitUVRow_C(src_uv, dst_u, dst_v, 8);
dst_u += 8;
dst_v += 8;
src_uv += src_tile_stride;
}
if (width & 15) {
SplitUVRow_C(src_uv, dst_u, dst_v, ((width & 15) + 1) / 2);
}
}
void DetileToYUY2_C(const uint8_t* src_y,
ptrdiff_t src_y_tile_stride,
const uint8_t* src_uv,
ptrdiff_t src_uv_tile_stride,
uint8_t* dst_yuy2,
int width) {
for (int x = 0; x < width - 15; x += 16) {
for (int i = 0; i < 8; i++) {
dst_yuy2[0] = src_y[0];
dst_yuy2[1] = src_uv[0];
dst_yuy2[2] = src_y[1];
dst_yuy2[3] = src_uv[1];
dst_yuy2 += 4;
src_y += 2;
src_uv += 2;
}
src_y += src_y_tile_stride - 16;
src_uv += src_uv_tile_stride - 16;
}
}
// Unpack MT2T into tiled P010 64 pixels at a time. MT2T's bitstream is encoded
// in 80 byte blocks representing 64 pixels each. The first 16 bytes of the
// block contain all of the lower 2 bits of each pixel packed together, and the
// next 64 bytes represent all the upper 8 bits of the pixel. The lower bits are
// packed into 1x4 blocks, whereas the upper bits are packed in normal raster
// order.
void UnpackMT2T_C(const uint8_t* src, uint16_t* dst, size_t size) {
for (size_t i = 0; i < size; i += 80) {
const uint8_t* src_lower_bits = src;
const uint8_t* src_upper_bits = src + 16;
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 16; k++) {
*dst++ = ((src_lower_bits[k] >> (j * 2)) & 0x3) << 6 |
(uint16_t)*src_upper_bits << 8 |
(uint16_t)*src_upper_bits >> 2;
src_upper_bits++;
}
}
src += 80;
}
}
void SplitRGBRow_C(const uint8_t* src_rgb,
uint8_t* dst_r,
uint8_t* dst_g,
uint8_t* dst_b,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_r[x] = src_rgb[0];
dst_g[x] = src_rgb[1];
dst_b[x] = src_rgb[2];
src_rgb += 3;
}
}
void MergeRGBRow_C(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
uint8_t* dst_rgb,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_rgb[0] = src_r[x];
dst_rgb[1] = src_g[x];
dst_rgb[2] = src_b[x];
dst_rgb += 3;
}
}
void SplitARGBRow_C(const uint8_t* src_argb,
uint8_t* dst_r,
uint8_t* dst_g,
uint8_t* dst_b,
uint8_t* dst_a,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_b[x] = src_argb[0];
dst_g[x] = src_argb[1];
dst_r[x] = src_argb[2];
dst_a[x] = src_argb[3];
src_argb += 4;
}
}
void MergeARGBRow_C(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
const uint8_t* src_a,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_argb[0] = src_b[x];
dst_argb[1] = src_g[x];
dst_argb[2] = src_r[x];
dst_argb[3] = src_a[x];
dst_argb += 4;
}
}
void MergeXR30Row_C(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint8_t* dst_ar30,
int depth,
int width) {
assert(depth >= 10);
assert(depth <= 16);
int x;
int shift = depth - 10;
uint32_t* dst_ar30_32 = (uint32_t*)dst_ar30;
for (x = 0; x < width; ++x) {
uint32_t r = clamp1023(src_r[x] >> shift);
uint32_t g = clamp1023(src_g[x] >> shift);
uint32_t b = clamp1023(src_b[x] >> shift);
dst_ar30_32[x] = b | (g << 10) | (r << 20) | 0xc0000000;
}
}
void MergeAR64Row_C(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
const uint16_t* src_a,
uint16_t* dst_ar64,
int depth,
int width) {
assert(depth >= 1);
assert(depth <= 16);
int x;
int shift = 16 - depth;
int max = (1 << depth) - 1;
for (x = 0; x < width; ++x) {
dst_ar64[0] = STATIC_CAST(uint16_t, ClampMax(src_b[x], max) << shift);
dst_ar64[1] = STATIC_CAST(uint16_t, ClampMax(src_g[x], max) << shift);
dst_ar64[2] = STATIC_CAST(uint16_t, ClampMax(src_r[x], max) << shift);
dst_ar64[3] = STATIC_CAST(uint16_t, ClampMax(src_a[x], max) << shift);
dst_ar64 += 4;
}
}
void MergeARGB16To8Row_C(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
const uint16_t* src_a,
uint8_t* dst_argb,
int depth,
int width) {
assert(depth >= 8);
assert(depth <= 16);
int x;
int shift = depth - 8;
for (x = 0; x < width; ++x) {
dst_argb[0] = STATIC_CAST(uint8_t, clamp255(src_b[x] >> shift));
dst_argb[1] = STATIC_CAST(uint8_t, clamp255(src_g[x] >> shift));
dst_argb[2] = STATIC_CAST(uint8_t, clamp255(src_r[x] >> shift));
dst_argb[3] = STATIC_CAST(uint8_t, clamp255(src_a[x] >> shift));
dst_argb += 4;
}
}
void MergeXR64Row_C(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint16_t* dst_ar64,
int depth,
int width) {
assert(depth >= 1);
assert(depth <= 16);
int x;
int shift = 16 - depth;
int max = (1 << depth) - 1;
for (x = 0; x < width; ++x) {
dst_ar64[0] = STATIC_CAST(uint16_t, ClampMax(src_b[x], max) << shift);
dst_ar64[1] = STATIC_CAST(uint16_t, ClampMax(src_g[x], max) << shift);
dst_ar64[2] = STATIC_CAST(uint16_t, ClampMax(src_r[x], max) << shift);
dst_ar64[3] = 0xffff;
dst_ar64 += 4;
}
}
void MergeXRGB16To8Row_C(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint8_t* dst_argb,
int depth,
int width) {
assert(depth >= 8);
assert(depth <= 16);
int x;
int shift = depth - 8;
for (x = 0; x < width; ++x) {
dst_argb[0] = STATIC_CAST(uint8_t, clamp255(src_b[x] >> shift));
dst_argb[1] = STATIC_CAST(uint8_t, clamp255(src_g[x] >> shift));
dst_argb[2] = STATIC_CAST(uint8_t, clamp255(src_r[x] >> shift));
dst_argb[3] = 0xff;
dst_argb += 4;
}
}
void SplitXRGBRow_C(const uint8_t* src_argb,
uint8_t* dst_r,
uint8_t* dst_g,
uint8_t* dst_b,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_b[x] = src_argb[0];
dst_g[x] = src_argb[1];
dst_r[x] = src_argb[2];
src_argb += 4;
}
}
void MergeXRGBRow_C(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_argb[0] = src_b[x];
dst_argb[1] = src_g[x];
dst_argb[2] = src_r[x];
dst_argb[3] = 255;
dst_argb += 4;
}
}
// Convert lsb formats to msb, depending on sample depth.
void MergeUVRow_16_C(const uint16_t* src_u,
const uint16_t* src_v,
uint16_t* dst_uv,
int depth,
int width) {
int shift = 16 - depth;
assert(depth >= 8);
assert(depth <= 16);
int x;
for (x = 0; x < width; ++x) {
dst_uv[0] = STATIC_CAST(uint16_t, src_u[x] << shift);
dst_uv[1] = STATIC_CAST(uint16_t, src_v[x] << shift);
dst_uv += 2;
}
}
// Convert msb formats to lsb, depending on sample depth.
void SplitUVRow_16_C(const uint16_t* src_uv,
uint16_t* dst_u,
uint16_t* dst_v,
int depth,
int width) {
int shift = 16 - depth;
int x;
assert(depth >= 8);
assert(depth <= 16);
for (x = 0; x < width; ++x) {
dst_u[x] = src_uv[0] >> shift;
dst_v[x] = src_uv[1] >> shift;
src_uv += 2;
}
}
void MultiplyRow_16_C(const uint16_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_y[x] = STATIC_CAST(uint16_t, src_y[x] * scale);
}
}
void DivideRow_16_C(const uint16_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_y[x] = (src_y[x] * scale) >> 16;
}
}
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits
// 16384 = 10 bits
// 4096 = 12 bits
// 256 = 16 bits
// TODO(fbarchard): change scale to bits
#define C16TO8(v, scale) clamp255(((v) * (scale)) >> 16)
void Convert16To8Row_C(const uint16_t* src_y,
uint8_t* dst_y,
int scale,
int width) {
int x;
assert(scale >= 256);
assert(scale <= 32768);
for (x = 0; x < width; ++x) {
dst_y[x] = STATIC_CAST(uint8_t, C16TO8(src_y[x], scale));
}
}
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 1024 = 10 bits
void Convert8To16Row_C(const uint8_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
int x;
scale *= 0x0101; // replicates the byte.
for (x = 0; x < width; ++x) {
dst_y[x] = (src_y[x] * scale) >> 16;
}
}
// Use scale to convert J420 to I420
// scale parameter is 8.8 fixed point but limited to 0 to 255
// Function is based on DivideRow, but adds a bias
// Does not clamp
void Convert8To8Row_C(const uint8_t* src_y,
uint8_t* dst_y,
int scale,
int bias,
int width) {
int x;
assert(scale >= 0);
assert(scale <= 255);
for (x = 0; x < width; ++x) {
dst_y[x] = ((src_y[x] * scale) >> 8) + bias;
}
}
void CopyRow_C(const uint8_t* src, uint8_t* dst, int count) {
memcpy(dst, src, count);
}
void CopyRow_16_C(const uint16_t* src, uint16_t* dst, int count) {
memcpy(dst, src, count * 2);
}
void SetRow_C(uint8_t* dst, uint8_t v8, int width) {
memset(dst, v8, width);
}
void ARGBSetRow_C(uint8_t* dst_argb, uint32_t v32, int width) {
int x;
for (x = 0; x < width; ++x) {
memcpy(dst_argb + x * sizeof v32, &v32, sizeof v32);
}
}
// Filter 2 rows of YUY2 UV's (422) into U and V (420).
void YUY2ToUVRow_C(const uint8_t* src_yuy2,
int src_stride_yuy2,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
// Output a row of UV values, filtering 2 rows of YUY2.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1;
dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1;
src_yuy2 += 4;
dst_u += 1;
dst_v += 1;
}
}
// Filter 2 rows of YUY2 UV's (422) into UV (NV12).
void YUY2ToNVUVRow_C(const uint8_t* src_yuy2,
int src_stride_yuy2,
uint8_t* dst_uv,
int width) {
// Output a row of UV values, filtering 2 rows of YUY2.
int x;
for (x = 0; x < width; x += 2) {
dst_uv[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1;
dst_uv[1] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1;
src_yuy2 += 4;
dst_uv += 2;
}
}
// Copy row of YUY2 UV's (422) into U and V (422).
void YUY2ToUV422Row_C(const uint8_t* src_yuy2,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
// Output a row of UV values.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = src_yuy2[1];
dst_v[0] = src_yuy2[3];
src_yuy2 += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of YUY2 Y's (422) into Y (420/422).
void YUY2ToYRow_C(const uint8_t* src_yuy2, uint8_t* dst_y, int width) {
// Output a row of Y values.
int x;
for (x = 0; x < width - 1; x += 2) {
dst_y[x] = src_yuy2[0];
dst_y[x + 1] = src_yuy2[2];
src_yuy2 += 4;
}
if (width & 1) {
dst_y[width - 1] = src_yuy2[0];
}
}
// Filter 2 rows of UYVY UV's (422) into U and V (420).
void UYVYToUVRow_C(const uint8_t* src_uyvy,
int src_stride_uyvy,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
// Output a row of UV values.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1;
dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1;
src_uyvy += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of UYVY UV's (422) into U and V (422).
void UYVYToUV422Row_C(const uint8_t* src_uyvy,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
// Output a row of UV values.
int x;
for (x = 0; x < width; x += 2) {
dst_u[0] = src_uyvy[0];
dst_v[0] = src_uyvy[2];
src_uyvy += 4;
dst_u += 1;
dst_v += 1;
}
}
// Copy row of UYVY Y's (422) into Y (420/422).
void UYVYToYRow_C(const uint8_t* src_uyvy, uint8_t* dst_y, int width) {
// Output a row of Y values.
int x;
for (x = 0; x < width - 1; x += 2) {
dst_y[x] = src_uyvy[1];
dst_y[x + 1] = src_uyvy[3];
src_uyvy += 4;
}
if (width & 1) {
dst_y[width - 1] = src_uyvy[1];
}
}
#define BLEND(f, b, a) clamp255((((256 - a) * b) >> 8) + f)
// Blend src_argb over src_argb1 and store to dst_argb.
// dst_argb may be src_argb or src_argb1.
// This code mimics the SSSE3 version for better testability.
void ARGBBlendRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint32_t fb = src_argb[0];
uint32_t fg = src_argb[1];
uint32_t fr = src_argb[2];
uint32_t a = src_argb[3];
uint32_t bb = src_argb1[0];
uint32_t bg = src_argb1[1];
uint32_t br = src_argb1[2];
dst_argb[0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a));
dst_argb[1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a));
dst_argb[2] = STATIC_CAST(uint8_t, BLEND(fr, br, a));
dst_argb[3] = 255u;
fb = src_argb[4 + 0];
fg = src_argb[4 + 1];
fr = src_argb[4 + 2];
a = src_argb[4 + 3];
bb = src_argb1[4 + 0];
bg = src_argb1[4 + 1];
br = src_argb1[4 + 2];
dst_argb[4 + 0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a));
dst_argb[4 + 1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a));
dst_argb[4 + 2] = STATIC_CAST(uint8_t, BLEND(fr, br, a));
dst_argb[4 + 3] = 255u;
src_argb += 8;
src_argb1 += 8;
dst_argb += 8;
}
if (width & 1) {
uint32_t fb = src_argb[0];
uint32_t fg = src_argb[1];
uint32_t fr = src_argb[2];
uint32_t a = src_argb[3];
uint32_t bb = src_argb1[0];
uint32_t bg = src_argb1[1];
uint32_t br = src_argb1[2];
dst_argb[0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a));
dst_argb[1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a));
dst_argb[2] = STATIC_CAST(uint8_t, BLEND(fr, br, a));
dst_argb[3] = 255u;
}
}
#undef BLEND
#define UBLEND(f, b, a) (((a)*f) + ((255 - a) * b) + 255) >> 8
void BlendPlaneRow_C(const uint8_t* src0,
const uint8_t* src1,
const uint8_t* alpha,
uint8_t* dst,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst[0] = UBLEND(src0[0], src1[0], alpha[0]);
dst[1] = UBLEND(src0[1], src1[1], alpha[1]);
src0 += 2;
src1 += 2;
alpha += 2;
dst += 2;
}
if (width & 1) {
dst[0] = UBLEND(src0[0], src1[0], alpha[0]);
}
}
#undef UBLEND
#define ATTENUATE(f, a) (f * a + 255) >> 8
// Multiply source RGB by alpha and store to destination.
void ARGBAttenuateRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
uint32_t b = src_argb[0];
uint32_t g = src_argb[1];
uint32_t r = src_argb[2];
uint32_t a = src_argb[3];
dst_argb[0] = ATTENUATE(b, a);
dst_argb[1] = ATTENUATE(g, a);
dst_argb[2] = ATTENUATE(r, a);
dst_argb[3] = STATIC_CAST(uint8_t, a);
b = src_argb[4];
g = src_argb[5];
r = src_argb[6];
a = src_argb[7];
dst_argb[4] = ATTENUATE(b, a);
dst_argb[5] = ATTENUATE(g, a);
dst_argb[6] = ATTENUATE(r, a);
dst_argb[7] = STATIC_CAST(uint8_t, a);
src_argb += 8;
dst_argb += 8;
}
if (width & 1) {
const uint32_t b = src_argb[0];
const uint32_t g = src_argb[1];
const uint32_t r = src_argb[2];
const uint32_t a = src_argb[3];
dst_argb[0] = ATTENUATE(b, a);
dst_argb[1] = ATTENUATE(g, a);
dst_argb[2] = ATTENUATE(r, a);
dst_argb[3] = STATIC_CAST(uint8_t, a);
}
}
#undef ATTENUATE
// Divide source RGB by alpha and store to destination.
// b = (b * 255 + (a / 2)) / a;
// g = (g * 255 + (a / 2)) / a;
// r = (r * 255 + (a / 2)) / a;
// Reciprocal method is off by 1 on some values. ie 125
// 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower.
#define T(a) 0x01000000 + (0x10000 / a)
const uint32_t fixed_invtbl8[256] = {
0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06),
T(0x07), T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d),
T(0x0e), T(0x0f), T(0x10), T(0x11), T(0x12), T(0x13), T(0x14),
T(0x15), T(0x16), T(0x17), T(0x18), T(0x19), T(0x1a), T(0x1b),
T(0x1c), T(0x1d), T(0x1e), T(0x1f), T(0x20), T(0x21), T(0x22),
T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), T(0x28), T(0x29),
T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), T(0x30),
T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37),
T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e),
T(0x3f), T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45),
T(0x46), T(0x47), T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c),
T(0x4d), T(0x4e), T(0x4f), T(0x50), T(0x51), T(0x52), T(0x53),
T(0x54), T(0x55), T(0x56), T(0x57), T(0x58), T(0x59), T(0x5a),
T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), T(0x60), T(0x61),
T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), T(0x68),
T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f),
T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76),
T(0x77), T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d),
T(0x7e), T(0x7f), T(0x80), T(0x81), T(0x82), T(0x83), T(0x84),
T(0x85), T(0x86), T(0x87), T(0x88), T(0x89), T(0x8a), T(0x8b),
T(0x8c), T(0x8d), T(0x8e), T(0x8f), T(0x90), T(0x91), T(0x92),
T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), T(0x98), T(0x99),
T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), T(0xa0),
T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7),
T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae),
T(0xaf), T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5),
T(0xb6), T(0xb7), T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc),
T(0xbd), T(0xbe), T(0xbf), T(0xc0), T(0xc1), T(0xc2), T(0xc3),
T(0xc4), T(0xc5), T(0xc6), T(0xc7), T(0xc8), T(0xc9), T(0xca),
T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), T(0xd0), T(0xd1),
T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), T(0xd8),
T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf),
T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6),
T(0xe7), T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed),
T(0xee), T(0xef), T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4),
T(0xf5), T(0xf6), T(0xf7), T(0xf8), T(0xf9), T(0xfa), T(0xfb),
T(0xfc), T(0xfd), T(0xfe), 0x01000100};
#undef T
#if defined(LIBYUV_UNATTENUATE_DUP)
// This code mimics the Intel SIMD version for better testability.
#define UNATTENUATE(f, ia) clamp255(((f | (f << 8)) * ia) >> 16)
#else
#define UNATTENUATE(f, ia) clamp255((f * ia) >> 8)
#endif
// mimics the Intel SIMD code for exactness.
void ARGBUnattenuateRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
uint32_t b = src_argb[0];
uint32_t g = src_argb[1];
uint32_t r = src_argb[2];
const uint32_t a = src_argb[3];
const uint32_t ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point
// Clamping should not be necessary but is free in assembly.
dst_argb[0] = STATIC_CAST(uint8_t, UNATTENUATE(b, ia));
dst_argb[1] = STATIC_CAST(uint8_t, UNATTENUATE(g, ia));
dst_argb[2] = STATIC_CAST(uint8_t, UNATTENUATE(r, ia));
dst_argb[3] = STATIC_CAST(uint8_t, a);
src_argb += 4;
dst_argb += 4;
}
}
void ComputeCumulativeSumRow_C(const uint8_t* row,
int32_t* cumsum,
const int32_t* previous_cumsum,
int width) {
int32_t row_sum[4] = {0, 0, 0, 0};
int x;
for (x = 0; x < width; ++x) {
row_sum[0] += row[x * 4 + 0];
row_sum[1] += row[x * 4 + 1];
row_sum[2] += row[x * 4 + 2];
row_sum[3] += row[x * 4 + 3];
cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0];
cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1];
cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2];
cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3];
}
}
void CumulativeSumToAverageRow_C(const int32_t* tl,
const int32_t* bl,
int w,
int area,
uint8_t* dst,
int count) {
float ooa;
int i;
assert(area != 0);
ooa = 1.0f / STATIC_CAST(float, area);
for (i = 0; i < count; ++i) {
dst[0] =
(uint8_t)(STATIC_CAST(float, bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) *
ooa);
dst[1] =
(uint8_t)(STATIC_CAST(float, bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) *
ooa);
dst[2] =
(uint8_t)(STATIC_CAST(float, bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) *
ooa);
dst[3] =
(uint8_t)(STATIC_CAST(float, bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) *
ooa);
dst += 4;
tl += 4;
bl += 4;
}
}
// Copy pixels from rotated source to destination row with a slope.
LIBYUV_API
void ARGBAffineRow_C(const uint8_t* src_argb,
int src_argb_stride,
uint8_t* dst_argb,
const float* uv_dudv,
int width) {
int i;
// Render a row of pixels from source into a buffer.
float uv[2];
uv[0] = uv_dudv[0];
uv[1] = uv_dudv[1];
for (i = 0; i < width; ++i) {
int x = (int)(uv[0]);
int y = (int)(uv[1]);
*(uint32_t*)(dst_argb) =
*(const uint32_t*)(src_argb + y * src_argb_stride + x * 4);
dst_argb += 4;
uv[0] += uv_dudv[2];
uv[1] += uv_dudv[3];
}
}
// Blend 2 rows into 1.
static void HalfRow_C(const uint8_t* src_uv,
ptrdiff_t src_uv_stride,
uint8_t* dst_uv,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
}
}
static void HalfRow_16_C(const uint16_t* src_uv,
ptrdiff_t src_uv_stride,
uint16_t* dst_uv,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
}
}
static void HalfRow_16To8_C(const uint16_t* src_uv,
ptrdiff_t src_uv_stride,
uint8_t* dst_uv,
int scale,
int width) {
int x;
for (x = 0; x < width; ++x) {
dst_uv[x] = STATIC_CAST(
uint8_t,
C16TO8((src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1, scale));
}
}
// C version 2x2 -> 2x1.
void InterpolateRow_C(uint8_t* dst_ptr,
const uint8_t* src_ptr,
ptrdiff_t src_stride,
int width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint8_t* src_ptr1 = src_ptr + src_stride;
int x;
assert(source_y_fraction >= 0);
assert(source_y_fraction < 256);
if (y1_fraction == 0) {
memcpy(dst_ptr, src_ptr, width);
return;
}
if (y1_fraction == 128) {
HalfRow_C(src_ptr, src_stride, dst_ptr, width);
return;
}
for (x = 0; x < width; ++x) {
dst_ptr[0] = STATIC_CAST(
uint8_t,
(src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8);
++src_ptr;
++src_ptr1;
++dst_ptr;
}
}
// C version 2x2 -> 2x1.
void InterpolateRow_16_C(uint16_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
int x;
assert(source_y_fraction >= 0);
assert(source_y_fraction < 256);
if (y1_fraction == 0) {
memcpy(dst_ptr, src_ptr, width * 2);
return;
}
if (y1_fraction == 128) {
HalfRow_16_C(src_ptr, src_stride, dst_ptr, width);
return;
}
for (x = 0; x < width; ++x) {
dst_ptr[0] = STATIC_CAST(
uint16_t,
(src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8);
++src_ptr;
++src_ptr1;
++dst_ptr;
}
}
// C version 2x2 16 bit-> 2x1 8 bit.
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits
// 16384 = 10 bits
// 4096 = 12 bits
// 256 = 16 bits
// TODO(fbarchard): change scale to bits
void InterpolateRow_16To8_C(uint8_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int scale,
int width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
int x;
assert(source_y_fraction >= 0);
assert(source_y_fraction < 256);
if (source_y_fraction == 0) {
Convert16To8Row_C(src_ptr, dst_ptr, scale, width);
return;
}
if (source_y_fraction == 128) {
HalfRow_16To8_C(src_ptr, src_stride, dst_ptr, scale, width);
return;
}
for (x = 0; x < width; ++x) {
dst_ptr[0] = STATIC_CAST(
uint8_t,
C16TO8(
(src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8,
scale));
src_ptr += 1;
src_ptr1 += 1;
dst_ptr += 1;
}
}
// Use first 4 shuffler values to reorder ARGB channels.
void ARGBShuffleRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
const uint8_t* shuffler,
int width) {
int index0 = shuffler[0];
int index1 = shuffler[1];
int index2 = shuffler[2];
int index3 = shuffler[3];
// Shuffle a row of ARGB.
int x;
for (x = 0; x < width; ++x) {
// To support in-place conversion.
uint8_t b = src_argb[index0];
uint8_t g = src_argb[index1];
uint8_t r = src_argb[index2];
uint8_t a = src_argb[index3];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
src_argb += 4;
dst_argb += 4;
}
}
void I422ToYUY2Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_frame,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_frame[0] = src_y[0];
dst_frame[1] = src_u[0];
dst_frame[2] = src_y[1];
dst_frame[3] = src_v[0];
dst_frame += 4;
src_y += 2;
src_u += 1;
src_v += 1;
}
if (width & 1) {
dst_frame[0] = src_y[0];
dst_frame[1] = src_u[0];
dst_frame[2] = 0;
dst_frame[3] = src_v[0];
}
}
void I422ToUYVYRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_frame,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_frame[0] = src_u[0];
dst_frame[1] = src_y[0];
dst_frame[2] = src_v[0];
dst_frame[3] = src_y[1];
dst_frame += 4;
src_y += 2;
src_u += 1;
src_v += 1;
}
if (width & 1) {
dst_frame[0] = src_u[0];
dst_frame[1] = src_y[0];
dst_frame[2] = src_v[0];
dst_frame[3] = 0;
}
}
void ARGBPolynomialRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
const float* poly,
int width) {
int i;
for (i = 0; i < width; ++i) {
float b = (float)(src_argb[0]);
float g = (float)(src_argb[1]);
float r = (float)(src_argb[2]);
float a = (float)(src_argb[3]);
float b2 = b * b;
float g2 = g * g;
float r2 = r * r;
float a2 = a * a;
float db = poly[0] + poly[4] * b;
float dg = poly[1] + poly[5] * g;
float dr = poly[2] + poly[6] * r;
float da = poly[3] + poly[7] * a;
float b3 = b2 * b;
float g3 = g2 * g;
float r3 = r2 * r;
float a3 = a2 * a;
db += poly[8] * b2;
dg += poly[9] * g2;
dr += poly[10] * r2;
da += poly[11] * a2;
db += poly[12] * b3;
dg += poly[13] * g3;
dr += poly[14] * r3;
da += poly[15] * a3;
dst_argb[0] = STATIC_CAST(uint8_t, Clamp((int32_t)(db)));
dst_argb[1] = STATIC_CAST(uint8_t, Clamp((int32_t)(dg)));
dst_argb[2] = STATIC_CAST(uint8_t, Clamp((int32_t)(dr)));
dst_argb[3] = STATIC_CAST(uint8_t, Clamp((int32_t)(da)));
src_argb += 4;
dst_argb += 4;
}
}
// Samples assumed to be unsigned in low 9, 10 or 12 bits. Scale factor
// adjust the source integer range to the half float range desired.
// This magic constant is 2^-112. Multiplying by this
// is the same as subtracting 112 from the exponent, which
// is the difference in exponent bias between 32-bit and
// 16-bit floats. Once we've done this subtraction, we can
// simply extract the low bits of the exponent and the high
// bits of the mantissa from our float and we're done.
// Work around GCC 7 punning warning -Wstrict-aliasing
#if defined(__GNUC__)
typedef uint32_t __attribute__((__may_alias__)) uint32_alias_t;
#else
typedef uint32_t uint32_alias_t;
#endif
void HalfFloatRow_C(const uint16_t* src,
uint16_t* dst,
float scale,
int width) {
int i;
float mult = 1.9259299444e-34f * scale;
for (i = 0; i < width; ++i) {
float value = src[i] * mult;
dst[i] = (uint16_t)((*(const uint32_alias_t*)&value) >> 13);
}
}
void ByteToFloatRow_C(const uint8_t* src, float* dst, float scale, int width) {
int i;
for (i = 0; i < width; ++i) {
float value = src[i] * scale;
dst[i] = value;
}
}
void ARGBLumaColorTableRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
int width,
const uint8_t* luma,
uint32_t lumacoeff) {
uint32_t bc = lumacoeff & 0xff;
uint32_t gc = (lumacoeff >> 8) & 0xff;
uint32_t rc = (lumacoeff >> 16) & 0xff;
int i;
for (i = 0; i < width - 1; i += 2) {
// Luminance in rows, color values in columns.
const uint8_t* luma0 =
((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) +
luma;
const uint8_t* luma1;
dst_argb[0] = luma0[src_argb[0]];
dst_argb[1] = luma0[src_argb[1]];
dst_argb[2] = luma0[src_argb[2]];
dst_argb[3] = src_argb[3];
luma1 =
((src_argb[4] * bc + src_argb[5] * gc + src_argb[6] * rc) & 0x7F00u) +
luma;
dst_argb[4] = luma1[src_argb[4]];
dst_argb[5] = luma1[src_argb[5]];
dst_argb[6] = luma1[src_argb[6]];
dst_argb[7] = src_argb[7];
src_argb += 8;
dst_argb += 8;
}
if (width & 1) {
// Luminance in rows, color values in columns.
const uint8_t* luma0 =
((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) +
luma;
dst_argb[0] = luma0[src_argb[0]];
dst_argb[1] = luma0[src_argb[1]];
dst_argb[2] = luma0[src_argb[2]];
dst_argb[3] = src_argb[3];
}
}
void ARGBCopyAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
dst[3] = src[3];
dst[7] = src[7];
dst += 8;
src += 8;
}
if (width & 1) {
dst[3] = src[3];
}
}
void ARGBExtractAlphaRow_C(const uint8_t* src_argb, uint8_t* dst_a, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
dst_a[0] = src_argb[3];
dst_a[1] = src_argb[7];
dst_a += 2;
src_argb += 8;
}
if (width & 1) {
dst_a[0] = src_argb[3];
}
}
void ARGBCopyYToAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
dst[3] = src[0];
dst[7] = src[1];
dst += 8;
src += 2;
}
if (width & 1) {
dst[3] = src[0];
}
}
// Maximum temporary width for wrappers to process at a time, in pixels.
#define MAXTWIDTH 2048
#if !(defined(_MSC_VER) && !defined(__clang__) && defined(_M_IX86)) && \
defined(HAS_I422TORGB565ROW_SSSE3) && !defined(LIBYUV_ENABLE_ROWWIN)
// row_win.cc has asm version, but GCC uses 2 step wrapper.
void I422ToRGB565Row_SSSE3(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB1555ROW_SSSE3)
void I422ToARGB1555Row_SSSE3(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb1555 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB4444ROW_SSSE3)
void I422ToARGB4444Row_SSSE3(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth);
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb4444 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_NV12TORGB565ROW_SSSE3)
void NV12ToRGB565Row_SSSE3(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth);
ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
src_y += twidth;
src_uv += twidth;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_NV12TORGB24ROW_SSSE3)
void NV12ToRGB24Row_SSSE3(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth);
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
src_y += twidth;
src_uv += twidth;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_NV21TORGB24ROW_SSSE3)
void NV21ToRGB24Row_SSSE3(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV21ToARGBRow_SSSE3(src_y, src_vu, row, yuvconstants, twidth);
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
src_y += twidth;
src_vu += twidth;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_NV12TORGB24ROW_AVX2)
void NV12ToRGB24Row_AVX2(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth);
#if defined(HAS_ARGBTORGB24ROW_AVX2)
ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
#else
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
#endif
src_y += twidth;
src_uv += twidth;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_NV21TORGB24ROW_AVX2)
void NV21ToRGB24Row_AVX2(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV21ToARGBRow_AVX2(src_y, src_vu, row, yuvconstants, twidth);
#if defined(HAS_ARGBTORGB24ROW_AVX2)
ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
#else
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
#endif
src_y += twidth;
src_vu += twidth;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TORGB565ROW_AVX2)
void I422ToRGB565Row_AVX2(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
#if defined(HAS_ARGBTORGB565ROW_AVX2)
ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth);
#else
ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
#endif
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB1555ROW_AVX2)
void I422ToARGB1555Row_AVX2(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
#if defined(HAS_ARGBTOARGB1555ROW_AVX2)
ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth);
#else
ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth);
#endif
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb1555 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TOARGB4444ROW_AVX2)
void I422ToARGB4444Row_AVX2(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
#if defined(HAS_ARGBTOARGB4444ROW_AVX2)
ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth);
#else
ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth);
#endif
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_argb4444 += twidth * 2;
width -= twidth;
}
}
#endif
#if defined(HAS_I422TORGB24ROW_AVX2)
void I422ToRGB24Row_AVX2(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
#if defined(HAS_ARGBTORGB24ROW_AVX2)
ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
#else
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
#endif
src_y += twidth;
src_u += twidth / 2;
src_v += twidth / 2;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_I444TORGB24ROW_AVX2)
void I444ToRGB24Row_AVX2(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
I444ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
#if defined(HAS_ARGBTORGB24ROW_AVX2)
ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
#else
ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
#endif
src_y += twidth;
src_u += twidth;
src_v += twidth;
dst_rgb24 += twidth * 3;
width -= twidth;
}
}
#endif
#if defined(HAS_NV12TORGB565ROW_AVX2)
void NV12ToRGB565Row_AVX2(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth);
#if defined(HAS_ARGBTORGB565ROW_AVX2)
ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth);
#else
ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
#endif
src_y += twidth;
src_uv += twidth;
dst_rgb565 += twidth * 2;
width -= twidth;
}
}
#endif
#ifdef HAS_RGB24TOYJROW_AVX2
// Convert 16 RGB24 pixels (64 bytes) to 16 YJ values.
void RGB24ToYJRow_AVX2(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth);
ARGBToYJRow_AVX2(row, dst_yj, twidth);
src_rgb24 += twidth * 3;
dst_yj += twidth;
width -= twidth;
}
}
#endif // HAS_RGB24TOYJROW_AVX2
#ifdef HAS_RAWTOYJROW_AVX2
// Convert 32 RAW pixels (128 bytes) to 32 YJ values.
void RAWToYJRow_AVX2(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
#ifdef HAS_RAWTOARGBROW_AVX2
RAWToARGBRow_AVX2(src_raw, row, twidth);
#else
RAWToARGBRow_SSSE3(src_raw, row, twidth);
#endif
ARGBToYJRow_AVX2(row, dst_yj, twidth);
src_raw += twidth * 3;
dst_yj += twidth;
width -= twidth;
}
}
#endif // HAS_RAWTOYJROW_AVX2
#ifdef HAS_RGB24TOYJROW_SSSE3
// Convert 16 RGB24 pixels (64 bytes) to 16 YJ values.
void RGB24ToYJRow_SSSE3(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth);
ARGBToYJRow_SSSE3(row, dst_yj, twidth);
src_rgb24 += twidth * 3;
dst_yj += twidth;
width -= twidth;
}
}
#endif // HAS_RGB24TOYJROW_SSSE3
#ifdef HAS_RAWTOYJROW_SSSE3
// Convert 16 RAW pixels (64 bytes) to 16 YJ values.
void RAWToYJRow_SSSE3(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
// Row buffer for intermediate ARGB pixels.
SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
RAWToARGBRow_SSSE3(src_raw, row, twidth);
ARGBToYJRow_SSSE3(row, dst_yj, twidth);
src_raw += twidth * 3;
dst_yj += twidth;
width -= twidth;
}
}
#endif // HAS_RAWTOYJROW_SSSE3
#ifdef HAS_INTERPOLATEROW_16TO8_AVX2
void InterpolateRow_16To8_AVX2(uint8_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int scale,
int width,
int source_y_fraction) {
// Row buffer for intermediate 16 bit pixels.
SIMD_ALIGNED(uint16_t row[MAXTWIDTH]);
while (width > 0) {
int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
InterpolateRow_16_C(row, src_ptr, src_stride, twidth, source_y_fraction);
Convert16To8Row_AVX2(row, dst_ptr, scale, twidth);
src_ptr += twidth;
dst_ptr += twidth;
width -= twidth;
}
}
#endif // HAS_INTERPOLATEROW_16TO8_AVX2
float ScaleSumSamples_C(const float* src, float* dst, float scale, int width) {
float fsum = 0.f;
int i;
for (i = 0; i < width; ++i) {
float v = *src++;
fsum += v * v;
*dst++ = v * scale;
}
return fsum;
}
float ScaleMaxSamples_C(const float* src, float* dst, float scale, int width) {
float fmax = 0.f;
int i;
for (i = 0; i < width; ++i) {
float v = *src++;
float vs = v * scale;
fmax = (v > fmax) ? v : fmax;
*dst++ = vs;
}
return fmax;
}
void ScaleSamples_C(const float* src, float* dst, float scale, int width) {
int i;
for (i = 0; i < width; ++i) {
*dst++ = *src++ * scale;
}
}
void GaussRow_C(const uint32_t* src, uint16_t* dst, int width) {
int i;
for (i = 0; i < width; ++i) {
*dst++ = STATIC_CAST(
uint16_t,
(src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4] + 128) >> 8);
++src;
}
}
// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
void GaussCol_C(const uint16_t* src0,
const uint16_t* src1,
const uint16_t* src2,
const uint16_t* src3,
const uint16_t* src4,
uint32_t* dst,
int width) {
int i;
for (i = 0; i < width; ++i) {
*dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++;
}
}
void GaussRow_F32_C(const float* src, float* dst, int width) {
int i;
for (i = 0; i < width; ++i) {
*dst++ = (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4]) *
(1.0f / 256.0f);
++src;
}
}
// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
void GaussCol_F32_C(const float* src0,
const float* src1,
const float* src2,
const float* src3,
const float* src4,
float* dst,
int width) {
int i;
for (i = 0; i < width; ++i) {
*dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++;
}
}
// Convert biplanar NV21 to packed YUV24
void NV21ToYUV24Row_C(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_yuv24,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_yuv24[0] = src_vu[0]; // V
dst_yuv24[1] = src_vu[1]; // U
dst_yuv24[2] = src_y[0]; // Y0
dst_yuv24[3] = src_vu[0]; // V
dst_yuv24[4] = src_vu[1]; // U
dst_yuv24[5] = src_y[1]; // Y1
src_y += 2;
src_vu += 2;
dst_yuv24 += 6; // Advance 2 pixels.
}
if (width & 1) {
dst_yuv24[0] = src_vu[0]; // V
dst_yuv24[1] = src_vu[1]; // U
dst_yuv24[2] = src_y[0]; // Y0
}
}
// Filter 2 rows of AYUV UV's (444) into UV (420).
// AYUV is VUYA in memory. UV for NV12 is UV order in memory.
void AYUVToUVRow_C(const uint8_t* src_ayuv,
int src_stride_ayuv,
uint8_t* dst_uv,
int width) {
// Output a row of UV values, filtering 2x2 rows of AYUV.
int x;
for (x = 0; x < width - 1; x += 2) {
dst_uv[0] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] +
src_ayuv[src_stride_ayuv + 5] + 2) >>
2;
dst_uv[1] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] +
src_ayuv[src_stride_ayuv + 4] + 2) >>
2;
src_ayuv += 8;
dst_uv += 2;
}
if (width & 1) {
dst_uv[0] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1;
dst_uv[1] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1;
}
}
// Filter 2 rows of AYUV UV's (444) into VU (420).
void AYUVToVURow_C(const uint8_t* src_ayuv,
int src_stride_ayuv,
uint8_t* dst_vu,
int width) {
// Output a row of VU values, filtering 2x2 rows of AYUV.
int x;
for (x = 0; x < width - 1; x += 2) {
dst_vu[0] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] +
src_ayuv[src_stride_ayuv + 4] + 2) >>
2;
dst_vu[1] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] +
src_ayuv[src_stride_ayuv + 5] + 2) >>
2;
src_ayuv += 8;
dst_vu += 2;
}
if (width & 1) {
dst_vu[0] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1;
dst_vu[1] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1;
}
}
// Copy row of AYUV Y's into Y
void AYUVToYRow_C(const uint8_t* src_ayuv, uint8_t* dst_y, int width) {
// Output a row of Y values.
int x;
for (x = 0; x < width; ++x) {
dst_y[x] = src_ayuv[2]; // v,u,y,a
src_ayuv += 4;
}
}
// Convert UV plane of NV12 to VU of NV21.
void SwapUVRow_C(const uint8_t* src_uv, uint8_t* dst_vu, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t u = src_uv[0];
uint8_t v = src_uv[1];
dst_vu[0] = v;
dst_vu[1] = u;
src_uv += 2;
dst_vu += 2;
}
}
void HalfMergeUVRow_C(const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
uint8_t* dst_uv,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
dst_uv[0] = (src_u[0] + src_u[1] + src_u[src_stride_u] +
src_u[src_stride_u + 1] + 2) >>
2;
dst_uv[1] = (src_v[0] + src_v[1] + src_v[src_stride_v] +
src_v[src_stride_v + 1] + 2) >>
2;
src_u += 2;
src_v += 2;
dst_uv += 2;
}
if (width & 1) {
dst_uv[0] = (src_u[0] + src_u[src_stride_u] + 1) >> 1;
dst_uv[1] = (src_v[0] + src_v[src_stride_v] + 1) >> 1;
}
}
#undef STATIC_CAST
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif