blob: 64d4df06b06397b9c9e6de4ec871341eca27619a [file] [log] [blame]
/*
* Copyright (C) 2015 Patrick Monnerat, D+H <patrick.monnerat@dh.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms,
* with or without modification, are permitted provided
* that the following conditions are met:
*
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and the
* following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* Neither the name of the copyright holder nor the names
* of any other contributors may be used to endorse or
* promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
#include "libssh2_priv.h"
#ifdef LIBSSH2_OS400QC3 /* compile only if we build with OS/400 QC3 library */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <stdio.h>
#include <stdarg.h>
#include <alloca.h>
#include <sys/uio.h>
#include <arpa/inet.h>
#ifdef OS400_DEBUG
/* In debug mode, all system library errors cause an exception. */
#define set_EC_length(ec, length) ((ec).Bytes_Provided = \
(ec).Bytes_Available = 0)
#else
#define set_EC_length(ec, length) ((ec).Bytes_Provided = (length))
#endif
/* Ensure va_list operations are not on an array. */
typedef struct {
va_list list;
} valiststr;
typedef int (*loadkeyproc)(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata);
/* Public key extraction data. */
typedef struct {
const char * method;
const unsigned char * data;
unsigned int length;
} loadpubkeydata;
/* Support for ASN.1 elements. */
typedef struct {
char * header; /* Pointer to header byte. */
char * beg; /* Pointer to element data. */
char * end; /* Pointer to 1st byte after element. */
unsigned char class; /* ASN.1 element class. */
unsigned char tag; /* ASN.1 element tag. */
unsigned char constructed; /* Element is constructed. */
} asn1Element;
#define ASN1_INTEGER 2
#define ASN1_BIT_STRING 3
#define ASN1_OCTET_STRING 4
#define ASN1_NULL 5
#define ASN1_OBJ_ID 6
#define ASN1_SEQ 16
#define ASN1_CONSTRUCTED 0x20
/* rsaEncryption OID: 1.2.840.113549.1.1.1 */
static unsigned char OID_rsaEncryption[] =
{9, 40 + 2, 0x86, 0x48, 0x86, 0xF7, 0x0D, 1, 1, 1};
static int sshrsapubkey(LIBSSH2_SESSION *session, char **sshpubkey,
asn1Element *params, asn1Element *key,
const char *method);
#if LIBSSH2_DSA != 0
/* dsaEncryption OID: 1.2.840.10040.4.1 */
static unsigned char OID_dsaEncryption[] =
{7, 40 + 2, 0x86, 0x48, 0xCE, 0x38, 4, 1};
static int sshdsapubkey(LIBSSH2_SESSION *session, char **sshpubkey,
asn1Element *params, asn1Element *key,
const char *method);
#endif
/* Public key extraction support. */
static struct {
unsigned char * oid;
int (*sshpubkey)(LIBSSH2_SESSION *session, char **pubkey,
asn1Element *params, asn1Element *key,
const char *method);
const char * method;
} pka[] = {
#if LIBSSH2_RSA != 0
{ OID_rsaEncryption, sshrsapubkey, "ssh-rsa" },
#endif
#if LIBSSH2_DSA != 0
{ OID_dsaEncryption, sshdsapubkey, "ssh-dss" },
#endif
{ NULL, NULL, NULL }
};
/* Define ASCII strings. */
static const char beginencprivkeyhdr[] =
"-----BEGIN ENCRYPTED PRIVATE KEY-----";
static const char endencprivkeyhdr[] = "-----END ENCRYPTED PRIVATE KEY-----";
static const char beginprivkeyhdr[] = "-----BEGIN PRIVATE KEY-----";
static const char endprivkeyhdr[] = "-----END PRIVATE KEY-----";
static const char beginrsaprivkeyhdr[] = "-----BEGIN RSA PRIVATE KEY-----";
static const char endrsaprivkeyhdr[] = "-----END RSA PRIVATE KEY-----";
static const char fopenrmode[] = "r";
static const char fopenrbmode[] = "rb";
/* The rest of character literals in this module are in EBCDIC. */
#pragma convert(37)
#include <qusec.h>
#include <qc3prng.h>
#include <qc3dtaen.h>
#include <qc3dtade.h>
#include <qc3ctx.h>
#include <qc3hash.h>
#include <qc3hmac.h>
#include <qc3pbext.h>
#include <qc3sigvr.h>
#include <qc3sigcl.h>
#include <qc3pbext.h>
static Qc3_Format_KEYD0100_T nulltoken = {""};
static int zero = 0;
static int rsaprivate[] = { Qc3_RSA_Private };
static char anycsp[] = { Qc3_Any_CSP };
static char binstring[] = { Qc3_Bin_String };
static char berstring[] = { Qc3_BER_String };
static char qc3clear[] = { Qc3_Clear };
static const Qus_EC_t ecnull = {0}; /* Error causes an exception. */
static asn1Element lastbytebitcount = {
(char *) &zero, NULL, (char *) &zero + 1
};
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: ASN.1 support.
*
*******************************************************************/
static char *
getASN1Element(asn1Element *elem, char *beg, char *end)
{
unsigned char b;
unsigned long len;
asn1Element lelem;
/* Get a single ASN.1 element into `elem', parse ASN.1 string at `beg'
* ending at `end'.
* Returns a pointer in source string after the parsed element, or NULL
* if an error occurs.
*/
if (beg >= end || !*beg)
return NULL;
/* Process header byte. */
elem->header = beg;
b = (unsigned char) *beg++;
elem->constructed = (b & 0x20) != 0;
elem->class = (b >> 6) & 3;
b &= 0x1F;
if (b == 0x1F)
return NULL; /* Long tag values not supported here. */
elem->tag = b;
/* Process length. */
if (beg >= end)
return NULL;
b = (unsigned char) *beg++;
if (!(b & 0x80))
len = b;
else if (!(b &= 0x7F)) {
/* Unspecified length. Since we have all the data, we can determine the
* effective length by skipping element until an end element is
* found.
*/
if (!elem->constructed)
return NULL;
elem->beg = beg;
while (beg < end && *beg) {
beg = getASN1Element(&lelem, beg, end);
if (!beg)
return NULL;
}
if (beg >= end)
return NULL;
elem->end = beg;
return beg + 1;
} else if (beg + b > end)
return NULL; /* Does not fit in source. */
else {
/* Get long length. */
len = 0;
do {
if (len & 0xFF000000L)
return NULL; /* Lengths > 32 bits are not supported. */
len = (len << 8) | (unsigned char) *beg++;
} while (--b);
}
if ((unsigned long) (end - beg) < len)
return NULL; /* Element data does not fit in source. */
elem->beg = beg;
elem->end = beg + len;
return elem->end;
}
static asn1Element *
asn1_new(unsigned int type, unsigned int length)
{
asn1Element *e;
unsigned int hdrl = 2;
unsigned int i;
unsigned char *buf;
e = (asn1Element *) malloc(sizeof *e);
if (e) {
if (length >= 0x80)
for (i = length; i; i >>= 8)
hdrl++;
buf = (unsigned char *) malloc(hdrl + length);
if (buf) {
e->header = buf;
e->beg = buf + hdrl;
e->end = e->beg + length;
e->class = (type >> 6) & 0x03;
e->tag = type & 0x1F;
e->constructed = (type >> 5) & 0x01;
e->header[0] = type;
if (length < 0x80)
e->header[1] = length;
else {
e->header[1] = (hdrl - 2) | 0x80;
do {
e->header[--hdrl] = length;
length >>= 8;
} while (length);
}
} else {
free((char *) e);
e = NULL;
}
}
return e;
}
static asn1Element *
asn1_new_from_bytes(const unsigned char *data, unsigned int length)
{
asn1Element *e;
asn1Element te;
getASN1Element(&te,
(unsigned char *) data, (unsigned char *) data + length);
e = asn1_new(te.tag, te.end - te.beg);
if (e)
memcpy(e->header, data, e->end - e->header);
return e;
}
static void
asn1delete(asn1Element *e)
{
if (e) {
if (e->header)
free((char *) e->header);
free((char *) e);
}
}
static asn1Element *
asn1uint(_libssh2_bn *bn)
{
asn1Element *e;
int bits;
int length;
unsigned char * p;
if (!bn)
return NULL;
bits = _libssh2_bn_bits(bn);
length = (bits + 8) >> 3;
e = asn1_new(ASN1_INTEGER, length);
if (e) {
p = e->beg;
if (!(bits & 0x07))
*p++ = 0;
_libssh2_bn_to_bin(bn, p);
}
return e;
}
static asn1Element *
asn1containerv(unsigned int type, valiststr args)
{
valiststr va;
asn1Element *e;
asn1Element *p;
unsigned char *bp;
unsigned int length = 0;
memcpy((char *) &va, (char *) &args, sizeof args);
while ((p = va_arg(va.list, asn1Element *)))
length += p->end - p->header;
va_end(va.list);
e = asn1_new(type, length);
if (e) {
bp = e->beg;
while ((p = va_arg(args.list, asn1Element *))) {
memcpy(bp, p->header, p->end - p->header);
bp += p->end - p->header;
}
}
return e;
}
/* VARARGS1 */
static asn1Element *
asn1container(unsigned int type, ...)
{
valiststr va;
asn1Element *e;
va_start(va.list, type);
e = asn1containerv(type, va);
va_end(va.list);
return e;
}
static asn1Element *
asn1bytes(unsigned int type, const unsigned char *bytes, unsigned int length)
{
asn1Element *e;
e = asn1_new(type, length);
if (e && length)
memcpy(e->beg, bytes, length);
return e;
}
static asn1Element *
rsapublickey(_libssh2_bn *e, _libssh2_bn *m)
{
asn1Element *publicexponent;
asn1Element *modulus;
asn1Element *rsapubkey;
/* Build a PKCS#1 RSAPublicKey. */
modulus = asn1uint(m);
publicexponent = asn1uint(e);
rsapubkey = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
modulus, publicexponent, NULL);
asn1delete(modulus);
asn1delete(publicexponent);
if (!modulus || !publicexponent) {
asn1delete(rsapubkey);
rsapubkey = NULL;
}
return rsapubkey;
}
static asn1Element *
rsaprivatekey(_libssh2_bn *e, _libssh2_bn *m, _libssh2_bn *d,
_libssh2_bn *p, _libssh2_bn *q,
_libssh2_bn *exp1, _libssh2_bn *exp2, _libssh2_bn *coeff)
{
asn1Element *version;
asn1Element *modulus;
asn1Element *publicexponent;
asn1Element *privateexponent;
asn1Element *prime1;
asn1Element *prime2;
asn1Element *exponent1;
asn1Element *exponent2;
asn1Element *coefficient;
asn1Element *rsaprivkey;
/* Build a PKCS#1 RSAPrivateKey. */
version = asn1bytes(ASN1_INTEGER, "\0", 1);
modulus = asn1uint(m);
publicexponent = asn1uint(e);
privateexponent = asn1uint(d);
prime1 = asn1uint(p);
prime2 = asn1uint(q);
exponent1 = asn1uint(exp1);
exponent2 = asn1uint(exp2);
coefficient = asn1uint(coeff);
rsaprivkey = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED, version, modulus,
publicexponent, privateexponent, prime1, prime2,
exponent1, exponent2, coefficient, NULL);
asn1delete(version);
asn1delete(modulus);
asn1delete(publicexponent);
asn1delete(privateexponent);
asn1delete(prime1);
asn1delete(prime2);
asn1delete(exponent1);
asn1delete(exponent2);
asn1delete(coefficient);
if (!version || !modulus || !publicexponent || !privateexponent ||
!prime1 || !prime2 || !exponent1 || !exponent2 || !coefficient) {
asn1delete(rsaprivkey);
rsaprivkey = NULL;
}
return rsaprivkey;
}
static asn1Element *
subjectpublickeyinfo(asn1Element *pubkey, const unsigned char *algo,
asn1Element *parameters)
{
asn1Element *subjpubkey;
asn1Element *algorithm;
asn1Element *algorithmid;
asn1Element *subjpubkeyinfo;
unsigned int algosize = *algo++;
algorithm = asn1bytes(ASN1_OBJ_ID, algo, algosize);
algorithmid = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
algorithm, parameters, NULL);
subjpubkey = asn1container(ASN1_BIT_STRING, &lastbytebitcount,
pubkey, NULL);
subjpubkeyinfo = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
algorithmid, subjpubkey, NULL);
asn1delete(algorithm);
asn1delete(algorithmid);
asn1delete(subjpubkey);
if (!algorithm || !algorithmid || !subjpubkey) {
asn1delete(subjpubkeyinfo);
subjpubkeyinfo = NULL;
}
return subjpubkeyinfo;
}
static asn1Element *
rsasubjectpublickeyinfo(asn1Element *pubkey)
{
asn1Element *parameters;
asn1Element *subjpubkeyinfo;
parameters = asn1bytes(ASN1_NULL, NULL, 0);
subjpubkeyinfo = subjectpublickeyinfo(pubkey,
OID_rsaEncryption, parameters);
asn1delete(parameters);
if (!parameters) {
asn1delete(subjpubkeyinfo);
subjpubkeyinfo = NULL;
}
return subjpubkeyinfo;
}
static asn1Element *
privatekeyinfo(asn1Element *privkey, const unsigned char *algo,
asn1Element *parameters)
{
asn1Element *version;
asn1Element *privatekey;
asn1Element *algorithm;
asn1Element *privatekeyalgorithm;
asn1Element *privkeyinfo;
unsigned int algosize = *algo++;
/* Build a PKCS#8 PrivateKeyInfo. */
version = asn1bytes(ASN1_INTEGER, "\0", 1);
algorithm = asn1bytes(ASN1_OBJ_ID, algo, algosize);
privatekeyalgorithm = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED,
algorithm, parameters, NULL);
privatekey = asn1container(ASN1_OCTET_STRING, privkey, NULL);
privkeyinfo = asn1container(ASN1_SEQ | ASN1_CONSTRUCTED, version,
privatekeyalgorithm, privatekey, NULL);
asn1delete(version);
asn1delete(algorithm);
asn1delete(privatekeyalgorithm);
if (!version || !algorithm || !privatekeyalgorithm) {
asn1delete(privkeyinfo);
privkeyinfo = NULL;
}
return privkeyinfo;
}
static asn1Element *
rsaprivatekeyinfo(asn1Element *privkey)
{
asn1Element *parameters;
asn1Element *privkeyinfo;
parameters = asn1bytes(ASN1_NULL, NULL, 0);
privkeyinfo = privatekeyinfo(privkey, OID_rsaEncryption, parameters);
asn1delete(parameters);
if (!parameters) {
asn1delete(privkeyinfo);
privkeyinfo = NULL;
}
return privkeyinfo;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: big numbers support.
*
*******************************************************************/
_libssh2_bn *
_libssh2_bn_init(void)
{
_libssh2_bn *bignum;
bignum = (_libssh2_bn *) malloc(sizeof *bignum);
if (bignum) {
bignum->bignum = NULL;
bignum->length = 0;
}
return bignum;
}
void
_libssh2_bn_free(_libssh2_bn *bn)
{
if (bn) {
if (bn->bignum) {
#ifdef LIBSSH2_CLEAR_MEMORY
if (bn->length)
memset((char *) bn->bignum, 0, bn->length);
#endif
free(bn->bignum);
}
free((char *) bn);
}
}
static int
_libssh2_bn_resize(_libssh2_bn *bn, size_t newlen)
{
unsigned char *bignum;
if (!bn)
return -1;
if (newlen == bn->length)
return 0;
if (!bn->bignum)
bignum = (unsigned char *) malloc(newlen);
else {
#ifdef LIBSSH2_CLEAR_MEMORY
if (newlen < bn->length)
memset((char *) bn->bignum + newlen, 0, bn->length - newlen);
#endif
if (!newlen) {
free((char *) bn->bignum);
bn->bignum = NULL;
bn->length = 0;
return 0;
}
bignum = (unsigned char *) realloc((char *) bn->bignum, newlen);
}
if (!bignum)
return -1;
if (newlen > bn->length)
memset((char *) bignum + bn->length, 0, newlen - bn->length);
bn->bignum = bignum;
bn->length = newlen;
return 0;
}
unsigned long
_libssh2_bn_bits(_libssh2_bn *bn)
{
unsigned int i;
unsigned char b;
if (bn && bn->bignum) {
for (i = bn->length; i--;)
if ((b = bn->bignum[i])) {
i *= 8;
do {
i++;
} while (b >>= 1);
return i;
}
}
return 0;
}
int
_libssh2_bn_from_bin(_libssh2_bn *bn, int len, const unsigned char *val)
{
int i;
if (!bn || (len && !val))
return -1;
for (; len && !*val; len--)
val++;
if (_libssh2_bn_resize(bn, len))
return -1;
for (i = len; i--;)
bn->bignum[i] = *val++;
return 0;
}
int
_libssh2_bn_set_word(_libssh2_bn *bn, unsigned long val)
{
val = htonl(val);
return _libssh2_bn_from_bin(bn, sizeof val, (unsigned char *) &val);
}
int
_libssh2_bn_to_bin(_libssh2_bn *bn, unsigned char *val)
{
int i;
if (!bn || !val)
return -1;
for (i = bn->length; i--;)
*val++ = bn->bignum[i];
return 0;
}
static int
_libssh2_bn_from_bn(_libssh2_bn *to, _libssh2_bn *from)
{
int i;
if (!to || !from)
return -1;
if (_libssh2_bn_resize(to, from->length))
return -1;
for (i = to->length; i--;)
to->bignum[i] = from->bignum[i];
return 0;
}
void
_libssh2_random(unsigned char *buf, int len)
{
Qc3GenPRNs(buf, len,
Qc3PRN_TYPE_NORMAL, Qc3PRN_NO_PARITY, (char *) &ecnull);
}
int
_libssh2_bn_rand(_libssh2_bn *bn, int bits, int top, int bottom)
{
int len;
int i;
if (!bn || bits <= 0)
return -1;
len = (bits + 7) >> 3;
if (_libssh2_bn_resize(bn, len))
return -1;
_libssh2_random(bn->bignum, len);
i = ((bits - 1) & 07) + 1;
bn->bignum[len - 1] &= (1 << i) - 1;
switch (top) {
case 1:
if (bits > 1)
if (i > 1)
bn->bignum[len - 1] |= 1 << (i - 2);
else
bn->bignum[len - 2] |= 0x80;
/* Fall into. */
case 0:
bn->bignum[len - 1] |= 1 << (i - 1);
break;
}
if (bottom)
*bn->bignum |= 0x01;
return 0;
}
static int
_libssh2_bn_lshift(_libssh2_bn *bn)
{
int i;
int c = 0;
if (!bn)
return -1;
if (_libssh2_bn_resize(bn, (_libssh2_bn_bits(bn) + 8) >> 3))
return -1;
for (i = 0; i < bn->length; i++) {
if (bn->bignum[i] & 0x80)
c |= 0x02;
bn->bignum[i] = (bn->bignum[i] << 1) | (c & 0x01);
c >>= 1;
}
return 0;
}
static int
_libssh2_bn_rshift(_libssh2_bn *bn)
{
int i;
int c = 0;
if (!bn)
return -1;
for (i = bn->length; i--;) {
if (bn->bignum[i] & 0x01)
c |= 0x100;
bn->bignum[i] = (bn->bignum[i] >> 1) | (c & 0x80);
c >>= 1;
}
if (_libssh2_bn_resize(bn, (_libssh2_bn_bits(bn) + 7) >> 3))
return -1;
return 0;
}
static void
_libssh2_bn_swap(_libssh2_bn *bn1, _libssh2_bn *bn2)
{
_libssh2_bn t = *bn1;
*bn1 = *bn2;
*bn2 = t;
}
static int
_libssh2_bn_subtract(_libssh2_bn *d, _libssh2_bn *bn1, _libssh2_bn *bn2)
{
int c = 0;
int i;
if (bn1->length < bn2->length)
return -1;
if (_libssh2_bn_resize(d, bn1->length))
return -1;
for (i = 0; i < bn2->length; i++) {
c += (int) bn1->bignum[i] - (int) bn2->bignum[i];
d->bignum[i] = c;
c = c < 0? -1: 0;
}
for (; c && i < bn1->length; i++) {
c += (int) bn1->bignum[i];
d->bignum[i] = c;
c = c < 0? -1: 0;
}
if (_libssh2_bn_resize(d, (_libssh2_bn_bits(d) + 7) >> 3))
return -1;
return c;
}
int
_libssh2_os400qc3_bn_mod_exp(_libssh2_bn *r, _libssh2_bn *a, _libssh2_bn *p,
_libssh2_bn *m)
{
_libssh2_bn *mp;
_libssh2_bn *rp;
asn1Element *rsapubkey;
asn1Element *subjpubkeyinfo;
unsigned char *av;
unsigned char *rv;
char *keydbuf;
Qc3_Format_ALGD0400_T algd;
Qc3_Format_KEYD0200_T *keyd;
Qus_EC_t errcode;
int sc;
int outlen;
int ret = -1;
/* There is no support for this function in the Qc3 crypto-library.
Since a RSA encryption performs this function, we can emulate it
by creating an RSA public key in ASN.1 SubjectPublicKeyInfo format
from p (exponent) and m (modulus) and encrypt a with this key. The
encryption output is the function result.
Problem: the Qc3EncryptData procedure only succeeds if the data bit
count is less than the modulus bit count. To satisfy this condition,
we multiply the modulus by a power of two and adjust the result
accordingly. */
if (!r || !a || !p)
return ret;
mp = _libssh2_bn_init();
if (!mp)
return ret;
if (_libssh2_bn_from_bn(mp, m)) {
_libssh2_bn_free(mp);
return ret;
}
for (sc = 0; _libssh2_bn_bits(mp) <= 8 * a->length; sc++)
if (_libssh2_bn_lshift(mp)) {
_libssh2_bn_free(mp);
return ret;
}
rsapubkey = rsapublickey(p, mp);
subjpubkeyinfo = rsasubjectpublickeyinfo(rsapubkey);
asn1delete(rsapubkey);
if (!rsapubkey || !subjpubkeyinfo) {
asn1delete(rsapubkey);
asn1delete(subjpubkeyinfo);
_libssh2_bn_free(mp);
return ret;
}
av = (unsigned char *) alloca(a->length);
rv = (unsigned char *) alloca(mp->length);
keydbuf = alloca(sizeof *keyd +
subjpubkeyinfo->end - subjpubkeyinfo->header);
if (av && rv && keydbuf) {
_libssh2_bn_to_bin(a, av);
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_Zero_Pad;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = 0;
keyd = (Qc3_Format_KEYD0200_T *) keydbuf;
keyd->Key_Type = Qc3_RSA_Public;
keyd->Key_String_Len = subjpubkeyinfo->end - subjpubkeyinfo->header;
keyd->Key_Format = Qc3_BER_String;
memset(keyd->Reserved, 0, sizeof keyd->Reserved);
memcpy(keydbuf + sizeof *keyd, subjpubkeyinfo->header,
keyd->Key_String_Len);
set_EC_length(errcode, sizeof errcode);
Qc3EncryptData(av, (int *) &a->length, Qc3_Data, (char *) &algd,
Qc3_Alg_Public_Key, keydbuf, Qc3_Key_Parms, anycsp,
NULL, rv, (int *) &mp->length, &outlen, &errcode);
if (!errcode.Bytes_Available) {
_libssh2_bn_from_bin(r, outlen, rv);
if (!sc)
ret = 0;
else {
rp = _libssh2_bn_init();
if (rp) {
do {
_libssh2_bn_rshift(mp);
if (!_libssh2_bn_subtract(rp, r, mp))
_libssh2_bn_swap(r, rp);
} while (--sc);
_libssh2_bn_free(rp);
ret = 0;
}
}
}
}
asn1delete(subjpubkeyinfo);
_libssh2_bn_free(mp);
return ret;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: crypto context support.
*
*******************************************************************/
static _libssh2_os400qc3_crypto_ctx *
libssh2_init_crypto_ctx(_libssh2_os400qc3_crypto_ctx *ctx)
{
if (!ctx)
ctx = (_libssh2_os400qc3_crypto_ctx *) malloc(sizeof *ctx);
if (ctx) {
memset((char *) ctx, 0, sizeof *ctx);
ctx->hash.Final_Op_Flag = Qc3_Continue;
}
return ctx;
}
static int
null_token(const char *token)
{
return !memcmp(token, nulltoken.Key_Context_Token,
sizeof nulltoken.Key_Context_Token);
}
void
_libssh2_os400qc3_crypto_dtor(_libssh2_os400qc3_crypto_ctx *x)
{
if (!null_token(x->hash.Alg_Context_Token)) {
Qc3DestroyAlgorithmContext(x->hash.Alg_Context_Token, (char *) &ecnull);
memset(x->hash.Alg_Context_Token, 0, sizeof x->hash.Alg_Context_Token);
}
if (!null_token(x->key.Key_Context_Token)) {
Qc3DestroyKeyContext(x->key.Key_Context_Token, (char *) &ecnull);
memset(x->key.Key_Context_Token, 0, sizeof x->key.Key_Context_Token);
}
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: hash algorithms support.
*
*******************************************************************/
int
libssh2_os400qc3_hash_init(Qc3_Format_ALGD0100_T *x, unsigned int algorithm)
{
Qc3_Format_ALGD0500_T algd;
Qus_EC_t errcode;
if (!x)
return 0;
memset((char *) x, 0, sizeof *x);
x->Final_Op_Flag = Qc3_Continue;
algd.Hash_Alg = algorithm;
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Hash,
x->Alg_Context_Token, &errcode);
return errcode.Bytes_Available? 0: 1;
}
void
libssh2_os400qc3_hash_update(Qc3_Format_ALGD0100_T *ctx,
unsigned char *data, int len)
{
char dummy[64];
Qc3CalculateHash((char *) data, &len, Qc3_Data, (char *) ctx,
Qc3_Alg_Token, anycsp, NULL, dummy, (char *) &ecnull);
}
void
libssh2_os400qc3_hash_final(Qc3_Format_ALGD0100_T *ctx, unsigned char *out)
{
char data;
ctx->Final_Op_Flag = Qc3_Final;
Qc3CalculateHash(&data, &zero, Qc3_Data, (char *) ctx, Qc3_Alg_Token,
anycsp, NULL, (char *) out, (char *) &ecnull);
Qc3DestroyAlgorithmContext(ctx->Alg_Context_Token, (char *) &ecnull);
memset(ctx->Alg_Context_Token, 0, sizeof ctx->Alg_Context_Token);
}
int
libssh2_os400qc3_hash(const unsigned char *message, unsigned long len,
unsigned char *out, unsigned int algo)
{
Qc3_Format_ALGD0100_T ctx;
if (!libssh2_os400qc3_hash_init(&ctx, algo))
return 1;
libssh2_os400qc3_hash_update(&ctx, (unsigned char *) message, len);
libssh2_os400qc3_hash_final(&ctx, out);
return 0;
}
void
libssh2_os400qc3_hmac_init(_libssh2_os400qc3_crypto_ctx *ctx,
int algo, void *key, int keylen)
{
libssh2_os400qc3_hash_init(&ctx->hash, algo);
Qc3CreateKeyContext((char *) key, &keylen, binstring, &algo, qc3clear,
NULL, NULL, ctx->key.Key_Context_Token,
(char *) &ecnull);
}
void
libssh2_os400qc3_hmac_update(_libssh2_os400qc3_crypto_ctx *ctx,
unsigned char *data, int len)
{
char dummy[64];
Qc3CalculateHMAC((char *) data, &len, Qc3_Data, (char *) &ctx->hash,
Qc3_Alg_Token, ctx->key.Key_Context_Token, Qc3_Key_Token,
anycsp, NULL, dummy, (char *) &ecnull);
}
void
libssh2_os400qc3_hmac_final(_libssh2_os400qc3_crypto_ctx *ctx,
unsigned char *out)
{
char data;
ctx->hash.Final_Op_Flag = Qc3_Final;
Qc3CalculateHMAC((char *) data, &zero, Qc3_Data, (char *) &ctx->hash,
Qc3_Alg_Token, ctx->key.Key_Context_Token, Qc3_Key_Token,
anycsp, NULL, (char *) out, (char *) &ecnull);
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: cipher algorithms support.
*
*******************************************************************/
int
_libssh2_cipher_init(_libssh2_cipher_ctx *h, _libssh2_cipher_type(algo),
unsigned char *iv, unsigned char *secret, int encrypt)
{
Qc3_Format_ALGD0200_T algd;
Qus_EC_t errcode;
(void) encrypt;
if (!h)
return -1;
libssh2_init_crypto_ctx(h);
algd.Block_Cipher_Alg = algo.algo;
algd.Block_Length = algo.size;
algd.Mode = algo.mode;
algd.Pad_Option = Qc3_No_Pad;
algd.Pad_Character = 0;
algd.Reserved = 0;
algd.MAC_Length = 0;
algd.Effective_Key_Size = 0;
memset(algd.Init_Vector, 0 , sizeof algd.Init_Vector);
if (algo.mode != Qc3_ECB && algo.size)
memcpy(algd.Init_Vector, iv, algo.size);
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, algo.fmt,
h->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
return -1;
Qc3CreateKeyContext((char *) secret, &algo.keylen, binstring,
&algo.algo, qc3clear, NULL, NULL,
h->key.Key_Context_Token, (char *) &errcode);
if (errcode.Bytes_Available) {
_libssh2_os400qc3_crypto_dtor(h);
return -1;
}
return 0;
}
int
_libssh2_cipher_crypt(_libssh2_cipher_ctx *ctx,
_libssh2_cipher_type(algo),
int encrypt, unsigned char *block, size_t blocksize)
{
Qus_EC_t errcode;
int outlen;
int blksize = blocksize;
(void) algo;
set_EC_length(errcode, sizeof errcode);
if (encrypt)
Qc3EncryptData((char *) block, &blksize, Qc3_Data,
ctx->hash.Alg_Context_Token, Qc3_Alg_Token,
ctx->key.Key_Context_Token, Qc3_Key_Token, anycsp, NULL,
(char *) block, &blksize, &outlen, (char *) &errcode);
else
Qc3DecryptData((char *) block, &blksize,
ctx->hash.Alg_Context_Token, Qc3_Alg_Token,
ctx->key.Key_Context_Token, Qc3_Key_Token, anycsp, NULL,
(char *) block, &blksize, &outlen, (char *) &errcode);
return errcode.Bytes_Available? -1: 0;
}
/*******************************************************************
*
* OS/400 QC3 crypto-library backend: RSA support.
*
*******************************************************************/
int
_libssh2_rsa_new(libssh2_rsa_ctx **rsa,
const unsigned char *edata, unsigned long elen,
const unsigned char *ndata, unsigned long nlen,
const unsigned char *ddata, unsigned long dlen,
const unsigned char *pdata, unsigned long plen,
const unsigned char *qdata, unsigned long qlen,
const unsigned char *e1data, unsigned long e1len,
const unsigned char *e2data, unsigned long e2len,
const unsigned char *coeffdata, unsigned long coefflen)
{
libssh2_rsa_ctx *ctx;
_libssh2_bn *e = _libssh2_bn_init_from_bin();
_libssh2_bn *n = _libssh2_bn_init_from_bin();
_libssh2_bn *d = NULL;
_libssh2_bn *p = NULL;
_libssh2_bn *q = NULL;
_libssh2_bn *e1 = NULL;
_libssh2_bn *e2 = NULL;
_libssh2_bn *coeff = NULL;
asn1Element *key = NULL;
asn1Element *structkey = NULL;
Qc3_Format_ALGD0400_T algd;
Qus_EC_t errcode;
int keytype;
int ret = 0;
int i;
ctx = libssh2_init_crypto_ctx(NULL);
if (!ctx)
ret = -1;
if (!ret) {
_libssh2_bn_from_bin(e, elen, edata);
_libssh2_bn_from_bin(n, nlen, ndata);
if (!e || !n)
ret = -1;
}
if (!ret && ddata) {
/* Private key. */
d = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(d, dlen, ddata);
p = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(p, plen, pdata);
q = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(q, qlen, qdata);
e1 = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(e1, e1len, e1data);
e2 = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(e2, e2len, e2data);
coeff = _libssh2_bn_init_from_bin();
_libssh2_bn_from_bin(coeff, coefflen, coeffdata);
if (!d || !p || !q ||!e1 || !e2 || !coeff)
ret = -1;
if (!ret) {
/* Build a PKCS#8 private key. */
key = rsaprivatekey(e, n, d, p, q, e1, e2, coeff);
structkey = rsaprivatekeyinfo(key);
}
keytype = Qc3_RSA_Private;
} else if (!ret) {
key = rsapublickey(e, n);
structkey = rsasubjectpublickeyinfo(key);
keytype = Qc3_RSA_Public;
}
if (!key || !structkey)
ret = -1;
set_EC_length(errcode, sizeof errcode);
if (!ret) {
/* Create the algorithm context. */
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_PKCS1_01;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = Qc3_SHA1;
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Public_Key,
ctx->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
ret = -1;
ctx->hash.Final_Op_Flag = Qc3_Continue;
}
/* Create the key context. */
if (!ret) {
i = structkey->end - structkey->header;
Qc3CreateKeyContext(structkey->header, &i, berstring, &keytype,
qc3clear, NULL, NULL, ctx->key.Key_Context_Token,
(char *) &errcode);
if (errcode.Bytes_Available)
ret = -1;
}
_libssh2_bn_free(e);
_libssh2_bn_free(n);
_libssh2_bn_free(d);
_libssh2_bn_free(p);
_libssh2_bn_free(q);
_libssh2_bn_free(e1);
_libssh2_bn_free(e2);
_libssh2_bn_free(coeff);
asn1delete(key);
asn1delete(structkey);
if (ret && ctx) {
_libssh2_rsa_free(ctx);
ctx = NULL;
}
*rsa = ctx;
return ret;
}
static int
oidcmp(const asn1Element *e, const unsigned char *oid)
{
int i = e->end - e->beg - *oid++;
if (*e->header != ASN1_OBJ_ID)
return -2;
if (!i)
i = memcmp(e->beg, oid, oid[-1]);
return i;
}
static int
rsapkcs8privkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
libssh2_rsa_ctx *ctx = (libssh2_rsa_ctx *) loadkeydata;
Qus_EC_t errcode;
set_EC_length(errcode, sizeof errcode);
Qc3CreateKeyContext((unsigned char *) data, (int *) &datalen, berstring,
rsaprivate, qc3clear, NULL, NULL,
ctx->key.Key_Context_Token, (char *) &errcode);
return errcode.Bytes_Available? -1: 0;
}
static char *
storewithlength(char *p, const char *data, int length)
{
_libssh2_htonu32(p, length);
if (length)
memcpy(p + 4, data, length);
return p + 4 + length;
}
static int
sshrsapubkey(LIBSSH2_SESSION *session, char **sshpubkey,
asn1Element *params, asn1Element *key, const char *method)
{
int methlen = strlen(method);
asn1Element keyseq;
asn1Element m;
asn1Element e;
int len;
char *cp;
if (getASN1Element(&keyseq, key->beg + 1, key->end) != key->end ||
*keyseq.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (!getASN1Element(&m, keyseq.beg, keyseq.end) ||
*m.header != ASN1_INTEGER)
return -1;
if (getASN1Element(&e, m.end, keyseq.end) != keyseq.end ||
*e.header != ASN1_INTEGER)
return -1;
len = 4 + methlen + 4 + (e.end - e.beg) + 4 + (m.end - m.beg);
cp = LIBSSH2_ALLOC(session, len);
if (!cp)
return -1;
*sshpubkey = cp;
cp = storewithlength(cp, method, methlen);
cp = storewithlength(cp, e.beg, e.end - e.beg);
cp = storewithlength(cp, m.beg, m.end - m.beg);
return len;
}
static int
rsapkcs8pubkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
loadpubkeydata *p = (loadpubkeydata *) loadkeydata;
char *buf;
int len;
char *cp;
int i;
asn1Element subjpubkeyinfo;
asn1Element algorithmid;
asn1Element algorithm;
asn1Element subjpubkey;
asn1Element parameters;
Qus_EC_t errcode;
if (!(buf = alloca(datalen)))
return -1;
set_EC_length(errcode, sizeof errcode);
Qc3ExtractPublicKey((char *) data, (int *) &datalen, berstring, qc3clear,
NULL, NULL, buf, (int *) &datalen, &len, &errcode);
if (errcode.Bytes_Available)
return -1;
/* Get the algorithm OID and key data from SubjectPublicKeyInfo. */
if (getASN1Element(&subjpubkeyinfo, buf, buf + len) != buf + len ||
*subjpubkeyinfo.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
cp = getASN1Element(&algorithmid, subjpubkeyinfo.beg, subjpubkeyinfo.end);
if (!cp || *algorithmid.header != (ASN1_SEQ | ASN1_CONSTRUCTED))
return -1;
if (!getASN1Element(&algorithm, algorithmid.beg, algorithmid.end) ||
*algorithm.header != ASN1_OBJ_ID)
return -1;
if (getASN1Element(&subjpubkey, cp, subjpubkeyinfo.end) !=
subjpubkeyinfo.end || *subjpubkey.header != ASN1_BIT_STRING)
return -1;
/* Check for supported algorithm. */
for (i = 0; pka[i].oid; i++)
if (!oidcmp(&algorithm, pka[i].oid)) {
len = (*pka[i].sshpubkey)(session, &p->data, &algorithmid,
&subjpubkey, pka[i].method);
if (len < 0)
return -1;
p->length = len;
p->method = pka[i].method;
return 0;
}
return -1; /* Algorithm not supported. */
}
static int
pkcs1topkcs8(LIBSSH2_SESSION *session,
const unsigned char **data8, unsigned int *datalen8,
const unsigned char *data1, unsigned int datalen1)
{
asn1Element *prvk;
asn1Element *pkcs8;
unsigned char *data;
*data8 = NULL;
*datalen8 = 0;
if (datalen1 < 2)
return -1;
prvk = asn1_new_from_bytes(data1, datalen1);
if (!prvk)
return -1;
pkcs8 = rsaprivatekeyinfo(prvk);
asn1delete(prvk);
if (!prvk) {
asn1delete(pkcs8);
pkcs8 = NULL;
}
if (!pkcs8)
return -1;
data = (unsigned char *) LIBSSH2_ALLOC(session, pkcs8->end - pkcs8->header);
if (!data) {
asn1delete(pkcs8);
return -1;
}
*data8 = data;
*datalen8 = pkcs8->end - pkcs8->header;
memcpy((char *) data, (char *) pkcs8->header, *datalen8);
asn1delete(pkcs8);
return 0;
}
static int
rsapkcs1privkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
const unsigned char *data8;
unsigned int datalen8;
int ret;
if (pkcs1topkcs8(session, &data8, &datalen8, data, datalen))
return -1;
ret = rsapkcs8privkey(session, data8, datalen8, passphrase, loadkeydata);
LIBSSH2_FREE(session, (char *) data8);
return ret;
}
static int
rsapkcs1pubkey(LIBSSH2_SESSION *session,
const unsigned char *data, unsigned int datalen,
const unsigned char *passphrase, void *loadkeydata)
{
const unsigned char *data8;
unsigned int datalen8;
int ret;
if (pkcs1topkcs8(session, &data8, &datalen8, data, datalen))
return -1;
ret = rsapkcs8pubkey(session, data8, datalen8, passphrase, loadkeydata);
LIBSSH2_FREE(session, (char *) data8);
return ret;
}
static int
try_pem_load(LIBSSH2_SESSION *session, FILE *fp,
const unsigned char *passphrase,
const char *header, const char *trailer,
loadkeyproc proc, void *loadkeydata)
{
unsigned char *data = NULL;
unsigned int datalen = 0;
int c;
int ret;
fseek(fp, 0L, SEEK_SET);
for (;;) {
ret = _libssh2_pem_parse(session, header, trailer,
fp, &data, &datalen);
if (!ret) {
ret = (*proc)(session, data, datalen, passphrase, loadkeydata);
if (!ret)
return 0;
}
if (data) {
LIBSSH2_FREE(session, data);
data = NULL;
}
c = getc(fp);
if (c == EOF)
break;
ungetc(c, fp);
}
return -1;
}
static int
load_rsa_private_file(LIBSSH2_SESSION *session, const char *filename,
unsigned const char *passphrase,
loadkeyproc proc1, loadkeyproc proc8, void *loadkeydata)
{
FILE *fp = fopen(filename, fopenrmode);
unsigned char *data = NULL;
size_t datalen = 0;
int ret;
long filesize;
if (!fp)
return -1;
/* Try with "ENCRYPTED PRIVATE KEY" PEM armor.
--> PKCS#8 EncryptedPrivateKeyInfo */
ret = try_pem_load(session, fp, passphrase, beginencprivkeyhdr,
endencprivkeyhdr, proc8, loadkeydata);
/* Try with "PRIVATE KEY" PEM armor.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
if (ret)
ret = try_pem_load(session, fp, passphrase, beginprivkeyhdr,
endprivkeyhdr, proc8, loadkeydata);
/* Try with "RSA PRIVATE KEY" PEM armor.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = try_pem_load(session, fp, passphrase, beginrsaprivkeyhdr,
endrsaprivkeyhdr, proc1, loadkeydata);
fclose(fp);
if (ret) {
/* Try DER encoding. */
fp = fopen(filename, fopenrbmode);
fseek(fp, 0L, SEEK_END);
filesize = ftell(fp);
if (filesize <= 32768) { /* Limit to a reasonable size. */
datalen = filesize;
data = (unsigned char *) alloca(datalen);
if (data) {
fseek(fp, 0L, SEEK_SET);
fread(data, datalen, 1, fp);
/* Try as PKCS#8 DER data.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
ret = (*proc8)(session, data, datalen, passphrase,
loadkeydata);
/* Try as PKCS#1 DER data.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = (*proc1)(session, data, datalen, passphrase,
loadkeydata);
}
}
fclose(fp);
}
return ret;
}
int
_libssh2_rsa_new_private(libssh2_rsa_ctx **rsa, LIBSSH2_SESSION *session,
const char *filename, unsigned const char *passphrase)
{
libssh2_rsa_ctx *ctx = libssh2_init_crypto_ctx(NULL);
int ret;
Qc3_Format_ALGD0400_T algd;
Qus_EC_t errcode;
if (!ctx)
return -1;
ret = load_rsa_private_file(session, filename, passphrase,
rsapkcs1privkey, rsapkcs8privkey, (void *) ctx);
if (!ret) {
/* Create the algorithm context. */
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_PKCS1_01;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = Qc3_SHA1;
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Public_Key,
ctx->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
ret = -1;
}
if (ret) {
_libssh2_os400qc3_crypto_dtor(ctx);
ctx = NULL;
}
*rsa = ctx;
return ret;
}
int
_libssh2_pub_priv_keyfile(LIBSSH2_SESSION *session,
unsigned char **method, size_t *method_len,
unsigned char **pubkeydata, size_t *pubkeydata_len,
const char *privatekey, const char *passphrase)
{
loadpubkeydata p;
int ret;
*method = NULL;
*method_len = 0;
*pubkeydata = NULL;
*pubkeydata_len = 0;
/* Note: passphrase not supported. */
ret = load_rsa_private_file(session, privatekey, passphrase,
rsapkcs1pubkey, rsapkcs8pubkey, (void *) &p);
if (!ret) {
*method_len = strlen(p.method);
if ((*method = LIBSSH2_ALLOC(session, *method_len)))
memcpy((char *) *method, p.method, *method_len);
else
ret = -1;
}
if (ret) {
if (*method)
LIBSSH2_FREE(session, *method);
if (p.data)
LIBSSH2_FREE(session, (void *) p.data);
*method = NULL;
*method_len = 0;
} else {
*pubkeydata = (unsigned char *) p.data;
*pubkeydata_len = p.length;
}
return ret;
}
int
_libssh2_rsa_new_private_frommemory(libssh2_rsa_ctx **rsa,
LIBSSH2_SESSION *session,
const char *filedata,
size_t filedata_len,
unsigned const char *passphrase)
{
libssh2_rsa_ctx *ctx = libssh2_init_crypto_ctx(NULL);
unsigned char *data = NULL;
unsigned int datalen = 0;
int ret;
Qc3_Format_ALGD0400_T algd;
Qus_EC_t errcode;
if (!ctx)
return -1;
/* Try with "ENCRYPTED PRIVATE KEY" PEM armor.
--> PKCS#8 EncryptedPrivateKeyInfo */
ret = _libssh2_pem_parse_memory(session,
beginencprivkeyhdr, endencprivkeyhdr,
filedata, filedata_len, &data, &datalen);
/* Try with "PRIVATE KEY" PEM armor.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
if (ret)
ret = _libssh2_pem_parse_memory(session,
beginprivkeyhdr, endprivkeyhdr,
filedata, filedata_len,
&data, &datalen);
if (!ret) {
/* Process PKCS#8. */
ret = rsapkcs8privkey(session,
data, datalen, passphrase, (void *) &ctx);
} else {
/* Try with "RSA PRIVATE KEY" PEM armor.
--> PKCS#1 RSAPrivateKey */
ret = _libssh2_pem_parse_memory(session,
beginrsaprivkeyhdr, endrsaprivkeyhdr,
filedata, filedata_len,
&data, &datalen);
if (!ret)
ret = rsapkcs1privkey(session,
data, datalen, passphrase, (void *) &ctx);
}
if (ret) {
/* Try as PKCS#8 DER data.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
ret = rsapkcs8privkey(session, filedata, filedata_len,
passphrase, (void *) &ctx);
/* Try as PKCS#1 DER data.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = rsapkcs1privkey(session, filedata, filedata_len,
passphrase, (void *) &ctx);
}
if (data)
LIBSSH2_FREE(session, data);
if (!ret) {
/* Create the algorithm context. */
algd.Public_Key_Alg = Qc3_RSA;
algd.PKA_Block_Format = Qc3_PKCS1_01;
memset(algd.Reserved, 0, sizeof algd.Reserved);
algd.Signing_Hash_Alg = Qc3_SHA1;
set_EC_length(errcode, sizeof errcode);
Qc3CreateAlgorithmContext((char *) &algd, Qc3_Alg_Public_Key,
ctx->hash.Alg_Context_Token, &errcode);
if (errcode.Bytes_Available)
ret = -1;
}
if (ret) {
_libssh2_os400qc3_crypto_dtor(ctx);
ctx = NULL;
}
*rsa = ctx;
return ret;
}
int
_libssh2_pub_priv_keyfilememory(LIBSSH2_SESSION *session,
unsigned char **method, size_t *method_len,
unsigned char **pubkeydata,
size_t *pubkeydata_len,
const char *privatekeydata,
size_t privatekeydata_len,
const char *passphrase)
{
loadpubkeydata p;
unsigned char *data = NULL;
unsigned int datalen = 0;
const char *meth;
int ret;
*method = NULL;
*method_len = 0;
*pubkeydata = NULL;
*pubkeydata_len = 0;
/* Try with "ENCRYPTED PRIVATE KEY" PEM armor.
--> PKCS#8 EncryptedPrivateKeyInfo */
ret = _libssh2_pem_parse_memory(session,
beginencprivkeyhdr, endencprivkeyhdr,
privatekeydata, privatekeydata_len,
&data, &datalen);
/* Try with "PRIVATE KEY" PEM armor.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
if (ret)
ret = _libssh2_pem_parse_memory(session,
beginprivkeyhdr, endprivkeyhdr,
privatekeydata, privatekeydata_len,
&data, &datalen);
if (!ret) {
/* Process PKCS#8. */
ret = rsapkcs8pubkey(session,
data, datalen, passphrase, (void *) &p);
} else {
/* Try with "RSA PRIVATE KEY" PEM armor.
--> PKCS#1 RSAPrivateKey */
ret = _libssh2_pem_parse_memory(session,
beginrsaprivkeyhdr, endrsaprivkeyhdr,
privatekeydata, privatekeydata_len,
&data, &datalen);
if (!ret)
ret = rsapkcs1pubkey(session,
data, datalen, passphrase, (void *) &p);
}
if (ret) {
/* Try as PKCS#8 DER data.
--> PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo */
ret = rsapkcs8pubkey(session, privatekeydata, privatekeydata_len,
passphrase, (void *) &p);
/* Try as PKCS#1 DER data.
--> PKCS#1 RSAPrivateKey */
if (ret)
ret = rsapkcs1pubkey(session, privatekeydata, privatekeydata_len,
passphrase, (void *) &p);
}
if (data)
LIBSSH2_FREE(session, data);
if (!ret) {
*method_len = strlen(p.method);
if ((*method = LIBSSH2_ALLOC(session, *method_len)))
memcpy((char *) *method, p.method, *method_len);
else
ret = -1;
}
if (ret) {
if (*method)
LIBSSH2_FREE(session, *method);
if (p.data)
LIBSSH2_FREE(session, (void *) p.data);
*method = NULL;
*method_len = 0;
} else {
*pubkeydata = (unsigned char *) p.data;
*pubkeydata_len = p.length;
}
return ret;
}
int
_libssh2_rsa_sha1_verify(libssh2_rsa_ctx *rsa,
const unsigned char *sig, unsigned long sig_len,
const unsigned char *m, unsigned long m_len)
{
Qus_EC_t errcode;
int slen = sig_len;
int mlen = m_len;
set_EC_length(errcode, sizeof errcode);
Qc3VerifySignature((char *) sig, &slen, (char *) m, &mlen, Qc3_Data,
rsa->hash.Alg_Context_Token, Qc3_Alg_Token,
rsa->key.Key_Context_Token, Qc3_Key_Token, anycsp,
NULL, (char *) &errcode);
return errcode.Bytes_Available? -1: 0;
}
int
_libssh2_os400qc3_rsa_sha1_signv(LIBSSH2_SESSION *session,
unsigned char **signature,
size_t *signature_len,
int veccount,
const struct iovec vector[],
libssh2_rsa_ctx *ctx)
{
Qus_EC_t errcode;
int siglen;
unsigned char *sig;
char sigbuf[8192];
int sigbufsize = sizeof sigbuf;
ctx->hash.Final_Op_Flag = Qc3_Final;
set_EC_length(errcode, sizeof errcode);
Qc3CalculateSignature((char *) vector, &veccount, Qc3_Array,
(char *) &ctx->hash, Qc3_Alg_Token,
(char *) &ctx->key, Qc3_Key_Token,
anycsp, NULL, sigbuf, &sigbufsize, &siglen,
(char *) &errcode);
ctx->hash.Final_Op_Flag = Qc3_Continue;
if (errcode.Bytes_Available)
return -1;
sig = LIBSSH2_ALLOC(session, siglen);
if (!sig)
return -1;
memcpy((char *) sig, sigbuf, siglen);
*signature = sig;
*signature_len = siglen;
return 0;
}
void
_libssh2_init_aes_ctr(void)
{
}
#endif /* LIBSSH2_OS400QC3 */
/* vim: set expandtab ts=4 sw=4: */