blob: f8e46aba935405b6ef03caa862666d027318f00f [file] [log] [blame]
/*
* Copyright (C) 2015 Patrick Monnerat, D+H <patrick.monnerat@dh.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms,
* with or without modification, are permitted provided
* that the following conditions are met:
*
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and the
* following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* Neither the name of the copyright holder nor the names
* of any other contributors may be used to endorse or
* promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
#include "libssh2_priv.h"
#ifdef LIBSSH2_OS400QC3 /* compile only if we build with OS/400 QC3 library */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <stdio.h>
#include <stdarg.h>
#include <alloca.h>
#include <sys/uio.h>
#include <arpa/inet.h>
#ifdef OS400_DEBUG
/* In debug mode, all system library errors cause an exception. */
#define set_EC_length(ec, length) ((ec).Bytes_Provided = \
(ec).Bytes_Available = 0)
#else
#define set_EC_length(ec, length) ((ec).Bytes_Provided = (length))
#endif
/* Ensure va_list operations are not on an array. */
typedef struct {
va_list list;
} valiststr;
typedef int (*loadkeyproc)(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata);
/* Public key extraction data. */
typedef struct {
const char * method;
const unsigned char * data;
unsigned int length;
} loadpubkeydata;
/* Support for ASN.1 elements. */
typedef struct {
char * header; /* Pointer to header byte. */
char * beg; /* Pointer to element data. */
char * end; /* Pointer to 1st byte after element. */
unsigned char class; /* ASN.1 element class. */
unsigned char tag; /* ASN.1 element tag. */
unsigned char constructed; /* Element is constructed. */
} asn1Element;
#define ASN1_INTEGER 2
#define ASN1_BIT_STRING 3
#define ASN1_OCTET_STRING 4
#define ASN1_NULL 5
#define ASN1_OBJ_ID 6
#define ASN1_SEQ 16
#define ASN1_CONSTRUCTED 0x20
/* rsaEncryption OID: 1.2.840.113549.1.1.1 */
static unsigned char OID_rsaEncryption[] =
{9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 1, 1, 1};
static int sshrsapubkey(LIBSSH2_SESSION *session, char **sshpubkey,
asn1Element *params, asn1Element *key,
const char *method);
#if LIBSSH2_DSA != 0
/* dsaEncryption OID: 1.2.840.10040.4.1 */
static unsigned char OID_dsaEncryption[] =
{7, 40 + 2, 0x86, 0x48, 0xCE, 0x38, 4, 1};
static int sshdsapubkey(LIBSSH2_SESSION *session, char **sshpubkey,
asn1Element *params, asn1Element *key,
const char *method);
#endif
/* PKCS#5 support. */
typedef struct pkcs5params pkcs5params;
struct pkcs5params {
int cipher; /* Encryption cipher. */
int blocksize; /* Cipher block size. */
char mode; /* Block encryption mode. */
char padopt; /* Pad option. */
char padchar; /* Pad character. */
int (*kdf)(LIBSSH2_SESSION *session, char **dk,
const unsigned char * passphrase, pkcs5params *pkcs5);
int hash; /* KDF hash algorithm. */
size_t hashlen; /* KDF hash digest length. */
char * salt; /* Salt. */
size_t saltlen; /* Salt length. */
char * iv; /* Initialization vector. */
size_t ivlen; /* Initialization vector length. */
int itercount; /* KDF iteration count. */
int dklen; /* Derived key length (#bytes). */
int effkeysize; /* RC2 effective key size (#bits) or 0. */
};
typedef struct pkcs5algo pkcs5algo;
struct pkcs5algo {
const unsigned char * oid;
int (*parse)(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
int cipher; /* Encryption cipher. */
size_t blocksize; /* Cipher block size. */
char mode; /* Block encryption mode. */
char padopt; /* Pad option. */
char padchar; /* Pad character. */
size_t keylen; /* Key length (#bytes). */
int hash; /* Hash algorithm. */
size_t hashlen; /* Hash digest length. */
size_t saltlen; /* Salt length. */
size_t ivlen; /* Initialisation vector length. */
int effkeysize; /* RC2 effective key size (#bits) or 0. */
};
/* id-PBES2 OID: 1.2.840.113549.1.5.13 */
static const unsigned char OID_id_PBES2[] = {
9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x05, 0x0D
};
static int parse_pbes2(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
static const pkcs5algo PBES2 = {
OID_id_PBES2, parse_pbes2, 0, 0, '\0', '\0', '\0', 0,
0, 0, 0, 0, 0
};
/* id-PBKDF2 OID: 1.2.840.113549.1.5.12 */
static const unsigned char OID_id_PBKDF2[] = {
9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x05, 0x0C
};
static int parse_pbkdf2(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
static const pkcs5algo PBKDF2 = {
OID_id_PBKDF2, parse_pbkdf2, 0, 0, '\0', '\0', '\0',
SHA_DIGEST_LENGTH, Qc3_SHA1, SHA_DIGEST_LENGTH, 8, 8, 0
};
/* id-hmacWithSHA1 OID: 1.2.840.113549.2.7 */
static const unsigned char OID_id_hmacWithSHA1[] = {
8, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x07
};
static int parse_hmacWithSHA1(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
static const pkcs5algo hmacWithSHA1 = {
OID_id_hmacWithSHA1, parse_hmacWithSHA1, 0, 0, '\0', '\0', '\0',
SHA_DIGEST_LENGTH, Qc3_SHA1, SHA_DIGEST_LENGTH, 8, 8, 0
};
/* desCBC OID: 1.3.14.3.2.7 */
static const unsigned char OID_desCBC[] = {5, 40 + 3, 0x0E, 0x03, 0x02, 0x07};
static int parse_iv(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
static const pkcs5algo desCBC = {
OID_desCBC, parse_iv, Qc3_DES, 8, Qc3_CBC, Qc3_Pad_Counter,
'\0', 8, 0, 0, 8, 8, 0
};
/* des-EDE3-CBC OID: 1.2.840.113549.3.7 */
static const unsigned char OID_des_EDE3_CBC[] = {
8, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x03, 0x07
};
static const pkcs5algo des_EDE3_CBC = {
OID_des_EDE3_CBC, parse_iv, Qc3_TDES, 8, Qc3_CBC, Qc3_Pad_Counter,
'\0', 24, 0, 0, 8, 8, 0
};
/* rc2CBC OID: 1.2.840.113549.3.2 */
static const unsigned char OID_rc2CBC[] = {
8, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x03, 0x02
};
static int parse_rc2(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
static const pkcs5algo rc2CBC = {
OID_rc2CBC, parse_rc2, Qc3_RC2, 8, Qc3_CBC, Qc3_Pad_Counter,
'\0', 0, 0, 0, 8, 0, 32
};
/* pbeWithMD5AndDES-CBC OID: 1.2.840.113549.1.5.3 */
static const unsigned char OID_pbeWithMD5AndDES_CBC[] = {
9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x05, 0x03
};
static int parse_pbes1(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param);
static const pkcs5algo pbeWithMD5AndDES_CBC = {
OID_pbeWithMD5AndDES_CBC, parse_pbes1, Qc3_DES, 8, Qc3_CBC,
Qc3_Pad_Counter, '\0', 8, Qc3_MD5, MD5_DIGEST_LENGTH, 8, 0, 0
};
/* pbeWithMD5AndRC2-CBC OID: 1.2.840.113549.1.5.6 */
static const unsigned char OID_pbeWithMD5AndRC2_CBC[] = {
9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x05, 0x06
};
static const pkcs5algo pbeWithMD5AndRC2_CBC = {
OID_pbeWithMD5AndRC2_CBC, parse_pbes1, Qc3_RC2, 8, Qc3_CBC,
Qc3_Pad_Counter, '\0', 0, Qc3_MD5, MD5_DIGEST_LENGTH, 8, 0, 64
};
/* pbeWithSHA1AndDES-CBC OID: 1.2.840.113549.1.5.10 */
static const unsigned char OID_pbeWithSHA1AndDES_CBC[] = {
9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x05, 0x0A
};
static const pkcs5algo pbeWithSHA1AndDES_CBC = {
OID_pbeWithSHA1AndDES_CBC, parse_pbes1, Qc3_DES, 8, Qc3_CBC,
Qc3_Pad_Counter, '\0', 8, Qc3_SHA1, SHA_DIGEST_LENGTH, 8, 0, 0
};
/* pbeWithSHA1AndRC2-CBC OID: 1.2.840.113549.1.5.11 */
static const unsigned char OID_pbeWithSHA1AndRC2_CBC[] = {
9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x05, 0x0B
};
static const pkcs5algo pbeWithSHA1AndRC2_CBC = {
OID_pbeWithSHA1AndRC2_CBC, parse_pbes1, Qc3_RC2, 8, Qc3_CBC,
Qc3_Pad_Counter, '\0', 0, Qc3_SHA1, SHA_DIGEST_LENGTH, 8, 0, 64
};
/* rc5-CBC-PAD OID: 1.2.840.113549.3.9: RC5 not implemented in Qc3. */
/* pbeWithMD2AndDES-CBC OID: 1.2.840.113549.1.5.1: MD2 not implemented. */
/* pbeWithMD2AndRC2-CBC OID: 1.2.840.113549.1.5.4: MD2 not implemented. */
static const pkcs5algo * pbestable[] = {
&pbeWithMD5AndDES_CBC,
&pbeWithMD5AndRC2_CBC,
&pbeWithSHA1AndDES_CBC,
&pbeWithSHA1AndRC2_CBC,
&PBES2,
NULL
};
static const pkcs5algo * pbkdf2table[] = {
&PBKDF2,
NULL
};
static const pkcs5algo * pbes2enctable[] = {
&desCBC,
&des_EDE3_CBC,
&rc2CBC,
NULL
};
static const pkcs5algo * kdf2prftable[] = {
&hmacWithSHA1,
NULL
};
/* Public key extraction support. */
static struct {
unsigned char * oid;
int (*sshpubkey)(LIBSSH2_SESSION *session, char **pubkey,
asn1Element *params, asn1Element *key,
const char *method);
const char * method;
} pka[] = {
#if LIBSSH2_RSA != 0
{ OID_rsaEncryption, sshrsapubkey, "ssh-rsa" },
#endif
#if LIBSSH2_DSA != 0
{ OID_dsaEncryption, sshdsapubkey, "ssh-dss" },
#endif
{ NULL, NULL, NULL }
};
/* Define ASCII strings. */
static const char beginencprivkeyhdr[] =
"-----BEGIN ENCRYPTED PRIVATE KEY-----";
static const char endencprivkeyhdr[] = "-----END ENCRYPTED PRIVATE KEY-----";
static const char beginprivkeyhdr[] = "-----BEGIN PRIVATE KEY-----";
static const char endprivkeyhdr[] = "-----END PRIVATE KEY-----";
static const char beginrsaprivkeyhdr[] = "-----BEGIN RSA PRIVATE KEY-----";
static const char endrsaprivkeyhdr[] = "-----END RSA PRIVATE KEY-----";
static const char fopenrmode[] = "r";
static const char fopenrbmode[] = "rb";
/* The rest of character literals in this module are in EBCDIC. */
#pragma convert(37)
#include <qusec.h>
#include <qc3prng.h>
#include <qc3dtaen.h>
#include <qc3dtade.h>
#include <qc3ctx.h>
#include <qc3hash.h>
#include <qc3hmac.h>
#include <qc3pbext.h>
#include <qc3sigvr.h>
#include <qc3sigcl.h>
#include <qc3pbext.h>
static Qc3_Format_KEYD0100_T nulltoken = {""};
static int zero = 0;
static int rsaprivate[] = { Qc3_RSA_Private };
static char anycsp[] = { Qc3_Any_CSP };
static char binstring[] = { Qc3_Bin_String };
static char berstring[] = { Qc3_BER_String };
static char qc3clear[] = { Qc3_Clear };
static const Qus_EC_t ecnull = {0}; /* Error causes an exception. */
static asn1Element lastbytebitcount = {
(char *) &zero, NULL, (char *) &zero + 1
};
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: ASN.1 support.
*
*******************************************************************/
static char *
getASN1Element(asn1Element *elem, char *beg, char *end)
{
unsigned char b;
unsigned long len;
asn1Element lelem;
/* Get a single ASN.1 element into `elem', parse ASN.1 string at `beg'
* ending at `end'.
* Returns a pointer in source string after the parsed element, or NULL
* if an error occurs.
*/
if (beg >= end || !*beg)
return NULL;
/* Process header byte. */
elem->header = beg;
b = (unsigned char) *beg++;
elem->constructed = (b & 0x20) != 0;
elem->class = (b >> 6) & 3;
b &= 0x1F;
if (b == 0x1F)
return NULL; /* Long tag values not supported here. */
elem->tag = b;
/* Process length. */
if (beg >= end)
return NULL;
b = (unsigned char) *beg++;
if (!(b & 0x80))
len = b;
else if (!(b &= 0x7F)) {
/* Unspecified length. Since we have all the data, we can determine the
* effective length by skipping element until an end element is
* found.
*/
if (!elem->constructed)
return NULL;
elem->beg = beg;
while (beg < end && *beg) {
beg = getASN1Element(&lelem, beg, end);
if (!beg)
return NULL;
}
if (beg >= end)
return NULL;
elem->end = beg;
return beg + 1;
} else if (beg + b > end)
return NULL; /* Does not fit in source. */
else {
/* Get long length. */
len = 0;
do {
if (len & 0xFF000000L)
return NULL; /* Lengths > 32 bits are not supported. */
len = (len << 8) | (unsigned char) *beg++;
} while (--b);
}
if ((unsigned long) (end - beg) < len)
return NULL; /* Element data does not fit in source. */
elem->beg = beg;
elem->end = beg + len;
return elem->end;
}
static asn1Element *
asn1_new(unsigned int type, unsigned int length)
{
asn1Element *e;
unsigned int hdrl = 2;
unsigned int i;
unsigned char *buf;
e = (asn1Element *) malloc(sizeof *e);
if (e) {
if (length >= 0x80)
for (i = length; i; i >>= 8)
hdrl++;
buf = (unsigned char *) malloc(hdrl + length);
if (buf) {
e->header = buf;
e->beg = buf + hdrl;
e->end = e->beg + length;
e->class = (type >> 6) & 0x03;
e->tag = type & 0x1F;
e->constructed = (type >> 5) & 0x01;
e->header[0] = type;
if (length < 0x80)
e->header[1] = length;
else {
e->header[1] = (hdrl - 2) | 0x80;
do {
e->header[--hdrl] = length;
length >>= 8;
} while (length);
}
} else {
free((char *) e);
e = NULL;
}
}
return e;
}
static asn1Element *
asn1_new_from_bytes(const unsigned char *data, unsigned int length)
{
asn1Element *e;
asn1Element te;
getASN1Element(&te,
(unsigned char *) data, (unsigned char *) data + length);
e = asn1_new(te.tag, te.end - te.beg);
if (e)
memcpy(e->header, data, e->end - e->header);
return e;
}
static void
asn1delete(asn1Element *e)
{
if (e) {
if (e->header)
free((char *) e->header);
free((char *) e);
}
}
static asn1Element *
asn1uint(_libssh2_bn *bn)
{
asn1Element *e;
int bits;
int length;
unsigned char * p;
if (!bn)
return NULL;
bits = _libssh2_bn_bits(bn);
length = (bits + 8) >> 3;
e = asn1_new(ASN1_INTEGER, length);
if (e) {
p = e->beg;
if (!(bits & 0x07))
*p++ = 0;
_libssh2_bn_to_bin(bn, p);
}
return e;
}
static asn1Element *
asn1containerv(unsigned int type, valiststr args)
{
valiststr va;
asn1Element *e;
asn1Element *p;
unsigned char *bp;
unsigned int length = 0;
memcpy((char *) &va, (char *) &args, sizeof args);
while ((p = va_arg(va.list, asn1Element *)))
length += p->end - p->header;
va_end(va.list);
e = asn1_new(type, length);
if (e) {
bp = e->beg;
while ((p = va_arg(args.list, asn1Element *))) {
memcpy(bp, p->header, p->end - p->header);
bp += p->end - p->header;
}
}
return e;
}
/* VARARGS1 */
static asn1Element *
asn1container(unsigned int type, ...)
{
valiststr va;
asn1Element *e;
va_start(va.list, type);
e = asn1containerv(type, va);
va_end(va.list);
return e;
}
static asn1Element *
asn1bytes(unsigned int type, const unsigned char *bytes, unsigned int length)
{
asn1Element *e;
e = asn1_new(type, length);
if (e && length)
memcpy(e->beg, bytes, length);
return e;
}
static asn1Element *
rsapublickey(_libssh2_bn *e, _libssh2_bn *m)
{
asn1Element *publicexponent;
asn1Element *modulus;
asn1Element *rsapubkey;
/* Build a PKCS#1 RSAPublicKey. */
modulus = asn1uint(m);
publicexponent = asn1uint(e);
rsapubkey = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
modulus, publicexponent, NULL);
asn1delete(modulus);
asn1delete(publicexponent);
if (!modulus || !publicexponent) {
asn1delete(rsapubkey);
rsapubkey = NULL;
}
return rsapubkey;
}
static asn1Element *
rsaprivatekey(_libssh2_bn *e, _libssh2_bn *m, _libssh2_bn *d,
_libssh2_bn *p, _libssh2_bn *q,
_libssh2_bn *exp1, _libssh2_bn *exp2, _libssh2_bn *coeff)
{
asn1Element *version;
asn1Element *modulus;
asn1Element *publicexponent;
asn1Element *privateexponent;
asn1Element *prime1;
asn1Element *prime2;
asn1Element *exponent1;
asn1Element *exponent2;
asn1Element *coefficient;
asn1Element *rsaprivkey;
/* Build a PKCS#1 RSAPrivateKey. */
version = asn1bytes(ASN1_INTEGER, "\0", 1);
modulus = asn1uint(m);
publicexponent = asn1uint(e);
privateexponent = asn1uint(d);
prime1 = asn1uint(p);
prime2 = asn1uint(q);
exponent1 = asn1uint(exp1);
exponent2 = asn1uint(exp2);
coefficient = asn1uint(coeff);
rsaprivkey = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED, version, modulus,
publicexponent, privateexponent, prime1, prime2,
exponent1, exponent2, coefficient, NULL);
asn1delete(version);
asn1delete(modulus);
asn1delete(publicexponent);
asn1delete(privateexponent);
asn1delete(prime1);
asn1delete(prime2);
asn1delete(exponent1);
asn1delete(exponent2);
asn1delete(coefficient);
if (!version || !modulus || !publicexponent || !privateexponent ||
!prime1 || !prime2 || !exponent1 || !exponent2 || !coefficient) {
asn1delete(rsaprivkey);
rsaprivkey = NULL;
}
return rsaprivkey;
}
static asn1Element *
subjectpublickeyinfo(asn1Element *pubkey, const unsigned char *algo,
asn1Element *parameters)
{
asn1Element *subjpubkey;
asn1Element *algorithm;
asn1Element *algorithmid;
asn1Element *subjpubkeyinfo;
unsigned int algosize = *algo++;
algorithm = asn1bytes(ASN1_OBJ_ID, algo, algosize);
algorithmid = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
algorithm, parameters, NULL);
subjpubkey = asn1container(ASN1_BIT_STRING, &lastbytebitcount,
pubkey, NULL);
subjpubkeyinfo = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
algorithmid, subjpubkey, NULL);
asn1delete(algorithm);
asn1delete(algorithmid);
asn1delete(subjpubkey);
if (!algorithm || !algorithmid || !subjpubkey) {
asn1delete(subjpubkeyinfo);
subjpubkeyinfo = NULL;
}
return subjpubkeyinfo;
}
static asn1Element *
rsasubjectpublickeyinfo(asn1Element *pubkey)
{
asn1Element *parameters;
asn1Element *subjpubkeyinfo;
parameters = asn1bytes(ASN1_NULL, NULL, 0);
subjpubkeyinfo = subjectpublickeyinfo(pubkey,
OID_rsaEncryption, parameters);
asn1delete(parameters);
if (!parameters) {
asn1delete(subjpubkeyinfo);
subjpubkeyinfo = NULL;
}
return subjpubkeyinfo;
}
static asn1Element *
privatekeyinfo(asn1Element *privkey, const unsigned char *algo,
asn1Element *parameters)
{
asn1Element *version;
asn1Element *privatekey;
asn1Element *algorithm;
asn1Element *privatekeyalgorithm;
asn1Element *privkeyinfo;
unsigned int algosize = *algo++;
/* Build a PKCS#8 PrivateKeyInfo. */
version = asn1bytes(ASN1_INTEGER, "\0", 1);
algorithm = asn1bytes(ASN1_OBJ_ID, algo, algosize);
privatekeyalgorithm = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
algorithm, parameters, NULL);
privatekey = asn1container(ASN1_OCTET_STRING, privkey, NULL);
privkeyinfo = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED, version,
privatekeyalgorithm, privatekey, NULL);
asn1delete(version);
asn1delete(algorithm);
asn1delete(privatekeyalgorithm);
if (!version || !algorithm || !privatekeyalgorithm) {
asn1delete(privkeyinfo);
privkeyinfo = NULL;
}
return privkeyinfo;
}
static asn1Element *
rsaprivatekeyinfo(asn1Element *privkey)
{
asn1Element *parameters;
asn1Element *privkeyinfo;
parameters = asn1bytes(ASN1_NULL, NULL, 0);
privkeyinfo = privatekeyinfo(privkey, OID_rsaEncryption, parameters);
asn1delete(parameters);
if (!parameters) {
asn1delete(privkeyinfo);
privkeyinfo = NULL;
}
return privkeyinfo;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: big numbers support.
*
*******************************************************************/
_libssh2_bn *
_libssh2_bn_init(void)
{
_libssh2_bn *bignum;
bignum = (_libssh2_bn *) malloc(sizeof *bignum);
if (bignum) {
bignum->bignum = NULL;
bignum->length = 0;
}
return bignum;
}
void
_libssh2_bn_free(_libssh2_bn *bn)
{
if (bn) {
if (bn->bignum) {
#ifdef LIBSSH2_CLEAR_MEMORY
if (bn->length)
memset((char *) bn->bignum, 0, bn->length);
#endif
free(bn->bignum);
}
free((char *) bn);
}
}
static int
_libssh2_bn_resize(_libssh2_bn *bn, size_t newlen)
{
unsigned char *bignum;
if (!bn)
return -1;
if (newlen == bn->length)
return 0;
if (!bn->bignum)
bignum = (unsigned char *) malloc(newlen);
else {
#ifdef LIBSSH2_CLEAR_MEMORY
if (newlen < bn->length)
memset((char *) bn->bignum + newlen, 0, bn->length - newlen);
#endif
if (!newlen) {
free((char *) bn->bignum);
bn->bignum = NULL;
bn->length = 0;
return 0;
}
bignum = (unsigned char *) realloc((char *) bn->bignum, newlen);
}
if (!bignum)
return -1;
if (newlen > bn->length)
memset((char *) bignum + bn->length, 0, newlen - bn->length);
bn->bignum = bignum;
bn->length = newlen;
return 0;
}
unsigned long
_libssh2_bn_bits(_libssh2_bn *bn)
{
unsigned int i;
unsigned char b;
if (bn && bn->bignum) {
for (i = bn->length; i--;)
if ((b = bn->bignum[i])) {
i *= 8;
do {
i++;
} while (b >>= 1);
return i;
}
}
return 0;
}
int
_libssh2_bn_from_bin(_libssh2_bn *bn, int len, const unsigned char *val)
{
int i;
if (!bn || (len && !val))
return -1;
for (; len && !*val; len--)
val++;
if (_libssh2_bn_resize(bn, len))
return -1;
for (i = len; i--;)
bn->bignum[i] = *val++;
return 0;
}
int
_libssh2_bn_set_word(_libssh2_bn *bn, unsigned long val)
{
val = htonl(val);
return _libssh2_bn_from_bin(bn, sizeof val, (unsigned char *) &val);
}
int
_libssh2_bn_to_bin(_libssh2_bn *bn, unsigned char *val)
{
int i;
if (!bn || !val)
return -1;
for (i = bn->length; i--;)
*val++ = bn->bignum[i];
return 0;
}
static int
_libssh2_bn_from_bn(_libssh2_bn *to, _libssh2_bn *from)
{
int i;
if (!to || !from)
return -1;
if (_libssh2_bn_resize(to, from->length))
return -1;
for (i = to->length; i--;)
to->bignum[i] = from->bignum[i];
return 0;
}
void
_libssh2_random(unsigned char *buf, int len)
{
Qc3GenPRNs(buf, len,
Qc3PRN_TYPE_NORMAL, Qc3PRN_NO_PARITY, (char *) &ecnull);
}
int
_libssh2_bn_rand(_libssh2_bn *bn, int bits, int top, int bottom)
{
int len;
int i;
if (!bn || bits <= 0)
return -1;
len = (bits + 7) >> 3;
if (_libssh2_bn_resize(bn, len))
return -1;
_libssh2_random(bn->bignum, len);
i = ((bits - 1) & 07) + 1;
bn->bignum[len - 1] &= (1 << i) - 1;
switch (top) {
case 1:
if (bits > 1)
if (i > 1)
bn->bignum[len - 1] |= 1 << (i - 2);
else
bn->bignum[len - 2] |= 0x80;
/* Fall into. */
case 0:
bn->bignum[len - 1] |= 1 << (i - 1);
break;
}
if (bottom)
*bn->bignum |= 0x01;
return 0;
}
static int
_libssh2_bn_lshift(_libssh2_bn *bn)
{
int i;
int c = 0;
if (!bn)
return -1;
if (_libssh2_bn_resize(bn, (_libssh2_bn_bits(bn) + 8) >> 3))
return -1;
for (i = 0; i < bn->length; i++) {
if (bn->bignum[i] & 0x80)
c |= 0x02;
bn->bignum[i] = (bn->bignum[i] << 1) | (c & 0x01);
c >>= 1;
}
return 0;
}
static int
_libssh2_bn_rshift(_libssh2_bn *bn)
{
int i;
int c = 0;
if (!bn)
return -1;
for (i = bn->length; i--;) {
if (bn->bignum[i] & 0x01)
c |= 0x100;
bn->bignum[i] = (bn->bignum[i] >> 1) | (c & 0x80);
c >>= 1;
}
if (_libssh2_bn_resize(bn, (_libssh2_bn_bits(bn) + 7) >> 3))
return -1;
return 0;
}
static void
_libssh2_bn_swap(_libssh2_bn *bn1, _libssh2_bn *bn2)
{
_libssh2_bn t = *bn1;
*bn1 = *bn2;
*bn2 = t;
}
static int
_libssh2_bn_subtract(_libssh2_bn *d, _libssh2_bn *bn1, _libssh2_bn *bn2)
{
int c = 0;
int i;
if (bn1->length < bn2->length)
return -1;
if (_libssh2_bn_resize(d, bn1->length))
return -1;
for (i = 0; i < bn2->length; i++) {
c += (int) bn1->bignum[i] - (int) bn2->bignum[i];
d->bignum[i] = c;
c = c < 0? -1: 0;
}
for (; c && i < bn1->length; i++) {
c += (int) bn1->bignum[i];
d->bignum[i] = c;
c = c < 0? -1: 0;
}
if (_libssh2_bn_resize(d, (_libssh2_bn_bits(d) + 7) >> 3))
return -1;
return c;
}
int
_libssh2_os400qc3_bn_mod_exp(_libssh2_bn *r, _libssh2_bn *a, _libssh2_bn *p,
_libssh2_bn *m)
{
_libssh2_bn *mp;
_libssh2_bn *rp;
asn1Element *rsapubkey;
asn1Element *subjpubkeyinfo;
unsigned char *av;
unsigned char *rv;
char *keydbuf;
Qc3_Format_ALGD0400_T algd;
Qc3_Format_KEYD0200_T *keyd;
Qus_EC_t errcode;
int sc;
int outlen;
int ret = -1;
/* There is no support for this function in the Qc3 crypto-library.
Since a RSA encryption performs this function, we can emulate it
by creating an RSA public key in ASN.1 SubjectPublicKeyInfo format
from p (exponent) and m (modulus) and encrypt a with this key. The
encryption output is the function result.
Problem: the Qc3EncryptData procedure only succeeds if the data bit
count is less than the modulus bit count. To satisfy this condition,
we multiply the modulus by a power of two and adjust the result
accordingly. */
if (!r || !a || !p)
return ret;
mp = _libssh2_bn_init();
if (!mp)
return ret;
if (_libssh2_bn_from_bn(mp, m)) {
_libssh2_bn_free(mp);
return ret;
}
for (sc = 0; _libssh2_bn_bits(mp) <= 8 * a->length; sc++)
if (_libssh2_bn_lshift(mp)) {
_libssh2_bn_free(mp);
return ret;
}
rsapubkey = rsapublickey(p, mp);
subjpubkeyinfo = rsasubjectpublickeyinfo(rsapubkey);
asn1delete(rsapubkey);
if (!rsapubkey || !subjpubkeyinfo) {
asn1delete(rsapubkey);
asn1delete(subjpubkeyinfo);
_libssh2_bn_free(mp);
return ret;
}
av = (unsigned char *) alloca(a->length);
rv = (unsigned char *) alloca(mp->length);
keydbuf = alloca(sizeof *keyd +
subjpubkeyinfo->end - subjpubkeyinfo->header);
if (av && rv && keydbuf) {
_libssh2_bn_to_bin(a, av);
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_Zero_Pad;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = 0;
keyd = (Qc3_Format_KEYD0200_T *) keydbuf;
keyd->Key_Type = Qc3_RSA_Public;
keyd->Key_String_Len = subjpubkeyinfo->end - subjpubkeyinfo->header;
keyd->Key_Format = Qc3_BER_String;
memset(keyd->Reserved, 0, sizeof keyd->Reserved);
memcpy(keydbuf + sizeof *keyd, subjpubkeyinfo->header,
keyd->Key_String_Len);
set_EC_length(errcode, sizeof errcode);
Qc3EncryptData(av, (int *) &a->length, Qc3_Data, (char *) &algd,
Qc3_Alg_Public_Key, keydbuf, Qc3_Key_Parms, anycsp,
NULL, rv, (int *) &mp->length, &outlen, &errcode);
if (!errcode.Bytes_Available) {
_libssh2_bn_from_bin(r, outlen, rv);
if (!sc)
ret = 0;
else {
rp = _libssh2_bn_init();
if (rp) {
do {
_libssh2_bn_rshift(mp);
if (!_libssh2_bn_subtract(rp, r, mp))
_libssh2_bn_swap(r, rp);
} while (--sc);
_libssh2_bn_free(rp);
ret = 0;
}
}
}
}
asn1delete(subjpubkeyinfo);
_libssh2_bn_free(mp);
return ret;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: crypto context support.
*
*******************************************************************/
static _libssh2_os400qc3_crypto_ctx *
libssh2_init_crypto_ctx(_libssh2_os400qc3_crypto_ctx *ctx)
{
if (!ctx)
ctx = (_libssh2_os400qc3_crypto_ctx *) malloc(sizeof *ctx);
if (ctx) {
memset((char *) ctx, 0, sizeof *ctx);
ctx->hash.Final_Op_Flag = Qc3_Continue;
}
return ctx;
}
static int
null_token(const char *token)
{
return !memcmp(token, nulltoken.Key_Context_Token,
sizeof nulltoken.Key_Context_Token);
}
void
_libssh2_os400qc3_crypto_dtor(_libssh2_os400qc3_crypto_ctx *x)
{
if (!x)
return;
if (!null_token(x->hash.Alg_Context_Token)) {
Qc3DestroyAlgorithmContext(x->hash.Alg_Context_Token, (char *) &ecnull);
memset(x->hash.Alg_Context_Token, 0, sizeof x->hash.Alg_Context_Token);
}
if (!null_token(x->key.Key_Context_Token)) {
Qc3DestroyKeyContext(x->key.Key_Context_Token, (char *) &ecnull);
memset(x->key.Key_Context_Token, 0, sizeof x->key.Key_Context_Token);
}
if (x->kek) {
_libssh2_os400qc3_crypto_dtor(x->kek);
free((char *) x->kek);
x->kek = NULL;
}
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: hash algorithms support.
*
*******************************************************************/
int
libssh2_os400qc3_hash_init(Qc3_Format_ALGD0100_T *x, unsigned int algorithm)
{
Qc3_Format_ALGD0500_T algd;
Qus_EC_t errcode;
if (!x)
return 0;
memset((char *) x, 0, sizeof *x);
x->Final_Op_Flag = Qc3_Continue;
algd.Hash_Alg = algorithm;
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Hash,
x->Alg_Context_Token, &errcode);
return errcode.Bytes_Available? 0: 1;
}
void
libssh2_os400qc3_hash_update(Qc3_Format_ALGD0100_T *ctx,
unsigned char *data, int len)
{
char dummy[64];
ctx->Final_Op_Flag = Qc3_Continue;
Qc3CalculateHash((char *) data, &len, Qc3_Data, (char *) ctx,
Qc3_Alg_Token, anycsp, NULL, dummy, (char *) &ecnull);
}
void
libssh2_os400qc3_hash_final(Qc3_Format_ALGD0100_T *ctx, unsigned char *out)
{
char data;
ctx->Final_Op_Flag = Qc3_Final;
Qc3CalculateHash(&data, &zero, Qc3_Data, (char *) ctx, Qc3_Alg_Token,
anycsp, NULL, (char *) out, (char *) &ecnull);
Qc3DestroyAlgorithmContext(ctx->Alg_Context_Token, (char *) &ecnull);
memset(ctx->Alg_Context_Token, 0, sizeof ctx->Alg_Context_Token);
}
int
libssh2_os400qc3_hash(const unsigned char *message, unsigned long len,
unsigned char *out, unsigned int algo)
{
Qc3_Format_ALGD0100_T ctx;
if (!libssh2_os400qc3_hash_init(&ctx, algo))
return 1;
libssh2_os400qc3_hash_update(&ctx, (unsigned char *) message, len);
libssh2_os400qc3_hash_final(&ctx, out);
return 0;
}
void
libssh2_os400qc3_hmac_init(_libssh2_os400qc3_crypto_ctx *ctx,
int algo, size_t minkeylen, void *key, int keylen)
{
if (keylen < minkeylen) {
char *lkey = alloca(minkeylen);
/* Pad key with zeroes if too short. */
if (!lkey)
return;
memcpy(lkey, (char *) key, keylen);
memset(lkey + keylen, 0, minkeylen - keylen);
key = (void *) lkey;
keylen = minkeylen;
}
libssh2_os400qc3_hash_init(&ctx->hash, algo);
Qc3CreateKeyContext((char *) key, &keylen, binstring, &algo, qc3clear,
NULL, NULL, ctx->key.Key_Context_Token,
(char *) &ecnull);
}
void
libssh2_os400qc3_hmac_update(_libssh2_os400qc3_crypto_ctx *ctx,
unsigned char *data, int len)
{
char dummy[64];
ctx->hash.Final_Op_Flag = Qc3_Continue;
Qc3CalculateHMAC((char *) data, &len, Qc3_Data, (char *) &ctx->hash,
Qc3_Alg_Token, ctx->key.Key_Context_Token, Qc3_Key_Token,
anycsp, NULL, dummy, (char *) &ecnull);
}
void
libssh2_os400qc3_hmac_final(_libssh2_os400qc3_crypto_ctx *ctx,
unsigned char *out)
{
char data;
ctx->hash.Final_Op_Flag = Qc3_Final;
Qc3CalculateHMAC((char *) data, &zero, Qc3_Data, (char *) &ctx->hash,
Qc3_Alg_Token, ctx->key.Key_Context_Token, Qc3_Key_Token,
anycsp, NULL, (char *) out, (char *) &ecnull);
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: cipher algorithms support.
*
*******************************************************************/
int
_libssh2_cipher_init(_libssh2_cipher_ctx *h, _libssh2_cipher_type(algo),
unsigned char *iv, unsigned char *secret, int encrypt)
{
Qc3_Format_ALGD0200_T algd;
Qus_EC_t errcode;
(void) encrypt;
if (!h)
return -1;
libssh2_init_crypto_ctx(h);
algd.Block_Cipher_Alg = algo.algo;
algd.Block_Length = algo.size;
algd.Mode = algo.mode;
algd.Pad_Option = Qc3_No_Pad;
algd.Pad_Character = 0;
algd.Reserved = 0;
algd.MAC_Length = 0;
algd.Effective_Key_Size = 0;
memset(algd.Init_Vector, 0 , sizeof algd.Init_Vector);
if (algo.mode != Qc3_ECB && algo.size)
memcpy(algd.Init_Vector, iv, algo.size);
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, algo.fmt,
h->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
return -1;
Qc3CreateKeyContext((char *) secret, &algo.keylen, binstring,
&algo.algo, qc3clear, NULL, NULL,
h->key.Key_Context_Token, (char *) &errcode);
if (errcode.Bytes_Available) {
_libssh2_os400qc3_crypto_dtor(h);
return -1;
}
return 0;
}
int
_libssh2_cipher_crypt(_libssh2_cipher_ctx *ctx,
_libssh2_cipher_type(algo),
int encrypt, unsigned char *block, size_t blocksize)
{
Qus_EC_t errcode;
int outlen;
int blksize = blocksize;
(void) algo;
set_EC_length(errcode, sizeof errcode);
if (encrypt)
Qc3EncryptData((char *) block, &blksize, Qc3_Data,
ctx->hash.Alg_Context_Token, Qc3_Alg_Token,
ctx->key.Key_Context_Token, Qc3_Key_Token, anycsp, NULL,
(char *) block, &blksize, &outlen, (char *) &errcode);
else
Qc3DecryptData((char *) block, &blksize,
ctx->hash.Alg_Context_Token, Qc3_Alg_Token,
ctx->key.Key_Context_Token, Qc3_Key_Token, anycsp, NULL,
(char *) block, &blksize, &outlen, (char *) &errcode);
return errcode.Bytes_Available? -1: 0;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: RSA support.
*
*******************************************************************/
int
_libssh2_rsa_new(libssh2_rsa_ctx **rsa,
const unsigned char *edata, unsigned long elen,
const unsigned char *ndata, unsigned long nlen,
const unsigned char *ddata, unsigned long dlen,
const unsigned char *pdata, unsigned long plen,
const unsigned char *qdata, unsigned long qlen,
const unsigned char *e1data, unsigned long e1len,
const unsigned char *e2data, unsigned long e2len,
const unsigned char *coeffdata, unsigned long coefflen)
{
libssh2_rsa_ctx *ctx;
_libssh2_bn *e = _libssh2_bn_init_from_bin();
_libssh2_bn *n = _libssh2_bn_init_from_bin();
_libssh2_bn *d = NULL;
_libssh2_bn *p = NULL;
_libssh2_bn *q = NULL;
_libssh2_bn *e1 = NULL;
_libssh2_bn *e2 = NULL;
_libssh2_bn *coeff = NULL;
asn1Element *key = NULL;
asn1Element *structkey = NULL;
Qc3_Format_ALGD0400_T algd;
Qus_EC_t errcode;
int keytype;
int ret = 0;
int i;
ctx = libssh2_init_crypto_ctx(NULL);
if (!ctx)
ret = -1;
if (!ret) {
_libssh2_bn_from_bin(e, elen, edata);
_libssh2_bn_from_bin(n, nlen, ndata);
if (!e || !n)
ret = -1;
}
if (!ret && ddata) {
/* Private key. */
d = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(d, dlen, ddata);
p = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(p, plen, pdata);
q = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(q, qlen, qdata);
e1 = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(e1, e1len, e1data);
e2 = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(e2, e2len, e2data);
coeff = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(coeff, coefflen, coeffdata);
if (!d || !p || !q ||!e1 || !e2 || !coeff)
ret = -1;
if (!ret) {
/* Build a PKCS#8 private key. */
key = rsaprivatekey(e, n, d, p, q, e1, e2, coeff);
structkey = rsaprivatekeyinfo(key);
}
keytype = Qc3_RSA_Private;
} else if (!ret) {
key = rsapublickey(e, n);
structkey = rsasubjectpublickeyinfo(key);
keytype = Qc3_RSA_Public;
}
if (!key || !structkey)
ret = -1;
set_EC_length(errcode, sizeof errcode);
if (!ret) {
/* Create the algorithm context. */
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_PKCS1_01;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = Qc3_SHA1;
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Public_Key,
ctx->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
ret = -1;
ctx->hash.Final_Op_Flag = Qc3_Continue;
}
/* Create the key context. */
if (!ret) {
i = structkey->end - structkey->header;
Qc3CreateKeyContext(structkey->header, &i, berstring, &keytype,
qc3clear, NULL, NULL, ctx->key.Key_Context_Token,
(char *) &errcode);
if (errcode.Bytes_Available)
ret = -1;
}
_libssh2_bn_free(e);
_libssh2_bn_free(n);
_libssh2_bn_free(d);
_libssh2_bn_free(p);
_libssh2_bn_free(q);
_libssh2_bn_free(e1);
_libssh2_bn_free(e2);
_libssh2_bn_free(coeff);
asn1delete(key);
asn1delete(structkey);
if (ret && ctx) {
_libssh2_rsa_free(ctx);
ctx = NULL;
}
*rsa = ctx;
return ret;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: PKCS#5 supplement.
*
*******************************************************************/
static int
oidcmp(const asn1Element *e, const unsigned char *oid)
{
int i = e->end - e->beg - *oid++;
if (*e->header != ASN1_OBJ_ID)
return -2;
if (!i)
i = memcmp(e->beg, oid, oid[-1]);
return i;
}
static int
asn1getword(asn1Element *e, unsigned long *v)
{
unsigned long a;
const unsigned char *cp;
if (*e->header != ASN1_INTEGER)
return -1;
for (cp = e->beg; cp < e->end && !*cp; cp++)
;
if (e->end - cp > sizeof a)
return -1;
for (a = 0; cp < e->end; cp++)
a = (a << 8) | *cp;
*v = a;
return 0;
}
static int
pbkdf1(LIBSSH2_SESSION *session, char **dk, const unsigned char * passphrase,
pkcs5params *pkcs5)
{
int i;
Qc3_Format_ALGD0100_T hctx;
int len = pkcs5->saltlen;
char *data = (char *) pkcs5->salt;
*dk = NULL;
if (pkcs5->dklen > pkcs5->hashlen)
return -1;
/* Allocate the derived key buffer. */
if (!(*dk = LIBSSH2_ALLOC(session, pkcs5->hashlen)))
return -1;
/* Initial hash. */
libssh2_os400qc3_hash_init(&hctx, pkcs5->hash);
libssh2_os400qc3_hash_update(&hctx, (unsigned char *) passphrase,
strlen(passphrase));
hctx.Final_Op_Flag = Qc3_Final;
Qc3CalculateHash((char *) pkcs5->salt, &len, Qc3_Data, (char *) &hctx,
Qc3_Alg_Token, anycsp, NULL, *dk, (char *) &ecnull);
/* Iterate. */
len = pkcs5->hashlen;
for (i = 1; i < pkcs5->itercount; i++)
Qc3CalculateHash((char *) *dk, &len, Qc3_Data, (char *) &hctx,
Qc3_Alg_Token, anycsp, NULL, *dk, (char *) &ecnull);
/* Special stuff for PBES1: split derived key into 8-byte key and 8-byte
initialization vector. */
pkcs5->dklen = 8;
pkcs5->ivlen = 8;
pkcs5->iv = *dk + 8;
/* Clean-up and exit. */
Qc3DestroyAlgorithmContext(hctx.Alg_Context_Token, (char *) &ecnull);
return 0;
}
static int
pbkdf2(LIBSSH2_SESSION *session, char **dk, const unsigned char * passphrase,
pkcs5params *pkcs5)
{
size_t i;
size_t k;
int j;
int l;
uint32_t ni;
unsigned long long t;
char *mac;
char *buf;
_libssh2_os400qc3_crypto_ctx hctx;
*dk = NULL;
t = ((unsigned long long) pkcs5->dklen + pkcs5->hashlen - 1) /
pkcs5->hashlen;
if (t > 0xFFFFFFFF)
return -1;
mac = alloca(pkcs5->hashlen);
if (!mac)
return -1;
/* Allocate the derived key buffer. */
l = t;
if (!(buf = LIBSSH2_ALLOC(session, l * pkcs5->hashlen)))
return -1;
*dk = buf;
/* Create an HMAC context for our computations. */
libssh2_os400qc3_hmac_init(&hctx, pkcs5->hash, pkcs5->hashlen,
(void *) passphrase, strlen(passphrase));
/* Process each hLen-size blocks. */
for (i = 1; i <= l; i++) {
ni = htonl(i);
libssh2_os400qc3_hmac_update(&hctx, pkcs5->salt, pkcs5->saltlen);
libssh2_os400qc3_hmac_update(&hctx, (char *) &ni, sizeof ni);
libssh2_os400qc3_hmac_final(&hctx, mac);
memcpy(buf, mac, pkcs5->hashlen);
for (j = 1; j < pkcs5->itercount; j++) {
libssh2_os400qc3_hmac_update(&hctx, mac, pkcs5->hashlen);
libssh2_os400qc3_hmac_final(&hctx, mac);
for (k = 0; k < pkcs5->hashlen; k++)
buf[k] ^= mac[k];
}
buf += pkcs5->hashlen;
}
/* Computation done. Release HMAC context. */
_libssh2_os400qc3_crypto_dtor(&hctx);
return 0;
}
static int
parse_pkcs5_algorithm(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
asn1Element *algid, pkcs5algo **algotable)
{
asn1Element oid;
asn1Element param;
char *cp;
cp = getASN1Element(&oid, algid->beg, algid->end);
if (!cp || *oid.header != ASN1_OBJ_ID)
return -1;
param.header = NULL;
if (cp < algid->end)
cp = getASN1Element(&param, cp, algid->end);
if (cp != algid->end)
return -1;
for (; *algotable; algotable++)
if (!oidcmp(&oid, (*algotable)->oid))
return (*(*algotable)->parse)(session, pkcs5, *algotable,
param.header? &param: NULL);
return -1;
}
static int
parse_pbes2(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param)
{
asn1Element keyDerivationFunc;
asn1Element encryptionScheme;
char *cp;
if (!param || *param->header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&keyDerivationFunc, param->beg, param->end);
if (!cp || *keyDerivationFunc.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (getASN1Element(&encryptionScheme, cp, param->end) != param->end ||
*encryptionScheme.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (parse_pkcs5_algorithm(session, pkcs5, &encryptionScheme, pbes2enctable))
return -1;
if (parse_pkcs5_algorithm(session, pkcs5, &keyDerivationFunc, pbkdf2table))
return -1;
return 0;
}
static int
parse_pbkdf2(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param)
{
asn1Element salt;
asn1Element iterationCount;
asn1Element keyLength;
asn1Element prf;
unsigned long itercount;
char *cp;
if (!param || *param->header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&salt, param->beg, param->end);
/* otherSource not supported. */
if (!cp || *salt.header != ASN1_OCTET_STRING)
return -1;
cp = getASN1Element(&iterationCount, cp, param->end);
if (!cp || *iterationCount.header != ASN1_INTEGER)
return -1;
keyLength.header = prf.header = NULL;
if (cp < param->end) {
cp = getASN1Element(&prf, cp, param->end);
if (!cp)
return -1;
if (*prf.header == ASN1_INTEGER) {
keyLength = prf;
prf.header = NULL;
if (cp < param->end)
cp = getASN1Element(&prf, cp, param->end);
}
if (cp != param->end)
return -1;
}
pkcs5->hash = algo->hash;
pkcs5->hashlen = algo->hashlen;
if (prf.header) {
if (*prf.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (parse_pkcs5_algorithm(session, pkcs5, &prf, kdf2prftable))
return -1;
}
pkcs5->saltlen = salt.end - salt.beg;
pkcs5->salt = salt.beg;
if (asn1getword(&iterationCount, &itercount) ||
!itercount || itercount > 100000)
return -1;
pkcs5->itercount = itercount;
pkcs5->kdf = pbkdf2;
return 0;
}
static int
parse_hmacWithSHA1(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param)
{
if (!param || *param->header != ASN1_NULL)
return -1;
pkcs5->hash = algo->hash;
pkcs5->hashlen = algo->hashlen;
return 0;
}
static int
parse_iv(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param)
{
if (!param || *param->header != ASN1_OCTET_STRING ||
param->end - param->beg != algo->ivlen)
return -1;
pkcs5->cipher = algo->cipher;
pkcs5->blocksize = algo->blocksize;
pkcs5->mode = algo->mode;
pkcs5->padopt = algo->padopt;
pkcs5->padchar = algo->padchar;
pkcs5->dklen = algo->keylen;
pkcs5->ivlen = algo->ivlen;
pkcs5->iv = param->beg;
return 0;
}
static int
parse_rc2(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param)
{
asn1Element iv;
unsigned long effkeysize;
char *cp;
if (!param || *param->header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&iv, param->beg, param->end);
if (!cp)
return -1;
effkeysize = algo->effkeysize;
if (*iv.header == ASN1_INTEGER) {
if (asn1getword(&iv, &effkeysize) || effkeysize > 1024)
return -1;
cp = getASN1Element(&iv, cp, param->end);
if (effkeysize < 256)
switch (effkeysize) {
case 160:
effkeysize = 40;
case 120:
effkeysize = 64;
case 58:
effkeysize = 128;
break;
default:
return -1;
}
}
if (effkeysize > 1024 || cp != param->end ||
*iv.header != ASN1_OCTET_STRING || iv.end - iv.beg != algo->ivlen)
return -1;
pkcs5->cipher = algo->cipher;
pkcs5->blocksize = algo->blocksize;
pkcs5->mode = algo->mode;
pkcs5->padopt = algo->padopt;
pkcs5->padchar = algo->padchar;
pkcs5->ivlen = algo->ivlen;
pkcs5->iv = iv.beg;
pkcs5->effkeysize = effkeysize;
pkcs5->dklen = (effkeysize + 8 - 1) / 8;
return 0;
}
static int
parse_pbes1(LIBSSH2_SESSION *session, pkcs5params *pkcs5,
pkcs5algo *algo, asn1Element *param)
{
asn1Element salt;
asn1Element iterationCount;
unsigned long itercount;
char *cp;
if (!param || *param->header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&salt, param->beg, param->end);
if (!cp || *salt.header != ASN1_OCTET_STRING ||
salt.end - salt.beg != algo->saltlen)
return -1;
if (getASN1Element(&iterationCount, cp, param->end) != param->end ||
*iterationCount.header != ASN1_INTEGER)
return -1;
if (asn1getword(&iterationCount, &itercount) ||
!itercount || itercount > 100000)
return -1;
pkcs5->cipher = algo->cipher;
pkcs5->blocksize = algo->blocksize;
pkcs5->mode = algo->mode;
pkcs5->padopt = algo->padopt;
pkcs5->padchar = algo->padchar;
pkcs5->hash = algo->hash;
pkcs5->hashlen = algo->hashlen;
pkcs5->dklen = 16;
pkcs5->saltlen = algo->saltlen;
pkcs5->effkeysize = algo->effkeysize;
pkcs5->salt = salt.beg;
pkcs5->kdf = pbkdf1;
pkcs5->itercount = itercount;
return 0;
}
static int
pkcs8kek(LIBSSH2_SESSION *session, _libssh2_os400qc3_crypto_ctx **ctx,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, asn1Element *privkeyinfo)
{
asn1Element encprivkeyinfo;
asn1Element pkcs5alg;
pkcs5params pkcs5;
size_t pplen;
char *cp;
unsigned long t;
int i;
char *dk = NULL;
Qc3_Format_ALGD0200_T algd;
Qus_EC_t errcode;
/* Determine if the PKCS#8 data is encrypted and, if so, set-up a
key encryption key and algorithm in context.
Return 1 if encrypted, 0, if not, -1 if error. */
*ctx = NULL;
privkeyinfo->beg = (char *) data;
privkeyinfo->end = privkeyinfo->beg + datalen;
/* If no passphrase is given, it cannot be an encrypted key. */
if (!passphrase || !*passphrase)
return 0;
/* Parse PKCS#8 data, checking if ASN.1 format is PrivateKeyInfo or
EncryptedPrivateKeyInfo. */
if (getASN1Element(&encprivkeyinfo, privkeyinfo->beg, privkeyinfo->end) !=
(char *) data + datalen ||
*encprivkeyinfo.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&pkcs5alg, encprivkeyinfo.beg, encprivkeyinfo.end);
if (!cp)
return -1;
switch (*pkcs5alg.header) {
case ASN1_INTEGER: /* Version. */
return 0; /* This is a PrivateKeyInfo --> not encrypted. */
case ASN1_SEQ | ASN1_CONSTRUCTED: /* AlgorithIdentifier. */
break; /* This is an EncryptedPrivateKeyInfo --> encrypted. */
default:
return -1; /* Unrecognized: error. */
}
/* Get the encrypted key data. */
if (getASN1Element(privkeyinfo, cp, encprivkeyinfo.end) !=
encprivkeyinfo.end || *privkeyinfo->header != ASN1_OCTET_STRING)
return -1;
/* PKCS#5: parse the PBES AlgorithmIdentifier and recursively get all
encryption parameters. */
memset((char *) &pkcs5, 0, sizeof pkcs5);
if (parse_pkcs5_algorithm(session, &pkcs5, &pkcs5alg, pbestable))
return -1;
/* Compute the derived key. */
if ((*pkcs5.kdf)(session, &dk, passphrase, &pkcs5))
return -1;
/* Prepare the algorithm descriptor. */
memset((char *) &algd, 0, sizeof algd);
algd.Block_Cipher_Alg = pkcs5.cipher;
algd.Block_Length = pkcs5.blocksize;
algd.Mode = pkcs5.mode;
algd.Pad_Option = pkcs5.padopt;
algd.Pad_Character = pkcs5.padchar;
algd.Effective_Key_Size = pkcs5.effkeysize;
memcpy(algd.Init_Vector, pkcs5.iv, pkcs5.ivlen);
/* Create the key and algorithm context tokens. */
*ctx = libssh2_init_crypto_ctx(NULL);
if (!*ctx) {
LIBSSH2_FREE(session, dk);
return -1;
}
libssh2_init_crypto_ctx(*ctx);
set_EC_length(errcode, sizeof errcode);
Qc3CreateKeyContext(dk, &pkcs5.dklen, binstring, &algd.Block_Cipher_Alg,
qc3clear, NULL, NULL, (*ctx)->key.Key_Context_Token,
(char *) &errcode);
LIBSSH2_FREE(session, dk);
if (errcode.Bytes_Available) {
free((char *) *ctx);
*ctx = NULL;
return -1;
}
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Block_Cipher,
(*ctx)->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available) {
Qc3DestroyKeyContext((*ctx)->key.Key_Context_Token, (char *) &ecnull);
free((char *) *ctx);
*ctx = NULL;
return -1;
}
return 1; /* Tell it's encrypted. */
}
static int
rsapkcs8privkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
libssh2_rsa_ctx *ctx = (libssh2_rsa_ctx *) loadkeydata;
char keyform = Qc3_Clear;
char *kek = NULL;
char *kea = NULL;
_libssh2_os400qc3_crypto_ctx *kekctx;
asn1Element pki;
int pkilen;
Qus_EC_t errcode;
switch (pkcs8kek(session, &kekctx, data, datalen, passphrase, &pki)) {
case 1:
keyform = Qc3_Encrypted;
kek = kekctx->key.Key_Context_Token;
kea = kekctx->hash.Alg_Context_Token;
case 0:
break;
default:
return -1;
}
set_EC_length(errcode, sizeof errcode);
pkilen = pki.end - pki.beg;
Qc3CreateKeyContext((unsigned char *) pki.beg, &pkilen, berstring,
rsaprivate, &keyform, kek, kea,
ctx->key.Key_Context_Token, (char *) &errcode);
if (errcode.Bytes_Available) {
if (kekctx)
_libssh2_os400qc3_crypto_dtor(kekctx);
return -1;
}
ctx->kek = kekctx;
return 0;
}
static char *
storewithlength(char *p, const char *data, int length)
{
_libssh2_htonu32(p, length);
if (length)
memcpy(p + 4, data, length);
return p + 4 + length;
}
static int
sshrsapubkey(LIBSSH2_SESSION *session, char **sshpubkey,
asn1Element *params, asn1Element *key, const char *method)
{
int methlen = strlen(method);
asn1Element keyseq;
asn1Element m;
asn1Element e;
int len;
char *cp;
if (getASN1Element(&keyseq, key->beg + 1, key->end) != key->end ||
*keyseq.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (!getASN1Element(&m, keyseq.beg, keyseq.end) ||
*m.header != ASN1_INTEGER)
return -1;
if (getASN1Element(&e, m.end, keyseq.end) != keyseq.end ||
*e.header != ASN1_INTEGER)
return -1;
len = 4 + methlen + 4 + (e.end - e.beg) + 4 + (m.end - m.beg);
cp = LIBSSH2_ALLOC(session, len);
if (!cp)
return -1;
*sshpubkey = cp;
cp = storewithlength(cp, method, methlen);
cp = storewithlength(cp, e.beg, e.end - e.beg);
cp = storewithlength(cp, m.beg, m.end - m.beg);
return len;
}
static int
rsapkcs8pubkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
loadpubkeydata *p = (loadpubkeydata *) loadkeydata;
char *buf;
int len;
char *cp;
int i;
char keyform = Qc3_Clear;
char *kek = NULL;
char *kea = NULL;
_libssh2_os400qc3_crypto_ctx *kekctx;
asn1Element subjpubkeyinfo;
asn1Element algorithmid;
asn1Element algorithm;
asn1Element subjpubkey;
asn1Element parameters;
asn1Element pki;
int pkilen;
Qus_EC_t errcode;
if (!(buf = alloca(datalen)))
return -1;
switch (pkcs8kek(session, &kekctx, data, datalen, passphrase, &pki)) {
case 1:
keyform = Qc3_Encrypted;
kek = kekctx->key.Key_Context_Token;
kea = kekctx->hash.Alg_Context_Token;
case 0:
break;
default:
return -1;
}
set_EC_length(errcode, sizeof errcode);
pkilen = pki.end - pki.beg;
Qc3ExtractPublicKey(pki.beg, &pkilen, berstring, &keyform,
kek, kea, buf, (int *) &datalen, &len, &errcode);
_libssh2_os400qc3_crypto_dtor(kekctx);
if (errcode.Bytes_Available)
return -1;
/* Get the algorithm OID and key data from SubjectPublicKeyInfo. */
if (getASN1Element(&subjpubkeyinfo, buf, buf + len) != buf + len ||
*subjpubkeyinfo.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&algorithmid, subjpubkeyinfo.beg, subjpubkeyinfo.end);
if (!cp || *algorithmid.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (!getASN1Element(&algorithm, algorithmid.beg, algorithmid.end) ||
*algorithm.header != ASN1_OBJ_ID)
return -1;
if (getASN1Element(&subjpubkey, cp, subjpubkeyinfo.end) !=
subjpubkeyinfo.end || *subjpubkey.header != ASN1_BIT_STRING)
return -1;
/* Check for supported algorithm. */
for (i = 0; pka[i].oid; i++)
if (!oidcmp(&algorithm, pka[i].oid)) {
len = (*pka[i].sshpubkey)(session, &p->data, &algorithmid,
&subjpubkey, pka[i].method);
if (len < 0)
return -1;
p->length = len;
p->method = pka[i].method;
return 0;
}
return -1; /* Algorithm not supported. */
}
static int
pkcs1topkcs8(LIBSSH2_SESSION *session,
const unsigned char **data8, unsigned int *datalen8,
const unsigned char *data1, unsigned int datalen1)
{
asn1Element *prvk;
asn1Element *pkcs8;
unsigned char *data;
*data8 = NULL;
*datalen8 = 0;
if (datalen1 < 2)
return -1;
prvk = asn1_new_from_bytes(data1, datalen1);
if (!prvk)
return -1;
pkcs8 = rsaprivatekeyinfo(prvk);
asn1delete(prvk);
if (!prvk) {
asn1delete(pkcs8);
pkcs8 = NULL;
}
if (!pkcs8)
return -1;
data = (unsigned char *) LIBSSH2_ALLOC(session, pkcs8->end - pkcs8->header);
if (!data) {
asn1delete(pkcs8);
return -1;
}
*data8 = data;
*datalen8 = pkcs8->end - pkcs8->header;
memcpy((char *) data, (char *) pkcs8->header, *datalen8);
asn1delete(pkcs8);
return 0;
}
static int
rsapkcs1privkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
const unsigned char *data8;
unsigned int datalen8;
int ret;
if (pkcs1topkcs8(session, &data8, &datalen8, data, datalen))
return -1;
ret = rsapkcs8privkey(session, data8, datalen8, passphrase, loadkeydata);
LIBSSH2_FREE(session, (char *) data8);
return ret;
}
static int
rsapkcs1pubkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
const unsigned char *data8;
unsigned int datalen8;
int ret;
if (pkcs1topkcs8(session, &data8, &datalen8, data, datalen))
return -1;
ret = rsapkcs8pubkey(session, data8, datalen8, passphrase, loadkeydata);
LIBSSH2_FREE(session, (char *) data8);
return ret;
}
static int
try_pem_load(LIBSSH2_SESSION *session, FILE *fp,
const unsigned char *passphrase,
const char *header, const char *trailer,
loadkeyproc proc, void *loadkeydata)
{
unsigned char *data = NULL;
unsigned int datalen = 0;
int c;
int ret;
fseek(fp, 0L, SEEK_SET);
for (;;) {
ret = _libssh2_pem_parse(session, header, trailer,
fp, &data, &datalen);
if (!ret) {
ret = (*proc)(session, data, datalen, passphrase, loadkeydata);
if (!ret)
return 0;
}
if (data) {
LIBSSH2_FREE(session, data);
data = NULL;
}
c = getc(fp);
if (c == EOF)
break;
ungetc(c, fp);
}
return -1;
}
static int
load_rsa_private_file(LIBSSH2_SESSION *session, const char *filename,
unsigned const char *passphrase,
loadkeyproc proc1, loadkeyproc proc8, void *loadkeydata)
{
FILE *fp = fopen(filename, fopenrmode);
unsigned char *data = NULL;
size_t datalen = 0;
int ret;
long filesize;
if (!fp)
return -1;
/* Try with "ENCRYPTED PRIVATE KEY" PEM armor.
--> PKCS#8 EncryptedPrivateKeyInfo */
ret = try_pem_load(session, fp, passphrase, beginencprivkeyhdr,
endencprivkeyhdr, proc8, loadkeydata);
/* Try with "PRIVATE KEY" PEM armor.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
if (ret)
ret = try_pem_load(session, fp, passphrase, beginprivkeyhdr,
endprivkeyhdr, proc8, loadkeydata);
/* Try with "RSA PRIVATE KEY" PEM armor.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = try_pem_load(session, fp, passphrase, beginrsaprivkeyhdr,
endrsaprivkeyhdr, proc1, loadkeydata);
fclose(fp);
if (ret) {
/* Try DER encoding. */
fp = fopen(filename, fopenrbmode);
fseek(fp, 0L, SEEK_END);
filesize = ftell(fp);
if (filesize <= 32768) { /* Limit to a reasonable size. */
datalen = filesize;
data = (unsigned char *) alloca(datalen);
if (data) {
fseek(fp, 0L, SEEK_SET);
fread(data, datalen, 1, fp);
/* Try as PKCS#8 DER data.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
ret = (*proc8)(session, data, datalen, passphrase,
loadkeydata);
/* Try as PKCS#1 DER data.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = (*proc1)(session, data, datalen, passphrase,
loadkeydata);
}
}
fclose(fp);
}
return ret;
}
int
_libssh2_rsa_new_private(libssh2_rsa_ctx **rsa, LIBSSH2_SESSION *session,
const char *filename, unsigned const char *passphrase)
{
libssh2_rsa_ctx *ctx = libssh2_init_crypto_ctx(NULL);
int ret;
Qc3_Format_ALGD0400_T algd;
Qus_EC_t errcode;
if (!ctx)
return -1;
ret = load_rsa_private_file(session, filename, passphrase,
rsapkcs1privkey, rsapkcs8privkey, (void *) ctx);
if (!ret) {
/* Create the algorithm context. */
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_PKCS1_01;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = Qc3_SHA1;
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Public_Key,
ctx->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
ret = -1;
}
if (ret) {
_libssh2_os400qc3_crypto_dtor(ctx);
ctx = NULL;
}
*rsa = ctx;
return ret;
}
int
_libssh2_pub_priv_keyfile(LIBSSH2_SESSION *session,
unsigned char **method, size_t *method_len,
unsigned char **pubkeydata, size_t *pubkeydata_len,
const char *privatekey, const char *passphrase)
{
loadpubkeydata p;
int ret;
*method = NULL;
*method_len = 0;
*pubkeydata = NULL;
*pubkeydata_len = 0;
ret = load_rsa_private_file(session, privatekey, passphrase,
rsapkcs1pubkey, rsapkcs8pubkey, (void *) &p);
if (!ret) {
*method_len = strlen(p.method);
if ((*method = LIBSSH2_ALLOC(session, *method_len)))
memcpy((char *) *method, p.method, *method_len);
else
ret = -1;
}
if (ret) {
if (*method)
LIBSSH2_FREE(session, *method);
if (p.data)
LIBSSH2_FREE(session, (void *) p.data);
*method = NULL;
*method_len = 0;
} else {
*pubkeydata = (unsigned char *) p.data;
*pubkeydata_len = p.length;
}
return ret;
}
int
_libssh2_rsa_new_private_frommemory(libssh2_rsa_ctx **rsa,
LIBSSH2_SESSION *session,
const char *filedata,
size_t filedata_len,
unsigned const char *passphrase)
{
libssh2_rsa_ctx *ctx = libssh2_init_crypto_ctx(NULL);
unsigned char *data = NULL;
unsigned int datalen = 0;
int ret;
Qc3_Format_ALGD0400_T algd;
Qus_EC_t errcode;
if (!ctx)
return -1;
/* Try with "ENCRYPTED PRIVATE KEY" PEM armor.
--> PKCS#8 EncryptedPrivateKeyInfo */
ret = _libssh2_pem_parse_memory(session,
beginencprivkeyhdr, endencprivkeyhdr,
filedata, filedata_len, &data, &datalen);
/* Try with "PRIVATE KEY" PEM armor.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
if (ret)
ret = _libssh2_pem_parse_memory(session,
beginprivkeyhdr, endprivkeyhdr,
filedata, filedata_len,
&data, &datalen);
if (!ret) {
/* Process PKCS#8. */
ret = rsapkcs8privkey(session,
data, datalen, passphrase, (void *) &ctx);
} else {
/* Try with "RSA PRIVATE KEY" PEM armor.
--> PKCS#1 RSAPrivateKey */
ret = _libssh2_pem_parse_memory(session,
beginrsaprivkeyhdr, endrsaprivkeyhdr,
filedata, filedata_len,
&data, &datalen);
if (!ret)
ret = rsapkcs1privkey(session,
data, datalen, passphrase, (void *) &ctx);
}
if (ret) {
/* Try as PKCS#8 DER data.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
ret = rsapkcs8privkey(session, filedata, filedata_len,
passphrase, (void *) &ctx);
/* Try as PKCS#1 DER data.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = rsapkcs1privkey(session, filedata, filedata_len,
passphrase, (void *) &ctx);
}
if (data)
LIBSSH2_FREE(session, data);
if (!ret) {
/* Create the algorithm context. */
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_PKCS1_01;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = Qc3_SHA1;
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Public_Key,
ctx->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
ret = -1;
}
if (ret) {
_libssh2_os400qc3_crypto_dtor(ctx);
ctx = NULL;
}
*rsa = ctx;
return ret;
}
int
_libssh2_pub_priv_keyfilememory(LIBSSH2_SESSION *session,
unsigned char **method, size_t *method_len,
unsigned char **pubkeydata,
size_t *pubkeydata_len,
const char *privatekeydata,
size_t privatekeydata_len,
const char *passphrase)
{
loadpubkeydata p;
unsigned char *data = NULL;
unsigned int datalen = 0;
const char *meth;
int ret;
*method = NULL;
*method_len = 0;
*pubkeydata = NULL;
*pubkeydata_len = 0;
/* Try with "ENCRYPTED PRIVATE KEY" PEM armor.
--> PKCS#8 EncryptedPrivateKeyInfo */
ret = _libssh2_pem_parse_memory(session,
beginencprivkeyhdr, endencprivkeyhdr,
privatekeydata, privatekeydata_len,
&data, &datalen);
/* Try with "PRIVATE KEY" PEM armor.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
if (ret)
ret = _libssh2_pem_parse_memory(session,
beginprivkeyhdr, endprivkeyhdr,
privatekeydata, privatekeydata_len,
&data, &datalen);
if (!ret) {
/* Process PKCS#8. */
ret = rsapkcs8pubkey(session,
data, datalen, passphrase, (void *) &p);
} else {
/* Try with "RSA PRIVATE KEY" PEM armor.
--> PKCS#1 RSAPrivateKey */
ret = _libssh2_pem_parse_memory(session,
beginrsaprivkeyhdr, endrsaprivkeyhdr,
privatekeydata, privatekeydata_len,
&data, &datalen);
if (!ret)
ret = rsapkcs1pubkey(session,
data, datalen, passphrase, (void *) &p);
}
if (ret) {
/* Try as PKCS#8 DER data.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
ret = rsapkcs8pubkey(session, privatekeydata, privatekeydata_len,
passphrase, (void *) &p);
/* Try as PKCS#1 DER data.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = rsapkcs1pubkey(session, privatekeydata, privatekeydata_len,
passphrase, (void *) &p);
}
if (data)
LIBSSH2_FREE(session, data);
if (!ret) {
*method_len = strlen(p.method);
if ((*method = LIBSSH2_ALLOC(session, *method_len)))
memcpy((char *) *method, p.method, *method_len);
else
ret = -1;
}
if (ret) {
if (*method)
LIBSSH2_FREE(session, *method);
if (p.data)
LIBSSH2_FREE(session, (void *) p.data);
*method = NULL;
*method_len = 0;
} else {
*pubkeydata = (unsigned char *) p.data;
*pubkeydata_len = p.length;
}
return ret;
}
int
_libssh2_rsa_sha1_verify(libssh2_rsa_ctx *rsa,
const unsigned char *sig, unsigned long sig_len,
const unsigned char *m, unsigned long m_len)
{
Qus_EC_t errcode;
int slen = sig_len;
int mlen = m_len;
set_EC_length(errcode, sizeof errcode);
Qc3VerifySignature((char *) sig, &slen, (char *) m, &mlen, Qc3_Data,
rsa->hash.Alg_Context_Token, Qc3_Alg_Token,
rsa->key.Key_Context_Token, Qc3_Key_Token, anycsp,
NULL, (char *) &errcode);
return errcode.Bytes_Available? -1: 0;
}
int
_libssh2_os400qc3_rsa_sha1_signv(LIBSSH2_SESSION *session,
unsigned char **signature,
size_t *signature_len,
int veccount,
const struct iovec vector[],
libssh2_rsa_ctx *ctx)
{
Qus_EC_t errcode;
int siglen;
unsigned char *sig;
char sigbuf[8192];
int sigbufsize = sizeof sigbuf;
ctx->hash.Final_Op_Flag = Qc3_Final;
set_EC_length(errcode, sizeof errcode);
Qc3CalculateSignature((char *) vector, &veccount, Qc3_Array,
(char *) &ctx->hash, Qc3_Alg_Token,
(char *) &ctx->key, Qc3_Key_Token,
anycsp, NULL, sigbuf, &sigbufsize, &siglen,
(char *) &errcode);
ctx->hash.Final_Op_Flag = Qc3_Continue;
if (errcode.Bytes_Available)
return -1;
sig = LIBSSH2_ALLOC(session, siglen);
if (!sig)
return -1;
memcpy((char *) sig, sigbuf, siglen);
*signature = sig;
*signature_len = siglen;
return 0;
}
void
_libssh2_init_aes_ctr(void)
{
}
#endif /* LIBSSH2_OS400QC3 */
/* vim: set expandtab ts=4 sw=4: */